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Abstract 

 

 

 

This work presents the analysis and design of small microstrip patch antennas that can be 

used in mobile communication using Finite Difference Time Domain (FDTD) method. The 

formulation of the FDTD algorithm is described along with its fundamental properties. At the 

beginning, the method is applied to the arbitrary shaped patch; and the radio-electric 

properties of the considered microstrip patch antennas are formulated. The method is then 

applied to some known structure shapes working in high microwave frequency bands; the 

shapes include rectangular (dipole), annular-ring and semi-ring patches. Different feeding 

methods (Microstrip line feed and coaxial line feed) are used to energize the considered 

antennas. The input impedance (VSWR), the return loss, and the far field radiation patterns 

calculated with the aid of FDTD method and compared with the results obtained with the 

HFSS simulator. 

 Due to the nature of the chosen method, a new shape of patch is designed and analyzed. 

The new structure is named Berber-Z patch antenna taken from “TIFINAGH” Berber 

alphabet. The obtained results are Validated the HFSS simulator.  

              

 

 

 

 

 

 



 
 

‐ 3 ‐ 

 

 

 تصميم وتحليل هوائيات الشرائح الصغيرة للاتصالات المتنقلة

 

 

 

 ملخص

 

 

هذا العمل يقدم تحليلا وتصميم هوائيات الشرائح الصغيرة التي يمكن استخدامها في الاتصالات المتنقلة باستخدام طريقة 

محدود فارق التوقيت المجال (FDTD).  ويرد وصف لصياغة الخوارزمية (FDTD) مع خصائصه الأساسية. في البداية 

، يتم تطبيق الطريقة لشرائح ذات ا شكال تعسفية ، وخصائص الراديو والكهرباء لشرائح الهوائيات الصغيرة. ثم يتم تطبيق 

هذه الطريقة على بعض الأشكال المعروفة هيكل العاملة في نطاقات التردد العالي الميكروويف ، وتشمل الشرائح الشكل 

المستطيل (ثنائي القطب) ، حلقية الدائري و نصف حلقية الدائري. وتستخدم أساليب مختلفة للتغذية و لتفعيل هوائيات 

(Microstrip سطر تغذية ومحوري خط تغذية) . مقاومة الإدخال (VSWR) ، وفقدان العودة ، والإشعاع مجال أنماط  

تحسب بمساعدة طريقة( FDTD) الأسلوب وبالمقارنة مع النتائج التي تم الحصول عليها باستخدام برنامج متطوريسمى 

                                                  .(HFSS )محاآي التصميمات عالية التردد 

ونظرا لطبيعة الطريقة المختارة، شكل جديد من الشرائح الهوائيات الصغيرات تم تصميمها وتحليلها. يدعى الهيكل الجديد 

البربرية التي اتخذت من "تيفيناغ الأبجدية البربرية"(البربر- Ζ). يتم التحقق من صحة النتائج التي تم الحصول عليها من 

                                                           .(HFSS)جهاز 
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Résumé 

 

 

 

 

 

 

Ce travail présente l'analyse et la conception de petites antennes micro-ruban patch qui peut 

être utilisé dans la communication mobile à l'aide ‘Finite Difference Time Domain’ (FDTD) 

méthode. La formulation de l'algorithme FDTD est décrite avec ses propriétés fondamentales. 

Au début, la méthode est appliquée à la pièce en forme arbitraire, et les propriétés 

radioélectriques de la micro-ruban antennes patch considérée sont formulées. La méthode est 

ensuite appliquée à une structure connue des formes de travail dans les bandes de fréquence 

micro-ondes de haute; les formes sont rectangulaires (dipôle), annulaires cycliques et le 

correctif semi-anneau. Différentes méthodes d'alimentation (ligne micro-ruban et ligne 

coaxiale) sont utilisées pour alimenter les antennes en considération. L'impédance d'entrée 

(VSWR), la perte de retour, et les modèles jusqu'à un champ de rayonnement calculées à 

l'aide de la méthode FDTD et comparés avec les résultats obtenus avec le simulateur HFSS. 

En raison de la nature de la méthode choisie, une nouvelle forme de patch est conçue 

et analysé. La nouvelle structure porte le nom berbère antenne patch-Z extrait de "Tifinagh" 

alphabet berbère. Les résultats obtenus sont validés le simulateur HFSS. 
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Introduction 

 

 

Often described as one of the most exciting developments in antenna and electromagnetic 

history, the microstrip patch antenna has matured into probably the most versatile solutions to 

many systems requiring a radiating element. The microstrip antenna is a very good common 

element in telecommunication and radar applications since it provides a wide variety of 

designs, can be planar or conformal, and can be fed in many different methods [1], [2]. 

Currently, the use of microstrip antennas has grown due to the advantages of these kinds of 

structures. It is well known that microstrip antennas have several shapes and can perform in 

different ways, depending on the application. 

Several mobile communication handset terminals today use variants of the microstrip 

patch antenna (MSA) as their radiator. Because of its characteristics; low profile, small size, 

low cost, and conformability to mounting hosts , MSAs are very promising candidates for 

satisfying this design consideration. There are various shapes of patch antennas meeting those 

requirements (low cost and low profile) for examples annular-ring, rectangular, semi-ring and 

Berber-Z (Z in “TIFINAGH” writing). Feeding mechanism plays an important role in the 

design of microstrip patch antennas. 

The microstrip patch is a relatively complicated radiator. Over the years there have 

been several analytical /numerical methods proposed and used to analyze this radiator. The 

Finite Difference Time Domain (FDTD) method is one of the full wave methods that are used 

in the analysis of microstrip antennas. FDTD has been widely used to simulate various 

electromagnetic Problems (with complex geometry) because of its flexibility and versatility. 

This work presents the analysis and design of microstrip patch antenna using the 

Finite-Difference Time-Domain (FDTD) method. The FDTD method principle is described in 

some detail that allows an understanding of the way of applying the algorithms to microstrip 

structure. At the beginning, the method is applied to the arbitrary shaped patch; and the radio- 
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electric properties of microstrip patch antennas are formulated. The method is then applied to 

some known structure shapes working in high microwave frequency bands, the shapes 

include, rectangular (dipole), annular-ring and semi-ring patches. 

Due to the nature of the chosen method, a new shape of patch is composed, designed 

and analyzed. The new structure is named Berber-Z patch antenna having the shape of the 

letter corresponding to the consonant ‘Z’ in Tamazight language alphabet written using the 

Tifinagh transcription. The obtained results are compared with simulated by High Frequency 

Structure Simulator (HFSS) simulator, the report consists of three chapters organized as 

follows: 

Chapter 1,in which we present an overview of microstrip patch antenna and its characteristics, 

the different feeding/excitation methods, method of analysis of microstrip antennas, a brief 

description of FDTD method and its advantages over other methods and an overview of HFSS 

simulator that is used to compare the obtained results. 

In chapter 2, the main theoretical concepts and formulas of FDTD method are used to analyze 

the different shapes of microstrip antennas. Provides some fundamental concepts of FDTD 

and introduces the Yee's FDTD (Maxwell’s curl equations) formulation and its 

implementation in microstrip antenna. The absorbing boundary conditions (ABCs), 

formulation of Mur’s absorbing boundary condition, excitation source, Antenna Feed Models 

and the near field to far field transformation. 

Chapter three discusses the simulation steps and the design procedure of four shapes of 

microstrip patch antennas and, different feeding techniques using Finite Difference Time 

Domain (MATLAB program) and, compares the obtained results with HFSS simulator based 

on the Finite Element method (FEM). To get the physical characteristics of antennas (the 

return loss ( ), gain, input impedance (VSWR) and far fields radiation patterns). 

The work ends with a conclusion that summarizes the whole work; and some appendices. 
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Chapter I 
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Generalities 
  

 

 

 

 

 

 

 

 This chapter provides background description of microstrip patch antennas as well as some features of 

the numerical method used in this work. 

 

 

 

1.1. Background 

Microstrip Antennas (MSAs) was first introduced in the 1950’s, and it became very popular in 1970’s 

for space borne applications [1]. Since then, a massive amount of research and development efforts 

have been directed to them. Microstrip patch antennas have found widespread use due to many 

desirable features over other antenna structures, including their low profile and conformity to planar 

and non-planar surfaces, light weight, low cost production, robust nature; they can be designed to 

operate over a large range of frequencies (1-50GHz) [3]. Moreover, they can easily be combined to 

form linear or planar arrays, and they can generate linear, dual, and circular polarizations. These 

antennas are inexpensive to fabricate using printed circuit board etching, which makes them very 

useful for integrated active antennas in which circuit functions are integrated with the antenna to 

produce compact transceivers. They are also very versatile in terms of resonance frequency, 

polarization, radiation pattern and impedance. We can find MSAs on the surfaces of high-performance 

aircraft, spacecraft, satellites, missiles, cars and new held mobile telephone, where size, weight, cost, 

performance and ease of installation are important factors. 

 However, Microstrip patch antennas also have some limitations to conventional microwave 

antennas such as narrow bandwidth, relatively poor radiation efficiency resulting from surface wave 

excitation, conductor and dielectric losses and difficulty of prediction the performance of this form of 

radiator. 
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 1.1.1. Microstrip antenna 

A microstrip antenna is a resonant style radiator. It consists of a radiating patch on one side of a 

dielectric substrate which has a ground plane on the other side as shown in figure 1.1; microstrip 

antenna is referred to as patch antenna. 

  

 

 

 

 

 

 

 

 

The patch generally consists of a conducting material such as copper or gold and it is the 

source of radiation where electromagnetic energy fringes off the edges of the patch and into the 

substrate. The length L of the patch is usually  (  is the free space wavelength). 

The patch is selected to be very thin such that t << 0λ  (t is the patch thickness) [4].  

The ground plane acts as a perfectly reflecting ground plane, bouncing energy back through 

the substrate and into free space. 

The patch and the ground plane are separated by a dielectric sheet (referred to as the 

substrate). There are numerous substrates materials that can be used for the design of microstrip 

antennas and their dielectric constant is usually in the range    suitable for operation at 

frequencies ranging from 1 to 100 GHz [4].  

Over the years there have been many conductor shapes proposed and investigated for a microstrip 

patch antenna, schematic diagrams of these are shown in the figure1.2. 

Fig. 1.1  Microstrip patch antenna configuration 

Ground plane 

h 

L 

W 

Metallic patch (L, W) 

Substrate (h, ) 
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1.1.2. Radiated Fields of Microstrip Antenna 

The field structure within the substrate and between the radiating element and the ground plane is 

shown in figure 1.3 (a) and 1.3 (b). The electromagnetic wave traveling along the microstrip feed 

line spreads out under the patch. Hence, the resulting reflections at the open circuit set standing- 

wave pattern. From the figure 1.3(b), it can be clearly seen that the radiated fields undergo a phase 

reversal along the length of the structure, but is approximately uniform along the width of the 

structure. 

   

(a) Microstrip antenna (b) Side view ( c) Coordinate system for aperture 

Fig. 1.3 Microstrip antenna and coordinate system [5] 

 The antenna consists of two slots, separated by a very low impedance parallel-plate 

transmission line which acts as a transformer [5]. The length of the transmission line has to be 

approximately �g/2 (where �g is a guide wavelength) in order for the fields at the aperture of the 

Ground plane
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two slots to have opposite polarization. The components of the field from each slot add in phase 

and provide a maximum radiation normal to the element. As for the electric field at the aperture of 

each slot, it can be categorized into x and y components, as shown in figure 1.3(c). The y 

components are out of phase and hence, their contributions will cancel out each other. 

Due to the fact that the thickness of the microstrip is normally very small, the 

electromagnetic waves generated within the dielectric substrate (between the patch and the ground 

plane) undergo considerable reflections when they arrive at the edge of the strip. Hence, only a 

small fraction of the incident energy is radiated. As a result, the antenna is considered to be very 

inefficient and it behaves more like a cavity instead of a radiator. 

1.1.3. Feeding techniques 

There are many configurations that can be used to feed or transmit electromagnetic energy to 

microstrip antennas. The four most popular feed techniques used are; microstrip feed line, coaxial 

probe feed, aperture coupling and proximity coupling. These techniques can be classified into two 

categories; contacting (microstrip line and coaxial probe) and non- contacting (aperture coupling and 

proximity coupling). In contacting technique the RF power is fed directly to the radiating patch using a 

connecting element such as microstrip line. 

In non-contacting scheme, electromagnetic field coupling is done to transfer power between 

the microstrip line and the radiating patch.  

1.1.3.1. Coaxial feed 

The coaxial feed is the simplest feed structure for the microstrip antennas and remains among the most 

popular one, this is displayed in figure.1.4 and its equivalent circuit.  

Coaxial 
connector

Ground 
plane

patch
substrate

 

 

Probe feed Electrical equivalent circuit 

Fig.1.4 Feeding by a coaxial cable [4] 
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It is also referred as probe feed. It is a quite different way to feed a patch by means of a coaxial line 

that is set perpendicular to the ground plane. In this case the inner conductor of the coaxial line is 

attached to the radiating patch while the outer conductor is connected to the ground plane. It has low 

spurious radiation because the radiating and feeding systems are disposed on the two sides of the 

ground plane and shielded from each other. It is suitable for antenna array applications. It also has 

narrow bandwidth and it is more difficult to model, especially for thick substrates ) [4]. 

1.1.3.2. Microstrip line feed 

The simplest way to feed a microstrip patch is to connect a microstrip line directly to the edges of the 

patch as shown in figure.1.5. In this case both the patch and the lines are located on the same substrate. 

The conducting strip is smaller in width as compared to the patch and this kind of feed arrangement 

has the advantage that the feed can be etched on the same substrate to provide a planar structure. The 

microstrip feed line is easy to fabricate, simple to match by controlling the inset position and rather 

simple to model [1]. 

 As the substrate thickness increases surface wave and spurious feed radiation increase, which, 

for practical designs limit the bandwidth (typically 2-5%) [4]. The drawback is the radiation from the 

feed line, which leads to an increase in the cross-polar level, And, in the millimetre-wave range. 

 

 

 

 

 

 

 

 

 

 

 

 

Microstrip line feed Electrical equivalent circuit 

Fig.1.5 Feeding by a microstrip line [4] 

1.1.3.3. Proximity coupled feed 

Proximity coupled feed is often referred in the literature as (electromagnetic coupling). The proximity 

coupled feed uses a two layer substrate with a microstrip line on the lower substrate terminating in an 

open stub below the antenna element which is printed on the upper substrate as illustrated in figure 

.1.6. 
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Fig.1.6 Feeding by proximity [4] 

The advantage of this feed is to allow the patch to exist on a relatively thick substrate for improved 

bandwidth, while the feed line sees on the effectively thinner substrate which reduces spurious 

radiation and coupling. This scheme also provides choices between two different dielectric media one 

for the patch and one for the feed line to optimize the individual performance. 

The main disadvantage of this feed scheme is that it is difficult to fabricate because of the two 

dielectric layers which need proper alignment. The length of the feeding stub and the width to line 

ratio of the patch can be used to control the match. The proximity coupling has the largest bandwidth 

and it is somewhat easy to model. 

1.1. 3.4. Aperture coupling feed 

The aperture coupling feeds is the most difficult of all feeds to fabricate, it is somewhat easier to 

model and, it has narrow bandwidth. It has moderate spurious radiation. The aperture coupling 

consists of two substrates separated by a ground plane, on the bottom side of the lower substrate there 

is a microstrip feed line whose energy coupled to the patch through a slot on the ground plane 

separating the two substrates as shown in figure.1.7. Typically a high dielectric material is used for the 

bottom substrate and thick low dielectric constant material for the top substrate.  

The ground plane between substrates also isolates the feed from the radiating element and 

minimizes interference of spurious radiation for pattern formation and polarization purity. Typically 

matching is performed by controlling the width of the feed line and the length of the slot. 

 

 

 

Proximity coupled feed Electrical equivalent circuit 
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Aperture coupled feed Electrical equivalent circuit 

Fig.1.7 Feeding by aperture [4] 

1.2. Small microstrip antennas 

One of the trends in mobile terminal technology in the past few years has been to dramatically reduce 

the size and weight of the terminal. This remarkable reduction in the terminal’s size has sparked a 

rapid evolution of the antennas used for mobile terminals. Hence, the design of antennas for small 

mobile terminals is becoming more challenging. The antennas are required to be small and yet their 

performances have to be maintained. However, usually a degradation of the gain and the bandwidth 

are observed when the antenna’s size is reduced. 

Microstrip antennas have the attractive features of low profile, small size, low cost, 

and conformability to mounting hosts. Therefore, MSAs are very promising candidates for 

satisfying this design consideration. Some of these small patches antennas are discussed 

below; 

1.2.1. Rectangular and square patches 

The first and probably the most utilized patch conductor geometry were the rectangular and square 

shapes. Figure 1.2 (b) and (g) show these geometries. For a rectangular patch, the antenna is excited at 

some point along the resonant dimension L to generate a mode in this direction. In general, the length 

of the patch controls the resonant frequency and the width of the patch affects the impedance level at 

resonance as well as the bandwidth (a second order effect); the larger is the patch width the smaller the 

input impedance of the antenna This statement is valid only under certain condition (relatively thin 

substrate material) [6]. As the thickness of the material increases to greater than 0.03 0λ , these 

relationships are not mutually exclusive and the feeding procedure and location can dramatically 

change all the measures performance [6].  
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In general, of all the conductor shapes rectangular patches tend to have the largest impedance 

bandwidth, simply because they are larger than the other shapes. Squares patches can be designed to 

generate the dual or the circular polarization. 

1.2.2. Circular and elliptical patches 

Figure 1.2 (f) and (h) show schematic diagrams of circular and elliptical patch geometries. 

These shapes are probably the second most common geometry. Circular and elliptical patches 

are slightly smaller than their rectangular counterpart and as a result have slightly lower gain 

and bandwidth [6]. The dominant modal distribution on a circular patch is different to that for 

a rectangular/square patch conductor. 

A circular patch, like a square patch only has one degree of freedom in its conductor 

shape and that’s its radius. Thus changing the radius will control the resonant frequency of 

circular patch. Once again under conservative conditions, the feed position will control the 

input impedance of the antenna at the chosen resonant frequency. 

One of the primary reasons the circular geometry was quite expensively investigated 

in the past was due to its inherent symmetry. This allowed full-wave analysis tools utilising a 

spectral domain technique to be written that were computationally more efficient than their 

rectangular counterpart. 

This was important in the early stages of the patch design and development for it 

allowed performance trends of more complicated structures(such as stacked patches) to be 

explored and optimized efficiency. Importantly these trends could then be relayed back to 

other geometries, simply because most of the differences in performances of different 

conductor shapes are minimal. With the advent of several rigorous, computationally fast full-

wave design tolls, such as ensemble and IE3D, systems incorporating circular patch antennas 

are becoming increasingly rare. 

1.2.3. Triangular and disc sector patches 

Triangular and disc sector patch geometries are smaller than their rectangular and circular 

counterparts, although at the expense of further reduction in bandwidth and gain. Figure 1.2 

(d) and (i) show schematic diagrams of these conductor shapes. Triangular patches also tend 

to generate higher cross-polarization levels; due to their lack of symmetry in the 

configuration. And disc sector patches have a similar number design freedoms as the 

rectangular patch. 
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For a disc sector antenna, if the 01TM  mode is excited, then the radius of the disc 

controls the resonant frequency and the sector angle controls the bandwidth and impedance 

[6]. Depending on the aspect of the triangle and the disc sector, dual frequency and dual 

polarized patches can be developed using either of these conductor shapes, however the 

bandwidth is typically very narrow [7]. Also for the dual frequency patch, the polarizations 

for each frequency band are orthogonal. 

1.2.4. Annular rings 

Annular ring geometries are the smallest conductor shape, once again at the expense of 

bandwidth and gain. Figure 1.2 (c) shows this conductor shape. One problem associated with 

an annular ring is that it is not simple process to excite the lowest order mode and obtain input 

impedance close to Ω50 .in fact, impedance values ranges from 150-250Ω  are quite normal 

[6]. Non-contact forms of excitation are typically required to feed this element at the expense 

of antenna efficiency. The symmetry issues mentioned for the circular patch cases also apply 

here. 

The annular ring has more design variable than the circular patch and therefore it’s 

response should be easier to control. Both the inner and outer ring dimensions can be used to 

control the resonant frequency of the printed antenna, which is very advantageous. However, 

as the inner radius approaches the outer radius dimension, the impedance bandwidth becomes 

narrower, for more information about annular-ring patch antenna see appendix A. 

1.3. Methods of analysis 

 Microstrip patch antenna generally has a two-dimensional radiating patch on a thin dielectric 

substrate, therefore may be categorized as a two-dimensional planar component for analysis purposes. 

The analysis methods for MSAs can be broadly divided into two groups. 

In the first group, the methods are based on equivalent magnetic current distribution around 

the patch edges (similar to slot antennas) [8]. This group includes three popular analytical techniques: 

• Transmission line model; [1,2,4] 

• Cavity model ;[1,2,4] 

• Multiport network model (MNM);[8] 

In the second group, the methods are based on the electric current distribution on the patch conductor 

and the ground plane (similar to dipole antennas, used in conjunction with full-wave 

simulation/numerical analysis methods) [8]. Some of these numerical methods are: 
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• Method of Moments (MoM ) ;[9;10] 

•  Finite Element Method (FEM);[11] 

•  Spectral Domain Technique (SDT);[8]  

• Finite Difference Time Domain (FDTD) method which is chosen in this work to analyse 

various shapes of microstrip patches antennas; [12, 10, 13].  

1.4. Finite Difference Time Domain (FDTD) method 

The Finite Difference Time Domain (FDTD) method is a full-wave , dynamic, and powerful solution 

tool for solving Maxwell’s equations, introduced by K.S. Yee in 1966 [12]. This method becomes one 

of the attractive methods due to its programming simplicity and flexibility in analyzing wide range of 

Electromagnetic structures. The algorithm involves direct discretization of Maxwell’s equations by 

writing the spatial and time derivatives in a central finite difference form. It is based on simple 

formulations that do not require complex asymptotic or Green’s functions. 

The first applications of FDTD were scattering and penetration problems [14]. Many 

researchers have contributed immensely to extend the method to many areas of science and 

engineering (Taflove 1995, 1998). FDTD method did not become popular until 1975 when Taflove et 

al. applied the technique for the solution of complex inhomogeneous problem [15]. In 1980, the 

algorithm became known as the finite difference time domain (FDTD) method in a paper published by 

Taflove et al [15]. FDTD has been used very successfully in the design of antennas for several 

applications ranging from simple microstrip antennas to complex phased-array antennas. Some of 

these antennas are currently being used in mobile communications. 

In 1988, X. Zhang and K. K. Mei et al. calculated the dispersive characteristics of microstrip 

and frequency-dependent characteristics of microstrip discontinuities using FDTD [16]. They 

compared their results with other published ones and verified that FDTD is a viable method for 

modelling microstrip components. In 1989 FDTD was first used to analyse microstrip patch antennas 

by A. Reineix et al. [17] and some frequency-dependent parameters were given using FFT. In 1990, D. 

M. Sheen et al. [18] presented FDTD results for various microstrip structures, including microstrip 

rectangular patch antenna, a low-pass filter and a branch-line coupler. 

Furthermore, using FDTD, Maxwell's equations are discretized into both time and spatial 

central finite difference equations. Knowing the initial, boundary and excitation conditions, the fields 

on the nodal points of the space-time mesh can be calculated in a leapfrog time marching manner. 

FDTD was limited to the modeling of finite space problems. The absorbing boundary conditions 

(ABCs) permit modeling of infinite problems such as an antenna radiating in free space. ABCs such as 

Mur, Higdon and perfectly matched layer (PML) are all methods of absorbing the fields radiating from 

the source as they propagate towards the boundary [12]. 
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The FDTD method has a number of characteristics that really make it stand out when 

compared with the other techniques commonly used for antenna design and analysis. These 

characteristics are: 

• FDTD is a fully explicit computation: This means that FDTD avoids the difficulties with 

linear algebra, namely matrix inversion, that limit the size of frequency-domain integral 

equation (MoM) and finite element electromagnetic models to about  

field unknowns [19]. FDTD simulations have been run with field unknowns and this 

limit only depends on the amount of physical memory available for the computation. 

• FDTD naturally calculates the impulse response of an electromagnetic system since it is a 

time-domain method. Therefore, a single FDTD run can provide ultra wideband temporal 

waveforms that can be used to, by means of a discrete Fourier transform (DFT) and obtain the 

antenna’s response over a broad frequency range. 

• Ability to model most materials, including lossy dielectrics, magnetic materials, lossy metals 

and unconventional materials, including anisotropic plasmas and magnetized ferrites. 

• Ability to model nonlinear materials, since nonlinear behavior can more easily be treated in 

time domain than in the frequency-domain. 

• FDTD, unlike methods that rely on integral equations, does not require the calculation of 

structure dependent Green’s functions the specification of a new structure for analysis just 

requires the generation of a new mesh. Although the problem of mesh generation can be quite 

complex, since the majority of FDTD codes currently available use Cartesian meshes 

(hexahedral cells), the problem of mesh generation is            considerably simpler than that of 

mesh generation for FEM codes (which use                       tetrahedral elements). 

• Although powerful visualization capabilities exist for all methods, FDTD can provide field 

visualization in both time and frequency-domain, which provides more insight to the problem 

under analysis. 

• FDTD is easier to understand and to implement than MoM and FEM. Additionally, the FDTD 

marching-in-time field update procedure is relatively easy to parallelize in order to take 

advantage of multiple CPUs or even multiple computers to speed up the simulation of 

complex problems. 

In this technique, spatial as well as time grid for the electric and magnetic fields are generated over 

which the solution is required. The spatial discretization along three Cartesian coordinates is taken to 

be same. The E cell edges are aligned with the boundary of the configuration and H-fields are assumed 

to be located at the center of each E cell. Each cell contains information about material characteristics. 

The cells containing the sources are excited with a suitable excitation function, which propagates 
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along the structure. The discretized time variations of the fields are determined at desired locations. 

Using a line integral of the electric field, the voltage across the two locations can be obtained. The 

current is computed by a loop integral of the magnetic field surrounding the conductor, where the 

Fourier transform yields a frequency response. 

The above numerical techniques, which are based on the electric current distribution on the 

patch conductor and the ground plane, give results for any arbitrarily shaped antenna with good 

accuracy, but they are time consuming. These methods can be used to plot current distributions on 

patches but otherwise provide little of the physical insight required for antenna design. 

Figure 1.8 illustrate and summarize the basic flow of implementing FDTD scheme on a computer. 
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Due to the advantages of FDTD method aforementioned, it is applied in this research for the analysis 

of microstrip patch antenna structures. HFSS simulator is used in this work to compare with the result 

obtained with FDTD method, Ansoft HFSS simulator is based on finite element method (FEM). 

1.5. Overview of HFSS simulation 

The name HFSS stands for High Frequency Structure Simulator. HFSS is a high-performance full-

wave electromagnetic (EM) field simulator for arbitrary three dimension (3D) volumetric passive 

device modeling that takes advantage of the familiar Microsoft Windows graphical user interface. The 

software gained instant popularity because; it brought the power of finite element method (FEM) 

to design engineers. It integrates simulation, visualization, solid modeling, and automation in an easy-

to-learn environment where solutions to 3D EM problems are quickly and accurately obtained. Ansoft 

HFSS employs the Finite Element Method (FEM), adaptive meshing, and brilliant graphics to provide 

unparalleled performance and insight to all of 3D EM problems. Ansoft HFSS can be used to calculate 

parameters such as S-parameters, Resonant Frequency and Fields [21].  

The applications of HFSS are: 

• Package Modeling – BGA, QFP, Flip-Chip 

• PCB Board Modeling – Power/Ground planes, Mesh Grid Grounds, Backplanes 

• Silicon/GaAs - Spiral Inductors, Transformers 

• EMC/EMI – Shield Enclosures, Coupling, Near- or Far-Field Radiation 

• Antennas/Mobile Communications – Patches, Dipoles, Horns, Conformal Cell Phone 

Antennas, Quadrafilar Helix, Specific Absorption Rate(SAR),Infinite Arrays, Radar Cross 

Section(RCS), Frequency Selective Surfaces(FSS) 

• Connectors – Coax, SFP/XFP, Backplane, Transitions 

• Waveguide – Filters, Resonators, Transitions, Couplers 

• Filters – Cavity Filters, Microstrip, Dielectric 

HFSS is an interactive simulation system whose basic mesh element is a tetrahedron. This 

allows you to solve any arbitrary 3D geometry, especially those with complex curves and shapes, 

in a fraction of the time it would take using other techniques. 

Ansoft pioneered the use of the Finite Element Method (FEM) for EM simulation by 

developing/implementing technologies such as tangential vector finite elements, adaptive meshing, 

and Adaptive Lanczos-Pade Sweep (ALPS) [21]. Today, HFSS continues to lead the industry with 

innovations such as Modes-to-Nodes and Full-Wave Spice™. Ansoft HFSS has evolved over a period 

of years with input from many users and industries. In industry, Ansoft HFSS is the tool of choice for 
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high-productivity research, development, and virtual prototyping, for more information see appendix 

C. 
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This chapter describes basic concepts and formulation of Finite Difference Time Domain 

(FDTD) and its implementation for the analysis of microstrip antenna. 

 

 

 

 

2.1. Implementation FDTD in microstrip antenna 

In order to study the microstrip antennas using finite difference time domain, some theoretical 

concepts and formulations must be first understood. This section presents the fundamentals of 

the finite difference time-domain method and the derivation of the algorithm used in this 

work. 

Consider a microstrip antenna with an arbitrary shape separated from the ground plane 

by a dielectric substrate of height h and ( rε  permittivity) as shown in the figure 2.1. 

 

 

 

 

 

 

 

Fig .2.1 Microstrip antenna of arbitrary shape 
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Formulation of the FDTD method starts by considering the time dependent Maxwell's 

equations in differential form. 

 2.1.1. Maxwell’s equations 

Propagation of electromagnetic waves can be represented with the time domain Maxwell’s 

curl equation, as:  

-                                                                                                         (2.1) 

                 

                                                                                             (2.2)   

                                                                                                                         (2.3) 

                                                                                                                           (2.4) 

Where B=  , D= , E
r

 is the electric field in vol/meter, H
r

is the magnetic field in 

ampere/meter, ε is the electric permittivity in farad/meter, µ is the magnetic permeability in 

Henry/meter and σ is the conductivity in (siemens)/m .  

Assuming isotropic physical parameters, Maxwell’s equation can be written in rectangular 

coordinates as: 
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These equations will govern the field’s propagation within the patch antenna structure 

and the surrounding space. To approximate the partial derivatives in space and time domains 

by finite differences, the antenna structure and the surrounding space are discretised over a 

finite three-dimensional computational domain. The spatial and temporal discretization 

scheme used will determine the nature of the grid and thus the finite difference scheme used. 

The spatial discretization scheme is usually chosen to fit the geometry of the antenna. 

Therefore, if the rectangular structure is selected, an orthogonal grid is used, whereas if the 

structure is spherical, it might be better to opt for a spherical grid. In the case of patch 

structures orthogonal grids are best suited for rectangular patches and cylindrical grids for 

circular patches. 

However, since various patch shapes were considered, an orthogonal gridding method 

was used and curved edges were approximated by stair-casing. In uniform orthogonal 

gridding the structure and the surrounding space are discretised as shown in figure.2.2. The 

spatial increments  ,  and  can take any value and may not be the same. They are 

usually chosen to fit the antenna being modelled. 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 2.2 The Yee orthogonal grid [22] 
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The size of the grid is xG , yG  and zG in the x, y and z directions respectively. The 

finer the structural features, the denser the grid, since  ,  and  are smaller. This is 

particularly an important consideration since the denser the grid, the larger the memory 

storage and the longer the computational time becomes. The uniform orthogonal grid was first 

proposed and used by Yee, 1966 [12]. 

The electric and magnetic field components are located at interleaved points on the 

spatial grid of figure.2.3. The spatial grid is divided into small cells as shown in figure.2.3 and 

the electric field components are located on the edges of each cell, while the magnetic field 

components are located at the centre of the cell faces. Using this arrangement equation (2.1) 

and (2.2) can then be approximated using central differences in the spatial and temporal 

domains. However prior to deriving the full finite-difference equations it is useful to define 

Yee's notation. 

1. A point in space is denoted by, (i, j, k) and is located at (i x∆ ,j y∆ , k z∆ ) where x∆ , 

y∆ and z∆ are the spatial increments and i, j, k are integers 

2.A function f   of space and time is then, ( ) n
kjiftnzkyjxif ,,,,, =∆∆∆∆  

Where t∆  is the time increment and n is the time step. The first partial derivative of a 

function ( )xf  with respect to  is expressed in finite central differences as 
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Where 0x  is the derivative calculation point and x∆  is the increment 

   

 

 

 

 

 

 
Fig. 2.3 The Yee cell [22] 
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Using Yee's notation the central spatial finite difference equation is given by 
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For a second-order accurate derivation, the O [ ] term is considered to be very small, and 

is discarded. 

Considering next equation (2.2) with central time difference yields, 
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Rearranging equation (2.9) yields, 
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And solving for 1+nE gives 
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Considering only HEx ×∇, reduces to, 
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Taking the spatial central difference for equation (2.13), 
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and substituting equation(2.14) into( 2.12) results in, 
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Equation (2.15) shows that the value of xE depends on its previous value and on the magnetic 

field surrounding the electric field. Similarly, a magnetic field component depends on its 

previous value and on the electric field surrounding it. The difference equations for , , , 

,  are derived in the same manner. These equations are called the field update equations 

and are solved in a leapfrog manner, instead of solving them for either the electric field alone 

or the magnetic field alone as is done with a wave equations. In a finite difference scheme, 

there are three aspects that must be considered [22]:  

(a) The continuous derivative must be accurately approximated. 

(b) The method must be stable, i.e. numerical errors must not grow as the simulation 

proceeds. 

(c) Numerical dispersion should be small.  

The central difference approximates the first derivative to second order in∆ . Therefore high 

accuracy is obtained for waveforms which change slowly in the period∆ . Third and higher 

order derivatives are small in the period ∆ and are ignored, (equation 2.5). Therefore, for fast 

moving waves, ∆ should be smaller. Since all the derivatives are approximated by central 

differences, then the error is always second order in time and space. This implies that 

accuracy depends on the choice of x∆ , y∆ , z∆ and tc∆ , which should be small compared to 

the wavelength.  
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The chosen values for the spatial increments should therefore ensure linearity in the 

fields and should be small enough so as to follow all the structural features of the patch 

antenna. The time step t∆  is also restricted due to stability reasons. Instability arises when the 

numerical errors tend to grow exponentially. 

For the central difference scheme stability is ensured by enforcing the Courant limit [11], 

which is an upper bound for t∆ ,so that; 
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Where maxt∆ is the maximum time step, 

           x∆ , y∆ , z∆ are the dimensions of one cell, and  

           maxν is the maximum velocity of the waves in the media.  

Equation (2.14) is known as Courant-Friedrich-Levy criterium. 

Basically stability is ensured by limiting the distance travelled by the wave in one time 

step. In this work, we assume c=maxν , since the patch antenna structure is always partly 

situated in free-space. Some structures will permit the use of a larger time step and so the 

computational time is reduced. However since the patch antenna is highly resonant the time 

step is set to max95.0 t∆  to ensure stability all the time [22]. 

Finite difference scheme causes numerical dispersion, i.e. the phase velocity of the 

wave propagating in the FDTD lattice can differ from the actual value in real material. 

Numerical dispersion is a function of the spatial discretization and increases as the cell size 

increases with respect to the wavelength. Therefore the higher frequency components are 

affected most. When the discretization is about 20 points per wavelength, phase velocity 

errors are less than 0.5%, [22]. This is adequate for the considered structures studied because 

the discretization is usually 40 to 80 points per wavelength. A full treatment of numerical 

stability in finite difference schemes and numerical dispersion is deeply investigated in [12]. 

In such cases, the numerical errors are not due to numerical dispersion but essentially 

due to differences between the meshed version of the structure and its real geometry. For a 

cartesian grid, these errors are generally associated with its inability to conform to curved 
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surfaces or boundaries not aligned with its axes, and are called stair-casing errors. An 

example of stair-casing is shown in figure. 2.4. Therefore, an even finer mesh might be 

necessary if the structure being simulated has very fine geometrical features.  

 It is also important to mention that errors in numerical phase velocity are cumulative 

and, as a consequence, the simulation of electrically large structures in FDTD may require a 

sampling density that increases with the size of the structure under analysis. 

  

A circular metallic patch its meshed version where the stair-cased 

approximation of the curved boundary can be 

observed 

Fig .2.4 Stair-cased approximation [19]. 

2.1.2. Interface between Media 

The FDTD equations derived in section 2.1.1 are valid only for homogeneous regions. 

However, in many simulations, however, multiple dielectric materials are used. In microstrip 

patch antenna structure consists of three materials: free space, dielectric material of the 

substrate and metal plates. Within the various dielectric regions the standard FDTD equations 

may be applied, but some cases must be considered at the dielectric interfaces. Figure 2.5 

shows a group of four cells depicting a non-conducting region where four different dielectrics 

meet. We see that the xE  field component lies along the four dielectric interfaces. 
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Fig.2.5 Dielectric interface [23] 

 

From the integral form of Ampere’s Law: 
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Upon applying this formula to the four-cell structure (Figure 2.5) along the dotted curve, and 

assuming, that there is no conduction current. The following equation applies: 
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We notice that this is merely equation (2.15), with an equivalent dielectric constant equal to 

the average of the four dielectric constants; 
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In a similar manner, the proper conductivity at the interface can be expressed as 
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The updating coefficients for the  field at the interface can now be calculated.Similar 

expressions can be found for all E and H field components lying on the electric or magnetic 

material interfaces [23].  

2.2. Antenna Feed Models 

One of the most important aspects in an FDTD simulation is the modeling of the excitation 

sources that introduce electromagnetic energy into the computational domain.  

This modeling comprises the choice of the signal used to excite the antenna and how 

this signal is to be applied on the field components of the FDTD grid. This section describes 

the excitation signals used in FDTD algorithm and two kinds of antenna feed models; 

Improved simple feed and gap feed source models [12]. 

 

2.2.1. Excitation Signals 

The FDTD antenna model can be excited by any time domain waveform. It is important to 

consider the introduction of electromagnetic wave excitations into the FDTD mesh. These 

excitations are associated with time domain signals that take different shapes. 

There are two types of sources, the hard source and the soft source. If a source is 

assigned a value to E, it is referred to as a hard source. If a value is added to E at a certain 

point, it is referred to as a soft source. With a hard source, a propagating pulse will see that 

value and be reflected, because a hard value of E looks like a metal wall to the FDTD but, 

with a soft source, a propagating pulse will just pass through [20]. 

A Gaussian pulse is desirable as the excitation because its frequency spectrum is also 

Gaussian and provides frequency-domain information from dc to the desired cut off frequency 

by adjusting the width of the pulse [14]. It can be represented by the following formula: 

                                                                               (2.21) 

Its Fourier Transform is also Gaussian pulse in the frequency domain: 

                              ( ) 0
222 2 ftjfT eTefG πππ −−=                                         (2.22) 

The parameters T & 0t  should be chosen so that 
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•  The Gaussian pulse can provide relatively high signal levels within the frequency range 

of interest to ensure good numerical accuracy. 

•  The Gaussian pulse can provide small signal levels for high frequency components with 

wavelengths are comparative to the step size for reducing noise and instability. 

•  The Gaussian pulse must be wide enough to contain enough space divisions for a good 

resolution after the space discretization interval ∆  has been chosen to be fine enough 

to represent the smallest dimension of the geometry structure and the time  

• Discretization interval t∆ has been selected small enough to meet the stability criterion. 

•  The spectrum of the pulse must be wide enough (i.e. the pulse width must still be 

narrow enough) to maintain a substandard value within the frequency value of interest. 

If the last two conditions can not be met simultaneously, the space discretization interval ∆  

has to be readjusted.  

The pulse width W generally should be greater than 20 space steps [16]. The pulse 

width is defined as the width between the two symmetric points which have 5 percent of the 

maximum value of the pulse. It can be estimated using the following formula [16]: 

                             
∆

=
T

W
ν32

                                                             (2.23) 

Therefore, T is determined from: 

                   
ν⋅
∆

=
3

10T                                                                  (2.24) 

The maximum frequency which can be calculated is [14]: 

                        
∆⋅
⋅

==
20

3
2
1

max
ν

T
f                                                     (2.25) 

Where ν is the minimum velocity of pulse in the structure under consideration and;  

∆ is the space step. With the spacing ∆  maxf is high enough to cover the whole 

frequency range of interest [16]. 
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The choice of the parameter 0t should be made so that the initial "turn on" of the 

excitation will be small and smooth. In the current work, 0t is set to 3T so that the pulse is 

down to 9−e of its maximum value at the truncation time t = 0 or t = 2 0t . Since the single 

precision floating point is used in this study, the choice of 0t  is acceptable [16]. 

2.2.2. Gap Feed Model 

The gap feed model, which turns out to be the simplest one, consists of a feeding structure 

realized as a voltage generator with an internal resistor placed at a small gap between the 

patch and ground plane. This model works well assuming that the coaxial probe is very thin.  

An added internal resistor can provide an additional loss mechanism to decrease the current 

amplitude rapidly and then reduce the required simulation steps. A larger resistance can 

provide more loss and further reduce the time steps required for convergence [7]. However, it 

has been shown through numerical experiments that the resistance cannot be too large; 

otherwise the accuracy level is not satisfied, and instabilities might occur because of 

neglecting the displacement current through the FDTD cell containing the source. The value 

of the internal source resistance is generally chosen as the system characteristic impedance to 

physically mimic the system [7]. Because all the microwave equipment is set to 50 Ω, the 

source resistance is thus chosen to be 50 Ω [7]. 

The FDTD implementation of this voltage source with an internal resistor can be 

illustrated by its equivalent circuit representation. A voltage source in series with the 

internal resistor Ω= 50sR is located between nodes ( )kji ,, and ( )1,, +kji  as shown in 

Figure.2.6. The voltage source waveform can be of the source waveform types presented in 

section 2.3.1. The voltage at the feed point node ( )kji ,, , n
zV  is represented in the FDTD 

simulation by an imposed zE field at the feed point. The zE field component is updated based 

on Ampere’s Maxwell’s equation, that is, 

 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∆∆

−
∂
∂

−
∂

∂
=

∂
∂

yx
I

y
H

x
H

t
E szxyz

ε
1                                                (2.26) 

 



 
 

‐ 42 ‐

 

 

 

 

 

 

This transforms to the FDTD updating form to 
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Then, because the voltage between the nodes (i, j, k) and (i, j, k + 1) is the sum of the voltage 

drop across the resistance and the source voltage, we get: 
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From Eq. (2.25) and (2.26), the expression for the z component of the electric field at (i, j, k) 

can be obtained. It is worth to notice that the connecting wire with infinitesimal diameter in 

this model of the feeding structure is actually modeled in the FDTD problem space by setting 

to zero the tangential component of the electric field (i.e., zE ).  

This simple model can also be used to simulate a microstrip feeding structure. 

However, because the wire is a non-physical structure for the microstrip feed, a series 

inductance needs to be removed from the final results during the post processing [7]. 

 

Fig 2.6 A resistive voltage source between nodes (i, j, k) and (i, j, k + 1) [7] 
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Calculation of the input impedance and the scattering parameter: 

The input impedance inZ is calculated using the equation: 

( )
( )fI

fV
Z

in

in
in =                                                       (2.29) 

The voltage V (f) and the current I(f) are Fourier transforms of time-dependent voltage V (t) 

and current I(t) at the feed point (is, js, ks + 1/2).  

V (t) and I (t) are expressed as follows: 
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And  
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2.2.3. Improved simple feed model 

In this model, the one dimensional FDTD grid shown in figure 2.7 is used to represent the 

transmission line attached to the antenna. The source is modeled by a voltage source of an 

internal resistance sR  that is connected to a unidimensional virtual transmission line of 

characteristic impedance also equal to sR . The line is said to be virtual for the reason that it 

does not belong to the 3-D computational domain, being rather a numerical model that will be 

useful to separate the incident and the reflected voltage waves. For practical purposes, this 

source can be regarded as a lumped voltage source that is placed at the location of a single 
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grid cell located between two metallic objects [12], such as the gap that exists between the 

arms of a dipole antenna, as shown in figure. 2.7. 

The voltages and currents in the line are updated using the following expressions [12]: 
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Where υ  is the phase velocity for the transmission line and; 

            ∆  is the spatial discretization step. 

The transmission line is excited at the index sourcekk ′=′  source, by adding the value of the 

excitation signal )(tVexc to the voltage value already present on the line, corresponding to the 

following update relation: 
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Fig 2.7 Representation of the unidimensional virtual transmission line used to implement the resistive voltage 

source and coupling to the 3D FDTD grid [19] 
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For the current, it is 
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The coupling between the virtual transmission line and the FDTD lattice is perfumed as 

follows: The voltage at the end of the line, which corresponds to index 0k end, is converted to 

an electric field incE by dividing it by the cell’s length along the field’s direction, which, for 

the case in figure. 2.7, is z∆ , Then,  incE  is introduced into the FDTD update equations in the 

following ways: 

 

• The source is connected to a thin wire. It is necessary to apply thin-wire model update 

equations to the circulating H-fields, here exemplified for the yH component: 
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• The coupling between the FDTD lattice and the virtual transmission line is performed by 

assigning the current calculated from the local magnetic field values to the current at the 

end of the transmission line
2
1

+′endk
I  . The current is calculated using the expression; 
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Calculation input impedance and scattering parameter: 

Since the time-domain current and voltage signals at the terminals of the antenna (or other 

structure connected to the source) are directly accessible, respectively in
2
1

+kend
I  and kendV , 

the input impedance and admittance are calculated as follows: 
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2.3. Absorbing Boundary Conditions 

For many applications that require modeling scattering from an object or a radiating antenna 

situated in free space, it is desired that the scattered or radiated fields propagate into 

boundless space. Unfortunately, the FDTD computational space is bounded, and when the 

scattered or radiated fields arrive at the boundary, they are reflected back into the computation 

space. Therefore, it is necessary to have an absorbing boundary condition (ABC) that absorbs 

these fields when they arrive at the limits of the FDTD space such that scattering or radiation 

into boundless free space is at least approximately simulated. There are many of boundary 

condition can be used by FDTD method, these boundary conditions are: 

2.3.1. Perfect Electric Conductor 

The term PEC is an acronym for perfect electric conductor, and is used to model a perfectly 

conductive metal surface. The boundary conditions at a perfect electric conductor require the 

tangential electric field components to be zero at the boundary. A perfect electric conductor is 

modeled by simply setting the tangential electric field components equal to zero at every time 

step, where the perfect electric conductor is located [20]. For example if there is a PEC on one 

of the surface of Cube (i, j, k) in Figure 2.8, the following E field components will be zero at 

all time-steps: 
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The use of such conditions is used to model conductive surfaces and ground planes. 

2.3.2. Mur’s Absorbing Boundary Condition 

A simple, yet very useful, ABC was proposed by Mur [7]. A first-order Mur condition looks 

back one step in time and into the space one cell location, while a second-order Mur condition 

looks back two steps in time and inward two cell locations [7]. 

Mur’s first-order ABC assumes that the waves are normal by incident on the outer 

mesh walls. This assumption leads to a simple approximate continuous ABC; the tangential 

fields at the outer boundaries obey the one-dimensional wave equation in the direction normal 

to the mesh wall. 

For the wave normal to the x direction 
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For the wave normal to the y direction 
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For the wave normal to the z direction 
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Fig 2.8 PEC on top surface of Cube  ( )kji ,, [20] 
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By considering the  and components located at x = i∆x, j∆y, and z = nz ∆z, the first-order 

Mur estimate at the boundary walls is 
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By considering the  and components located at x = i∆x, y = j∆y, and z = 0, the first-order 

Mur estimate at the boundary walls is 
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By considering the yE  and zE  components located at x = nx ∆x, y = j∆y, and z = k∆z, the 

first-order Mur estimate at the boundary walls is: 
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By considering the yE  and zE components located at x = 0, y = j∆y, and z= k∆z, the first-

order Mur estimate at the boundary walls is: 
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By considering the and  components located at x = i∆x, y = ny ∆y, and z = k∆z, the first-

order Mur estimate at the boundary walls is 
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By considering the  and  components located at x = i∆x, y = 0, and z = k∆z, the first-order 

Mur estimate at the boundary walls is 
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In other words, the tangential electric field on the artificial boundary wall can be 

obtained from the previous value of that field, and the field components one node inside of the 

mesh wall in the current and the next time step. 

To implement the first-order Mur ABC, the normal components of the electric field at 

the boundary walls are obtained using the regular Yee algorithm. The tangential components 

of the electric field at the intersection of two of the terminating planes (boundary walls) are 

obtained by taking the average of the values of that component around the specific point. 

The second-order absorbing boundary condition for a wave normal to the x-constant plane is 
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Hence, the second-order estimate for zE  at the boundary x = 0 is 

                        4321
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1
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where 
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           ( )1
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 and 
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                     n
kjz

n
kjz

n
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                       n
kjz

n
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n
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While the second-order estimate for Ez at the boundary x = n ∆x is 
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and 
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n
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n
kjnxza EEEC ,1,,,,1, 2 −+ +−=                                                          (2.48e) 

n
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kjnxz

n
kjnxzb EEEC ,1,1,,1,1,1 2 −−−+− +−=                                                    (2.48f) 

n
kjnxz

n
kjnxz

n
kjnxzc EEEC 1,,,,1,, 2 −+ +−=                                     (2.48g) 

n
kjnxz

n
kjnxz

n
kjnxzd EEEC 1,,1,,11,,1 2 −−−+− +−=                             (2.48h) 

The equations needed to determine other field components with second-order Mur 

estimate at other limiting surfaces of the FDTD space are determined by modification of the 

proceeding expressions. One important consideration for implementing the second-order Mur 

ABC is that because the second order estimate requires field values from adjacent Yee cells, it 

cannot be used for determining electric field values that are adjacent to the intersection of two 

of the terminating planes (boundary walls). 

Therefore, even if second-order Mur is being applied, first-order Mur must be used for 

field components located at the edges of the problem space. For Mur’s ABCs, the farther from 

the object the outer boundary is located; the better is the absorption of the outward travelling 

waves. This is because these waves become more like plane waves as they travel farther from 

the structure that radiates them. However, the number of cells that can be placed between the 

object and the outer boundary is limited by computer memory. Moving the outer boundary 

too close to the object may cause instabilities in the absorbing boundary implementation. 

Also, some fields that are required for an accurate solution may be absorbed if the outer 

boundary is too close to the object. 

2.4. Near-to-Far-Field Transformation 

2.4.1. Introduction 

The FDTD method accurately computes the electromagnetic field within a computational 

domain that surrounds the structure of interest, being able to directly calculate near-field 

quantities such as scattering parameters and impedance/admittance matrices. However, for 

far-field quantities such as radiation patterns and gain, it is normally impossible to extend the 

computational domain to the far-field zone, due to the (presently) impractical amount of 

memory and computer-time required for such a simulation. This difficulty can be overcome 

quite elegantly by employing a near-to-far-field transformation (NFFT). 
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There are two well-known near-to-far field transformation techniques: The first one 

[12] invokes Huygens’s principle [24] and uses equivalent magnetic M and electric J currents 

tangential to a virtual surface that completely encloses the antenna, but is inside the 

computational domain. Then the equivalent currents are integrated with the free-space 

Green’s function weighting to obtain far-field quantities. The second technique [19] also 

relies on the use of a virtual surface enclosing the antenna, but the far-field quantities are 

obtained by means of the primitive Kirchhoff’s surface integral representation, avoiding the 

use of the equivalent currents M and . For this work, the first approach was chosen because, 

although both techniques yield good results, the first is better documented and has already 

been successfully used in numerous applications. 

The chosen near-to-far field transformation has two versions: one for time-domain and 

other for frequency-domain, each with its advantages and limitations. On the one hand, the 

time-domain version allows the obtaining of the full transient far-field waveforms at a 

reduced number of observation points, which can then be transformed to the frequency-

domain with a FFT to obtain broadband frequency results. On the other hand, the frequency-

domain version allows the calculation of the far-fields for a reduced number of frequencies at 

a number of points sufficiently large to produce a radiation pattern with good resolution in 

either two- or three-dimensions. In this work we use the frequency domain. 

2.4.2. Frequency-Domain Transformation 

The frequency domain near to far field transformation uses equivalent magnetic M and 

electric J currents in phasor form lying on a virtual surface enclosing the antenna to calculate 

the far fields. Since the computational domain is discretized using cartesian cells, and because 

the virtual surface can have an arbitrary shape to enclose the antenna, as shown in Figures 2.9 

and 2.10. 

2.4.2.1. Equivalent principle 

Schelkunoff states the equivalent principle as [15]: “a distributed of electric and magnetic 

currents on a given surface S can be found such that outside S, it produces the same field as 

that produced by given sources inside S; and also the field inside S is the same as that 

produced by given sources outsider S. One of these systems of sources can be identically 

zero”.  
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The application of the equivalence principle in an FDTD mesh and calculation of the 

far field radiation characteristics is shown in figure, whereby the radiating antenna and 

scatters are contained within a virtual box which is fully contained within the FDTD 

simulation space. 

The equivalent surface currents induced on this surface are calculated at each time step during 

the FDTD simulation. These may be either in the time-domain or frequency-domain, 

depending on the method used for the far field transformation. Generally, the FDTD ABC is a 

few cells distant from the virtual box boundaries to reduce, if not eliminate any interactions 

with the ABC [20]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 2.9 Coordinate system used for far‐field transformation [19] 
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Fig 2.10 FDTD model for a patch antenna mounted on a small ground plane and enclosed in 

an imaginary surface [22] 

2.4.2.2. Analytical expressions for the transformation 

To obtain the far-field information from the equivalent currents, it is necessary to integrate 

them over each of the six faces of the virtual box, here designated by surface S. This 

integration can be done by using the following pair of vector potentials [19]: 
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00                                               (2.49) 

∫∫
−−

≅=
s

jkrjkR

S L
r

e
dS

R
eMF

π
ε

π
ε

44
00                                               (2.50) 

Where 

∫∫ ′=
s

rjk
S dSeJN ψcos                                                                     (2.51) 

∫∫ ′=
s

rjk
S dSeML ψcos                                                                    (2.52) 

and 

≡= rrr ˆ Position of the observation point ( )zyx ,,  
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≡′′=′ rrr ˆ Position of the source point on ( )000 ,, zyxS  

rrRRR ′−≡= ˆ  

≡ψ Angle between r and r ′  

 R is given by the law of cosines in the far-field as 

                    (2.53)             The 

E  and H fields due to the vector potentials (2.47) and (2.48) are given by 
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Since observations are made in the far-field, the dominant variation is of the order r/1 and 

thus the terms in (2.52) and (2.53) that have variations of the order 2/1 r , 3/1 r , 4/1 r , etc. can 

be neglected in order to simplify the expressions. Moreover, taking into account that in the 

far-field region only the θ  andφ  components are dominant, the E-field and H-field 

components are given, in spherical coordinates, by 
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Where 000 /εµη = is the intrinsic impedance of free space. 

The θ  and φ components of the vector phasors  and L are given by: 

( ) dSeJJJN rjk

S
zyx

ψ
θ θφθφθ cossinsincoscoscos ′∫∫ −+=                     (2.60) 
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( ) dSeJJN rjk

S
yx

ψ
φ φφ coscossin ′∫∫ +−=                                                    (2.61) 

( ) dSeMMML rjk

S
zyx

ψ
θ θφθφθ cossinsincoscoscos ′∫∫ −+=                (2.62) 

( ) dSeMML rjk

S
yx

ψ
θ φφ cossinsin ′∫∫ +−=                                                (2.63) 

These integral expressions can be numerically evaluated for each of the six faces that form the 

virtual box S. Considering, for instance, that S is a rectangular box of side dimensions 02x , 

02y , 02z  centered in the origin of the coordinate system, the integrals (2.60),(2.61),(2.62) 

and (2.63) can be particularized for each pair of opposite faces as follows: 

• Faces at : 0xx ±= : 

• Nonzero components of: ss MandJ : yzy MJJ ,, and zM  

• Exponential phase term: 

 

        rrr ˆcos ⋅′=′ ψ  

                     ( ) ( )θφθφθ oszyxzzyyxx ˆsinsinˆcossinˆˆˆˆ0 ++⋅++±=                                  

                      θφθφθ zosyx ++±= sinsincossin  

 

• Integration limits : dydzdSzzzyyy =≤≤−≤≤− ,, 0000  

• Faces at : 0yy ±= : 

• Nonzero components of: ss MandJ : xzx MJJ ,, and zM  

• Exponential phase term: 

                  rrr ˆcos ⋅′=′ ψ  

                            ( ) ( )θφθφθ oszyxzzyyxx ˆsinsinˆcossinˆˆˆˆ 0 ++⋅++±=                         



 
 

‐ 57 ‐

                   θφθφθ zosyx +±= sinsincossin 0  

• Integration limits: dxdzdSzzzxyx =≤≤−≤≤− ,, 0000  

• Faces at : 0zz ±= : 

• Nonzero components of : .fm∆ , xyx MJJ ,, and yM  

• Exponential phase term: 

    rrr ˆcos ⋅′=′ ψ  

                  ( ) ( )θφθφθ oszyxzzyyxx ˆsinsinˆcossinˆˆˆˆ 0 ++⋅±+=                                        

                   θφθφθ oszyx 0sinsincossin ±+=  

• Integration limits: dxdydSyyyxxx =≤≤−≤≤− ,, 0000  

The time-averaged Pointing vector’s radial component at a point ( )φθ ,,r  is given by:  
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which can be used to calculate the gain ( )φθ ,G as: 
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where inP  is the antenna input power at the frequency for which the near-to-far-field 

transformation is being calculated. 

2.4.2.3. Calculation of the equivalent SM and SJ currents 

The equivalent currents are calculated from the tangential E and H components at the virtual 

surface, using the following expressions: 

                                     HnJ S

rr
×= ˆ                                                                 (2.66a) 

                                      EnM S

rr
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where n̂  is the surface normal pointing outside of S. The application of (2.64a) to each of the 

faces of the box yields: 

• Face at minii = : yzzyyzzy EMEMHJHJ =−=−== ,,,                           (2.67a) 

• Face at maxii = : yzzyyzzy EMEMHJHJ −===−= ,,,                           (2.67b) 

• Face at minjj =  : xzzxxzzx EMEMHJHJ −===−= ,,,                          (2.67c) 

• Face at maxjj =  : xzzxxzzx EMEMHJHJ =−=−== ,,,                         (2.67d) 

• Face at minkk =  : xyyxxyyx EMEMHJHJ =−=−== ,,,                         (2.67e) 

• Face at maxkk =  : xyyxxyyx EMEMHJHJ −===−= ,,,                      (2.67f) 

The kji ,, indices correspond to the actual indices where each virtual surface is located in the 

Cartesian grid. It is worth to mention that during the implementation of this near-to-far-field 

transformation it was concluded that the enclosing virtual box should be placed as close as 

possible to the structure without, however, intersecting it, in order to minimize errors resulting 

from numerical dispersion. 

2.4.2.4. Tangential surface fields 

Tangential surface currents on the surface of the virtual box must be averaged in order to 

obtain the electric or magnetic field in the centre of each respective cell face. This is simple 

for the electric field, where only two components are required. However, for the magnetic 

field, four neighbouring field components must be used in order to obtain an accurate 

approximation in the centre of the cell face. Once these averaged field values are known for 

each cell face, a DFT is applied to obtain electric and magnetic field phasors on the surface of 

the virtual box [15]. 

2.4.2.5. Averaging the electric and magnetic fields 

The averaging procedure for each cell face is now discussed. Essentially, three sets of 

equations are obtained; one set for each virtual box surface normal to the x, y and z axes 

respectively. 

The x axis averaging equations for minX and maxX for zzy HEE ,, and yH are: 
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The y axis averaging equations for minY and maxY for zzx HEE ,, and xH are: 
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Fig 2.12: Averaging of tangential fields on the surface of the virtual box [15] 

The z axis averaging equations for minZ and maxZ for yyx HEE ,, and xH are: 
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2.5. Discrete Fourier transforms 

A running discrete Fourier transform equation is used to obtain the tangential field phasors in 

the frequency domain on the surface of the virtual box surrounding the scatter. Furse and 

Gandhi [15] demonstrate that the DFT can be significantly more efficient than a standard FFT 

in terms of computer resource requirements. The electric field and magnetic field vectors on 

the surface of the box are recorded at each time step. After the fields have reached steady state 

values, the time stepping is stopping .the frequency-domain electric field and magnetic field 

phasors ( )ωE  and ( )ωH  are then converted into surface currents  and ( )ωM  the DFT is 

defined as: 

( ) ( )∑
−
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⎤
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⎡ −
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1

0

2
DFT

DFT
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N
mnj

etngtfmF
π

     1,.....2,1,0 −= DFTNm                     (2.80) 

( )fmF ∆ is the phasors of an equivalent sinusoidal signal at frequency fm∆ . The signal of 

interest in the time domain is ( )tng ∆ .m is the frequency index. 

2.6.Copolarization and cross-polarization field components 

An antenna is said to have a good polarization purity if the level of the cross-polarization 

component noted crossE  is at least -20 dB lower than the co-polar component, noted coE . The 

polarization components (cross-polarization and co-polarization) are determined using the 

Ludwig definition [25].in our case see figure 2.13, that is, 
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Fig .2.13 typical geometry of microstrip patch antenna 

      φφ φθ cossin EEEE cox −==                                         (2.81) 

φφ φθ cossin EEEE crossy +==                                      (2.82) 

For E-plane 

In the E-plane (xz plane), defined by 
2
πφ = , the copolarized and the crosspolarized field 

components become; 
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 For H-plane 

 In the H-plane (yz plane), defined by 0=φ , the copolarized and the crosspolarized field 

components become; 
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2.7. Bandwidth 

The bandwidth of antennas is difficult to define in general terms. Most antenna 

characteristics, including gain, beam-width, side-lobe level, polarization, and impedance, are 
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functions of frequency, and the variation of each of these parameters may limit the useful 

frequency band of an antenna designed for a specific purpose. Frequently, the used measures 

of an antenna bandwidth are the impedance bandwidth, which indicates the frequency band 

over which the SWR at the circuit port of the antenna remains below a given value. 

For the microstrip antennas cases, which are resonant structures, we select the above 

definition by considering the value of the VSWR to be 2. The determination of the bandwidth 

is done either by drawing the locus of the normalized impedance as a function of frequency 

on the Smith chart and noting the intersecting frequencies 1f  and 2f  with the circle SWR=2 

or by drawing the VSWR as a function of frequency and reading 1f  and 2f   . The 

normalizing impedance should be chosen judiciously [26]. Thus, the bandwidth is expressed 

directly as a function of 1f  and 2f   by the relation [26]. 
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Fig.2.14 Graphical determination of the impedance frequency bandwidth [26] 
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Numerical results and discussion 

 

 

 

 

3.1. Introduction  

In this chapter, the FDTD method is applied to different shapes of microstrip antennas working at 

relatively high microwave frequencies. From the calculated time domain waveforms of the considered 

structures, the frequency dependent characteristics of the structures are determined as shown in the 

coming sections. 

3.2. Rectangular microstrip patch antenna 

In this section, the analysis of a line-fed rectangular microstrip antenna using FDTD method is 

discussed. Line-fed microstrip antennas are of interest because they are very easily fabricated. The 

actual antenna under consideration is shown in the figure 3.1. This patch is of dimensions 

mmmm 58 ×  on a substrate of thickness h = mm59.1  and relative permittivity . 
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Fig.3.1 Line fed rectangular patch antenna 
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The space steps used in the FDTD formulation are ∆x  = 0.1562 mm, ∆y = 0.2 mm and  ∆z  = 

0.53mm and the size of free space is 50 ∆x ×100 ∆y × 16 ∆z. The time step is taken   to be ∆t = 

0.39998 pec to satisfy the Courant stability condition. The size of the ground plane and the: fed patch 

are 50 ∆x ×100 ∆y (7.8125×20 mm) and 30∆x × 40∆y (8×5 mm), respectively. The length of the 

microstrip line from the source plane to the front edge of the rectangular patch antenna is . The 

reference plane is placed at  from the edge of the antenna. The microstrip line width is modelled 

as . The antenna is excited by a Gaussian pulse with pulse width  and is set 

to be  so that the Gaussian pulse will be: 
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−

−

=                                                   (3.1) 

Initially, when t = 0 all fields in the FDTD computational domain are set to zero. The 

electrical field E is switched ON with a Gaussian pulse which can be launched from approximately 0 

underneath the microstrip line at the source plane shown in Figure. 3.1. The Gaussian pulse waveform 

in time domain is shown in figure 3.2 and will be turned off after it passes the source plane. The 

number of time steps was chosen such that 11S -parameters were settled down and no variations 

occurred anymore. Simulations were conducted with 3000 time steps. 
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Fig.3.2 Time Domain Gaussian Pulse Waveform used for Excitation of FDTD 
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The metallization was thought as perfect electric conductors (PEC) and electric fields tangential to the 

conductors were set as zero. With a dielectric object the boundary condition requires the tangential 

electric field to be continuous at the boundaries. The value of the dielectric constant at air-substrate 

interface was calculated as an average of the dielectric constants of the air and dielectric material (as 

illustrated in chapter II section 2.1.2). The Mur second order absorbing boundary condition was used 

in the 3D simulation space (boundary of the structure) and the Mur first order in the 1D (feed part, in 

this section we use improved simple feed model to model transmission line). 

Two 1D simulations were run simultaneously. First one simulated the incident field with 

absorbing boundary conditions (ABC). The second simulation was connected in 3D antenna structures 

and the reflected voltage signal was stored in memory. The DFT was calculated for both the incident 

and the reflected signals and the S11-parameter was achieved as a function of frequency by dividing 

the reflected signal with the incident one. 

incident

reflected

V
V

S =11             and    1110log20 SRL =                                 (3.2) 

3.2.1. Reflection coefficient   

The reflection coefficient of rectangular patch antenna using FDTD method and HFSS simulator are 

depicted together in figure 3.3.        
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Fig.3.3 Return loss of rectangular patch antenna 

W= 5 mm, L = 8 mm, h = 1.59 mm,             
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The simulation was stopped at 3500 time steps, It is noticed from the figure 3.3 that the 

resonance frequency of rectangular patch antenna using FDTD method is 11.20 GHz whereas for 

HFSS simulator is 11.22 GHz, the difference is about 0.02%, which shows a good result and the 

capacity of the chosen method in the analysis of the high frequency microstrip radiations structures. 

Figure 3.4 shows the real and imaginary part of rectangular patch antenna and the resonant 

frequency is . It can be shown that the structure behaves like a tank circuit. And at the 

resonance, the imaginary part is not null. This may be attributed to the inductance caused by the 

feeding line which not taken into consideration in the input impedance calculation.  
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Fig.3.4 The input impedance of rectangular patch antenna using FDTD 

3.2.2. Voltage standing wave ratios (VSWR) 

The voltage standing wave ratios (VSWR) for rectangular patch antenna using FDTD method is 

depicted in figure 3.5.   

VSWR less than 2 over the frequency interval ranging from 10.85 GHz to 11.65 GHz using FDTD 

method the calculated bandwidth using equation (2-84) (In chapter II) ,it is found 7.11%; which shows 

that the structure is narrow band 
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Fig.3.5 The voltage standing wave ratios of rectangular patch antenna using FDTD  

.  3.2.3. The far fields 

To calculate the radiation pattern of rectangular patch antenna the near field to far field transformation 

is used (as discussed in chapter II). A sinusoidal excitation at line feed is used, which is given by 

)2sin()( 0tftV π=                                                          (3.3) 

Where  is the resonant frequency of interest;  

Figure 3.6 and 3.7 show the simulated rectangular patch antenna radiation patterns that illustrate far 

field components (cross and co-polarizations) in E and H planes using FDTD method and compared 

the obtained results with HFSS simulator at resonance frequency    

In the E-plane co-polarization, the FDTD method and HFSS simulator are similar in shape and 

symmetric ; as shown in figure 3.6(a), the peak value with FDTD is -0.01 dB at 0°, whereas for HFSS 

is -0.02 dB at 0°, the difference is 0.01%, this is a good results. The E-plane cross polarization is 

shown in figure 3.6 (b) ; has a level of -20 dB below the main lobe of the co-polarization field peak 

value at 0° whereas for HFSS has  - 23 dB, the FDTD is broader than HFSS simulator, but it is a good 

agreement. 

 For H-plane co-polarization is approximately similar in shape by using FDTD and HFSS 

simulator as shown in figure 3.7(a), the peak value using FDTD is 0 dB at 0° whereas by using HFSS 

has -0.01 dB at 0°, which show a good result.  
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For H-plane cross-polarization is illustrated in figure 3.7(b), the peak value with FDTD is -

11.02 dB at 90° and the min is 0 dB at 0.5° whereas for HFSS is -11.20 dB at 90° and min is 0 dB at 0 

°. The calculated results (FDTD method) agree well with HFSS simulator results this illustrate that 

FDTD programs work well. 
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(b) 

Fig.3.6 The E-plane radiation pattern of rectangular patch antenna at  
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(b) 

Fig.3.7 The H-plane radiation pattern of rectangular patch antenna at  
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Figure 3.8.shows the total directivity of rectangular patch antenna for °= 0φ  and  °= 90φ , at 

 using HFSS simulator. The directivity is maximum in the °= 0θ direction and the 

HFSS shows also the back radiation which is due to imperfections which are not specified to the 

simulator. 

 

 

 

 

Fig.3.8 Total directivity of rectangular patch antenna at  

3.3. Annular ring microstrip patch antenna 

In this section, the analysis of a line-fed annular-ring microstrip patch antenna using FDTD method is 

discussed. This shape is discussed in chapter I and a more detail (see appendix A). This patch is of 

dimension of outer diameter b = 5 mm and inner diameter a = 2.5 mm on a substrate of thickness h = 

1.59 mm and relative permittivity . 

The space steps used in the FDTD formulation are ∆x = ∆y = 0.25 mm and                 ∆z  = 

0.53 mm and the size of free space is 60∆x × 75∆y × 20∆z. The time step is taken to be  

∆t  = 0.55937 psec to satisfy the Courant stability condition. The size of the ground plane and the fed 

patch are 60∆x × 75∆y (15 × 18.75 mm) and 40∆x × 40∆y (10× 10 mm), respectively. The length of 

the microstrip line from the source plane to the front edge of the annular ring patch antenna is . 
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The reference plane is placed at  from the edge of antenna.     The microstrip line width is 

modelled as . The antenna is excited by a Gaussian pulse with  and 

. The simulation is performed for 4000 time steps. 

 

 

 

 

 

 

 

 

 

 

The boundary conditions are similar to those applied in rectangular patch antenna considered in 

section (3.2).  As it is demonstrated that rectangular gridded FDTD method may be used to accurately 

analyze curved structures using the stair-step approximation to the curved surfaces [28], analysis of 

annular-ring patch antenna can be achieved easily. The latter was found to work sufficiently well in 

this work and did not introduce undesirable distortions in the computed resonance characteristics. 

3.3.1. Reflection coefficient and input impedance 

Figure 3.10 shows the return loss of annular-ring patch antenna using both FDTD method and HFSS 

simulator. The resonance frequency obtained with FDTD is 9.30 GHz whereas for HFSS it is 9.35GHz 

yielding a difference of 0.05% which shows a good agreement. 

Figure 3.11 illustrates the real and imaginary parts of the input impedance of the annular-ring 

patch antenna computed using FDTD method near resonant frequency            . It shows 

clearly that when the real part is maximum the imaginary part is zero. The maximum real part is  

 . The figure may be explored for matching problem by properly choosing the width 

of the feeding line. The 170 Ω shows the practical difficulty of matching directly with line width so it 

is necessary to design either matching network or may be use of probe feed instead of line feed.   

Fig 3.9 line fed annular ring microstrip patch antenna 
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Fig.3.10 Return loss of annular-ring patch antenna 

b = 5 mm, a =2.5 mm, h = 1.59 mm,  
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Fig.3.11 The input impedance of annular-ring patch antenna 
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3.3.2. The voltage wave standing ratio (VSWR) 

The voltage standing wave ratios (VSWR) for annular-ring patch antenna using FDTD method is 

shown in figure 3.16. The bandwidth for which VSWR is less than 2 is over the frequency interval 

ranging from 8.90 GHz to 9.65GHz ( i.e. 8.08%); a bandwidth which may be suitable for various 

applications. 
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Fig.3.12 The voltage standing wave ratios of annular-ring with FDTD  

3.3.3. Electric current distributed on the patch  

To further understand the physical mechanism of the annular ring patch antenna, it would be much 

helpful if we could know the electric field and current distributions. To get the electric current 

distributions on the patch, a sinusoidal excitation at microstrip line feed is used, which is given by: 

)2sin()( 0tftV π=                                                          (3.3) 

0f   is the resonant frequency of interest; 

The field distributions are recorded at one instant of time after the steady state has been reached. The 

electric current distributions xJ  and yJ on the metals are obtained by the difference between the 

tangential magnetic fields above and below the metal interface [18], the electric current distributions 

on the patch are given by [18]: 
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 ( ) ( ) ( )[ ]2,,3,,2,, +−+−=+ sysysx kjiHkjiHkjiJ                                            (3.4a) 

( ) ( ) ( )[ ]2,,3,,2,, +−+−=+ sxsxsy kjiHkjiHkjiJ                                            (3.4b) 

 are integer number. 

Figure 3.11 shows the current electric on the patch of annular-ring antenna at resonance frequency  

 at 400 time step using FDTD method. These current distributions clearly show the 

resonant conditions at  and  modes respectively. The current     have the largest amplitude 

than current    on the patch. The figure shows clearly the variation of current electric (   and   )  in 

annular patch shape. 
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Fig.3.13 Electric current distributions on the annular ring patch antenna at 30.9=rf GHz 
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3.3.4. Far fields 

Figures 3.14 and 3.15 show the simulated annular-ring radiation pattern that illustrate far field 

components (cross and co-polarizations) in E and H-planes using FDTD method and HFSS simulator 

at resonance frequency 30.9=rf GHz. 

For the E-plane is shown in figure 3.14 (a) and (b), in the co-polarization component ,the 

graph of FDTD and HFSS are identical and symmetric, they have the peak of 0 dB at 0° and the min, 

FDTD has -5.70 dB whereas for HFSS has -5.75 at 90°. The cross-polarization component has a level 

of -29.06 dB at 0° below the copolar field for HFSS and for FDTD has -28 dB at 0°. 

The H-plane i shown in figure 3.15 (a) and (b), in co-polar which are the same for HFSS 

simulator and FDTD method (have a peak of 0 dB at 0°), for H-plane cross-polarization has a peak of -

6.10 dB at 90° for HFSS simulator, whereas for FDTD method is -5 dB at 90°, and the min FDTD has 

-28 dB at 0° where for HFSS has -69 dB. For all the results ,it shows a good agreement. 

Figure 3.16 shows the total gain of annular-ring patch antenna using HFSS simulator at 

resonance frequency  with finite ground plane, at  and  . The total gain is 

maximum in the °= 0θ direction and the HFSS shows also the back radiation which is due to 

imperfections which are not specified to the simulator. 
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(b) 

Fig.3.14 E-plane radiation pattern of annular-ring patch antenna at  
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(b) 

Fig.3.15 H plane radiation pattern of annular-ring patch antenna at  

 

 

Fig.3.16 Total directivity of annular-ring patch antenna at  
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3. 4.Semi-ring patch antenna 

In this section, the analysis of a probe fed semi-ring microstrip patch antenna using FDTD method is 

discussed. A probe-fed microstrip antenna is very useful because it is easily fabricated, and the 

location of the probe feeding point can be adjusted to match the impedance of the coaxial line. The 

specific antenna under consideration is shown in figure 3.17. This antenna is of the dimension of inner 

diameter  a = 3.5 mm and outer diameter b = 7 mm, on the substrate of thickness h =1.59 mm and 

relative permittivity . The probe is of the diameter 1.27 mm 

The FDTD analysis of this antenna used a computational domain of  

unit cells in the zandyx ,,  directions, respectively. In the region around the antenna, the grid 

spacing used are mmyx 35.0=∆=∆  and mmz 53.0=∆ .with this grid spacing, the antenna has a 

diameter x∆40 on a substrate of total thickness z∆3 . The time step is determined from the smallest 

grid spacing and must satisfy the stability criterion. For this antenna  the probe 

feed is excited by a Gaussian pulse with sec60 pT = and sec1800 pt = . The simulation was run for 

3000 time-steps, 

 

 

 

 

 

 

 

 

 

 In this section, the gap feed model is used, which is proposed in chapter II (section 2.5). The 

feed model is shown in Figure 3.18. In this case the substrate height is equal to 3∆z and the series 

resistor Rs is assumed to be Ω50 .  By applying Ampere’s circuital law, the current on the feed probe 

is obtained by taking the line integral of magnetic field around the electric field source location, which 

is given as [18]: 

 

Fig.3.17 Probe‐fed semi‐ring patch 
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          (3.5) 

By applying Ohm’s law to the circuit of Figure 3 (a), the electric source field is obtained as 

 

  (3.6) 

Where ,  finally, the current and voltage are transformed to the Fourier domain. The 

input impedance of the antenna is obtained from: 

 

                                                                    (3.7) 
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Fig.3.18 The probe feed model. 
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The absorbing boundary condition for antenna structure and feed is the same as annular-ring patch 

antenna (The Mur second order absorbing boundary condition was used in the 3D simulation space 

(boundary of the structure) and the Mur first order in the 1D (feed part). 

3.4.1. Reflection coefficient and input impedance 

Figure 3.19 shows the  of semi-ring patch antenna using both FDTD and HFSS simulator,  

10 11 12 13 14 15 16
-20

-18

-16

-14

-12

-10

-8

-6

-4

-2

0

frequency(Ghz)

S
11

(d
B

)

 

 

FDTD
HFSS

 

Fig.3.19 The of semi-ring patch antenna 
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Fig.3.20 Input impedance of semi-ring patch antenna using FDTD method 
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It is seen from the figure 3.19, that the resonance frequency is 13.30 GHz for FDTD where for HFSS 

is 13.35GHz, The differences between simulated and FDTD method results are probably related with 

the less accurate modeling of the semi-ring patch shape. But we can say a good result. 

Figure 3.20 shows the real and the imaginary parts of semi-ring patch antenna at resonance frequency  

 using FDTD method, in this frequency while the real part is maximum, the imaginary 

part is zero ,this define the bandwidth for VSWR<2, the maximum of real part is  . 

3.4.2. The far fields 

Figures 3.21 and 3.22 show the simulated semi-ring radiation pattern that show the far field 

components (cross and co-polarizations) in E and H-planes using FDTD method and compare the 

result with HFSS simulator at resonance frequency . 

 For the E-plane co-polarization, in figure 3.21 (a) the graph of FDTD and HFSS are identical 

and symmetric. And properly the peak of FDTD is 0.01dB at 0° and 0 dB at 0° for HFSS, the min -

5.25 dB for FDTD and -4.92 dB for HFSS at 90°.  
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(a) 

 

The E-plane cross-polarization is shown in figure 3.21(b),it  has a peak of -29 dB at 0° below 

the co-polar for FDTD and for HFSS simulator has -29.10dB,the shape are similar and symmetrical.  
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(b) 

Fig.3.21 E-plane radiation pattern of semi-ring 

The H-plane co-polar is shown in figure.3.22 (a), for FDTD method has a peak value of 0 dB at 0° and 

also HFSS simulator has a peak of 0 dB at 0°, they are approximately the same, for H-plane cross -

polarization illustrated in figure 3.23 (b) has a peak of -5.01 dB at 90° for HFSS simulator, whereas 

for FDTD method is -5 dB at 90°, which show a good results.  

Figure 3.23 shows the total gain of semi-ring patch antenna for  and  = 90° at 

using HFSS simulator using finite ground plane. In the upper plane the shape is 

simmilar for =0° and =90°, but in the back plane there is a little difference. 
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(b) 

Fig.3.22 H-plane of semi-ring patch antenna at  
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Fig.3.23 Total gain of semi-ring patch antenna at  

3.4.3. Voltage standing wave ratios (VSWR): 

The voltage standing wave ratios (VSWR) for semi-ring patch antenna for FDTD method is depicted 

in figure 3.24. The band of frequencies over which the input voltage standing wave ratio less than 2 is 

from 12.80 GHz to 13.90 GHz, or 8.24 % which is considerably important. 
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Fig.3.24 The voltage standing wave ratios of semi-ring patch antenna using FDTD method 
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3.5.” Berber-Z” microstrip antenna: 

This section describes the analysis of a new shape of patch antenna which is Berber-Z. We want to 

analyse and see the characteristic of new design. This is achieved by using FDTD method and 

compares the results with HFSS simulator; 

 

 

 

 

 

 

 

 

Figure 3.25: Berber-Z microstrip patch antenna configuration. 

a =14 mm, b=21 mm, S=7mm, w =3.5 mm, h =1.59 mm 

(a) Top view,   (b) Side view 

In this section, the analysis of a probe fed Berber -Z microstrip antenna using FDTD method is 

discussed. Actually, this shape is obtained by combining in cascade two semi-rings at the 2-extrimities 

and a rectangular like dipole in the middle as shown in figure.3.25. The specific antenna under 

consideration is shown in figure 3.25. This antenna is of the dimension a = 14 mm and b = 21mm, on 

the substrate of thickness h = 1.59 mm and relative permittivity . The probe is of the diameter 

0.32 mm. 

The FDTD analysis of this antenna used a computational domain of  

unit cells in the zandyx ,,  directions, respectively. In the region around the antenna, the grids 

spacing used are mmyx 35.0=∆=∆  and . With these grids spacing, the antenna has 

a dimension of on a substrate of total thickness . The time step is determined from 

the smallest grid spacing and must satisfy the stability criterion. For this antenna . 

The probe feed is excited by a Gaussian pulse with  and . The boundary 

condition is the same those applied in semi-ring patch antenna (in section 3.5).The simulation time 

step of Berber- Z patch antenna is 4500 time step.  
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3.5.1. Reflection coefficient 

The input return loss of the Berber -Z patch antenna obtained using FDTD method and HFSS is shown 

in figure 3.26. The figure shows that the structure can be regarded as a tri-frequency band antenna. 

The three antenna resonant frequencies based on FDTD method are respectively 9.34 GHz, 13.44 GHz 

and 16.25 GHz. However, the resonant frequencies using HFSS are 9.35 GHz, 13.50 GHz and 16.30 

GHz respectively. These results show good agreement and the small differences are due to the 

discretization, stair-casing used in semi-rings of Berber-Z in the FDTD simulation as well as the 

approximations assumed in the HFSS. Further, it can be observed that a parametric study will certainly 

increase the radiation efficiency of the lower and the outer resonant frequencies of the tri frequency 

band structure. 
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Fig.3.26 The return loss of Berber-Z patch antenna. 

a = 14 mm, b = 21mm, h = 1.59 mm,  

3.5.2. Voltage standing wave ratios (VSWR) 

The Berber-Z patch antenna voltage standing wave ratios obtained using FDTD method is shown in 

figure 3. The three resonant frequencies are clearly apparent in this figure.  
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Fig.3.27 The voltage standing wave ratios of semi-ring with FDTD 

 

The frequency band for which the VSWR is less than 2 with respect to the first resonant frequency 

( )GHZ 349.f r =  ranges from 9.19 GHz to 9.40 GHz (i.e. 2.23 %) and, for the second resonant 

frequency ( )GHZ 4413.f r =  the range is from 13.25 GHz  to 13.64 GHz  (i.e. 2.9 %). Whereas, for 

the last resonant frequency ( )GHZ 2516.f r = , the range extends from 16.04 GHz to 16.55GHz (i.e. 

3.13 %). Furthermore, it can be observed that the three bands are comparable.  

3.5.3. Far fields 

Figures 3.28 , 3.29 and 3.30 show far field components (cross and co-polarizations) of the ‘Berber-Z’ 

patch antenna radiation pattern in E and H-planes obtained using FDTD method and compare them 

with those obtained using HFSS simulator at the three resonant frequencies which are; 

                    ,  and . 

The E-plane co-polarization patterns (figures 3.28(a), 3.29(a) and 3.30(a)) present at the three 

resonant frequencies main and secondary lobes. The FDTD radiation pattern results agree with those 

obtained using HFSS. As expected, it is observed that the main lobes broadening decreases from first 

resonance frequency to the third frequency. Also, the secondary lobes levels increase as the resonant 

frequency increases for both FDTD method and HFSS.  
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 The E-plane cross polarizations patterns (figures 328(b),3.29(b) and 3.30(b)) present similar 

shapes at the three frequencies with slight difference in levels. For the first frequency 

( )GHZ 349.f r =  the field level is at 26 dB below the main lobe of the co-polar field; for the two 

other frequencies ( GHZ 4413.fr = and GHZ 2516.fr = ), the levels are respectively at 29 dB and 

23 dB under the main lobes of the copular components. These levels are highly satisfactory for 

practical requirements. Again, the patterns are similar to those obtained using HFSS.       

 The H-plane co-polarization fields are shown in figures 3.28(c), 3.29(c) and 3.30(c) for the three 

resonant frequencies respectively. The shape of the pattern obtained using FDTD and HFSS simulator 

at GHZ 349.fr = and GHZ 4413.fr =  are similar. However, the pattern obtained at 

GHZ 2516.fr =  has a main lobe and lateral lobes which are 33dB below the main lobe maximum. 

The H-plane cross polarization field patterns are shown in figures 3.28(d), 3.29(d) and 3.30(d). 

As expected, the patterns at the three frequencies are similar in shape. And it can be seen that the 

FDTD predicts better the radiation in the main radiation direction. However, the patterns based on 

HFSS show good results for the main radiation direction with relatively higher power level. But, this 

does not present any limitation for its practical use. Once getting away from mail direction, the 

patterns get relatively high (-20 dB).  

To compare the power levels of the radiated fields at the three resonant frequencies, the co-

polarization E-plane patterns are illustrated in figure 7. These patterns are normalized with respect to 

the maximum field which is found to occur at the resonant frequency GHZ 4413.fr = .  The 

superposition of the three patterns shown in figure 7 indicates clearly that the levels of the three 

patterns in the maximum radiation direction are very close to each other. Numerically, field levels at 

frequencies GHZ 349.fr = and GHZ 2516.fr = are not lower than -1.14 dB with respect to the 

maximum level. 
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(d) 

Fig.3.28 E-plane and H-plane of Berber-Z patch antenna at   
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(d) 

Fig.3.29 E-plane and H-plane of Berber-Z patch antenna at   
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(d) 

g.3.30 E-plane and H-plane of Z-Berber patch antenna at at   



 
 

‐ 97 ‐

 

-80 -60 -40 -20 0 20 40 60 80
-40

-35

-30

-25

-20

-15

-10

-5

0

theta(degree)

|E
/E

m
ax

|d
B

E-plane(copolarization component)

 

 

f1=9.34GHz
f2=13.44GHz
f3=16.25GHz

 

Fig.3.31 The E-plane (co- polarization) at three frequencies of Berber-Z patch antenna 

 

Figure 3.32 shows the total directivity of the Berber-Z antenna at the three frequencies using 

HFSS simulator and infinite ground plane assumption. At , the pattern has a main lobe 

and two side lobes for  ; the main lobe is broaden for first frequency and the broadening 

decreases at the two other frequencies and, side lobe is narrower than those at the two other 

frequencies. For  the main lobe is broaden when working at the first frequency (  

) and the broadening decreases when considering the  frequencies   and  

. 
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Fig 3.32 The total directivity of Berber-Z patch antenna 
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Conclusion 
 

In this work, microstrip patch antenna structures are analyzed and designed using the Finite-

Difference Time-Domain (FDTD) Method. This method is used in this work because it is an 

efficient and relatively new method in electromagnetic compared to other conventional 

methods. Further, this method presents significant advantages which are mainly: 

- Simplicity in concept and coding 

- Can be used for the analysis of structures with of arbitrary geometries and boundary 

conditions and no matter on the material isotropy and feeding technique.  

- No frequency limitation so that it can predict structure characteristics for an unlimited 

range of frequency. 

 Various microstrip antennas shapes with different feeding techniques are investigated in 

this work including: line fed rectangular antenna, line fed annular-ring, probe fed semi-ring 

antenna and a combination of a rectangular (dipole) and two semi-ring patches to form a 

probe fed new patch antenna having the Berber-Z shape. 

 The Return loss, the input impedance, the Standing wave Ratio, the Radiation pattern, 

and the total gain of the considered are obtained for each considered structure. The obtained 

results with the used method are in good agreement with those obtained with HFSS simulator.  

 Furthermore, the obtained characteristics of the considered antenna shapes – annular-

ring, semi-ring and rectangular -obtained using this method verify the predicted ones which 

are largely reported by literature. These characteristics may be summarized as linear 

polarization and its purity, single resonant frequency, bandwidth etc.  

 Its may be noticed the large bandwidths that are associated with the isolated patches is 

simply due to the fact that the substrate thickness is relatively high. This practically reduces 

the overall gain of the antennas and, of course, the losses in terms of surface waves should not 

be ignored.   

 The analysis using FDTD method is further extended to design a new configuration 

obtained by combining two semi rings and dipole patches. The proposed form is named 

Berber-Z patch antenna.  
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 The results obtained with the proposed structure show clearly the tri-frequency behavior 

of the Berber-Z antenna. It has been verified that the radiation at the three frequencies are 

comparable in terms of power and shapes of the patterns. The only problem that is to mention 

is the relative level of the lateral lobes which are little bit high. These results are also verified 

by simulation with the HFSS.  

 From the presented sample results, the FDTD method proves to be a very flexible and 

powerful simulation tool not only for the analysis and design of this class of antennas but also 

for many other practical applications. This work does not cover all the details of the FDTD 

technique, but concentrates on the main topics related to the analysis and the design of patch 

antennas.  

 As a further work, the optimization of the physical dimensions of the Berber-Z antenna 

may be done to reduce the secondary lobes and to increase the radiation efficiency at the 

relevant frequencies. Furthermore, the proposed shape for the Berber-Z may be modified by 

adding another dipole that crosses the main one and drawing to the center the two semi-rings. 

The new form may have more interesting properties. Also, the proposed structures may be 

analyzed in the neighborhood of the practical frequencies to study their practical uses.     
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Appendix A 
 

Annular-ring microstrip patch antenna 

 

1 .Introduction: 

Ring microstrip antennas of various shapes, such as annular, rectangular, square, and triangular, have 

been studied as alternatives to standard rectangular and circular disk. These antennas are geometrically 

an intermediate configuration between a printed loop and a patch. Several interesting properties are 

associated with ring antennas. The primary advantage over other MSA geometries is that for operation 

at a given frequency in the fundamental mode, the annular ring antenna will occupy the smallest 

physical area. This characteristic makes the annular ring very attractive as the element for MSA 

arrays. 

The annular ring has been analyzed extensively using the cavity model, generalized 

transmission line model, analysis in the Fourier- hankel transform domain, and the method of matched 

asymptotic expansion. The cavity model analysis which is found to be simple and useful in the design 

for the structure. 

2. Fields and currents: 

Consider a circular ring microstrip antenna with the coordinate system as shown in fig 1 

 

Fig 1: geometry of a circular ring microstrip antenna 
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It comprises a ring-shaped conductor on one side of a dielectric substrate with a round plane on the 

other side. The cavity model of the ring is obtained by replacing its peripheries with magnetic walls. 

Because there is no variation of the fields along the z direction for thin substrates, the modes are 

designed as mnTM  modes [1]. 

The general solution for the wave equation (1) in cylindrical coordinates is given as 

( ) 022 =+∇ Ek
r

            ork λεπ /2=                                        (A.1) 

We have: 

φρρ nkYkaJkaYkJEE nnnz cos)]()()()([ ''
0 −=               (A.2) 

φϖµρρ ∂
∂

= zEjH , 
ρωµφ ∂

∂
−= zEjH                                                (A.3) 

Where (.)nJ and nY (.) are the Bessel function of the first and second kind, and of order n, 

respectively. The other field components are zero inside the cavity. The surface current on the lower 

surface of ring metallization is given by  

φρ ρφ HHHzJ s
))r)r

+−=×−=                                                         (A.4) 

−= )()([ '0 kaYkJ
jnE

J nn ρ
ωµρφ )()(' ρkYkaJ nn ] sin n φ                      (A.5) 

φρρ
ωµρ nkYkaJkaYkJ
jkE

J nnnn
cos)]()()()([ '''0 −

−
=                    (A.6) 

The radial component of the surface current must vanish along the edges at a=ρ  and ρ =b to satisfy 

the magnetic wall boundary conditions. This leads to  

              0)()( ==== bHbJ ρρ φρ                                                            (A.7) 

Application of this boundary condition leads to the well known characteristic equation for the resonant 

modes: 

0)()()()( ''' =− kbYkaJkaYkbJ nnnn
                                                 (A.8) 

For the given values of a, b, rε  and n, the frequency is varied and the roots of (A.8) are determined .let 

us denote these roots by nmK  for the resonant nmTM  modes and form nmX such that nmX  = nmK  a 
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.the integer n denotes the azimuthal variation as per cosnφ ,while the integer m represents the mth  

zero of (A.8) and denotes the variation of fields across the width of the ring. The model field patterns 

and current distributions for some of the modes on the microstrip ring are shown in figure 2: 

 

Fig 2: field pattern and current distributions for some of the resonant modes of microstrip ring 

For m=1, the field across the strip width is constant. For any given frequency, the mode 

corresponding to n=m=1( 11TM mode) has the minimum mean radius of the ring, and is known as the 

dominant mode. This mode is also sustained when a linear full-wave microstrip resonator is bent to 

form a circular resonator. 

The mTM 0 modes (m even would have no field variation in the φ direction, but would vary across the 

width of the strip; the mTM 0  mode is the lowest mode of this nature. An approximate value of kn1a 

can also be obtained using: 

)/(2 baank
a

n +=                                                          (A.9) 

This expression gives a reasonably accurate value of kn 1 for n≤5 and (b-a)/ (b+a) < 0.35. For more 

accurate calculations the roots, nmX  of the characteristic equation are given in table for b/a=2. 

For the general case, the solutions of (A.8) are presented in the form of a mode chart. It can be pointed 

out that for the microstrip ring antenna, (A.8) should be solved after replacing the radii a and b with 

their effective values. Calculations of the effective radii terms of physical dimensions are discussed 

next. 

For the case C = 2, the roots of eqn. (3) are given in Table 1 
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m 

n 

1 2 3 4 5 

0 - 3.1966 6.1323 9.4445 12.5812 

1 0.6773 3.2825 6.3532 9.4713 12.6012 

2 1.3406 3.5313 6.4747 9.5516 12.6612 

3 1.9789 3.9201 6.6738 9.6842 12.7607 

4 2.5876 4.4182 6.9461 9.8677 12.8989 

5 3.1694 1.9929 7.2868 10.1000 13.0750 

Table 1: roots of the characteristic equation 0, where 

  [2] 

2.1. Resonant frequency: 

Several numerical techniques have been used for calculating the resonant frequencies of the circular 

ring. Approximate value of the resonant frequency can be obtained by the following approaches used 

for other patch antennas. To the zeroth-order approximation, the resonant frequency is obtained by 

setting  

aXk nm /=                 
r

nm
nm

cX
f

επ2
=                                           (A.10) 

c is the velocity of light in free space. So far the effect of fringing fields has not been accounted for. 

As a result, the frequency calculated using (3.10) is lower than the measured value. The accuracy can 

be improved if the effective dielectric constant reε is used in place of rε in (3.10) that is: 

re

nm
nm

cX
f

επ2
=                                                                         (A.11) 

To determine the value of , the ring resonator is modelled as a microstrip line bent in a circular 

shape. the effect of curvature on the resonant frequency  is expected to be small provided the radius of 

curvature is large compared with ring can be taken to be the same as that of an equivalent microstrip 

line with strip width equal to W=b-a. 

A parallel plate model of circular ring is shown in fig (3).in this model, the microstrip line is replaced 

by an equivalent parallel plate waveguide with identical reε and 0Z .the parallel plate ring resonator is 
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assumed to have the same arithmetic mean radius as the microstrip ring [1]. The modified values of 

the inner and outer radii are given by 

2/))(( WfWaa ee −−=                                                                         (A.12.a) 

2/))(( WfWbb ee −+=                                                                         (A.12.b) 

eW is the effective width of the ring conductor: 

2)(1
)0(

)(
pf

f
e

e
WW

WfW
+

−
+=                                                                              (A.13) 

ee ZW επ 0/120)0( =                                                                            (A.14) 

 a pair of empirical formulas for the modified radii is given below: 

4/3haa −=                         4/3hbbe +=                                              (A.15) 

 

(a) 

 

(b) 

Fig3: parallel plate model of a microstrip ring, (a) cross section view of microstrip line and (b) parallel 

plate model of a part (a) 

2.2. Effective Permittivity: 

To account for the fringing field which exists outside of the dielectric the concept of an effective 

permittivity is utilized. Schneider's formula [4] is given in equation (A.10).This empirical formula was 
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developed to take into account the portion of the fields which exist in the air outside of the dielectric 

and its use improves the accuracy of the cavity model. 

2/1)101)(1(
2
1)1(

2
1 −+−++=

W
t

rre εεε                                  (A.15) 

The effective permittivity is used in place of the relative permittivity in equation (A.8).The letter t 

refers to the thickness of the substrate defined while W is the width of the conductor (b-a). 

                                    0/2 λεπ rnmk =                                               (A.16) 

2.3. Radiation fields: 

The radiation fields of a circular ring antenna can be either from the magnetic current 

approach or the electric current distribution on the surface of the ring. We shall use the equivalent 

magnetic current formulation because of its simplicity. Calculations for the radiation fields of the ring 

are a straight forward extension of the approach used for the circular disk antenna. The only difference 

between the two cases is that in a circular ring there are two magnetic current sources compared to one 

for the circular disk. Radiation fields from the magnetic currents at ρ  =a and ρ =b are calculated 

independently and added vectorially to 

obtain the radiation patterns for the ring antenna. The radiation fields due to the magnetic ring source 

at ρ =a [1]: 

φθϑ nakJahEak
r

ejE nzn

rjk
na cos)sin()( 0
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0
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Where for the nmTM  mode gives: 

ak
E

akYakJakYakJEaE
nm

nmnnmnnmnnmnzn π
0''

0
2

)]()()()([)( =−=  (Using the wronskian for the Bessel 

equation) 

The effect of ground plane is included in derivations of (A.3) and (A.4), but it has assumed that the 

magnetic current is constant along g the radial direction .the radiation field due to the current source at 

ρ=b is obtained by replacing a and b in (A.3) and (A.4) and ( )aEzn with ( )bEzn− . The radiation 

Patterns for the ring antenna are then given by: 
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where 

 

)]()()()([)( ''
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Use of the characteristic equation and the property of the wronskian simplifies ( )bEzn  to 
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Substituting for ( )aEzn  and ( )bEzn  in gives: 
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Where: 

nmnmak χ=  

3. Input impedance: 

Input impedance of a ring antenna can be determined by extending the techniques used for the circular 

disk. Here we use the cavity model. 

Consider a circular ring microstrip antenna fed by a coaxial probe at 0ρρ = from the center 

.the effect of the finite diameter of the probe is included by modelling it as a uniform current ribbon of 

angular width fω2 . The electric field in the ring cavity due to this excitation is obtained by the 

superposition of all the cavity modes with appropriate excitation coefficient and is given by: 
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The input impedance is now calculated by averaging over the feed annular width fω2 and using the 

approach of (35) to (40) one obtains 
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Where ea and eb are the effective radii defined by (1) and 

( )effreeff jkk δε −= 10                                             (A.27) 

4. Losses, Q, and resonant resistance: 

The dielectric loss, copper loss, radiated power, and total energy stored at resonance are given by the 

following expressions: 
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The effective loss tangent is then given by 
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effTQ δ/1=                                                                                  (A.34) 

The radiation resistance a resonance can be calculated as  

                           
T

r P
V

R
2

2
0=                                                                (A.35) 

                                    dcrT PPPP ++=                            (A.36) 

Where 0V is the voltage at ρ =b, φ =0 
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Appendix B 
 

 

 

Calculation resonant frequencies with analytical method 

 

 

 

1. Rectangular patch antenna: 

The microstrip antenna simulated in chapter 3 is designed to resonate at  7.5GHz .its width is 

12.45mm and its length is 16 mm. The substrate used has a dielectric of 2.2 and has a 

thickness of 1.59mm.the feed width is 2.46 mm, which is design to give a characteristic 

impedance of 50 . 

 

 

 

 

 

 

 

 

 

 

Fig 1: Line fed rectangular patch antenna 
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Calculation of resonance frequency of rectangular patch antenna: 

11.44GHz 

2. Annular-ring microstrip patch antenna: 

Consider an annular ring patch with outer radius b and inner radius a, as shown in figure 2.  

 

  

 

 

 

 

 

 

Fig 2.annular-ring patch antenna 

The annular-ring microstrip antenna simulated in chapter  3 section 3.2 is designed to resonate  

at  9.375GHz .its inner radius is 2.5mm and its outer radius  is 5 mm. the substrate used has a 

dielectric of 2.33 and has a thickness of 1.59mm.the feed width is 2.46mm ,which is design to 

give a characteristic impedance of 50 . 

 

 

 

3. Semi-ring patch antenna: 

The semi-ring patch antenna is shown in figure 3, its inner radius is 3.5mm and its outer 

radius  is 7 mm. the substrate used has a dielectric of 2.2 and has a thickness of 1.59mm.the 

probe diameter  is 2.46mm ,which is design to give a characteristic impedance of 50 . 
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h=1.59mm 

Annular‐ring 
b =5 mm 

a =2.5mm 



 
 

‐ 116 ‐

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 3.semi-ring patch antenna 
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Appendix C 
Ansoft’s high frequency structure simulator (HFSS) antenna 

Design software 

 

The software used for the designing and simulating the antenna model is High Frequency 

Simulation Software (HFSS v9.0). This part provides a general insight into the various 

aspects involved in the process of setting up and running a simulation in HFSS. The version 

used is Ansoft version 9.0. HFSS is a software package for electromagnetic modeling and 

analysis of passive, three dimensional structures. In order to calculate the full three-

dimensional electromagnetic field inside a structure and the corresponding S-parameters, 

HFSS employs the finite element method (FEM) [ 47]. 

FEM is a powerful tool for solving complex engineering problems, the mathematical 

formulation of which is not only challenging but also tedious. The basic approach is to divide 

a complex structure into smaller sections of finite dimensions known as elements. These 

elements are connected to each other via joints called nodes. Each unique element is then 

solved independently of the others thereby drastically reducing the solution complexity. The 

final solution is then computed by reconnecting all the elements and combining their 

solutions. These processes are named assembly and solution, respectively in the FEM [ 57]. 

FEM finds applications not only in electromagnetic but also in other branches of engineering 

such as plane stress problems in mechanical engineering, vehicle aerodynamics and heat 

transfer.  

FEM is the basis of simulation in HFSS. HFSS divides the geometric model into a large 

number of tetrahedral elements. Each tetrahedron is composed of four equilateral triangles 

and the collection of tetrahedron forms what is known as the finite element mesh. Each vertex 

of the tetrahedron is the place where components of the field tangential to the three edges 

meeting at the vertex are stored. The stored component is the vector field at the midpoint of 

the selected edges, which is also tangential to a face and normal to the edge. Using these 

stored values, the vector field quantity such as the H-field or the E-field inside each 

tetrahedron is estimated. A first-order tangential element basis function is used for performing 

the interpolation. Maxwell’s equations are then formulated from the field quantities and are 

later transformed into matrix equations that can be solved using the traditional numerical 

techniques [ 57].  
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PROCESS OVERVIEW  

The first step is to draw the geometric model of the structure that is to be realized. The next 

step is to select the materials that the various drawn objects are made of. An accurate 

definition of boundaries for the structure, such as perfect electric, radiation etc, follows next. 

 In HFSS, a port or a voltage source needs to be defined to excite the structure. This is done as 

part of the excitation definition. Once the structure is completely modeled the solution is set 

up. This includes definition of various parameters such as the frequency at which the adaptive 

mesh refinement takes place and the convergence criterion. Finally, after the completion of 

the simulation, the solution data is post processed which may include display of far-field 

plots, plots and tables of S-parameters, smith chart graphs etc. the figure below is summarized 

flow-chart depiction of the above mentioned theory.  

 

 

Fig 1: Process overview flow chart of the HFSS v9.0 Simulation module [ 47]. 
 


