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ABSTRACT 

Context. The rhizosphere is an environment created by interactions between root exudates and 
microorganisms. Interactions are beneficial due to certain components having a plant growth 
promoting rhizobacteria (PGPR) effect. Aims. This study consists of the isolation, screening of 
PGPR from the rhizosphere of Olea europaea L. of a Mediterranean climatic region in Algeria 
and the study of their effects on growth of two agronomic vegetables Phaseolus vulgaris L. and 
Cucurbita pepo L. Methods. Based on their ability to produce the PGPR molecules indole-3-
acetic acid (IAA), phosphatase and siderophores, three rhizobacteria (S25, S75, and S79) were 
chosen for in vivo tests and capacity to produce the cell wall degrading enzymes chitinase, lipase, 
protease, glucanase, cellulase, and and phospholipase. They were also examined using scanning 
electron microscopy (SEM) and analysed using matrix-assisted laser desorption/ionisation time of 
flight mass spectrometry (MALDI-TOF MS) for identification. Key results. Bacterial strains 
identified as Bacillus cereus and Bacillus thuringiensis were able to enhance significantly germination 
of the two vegetables at P < 0.001. Vegetative parameters of C. pepo were significantly affected 
by the bacterial inoculation. We noted increases in stem length (P < 0.05), number of flowers 
(P < 0.01), and root length (P < 0.001). Conclusion. The bacterial isolates of this study provide 
biological options in treatments originating from alternate hosts. Implications. They provide 
hope for companion/intercrop planting schemes, leading to optimisation of agricultural yields in 
agroecological blends. 

Keywords: Bacillus, cell wall degrading enzymes, indole-3-acetic acid, matrix-assisted laser 
desorption/ionisation time of flight mass spectrometry, phosphatase, plant growth promoting 
rhizobacteria, siderophores. 

Introduction 

The principle imperative facing us today is the feeding of a human population, which may 
reach in excess of 8.9 billion by 2050, with major global increased demand for food in 
developing countries such as those in Asia and Africa. Agricultural practise optimisation 
serves to meet our expanding nutritional requirements with limits to agricultural 
production; catastrophic scenarios are eminent. Conventional modern agriculture 
increases productivity through external chemical inputs, including fertilisers, pesticides, 
fungicides and herbicides (Mokrani et al. 2019; Fadiji and Babalola 2020). However, 
excessive chemical application causes environmental disorders that affect both soil 
quality and plant health. In addition, chemical application promotes resistant pathogen 
emergence and decreases beneficial organism populations in the edaphic environment 
(Pandey et al. 2019; Sabaté et al. 2020). Crucial interactions between plant soil and 
microfauna occur in edaphic settings. Three distinct components are recognised in plant 
rhizospheres; the rhizosphere, the rhizoplane, and the root itself. Rhizospheric soil 
zones are influenced by root exudates that effect microbial relation (activity). The 
rhizoplane is the root surface, including adhering root components. Herein, endophytic 
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microorganisms are able to colonise inner root tissues 
(Compant et al. 2019). In the dynamic environment of the 
rhizosphere, microorganisms develop and interact (Rabbee 
et al. 2019; Chandra et al. 2020). Rhizospheric microor-
ganisms have essential roles in plant–host ecological fitness. 
They complement plant growth and improve pathogenic 
resistance. Microorganisms uphold growth of plants and 
thereby have effects on soil and crop qualities (Zhu et al. 
2020; Azizoglu et al. 2021). Plant growth promoting 
rhizobacteria (PGPR) are soil bacteria present around/on 
the root domain and are involved in promoting plant 
growth and development via secretion of various regulatory 
analogues predominant in the rhizospheric zone (da Silva 
et al. 2018; Rodriguez et al. 2019). Hence, they may decrease 
our dependence on agricultural chemicals (Ahemad and 
Kibret 2014; Pereira et al. 2019). The mode of action of 
PGPR that promotes plant growth comprises: (1) abiotic 
stress tolerance in plants; (2) nutrient fixation and uptake; 
(3) growth regulation; and (4) siderophores, volatile organic 
compounds, and protecting enzymes production such as 
chitinase, cellulase, glucanase, and 1-aminocyclopropane-1-
carboxylic acid (ACC)-deaminase for the prevention of 
plant diseases (Minotto et al. 2014; Vejan et al. 2016; Duca 
et al. 2018). 

Recently, consumers are exhibiting an increased interest in 
the relationship between their health and the nutritional 
aspects of their food (including vitamin content, mineral 
elements and antioxidants, etc.) (Chekanai et al. 2018; 
Neves et al. 2019). Common bean (Phaseolus vulgaris L.) 
and zucchini (Cucurbita pepo L.) are fresh grown vegetables 
with important nutritional and economic value. Common 
bean is the world’s most important food legume for human 
consumption and is in great demand in Africa and Latin 
America (Myers and Kmiecik 2017). Beans provide a source 
of protein, dietary fibre, starch and minerals (including 
potassium, thiamine, vitamin B6 and folic acid) (Chekanai 
et al. 2018). Bean cultures are characterised by sensitivity 
to environmental factors such as sub-optimal availability of 
mineral nutrients. Low phosphorus (P) availability is 
considered to be the principal limiting factor for legume 
growth (Neila et al. 2014). Zucchini is an important crop of 
Mediterranean origin. Beneficial characteristics of zucchini 
include its nutrient content, short growing period, ease of 
storage and transportation and medicinal value (Liu et al. 
2020). It contains a number of beneficial micronutrients 
such as minerals, carotenoids, vitamin C and phenolic 
compounds (Martínez-Valdivieso et al. 2017). Olive (Olea 
europaea L.) displays strong growth and productivity across 
northern Africa (Atrouz et al. 2021). This crop is not 
irrigated or chemically treated in Algeria, hence the need to 
preserve and valorise their rhizosphere, which constitutes a 
reservoir of biodiversity and provides a candidate for 
rhizobacterial flora with PGPR benefits to complement bean 
and zucchini growth. 

The aim of this study to isolate and screen for new 
rhizobacteria from olive (O. europaea) with a PGPR effect 
in C. pepo and P. vulgaris. The objective of the current 
study is to demonstrate bacterial isolates production of 
plant growth molecules (IAA, siderophores, phosphatase) 
and to show acceleration of germination and vegetative 
development of the two plants. Further, we hope to confirm 
identification of isolates using basic laboratory testing, 
scanning electron microscopy (SEM) and matrix-assisted 
laser desorption/ionisation time of flight (MALDI-TOF) 
mass spectroscopy. 

Materials and methods 

Soil sampling and isolation of rhizobacteria 

Olive rhizospheric soil and root samples were collected from 
an olive field (in January 2019) in Bir Khadem region, Algiers, 
Algeria (36°42 059.99″N, 3°03 060.00″E). Samples were taken 
0.5–1 m around plants at 30–50 cm depth in the soil. Extracted 
root systems were carefully shaken by hand to remove soil. 
Roots and rhizospheric soil were placed in sterilised plastic 
bags. In the laboratory, serial dilutions were used to isolate 
bacteria from the three parts of the rhizosphere: (1) 
rhizospheric soil (RS); (2) rhizoplane (RP); and (3) 
endorhizosphere (E). A total of 10 g of soil and 10 g of 
roots were added separately to 90 mL of sterilised saline 
solution (0.9% NaCl) for isolation from RS and RP 
respectively. Whereas in endospheric isolation 10g of roots 
were sterilised with 2% sodium hypochlorite solution for 3 
min, then washed five times with sterile distilled water in 
order to eliminate bacteria residing in the root surface 
which belong to RP. The roots were ground with a sterile 
mortar to free the inside of the roots and then added to 90 
mL of sterilised saline solution (0.9% NaCl). The three 
resulting saline solutions were used for preparation of serial 
dilutions for isolation of rhizobacteria using nutrient agar 
and King B medium. After incubation for 24–72 h at 30°C, 
all morphologically different colonies according to their 
macro and microscopic characteristics (shape and texture of 
colonies, Gram colouration, spore presence, motility) were 
isolated, purified and tested for phytopathogenicity and 
PGPR traits. 

Determination of gram strains 
Thin microbial smears were air dried and fixed by heat. 

Smears were held using a slide rack then covered with 
crystal violet for 1 min. Each slide was washed with distilled 
water for a few seconds, then covered with an iodine 
solution for 30 s. The iodine was washed off with 95% ethyl 
alcohol solution. Fushine was applied to each smear for 
1 min. Smears were washed with distilled water. The stained 
slides were air dried and observed (Aneja 2007). 

B 



www.publish.csiro.au/sr Soil Research 

Scanning electron microscopy 
Bacteria were cryofixed and rapidly examined at very low 

temperatures (below −120°C) by cryo-SEM and metalised 
by cathodic spraying with gold alloy according to Kaláb 
et al. (2008). 

Determination of phytopathogenic rhizobacteria 

Isolated rhizobacteria were tested for their pathogenicity on 
plants by their hypersensitive reaction. A volume of 1 mL of 
bacterial suspension was injected in tobacco (Nicotiana 
tabacum L.) leaves at 20–25°C. A control was maintained 
with sterile physiologic water injection. After 24 h, the 
appearance of a collapse at the injection site indicated a 
positive hypersensitive reaction (Cooksey et al. 1990). 

Phytopathogenic isolates were eliminated and were 
not subjected to determination of plant growth promoting 
attributes. 

Determination of plant growth promoting 
attributes 

The isolated rhizobacteria were screened for PGPR attributes by 
assessing the production of IAA, siderophore and phosphate 
solubilisation as follows. 

IAA production 
IAA production was estimated calorimetrically with the 

standard method described by Bric et al. (1991)  with some 
modifications. In the current study, Luria–Bertani (LB) broth 
(g/L) was prepared with yeast extract (5 g/L), NaCl (5 g/L) 
in distilled water (1000 mL) and supplemented with 
tryptone (10 g/L). pH was adjusted to 7.5 and supplemented 
with 5 mM of L-tryptophan (LBT: LB supplemented with 
L-tryptophan), 0.06% of SDS and 1% glycerol. Bacterial 
suspensions (106 CFU mL−1) were incubated for 3 days 
under continuous stirring at 180 rpm at 28 ± 2°C, pelleted 
through centrifugation at 10 000g for 10 min at 4°C). A 
volume of 1 mL of the supernatant was incubated with 2 mL 
of Salkowski reagent: HClO4 (150 mL), distilled water 
(250 mL), and 0.5 M FeCl3 ·6H2O (7.5 mL) for 30 min in the 
dark at room temperature (30°C). The concentration of IAA 
produced was calculated using a standard curve. Optical 
density was recorded at 535 nm with known amounts of 
commercial IAA in Salkowski reagent and sterile LBT broth. 

Siderophore production 
Siderophore production was revealed using King B solid 

medium: (peptone 20 g); (K2HPO4 1.5 g); (MgSO4 1.5 g/L); 
glycerol (15 mL/L) and agar agar (15 g/L). After inoculation 
and incubation during 24–96 h at 30°C of bacteria isolates, 
florescent pigmentation was observed in siderophore 
producing bacteria with the naked eye and under ultraviolet 
(UV) light at wavelengths 254 and 366 nm (King et al. 2009). 

Siderophores were also detected on Chrome Azurol-S 
(CAS) agar medium. Isolates were streaked on Petri plates 
containing CAS medium and incubated at 30°C for 48 h. 
A positive result was revealed by formation of orange halos 
(Alexander and Zuberer 1991). 

Phosphate solubilisation 
Phosphate solubilisation was indicated following 

Pikovskaya (1948). Bacteria were inoculated in Pikovskaya 
medium (PVK: 10 g/L glucose, 5 g/L, Ca3(PO4)2, 0.2 g/L 
of KCl, 0.1 g/L of MgSO4 ·7H2O, 0.2 g/L of NaCl, 0.5 g/L 
of (NH4)2SO4, 0.02 g/L of FeSO4 ·7H2O, 0.002 g/L of 
MnSO4 ·2H2O, 20 g/L of agar agar), then incubated at 30°C 
during 72 h. Positive reactions were shown by the presence 
of a clear halo surrounding bacterial colonies. 

Cell wall degrading enzymes production 

The three bacterial isolates with greatest capacity to produce 
PGPR molecules were subjected to extracellular enzyme 
production tests. 

Chitinase production 
The ability of bacterial isolates to produce chitinase was 

ascertained by spotting them on a basal medium mixed 
with 2.4% chitin suspension (El-Masry et al. 2002). 

Protease production 
A growing bacterial culture was inoculated in the form of a 

line in skim milk agar for 48 h at 30°C. A clear zone around the 
line indicated a positive result (Smibert and Krieg 1994). 

Lipase production 
Spots of isolates were deposited in the surface of LB 

medium supplemented with 1% Tween 80 and incubated 
from 1 to 5 days at 28°C (Sierrea 1957). An opaque halo 
around colonies indicated a positive result. 

Glucanase production 
A specific agar medium was used composed of peptone 

(5 g/L), yeast extract (5 g/L) and barley (Hordrum vulgare 
L.) flour 10 (g/L). A colony of each strain was inoculated 
following Zouari et al. (2020). 

Cellulase production 
Cellulase production was determined with the method 

described by Prasad et al. (2012) using M9 agar (Miller 
1972), supplemented with 10 g/L cellulose and 1.2 g/L 
yeast extract. Isolates were inoculated and incubated for 
8 days at 28°C. Development of a clear halo around 
colonies indicated a positive response (Verma et al. 2007). 

Phospholipase production 
Nutrient agar was supplemented with 10 mL of sterile egg 

yolk emulsion in physiological water. Spots of isolates were 
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deposited in the surface of the prepared medium, then 
incubated at 30°C for 24 h. The appearance of a clear halo 
around the spots indicated a positive result (Thaler et al. 1998). 

In vivo assays 

Three of the best rhizobacteria from isolates with the highest 
level of IAA production and/or the highest number of positive 
result for production of PGP molecules were chosen for in vivo 
testing according to Lwin et al. (2012), including germination 
tests and vegetative growth assays. Seeds of zucchini and 
common bean were used for each treatment. The seeds 
used in the current experiment were supplied by the 
Algerian National Centre for Seed and Plant Control and 
Certification. 

Germination test 
Zucchini and common bean seeds were sterilised in 2% 

sodium hypochlorite solution for 3 min, then washed five 
times with sterile distilled water. Sterilised seeds were 
incubated in 50 mL of bacterial suspension (106 CFU mL−1) 
at 28 °C for 24 h. Control preparation of seeds was 
maintained in sterile distilled water. After incubation, seeds 
were transferred into Petri plates containing sterile humid 
cotton and incubated at normal room temperature for 
10 days (Lwin et al. 2012). 

Vegetative growth assays 
Sterilisation and inoculation of seeds for vegetative growth 

tests was carried out following the same steps described as 
for germination. After 24 h of incubation, inoculated seeds 
were sown in plastic pots (16 cm high and 19 cm diameter) 
containing sterilised soil (three times autoclaved for 20 min 
at 120°C with an interval of 24 h) in greenhouse conditions. 
The experiment was carried out three times with nine 
replicates per treatment. All pots were watered three times 
a week with 200 mL of sterile water. After 40 days, plants 
were separated and transferred. Measurements of root length, 
stem length, number of lateral roots, number of leaves, and 
number of flowers were recorded (Lwin et al. 2012). 

Characterisation of efficient bacteria 

MALDI-TOF MS (matrix-associated laser 
desorption/ionisation-time of flight mass 
spectrometry) 

Matrix preparation was carried out by diluting a saturated 
solution of α-cyano-4-hydroxycinnamic acid (HCCA) in 
500 μL of 50% acetonitrile, 250 μL of 10% trifluoroacetic 
acid (TFA) and 250 μL of HPLC water. After vigorous 
stirring, sonication was carried out for 10 min, followed by 
centrifugation (13 000g, for 5 min). Samples were transferred 
to clean polypropylene tubes. 

Each bacterial colony obtained from young cultures 
(18–24 h) was deposited in duplicate on the MALDI-TOF 
target plate and covered with 1.5 μL of the matrix solution. 
The matrix and target plate were dried at room tempera-
ture (28°C) for 5 min and analysed (Pfleiderer et al. 2013). 
A Microflex LT MALDI-TOF mass spectrometer was used for 
bacterial identification. The spectra of the bacteria obtained 
were compared with the Bruker computer database using 
the flex Analysis ver. 3.3 and MALDI-Biotyper ver. 3.0 
software for data analysis. Isolates were assumed to be 
correctly identified at the species level when the logarithmic 
score value (LSV) was greater than or equal to 1.9 (Seng 
et al. 2009). 

Statistical analysis 

Germination and vegetative assays data were subjected to 
one-way and two-way ANOVA and the Tukey Test, using 
SPSS ver. 16. Differences were considered to be significant 
at P < 0.05. 

Results 

Isolation of rhizobacteria and observation of 
phenotypic characteristics 

A total of 113 rhizobacteria were isolated from the 
three different part of the olive rhizophere. A total of 

(a) (b) 

Fig. 1. Gram-positive and Gram-negative bacteria microscopic aspect under photonic 
microscope GX1000. (a) Strain S79, Gram-positive rod-shaped bacteria, (b) Strain S35, Gram-
negative spherical-shaped bacteria. 

D 
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28.32% of the rhizobacteria were endophytes; 36.28% 
are from the rhizoplane and 35.4% are from the 
rhizosphere. 

The majority of the obtained colonies were white or beige, 
others were orange. The texture was opaque for the majority, 
sometimes shiny, flat or convex, mucoid or dry. The contour 
was regular or irregular. 

Fig. 2. Scanning electron microscopy of S25 showing the 
morphological rod-shaped aspect of isolated bacteria (GX 4500). 

Gram colouration and scanning electron 
microscopy 

The isolates were divided into four groups: (1) Gram-
positive rod-shaped (46.90%); (2) Gram-positive spherical-
shaped (8%); (3) Gram-negative rod-shaped (39.82%); and 
(4) Gram-negative spherical-shaped (4.42%) (Fig. 1b) based 
on the Gram staining analysis. Most of the Gram-positive 
bacteria were able to grow at 40°C and 55°C with presence 
of spores while Gram-negative isolates, which were mostly 
isolated in King B medium did not form endospores. 

The three selected rhizobacteria for in vivo tests had 
rod-shaped form under photonic microscopy and scanning 
electron microscopy (Fig. 2). S75 was Gram-negative, 
whereas S25 and S79 were Gram-positive (Fig. 1a) with the 
presence of endospores. 

Phytopathogenicity traits 

Only two of the isolated rhizobacteria showed positive 
pathogenicity, they were eliminated from the study. The 
three selected rhizobacteria (S25, S75 and S79) were 
chosen according to their PGPR traits and showed negative 
reactions in the phytopathogenicity test. 

Plant growth promoting attributes 

IAA production 
A total of 47.72% of bacteria tested for IAA production 

revealed positive results (Fig. 3). According to the realised 

(a) 

(b) 

(c) 

(d) 

(e) 

(f ) 

Fig. 3. Screening for PGPR activity results. (a) Positive result for IAA production, characterised by the appearance 
of red colour instead of yellow colour, which indicates a negative result as shown in (b); (c) positive  result  of  
siderophores production of types pyoverdine and pyocyanin appeared as fluorescent pigmentation on King B 
medium, absence of fluorescence indicates absence of production (d); (e) positive result of phosphate 
solubilisation revealed by a clear halo around colonies, the absence of halo indicated a negative result (f ). 
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standard curve, quantitative IAA production on LB broth 
supplemented with (0.5%) of L-tryptophan gave a varying 
level of IAA production. The highest level recorded was by 
strains S1, S4, S24, S25, S26, S75 and S79 (Table 1). 

Siderophore production 
After 72 h of incubation, 79.54% of bacterial isolates 

developed a fluorescent pigmentation on King B medium 
indicating the production of siderophores (Fig. 3), they also 
showed positive reaction on CAS medium represented by 
the appearance of an orange halo around colonies . 

Phosphate solubilisation 
A total of 68.18% of tested bacteria induced solubilisation 

of tri-calcium phosphate on Pikovskaya’s medium by forming 
clear zones around the colonies where the highest production 
level according to the clear zones was recorded by strains S26 
and S72. However, 43% of isolates did not show any halo 
around their colonies, indicating that no inorganic phosphate 
solubilisation (Fig. 3). 

Cell wall degrading enzymes 

The three selected bacteria were tested for extracellular 
enzyme production and produced chitinase, protease, lipase, 
phospholipase, and cellulase. Strain S79 was the only 
producer of glucanase (Fig. 4 and Table 2). 

Germination test 

Three bacterial strains (S25, S75 and S79), were chosen 
according to their PGPR efficacy and were inoculated in 
common bean and zucchini seeds. These isolates showed 
significant effects at P < 0.001. Best effect on zucchini and 
bean seed germination was recorded with the strain S79 
(Fig. 5). 

Vegetative growth assays 

Strain S79 had the highest effect on stem length (84.12%), 
number of leaves (85.71%) and number of flowers (100%), 
though the lowest effect on roots length and lateral roots. 
Strains with S25 and S75 enhanced roots length and lateral 
roots number. One-way ANOVA tests showed a significant 
effect at P < 0.05 on stem length and flowers number, and 
a significant effect at P < 0.001 on roots length, while a 
non-significant effect (n.s.) was shown on lateral roots 
number (Fig. 6). 

MALDI-TOF MS 
MALDI-TOF MS analysis of the three selected bacteria 

revealed that the strains S25 and S79 are both Bacillus 
genus, whereas S75 logarithmic score value was below the 
recommended value for identification (Table 3). The mass 
spectrometry profiles characteristics of each strain are 

Table 1. Main PGPR screening results. 

Strain Origin Phosphatase Siderophore IAA (μg/ 
mL) 

S1 E + − + 73.54 

S3 E + + + 54.74 

S4 E − + + 86.25 

S5 E + − + 62.11

S6 E − + + 19.54

S7 E − + + 37.41

S9 E − + + 33.36

S11 E − + + 19.17

S13 E + + − –

S17 E + + − – 

S20 E + + − –

S22 E + + − – 

S24 E − + + 84.96 

S25 E + + + 98.97 

S26 E − + + 133.80 

S27 E + + + 14.74 

S34 RP + − + 28.94 

S38 RP + + − – 

S39 RP + + − –

S40 RP + + − – 

S42 RP + + − –

S48 RP + + − – 

S52 RP + + − – 

S57 RP + + + 25.80

S59 RP + + − –

S70 RP + + + 31.33

S71 RP + + + 46.63

S72 RP + + + 24.88

S73 RP + + − –

S75 RS + + + 90.01

S76 RS + + − –

S79 RS + − + 166.60

S80 RS − + + 27.07

S81 RS + + − – 

S83 RS + + − –

S84 RS − + + 22.48

S87 RS + + − –

S89 RS + + − – 

S91 RS + + − – 

The main results of PGPR traits of the isolated rhizobacteria. Only strains with at 
least two positive results are mentioned (35.13% of the strains). 

mentioned in Fig. 7. Each peak in the respective profiles 
identifies specific bacterial proteins. 

F 
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Fig. 4. Screening for cell wall degrading 
enzyme production. (a) Positive result for 
chitinase production, (b) positive result of 
protease production, (c) positive result of 
phospholipase production. All those three 
results were revealed by a clear halo around 
colonies. (d) Positive result for lipase 
production revealed by dark halo or 
formation of crystals around colonies. 

Table 2. Cell wall degrading enzymes of the three selected rhizobacteria. 

Strains Chitinase Protease Glucanase Lipase Phospholipase Cellulase 

S25 + + − + + + 

S75 + + − + + + 

S79 + + + + + + 

−, indicated absence of production; +, indicated presence of production. 

Discussion 

In this work, we demonstrated that the three parts of olive 
rhizosphere (rhizosphere, rhizoplane and endorhizoplane) 
from a Mediterranean region (north of Algeria) are rich in 
rhizobacteria with high capacity for producing plant growth 
molecules (auxins, siderophores and phosphatase). The 
findings concerning the ability of rhizobacterial strains 
producing these molecules, indicate that they can be used 
to enhance crop growth. This concurs noz et al.with Mu ̃  
(2020) in which rhizobacteria originating from cultivated 
crops from extreme environments were used. 

Phytohormones have regulatory and signalling functions 
in growth and development. They are additionally produced 
by rhizobacteria supplementing cell division, cell elongation, 
and differentiation. Auxins are represented by IAA and 
analogues, which increase the surface area, length of the 
root and root exudation, providing the plant with better 
access to soil nutrients (Dastager et al. 2011; Park et al. 
2013; Cecagno et al. 2015; Koua et al. 2020). Phosphate is 

the second most important macronutrient after nitrogen, 
effecting plant growth. Even in soil enriched with 
phosphate, only 0.1% is soluble and assimilated by plants. 
Paucity of phosphate severely limits global crop production 
(Mezaache-Aichour et al. 2012; Anzuay et al. 2013). 
Microbial solubilisation of phosphate is a significant factor 
in the conversion of insoluble phosphate to soluble phosphate 
(Koua et al. 2020). 

Low molecular weight molecules, siderophores have 
high affinity to Fe3+ ions. Siderophores therefore facilitate 
iron availability, and are secreted under conditions of iron 
deficiency. On formation of the siderophore ion Fe3+ 

complex, a microbial cell’s external membrane produces 
siderophores catalysing internalisation. Under conditions of 
iron deficiency, a siderophore-Fe3+ complex is formed, and 
the external membrane of the microbial cell producing 
siderophores catalyses the internalisation of these 
complexes (Gupta and Gopal 2008). The results of IAA 
production on LB supplemented with L-tryptophan showed 
that 47.72% of the tested bacteria produced IAA. 68.18% of 
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Fig. 5. Bacterial isolates effect on germination 
rate of zucchini (a) and common bean seeds (b). 
Strains with the same number (1, 2, or 3) are not 
significantly different using Tukey’s test at 
P < 0.001. Te, control; S, strain; D, day. 

isolates solubilised phosphate on PVK solid medium. 79.54% 
of the tested isolates were able to produce siderophores. These 
PGPR molecules have been reported in different rhizobacteria 
(Bhattacharyya and Jha 2012; Nabti et al. 2013; Zennouhi 
et al. 2018; Mokrani et al. 2019; Qessaoui et al. 2019; 
Oulebsir-Mohandkaci et al. 2021). 

Three strains of the best producers of PGPR molecules 
(S25, S75 and S79) were selected and tested for their 
capacity of producing extracellular enzymes: chitinase, 
protease, glucanase, lipase, phospholipase and cellulase. 
Enzyme activities in soil are of increasing interest, breaching 
soil microbiology and biochemistry research. Bacterial and 
fungal microorganisms secrete extracellular enzymes with a 
major role in biogeochemical cycles (Bonnet et al. 2017). 
PGPR enzyme production insures sustainable plant disease 
management. The aforementioned enzymes break down the 
cell wall of fungal phytopathogens causing cell death; 
additionally they are lethal to nematodes and insects (Gow 
et al. 2017; Jadhav et al. 2017; O’Brien 2017). S25, S75 
and S79 produced the mentioned enzymes apart from S25 
and S75, which did not produce glucanase. 

Chitin is the major component of fungi and insects exteriors. 
Previous research shows the chitinase from Chitinophaga spp. 
to have antifungal and nematicidal activity against Fusarium 
oxysporum, Alternaria alternate, Cladosporium spp. and 
root knot nematode, Meloidogyne incognita, a major pest 

responsible for economic losses in agriculture (Sharma et al. 
2020). Chitinase from a biocontrol fungus, Trichoderma 
asperellum prevent anthracnose caused by Colletotrichum spp. 
on both mango (Mangifera indica L.) and chilli (Capsicum 
frutescens L.) fruits up to 72 h after enzyme pre-treatment 
at 40 U/mL (Loc et al. 2020). The study conducted by 
(Arora et al. 2007) showed inhibition of Rhizoctonia solani 
peaks when the synthesis of chitinase and glucanase is at 
maximum by a fluorescent pseudomonad. 

The relationship between Beauveria bassiana producing 
enzymes, including proteases, against Helicoverpa armigera 
has been demonstrated (Kaur and Padmaja 2009). Protease 
purified from Streptomyces flavogriseus in the study conducted 
by Mostafa et al. (2019)  showed inhibition against different 
phytopathogenic fungi, especially F. oxysporium and R. solani. 

It is also important to note that cellulase acts against 
phytopathogenic fungi, Phytophtora and Pythium, whose 
cellulose content in cell walls is between 17% and 35% 
(Minotto et al. 2014). Sheetal et al. (2019) reported 
phospholipase from entomopathogenic Xenorhabdus spp. has 
a proven efficacy against filarial vector Culex quinquefasciatus. 

Bacterial chemotaxonomy of S25, S75 and S79 using 
MALDI-TOF MS revealed S25 and S79 to be B. cereus and 
B. thuringiensis, respectively, while S75 could not be
identified. MALDI-TOF MS profiling enables the identification
of bacteria by the detection of proteins profiles, given that its
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Fig. 6. Vegetative growth assays on zucchini culture after 40 days on (a) stem length, (b) leaf number, (c) root length, 
(d) number of lateral roots, (e) number of flowers. Te, control; S, strain.

Table 3. Identification results of the three selected bacteria using MALDI-TOF MS. 

Strain Organism (best match) Logarithmic score value Significance of results 

S25 Bacillus cereus 2.012 Secure genus identification, probable species identification 

S75 – 1.648 Unidentified 

S79 Bacillus thuringiensis 2.044 Secure genus identification, probable species identification 

spectrum is available in the mass spectrometer’s database; 
giving the same result as 16S rRNA and rDNA gene 
sequence analysis but at a rapid rate and a lower cost (Rahi 
et al. 2016; Grégory et al. 2018). However, its application 
on environmental bacteria is limited due to a lack of data on 
non-clinical microorganisms (Rahi et al. 2016; Kostrzewa and 
Maier 2017). Additionally, the culture medium effects the 
mass spectra, notably when the former does not sustain 

optimal growth. Growth medium compounds impede with 
the ionisation of the bacterial biomolecules, as the bacteria 
have a tendency to adhere to the culture medium surface 
(Wieme et al. 2014). Bacterial identification is related to 
cell concentration, various methods determine the minimum 
concentration of cell material needed for identification of 
bacteria using MALDI-TOF MS. A study showed Escherichia 
coli could be identified at species level at 8 × 104 viable 
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Fig. 7. Mass spectrometry profiles of the
three strains. (a) S25, (b) S75, (c) S79. 
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cell count (VCC) per mL using a Bruker Autoflex, whereas 
Enterococcus faecalis did not reach consistently high 
identification scores even at 5 × 105 VCC per mL. Further, the 
detection limit may optimally be identified using diafiltration 
and specific extraction methods, combined with improved 
algorithms for spectral analyses (Mörtelmaier et al. 2019). 
As an example, the creation of a custom reference library 
make it possible to distinguish between E. coli and Shigella 
species, which were difficult to discriminate. Similarly, 
ClinProTools make it possible to identify Streptococcus 
pneumoniae and Streptococcus mitis/oralis despite the fact 
that these species are frequently confused (Grégory et al. 
2018). Precedent issues, call for specific data analysis such 
as machine learning algorithms which have been leveraged 
to maximally exploit the information contained in 
MALDI-TOF MS, with the ultimate goal of refining species 
identification (Weis et al. 2020), otherwise, the use of 
machine learning techniques for microbial species 
identification purposes remains limited and is dominated 
by the application of adaptive artificial neural networks 
(ANNs). Research on ANN analysis of MALDI-TOF MS for 
bacterial identification is limited due to lack of resolution/ 
reporting into the respective knowledge bases used. 
The evaluation of two other popular machine learning 
techniques: random forests and support vector machines by 
De Bruyne et al. (2011) proved to be very successful. 
Combinatorial of ANN and Fuzzy Logic Systems enables the 
representation of real-world. Hybrids of these methods 
increase their advantages and decrease their shortcomings. 
For example, in fuzzy neural systems, the fuzzy system can 
provide an input vector to a multi-layer neural network as a 
response to linguistic statements. Subsequently, the neural 
network is trained to generate required outputs or decisions 
(Vlamou and Papadopoulos 2019). Fuzzy logic is extremely 
useful for many people involved in research and 
development including environmental engineers, natural 
scientists (biology and agriculture), and medical researchers 
(Singh et al. 2013). Recently, Neuro-Fuzzy systems 
have gained more attention from research communities 
than other types of fuzzy expert systems since it combines 
the advantages of the learning ability of neural network 
and the reasoning ability of fuzzy logic to solve many non-
linear and complex real world problems with high accuracy 
(Salleh et al. 2018). The concept of the fuzzy set operats via 
intelligent controllers formed through Mamdani and Takagi-
Sugeno-Kang (TSK) systems. The TSK-type fuzzy model has 
advantages over the Mamdani-type in terms of compu-
tational efficiency. The defined input of TSK enables precise 
output ensuring accurate prevision of otimazation of adaptive 
techniques. The TSK system rationale enables further higher 
methods such as searching algorithm techniques, which can 
theoretically identify anything (optimisation by Hybrid 
Genetic Algorithm; optimisation by particle swarm, artificial 
bee colony. These searching optimisation techniques can then 
lead to functional distributes and expressions (for expansion 

of taxonomic information) (Furze et al. 2017; Yazid et al. 
2019; Furze and Mayad 2021, 2022) .  

In vivo tests were useful to ensure experimental condi-
tions similar to the conditions of definitive application 
of rhizobacteria. PGPR can use different mechanisms to 
improve seed germination, root development or to improve 
mineral nutrition and water use (Dobbelaere et al. 2003; 
Mitter et al. 2013). Most Bacillus spp. have PGPR 
characteristics (Jin et al. 2019). Germination tests on common 
bean and zucchini seeds showed both significant effects at 
P < 0.001. Concerning vegetative growth, several studies 
have shown that rhizobacteria stimulate root development, 
such as research done by Cassán and Diaz-Zorita (2016); 
Agapit et al. (2020). Other studies have shown that 
rhizobacteria stimulate flowering, increase leaf and stem 
length compared to plants, which were not inoculated with 
rhizobacteria (El Habbasha et al. 2013; Mouradi et al. 
2016) in agreement with our results on zucchini crops but 
with variable enhancement of growth. In spite of the latter, 
there are still no commercial B. thuringiensis-based PGPR 
products on the biofertiliser market (Azizoglu 2019), 
though B. thuringiensis-based commercial biopesticides are 
available. It should be noted that the resistance of Bacillus 
spores enables them to enhance plant growth in extreme 
environments, an advantageous feature compared to non-
sporulating PGPR. 

Conclusion 

Rhizobacterial isolates of B. cereus and B. thuringiensis 
(S25, S75 and S79) can find their place in biotechnological 
applications such as crop production enhancement and 
environment protection. The strains provide a base for 
biofertilisers and biostimulants, in production of industrially 
important enzymes, and to produce pesticides. 

Further work should study the biocontrol activity of the 
strains against different phytopathogens to evaluate their 
activity. It is also preferable to study the efficacy of beneficial 
strains combined to find the best matching mixture and 
investigate the mechanism of actions using biochemistry 
and molecular biology such as in gene expression analysis, 
amino acid, protein analysis and gene knockout studies. 
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