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Abstract

Atrial fibrillation (AF), an increasingly prevalent cardiac arrhythmia, is a major

contributor to stroke, heart failure, and premature mortality. Traditional manual

screening for AF using electrocardiography (ECG) is not only time-consuming but

also susceptible to human error, underscoring the urgent need for automated diagnos-

tic tools. This study addresses this challenge by developing advanced computer-aided

diagnostic methods leveraging deep learning for the automatic detection of AF.

We introduce innovative one-dimensional (1D) and two-dimensional (2D) convolu-

tional neural network (CNN) models specifically designed for the precise classification

of ECG signals into normal or atrial fibrillation categories. Our methodology includes

a meticulous preprocessing phase where each ECG record is filtered and peaks are

accurately detected using the XQRS algorithm. The signals are then segmented into

beats with an 80-sample window, which serve as critical features for subsequent clas-

sification.

The extracted features are fed into our CNN architectures for classification. The

models are trained and evaluated using the MIT-BIH Atrial Fibrillation Database,

and their generalization capability is further validated with unseen data from the Phy-

sioNet/Computing in Cardiology Challenge 2017 database, following an inter-subject

approach. To enhance the robustness of our models, we employ data augmentation

techniques.

Our comprehensive evaluation demonstrates that the 1D-CNN model achieves a

remarkable total accuracy of 95% and an F1 score of 96.81%, while the 2D-CNN

model attains an exceptional accuracy and F1 score of 99.84%. These results under-

score the efficacy of our approach in accurately classifying ECG signals and highlight

the potential of our models for real-world clinical applications, offering a substantial

improvement in AF screening processes.
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General Introduction

Cardiovascular disease (CVD) remains the leading cause of mortality worldwide,

responsible for approximately 17.9 million deaths annually, which constitutes 31%

of all global fatalities, according to the World Health Organization (WHO). Among

the various cardiovascular disorders, atrial fibrillation (AF) is particularly prevalent,

especially among the elderly. AF is characterized by irregular and often rapid heart

rhythms, which significantly contribute to increased morbidity and mortality. Timely

and accurate diagnosis of AF is therefore paramount for effective prevention and

management.

Notably, about 25% of individuals suffering from atrial fibrillation are asymp-

tomatic, which complicates early detection. For these asymptomatic patients, elec-

trocardiography (ECG) serves as a crucial diagnostic tool. The ECG records the

heart’s electrical activity, and in cases of AF, it reveals a distinctive pattern that

helps differentiate this arrhythmia from other cardiac conditions.

While several wearable ECG monitoring devices, such as Android Wear, Apple

Watch, and Kardia, are designed for the precise detection of atrial fibrillation, these

devices often come with significant drawbacks. They are typically expensive, complex

to use, and require extended periods of monitoring to yield accurate results. These

limitations underscore the need for more accessible and efficient diagnostic tools.

In response to these challenges, the development of computer-aided diagnostic

tools that leverage deep learning technologies has become increasingly essential for the

automatic detection of atrial fibrillation. This master’s thesis introduces innovative

convolutional neural network (CNN) models specifically designed to accurately detect

AF. Our approach focuses on using a single beat, represented by 80 samples, as the

xv



primary feature for optimal performance. The efficacy and generalization of these

models are then validated on a completely unseen dataset, ensuring their applicability

across diverse subject groups.

This dissertation is organized into three comprehensive chapters, in addition to

an introduction and a general conclusion. The structure is as follows:

1. Chapter 1: Atrial Fibrillation (AF): This chapter provides an in-depth

overview of atrial fibrillation, elucidating the condition with clear scientific ex-

planations. It covers the symptoms, risk factors, and diagnostic methodologies,

with particular emphasis on the distinctive behavior of the ECG signal in the

presence of AF.

2. Chapter 2: State of The Art: The second chapter delves into the latest

and most effective studies related to the detection of AF through ECG signal

analysis. This review highlights various methodologies and their respective

efficacy in AF diagnosis.

3. Chapter 3: Proposed Methodology and Experimental Results: The

third chapter details our proposed CNN models, including the strategies for

segmentation and denoising of ECG signals. It discusses the optimization of

these models through a combination of relevant input features and the extracted

features from the CNN. The chapter further presents and analyzes the results

of our experiments, demonstrating the effectiveness of the proposed approach.

The thesis concludes with a general summary that encapsulates our findings and

outlines future research directions, with the aim of further advancing the field of

automated AF detection.

xvi
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Chapter 1

Atrial Fibrillation

1.1 Introduction

According to the World Health Organisation (WHO), Cardiovascular diseases

(CVDs) are the leading cause of death globally (around 17.9 million lives each year)[1].

Atrial Fibrillation or AFib is known as a major CVD, involving a large number of

population. It affects in particular old people, especially those who suffer from heart

failure (a major cause of hospitalisation), which leads to a serious complications such

as Blood clots, stroke, Death. With proper medical supervision and medication,

atrial fibrillation (AFib) is manageable. Early diagnosis and treatment can help pre-

vent associated complications [2].

This chapter contains a detailed overview of Atrial Fibrillation, its symptoms,

causes, and risks, and how can the early detection of atrial fibrillation prevent serious

consequences such as sudden death. In addition, we spotlight on electrocardiogram

(ECG) and its uses on AF detection.
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CHAPTER 1. ATRIAL FIBRILLATION

1.2 Background: The Heart

1.2.1 Cardiac Anatomy

The heart is a muscle organ found in the mediastinum between the lungs, its

primary job is to pump blood into the circulatory system. It is constructed by a

bundle of muscle divided into four main chambers: two upper chambers called atria

and two lower chambers called ventricles as shown in Figure 1-1. The right side of

the heart contains the right atrium (RA) and the right ventricle (RV), while the left

side contains the left atrium (LA) and the left ventricle (LV). These chambers are

divided by continuous partitions, such as the interatrial septum between the LA and

RA, and the interventricular septum between the LV and RV [3].

Figure 1-1: Schematic representation of cardiac anatomy [4]

Additionally, the atria and ventricles are further divided by the atrioventricular

septum. Blood flows from the atria to the ventricles through two atrioventricular
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CHAPTER 1. ATRIAL FIBRILLATION

orifices, which are openings in the atrioventricular septum. These openings are reg-

ulated by two atrioventricular valves that open and close rhythmically during each

heartbeat. The tricuspid valve controls the flow between the right atrium (RA) and

right ventricle (RV), while the mitral valve controls the flow between the left atrium

(LA) and left ventricle (LV). The LA and RV are connected to the lungs through

the pulmonary veins (PV) and pulmonary arteries, respectively. On the other hand,

the LV and RA are connected to the rest of the body through the aorta and the

superior/inferior vena cava, respectively. To prevent the backflow of blood, both the

pulmonary artery and the aorta are equipped with valves.

1.2.2 Understanding the Role of The Heart

The heart serves as a vital pump, orchestrating the circulation of blood through-

out the body through a rhythmic sequence of contractions and relaxations in its

chambers, known as the cardiac cycle [5]. This cycle begins with atrial diastole, dur-

ing which the atrial chambers relax, allowing deoxygenated blood to enter the right

atrium (RA) through the vena cavae and oxygenated blood to enter the left atrium

(LA) through the pulmonary veins (PVs). Next, atrial systole occurs, characterized

by the contraction of the atrial chambers, which propels blood through the atri-

oventricular valves into the ventricles. While the atria undergo diastolic and systolic

phases, the ventricles remain in a state of diastole, allowing blood to accumulate from

the atria. Following this, the ventricles undergo systole, expelling blood from the left

ventricle (LV) into the aorta for distribution throughout the body, and from the right

ventricle (RV) into the pulmonary arteries to be transported to the lungs.

1.3 The Electrocardiogram

1.3.1 Flashback: The First Electrocardiogram

Birth of ECG: Heartbeat tracking has a long history, reaching back to the

late 1700s, and was further developed by Dutch scientist Willem Einthoven, who was

3



CHAPTER 1. ATRIAL FIBRILLATION

awarded the Nobel Prize for his innovative medical technology. Gabriel Lippman’s

development of the capillary electrometer, which measures voltage variations on the

skin caused by cardiac pulses, marked a turning point in the field in 1872. In 1887,

A.D. Waller used Lippman’s apparatus to record the first heartbeat measurement[6].

However, the earlier researchers failed to account for capillary friction and inertia,

which led to errors in their recordings. In 1901, Willem Einthoven made this right.

At first, he used mathematical methods to manually repair defects in the recognizable

peaks and valleys on photographic paper. Later, he automated the correction and

transformed the procedure by creating the string galvanometer as shown in Figure 1-2.

Figure 1-2: Heartbeat Demonstrated: Willem Einthoven’s Magnificent 600-Pound
Machine [6]

1.3.2 Definition

An electrocardiogram (EKG or ECG) is a painless procedure that measures

the heart’s electrical activity [7]. Where small electrodes are placed on the skin of

the chest wrists, ankles and connected in a specific order to a machine that, when

turned on, measures electrical activity all over the heart and transforms the signals

into patterns or waves [8]. The ECG is a useful tool for diagnosing heart rhythm

abnormalities, such as atrial fibrillation.

4
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Figure 1-3: Graphic description of the different parts conforming an ECG signal
during two normal sinus rhythm heartbeats [9]

The number of electrodes used varies depending on the specific information being

measured, and the resulting potentials are then combined to create the ECG lead.

Each lead provides a unique perspective on the electrical activity of the heart. The

placement of the electrodes has a direct impact on the shape and polarity of the

waves in the ECG signal. For example, a current moving away from the electrode

would result in a negative slope, while a depolarizing wavefront moving towards the

electrode would produce a positive deflection on the signal.

The typical physiological NSR beat is described by the P wave, the PQ interval, QRS

complex, J point, ST segment, QT interval, T wave, and RR interval, as displayed in

Figure 1-3. Each of these elements reflects a specific event:

• P wave: atrial depolarization. Typically presents an amplitude lower than 300

µV and a duration of less than 120 ms.

• PR segment: delay between atrial and ventricular depolarization. It measures

5
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the speed of the AP transition through the AV node. A normal PQ interval

ranges between 0.12 to 0.22 s

• QRS complex: ventricular depolarization. Typically of a duration less than 0.10

s. During this phase atrial repolarization also takes place but it is masked by

the much larger amplitude of ventricular depolarization.

• J point: onset of ventricular repolarization

• ST segment and T wave: ventricular repolarization. There is no cardiac muscle

activity during this wave.

1.3.3 Lead systems

Each ECG lead records the electrical activity of the heart from a distinctive axis

projection. As a result, each lead collects a unique spatial perspective or cardiac

electrical activity. There are two types of leads used to record ECGs: unipolar and

bipolar. While unipolar leads detect the voltage fluctuation of a single electrode

relative to a reference, Bipolar leads measure the voltage differential between two

electrodes.

The number and position of electrodes are determined by the exploration’s goal and

duration. In clinical settings, a 12-lead ECG is commonly utilized for 10 seconds of

cardiac exploration. However, for long-term ambulatory recordings, fewer electrodes

are employed.

1.3.4 The Standard 12-Lead ECG

The most popular configuration for recording cardiac electrical activity is the 12-

lead ECG. Ten electrodes are placed in the chest and limbs to collect it. Six of the

twelve leads are precordial or chest leads, and the remaining six front-facing leads.

Precordial leads assess cardiac electrical activity on the transversal plane, whereas

frontal leads measure it on the frontal plane.

Three bipolar limb leads and three enhanced unipolar limb leads make up the frontal

6
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lead. The letters I, II, and III stand for the three bipolar limb leads. The voltage

differences between the left arm (VLA), right arm (VRA), and left leg (VLL) are

measured in order to produce these leads using the following relations:

Figure 1-4: Lead angles reference system for the frontal (left) and horizontal (right)
planes [10]

I = VLA − VRA (1.1)

II = VLL − VRA (1.2)

III = VLL − VLA (1.3)

The triangle with the heart at its center is known as ”Einthoven’s triangle,” and

it is formed by these three leads. As shown in Figure 1-5 , lead I measures the heart’s

activity at 0º, lead II at +60º, and lead III at +120º.

7
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Instead, augmented unipolar leads, or aVF, aVL, and aVR, are designated as follows:

aVF = VLL − VLA + VRA

2
(1.4)

aVL = VLA − VRA + VLL

2
(1.5)

aVR = VRA − VLA + VLL

2
(1.6)

They offer a shifted 30º angle view from each unipolar limb lead, complementing

them. The corresponding angles for aVF, aVL, and aVR are 90º, -30º, and -150º,

respectively.

Precordial leads, also known as unipolar leads, gauge the potential difference between

a chest location and an imaginary center known as Wilson Central Terminal. The

calculation of this center point involves averaging VLA, VRA, and VLL. Positioned

in the fourth intercostal gap to the right and left of the sternum, respectively, leads

V1 and V2 face the surface of the right ventricle. V4 is positioned at the nipple line’s

fifth intercostal gap. V3 lies in the middle between V2 and V4. V6 is positioned on

the same horizontal line as V4—the midaxillary line.

1.3.5 Ortogonal Leads

The electrical activity of the heart is projected into the X, Y, and Z planes by

the orthogonal lead system. The vectocardiogram (VCG), also known as a 3D loop

representation, is created by combining the various leads.

The vector’s tip, which indicates the predominant direction of the cardiac wavefront,

traces the loop.

The most popular electrode arrangement for obtaining the orthogonal projections

is the Frank lead system. This lead system makes use of seven electrodes that are

placed in the left foot, back, neck, and chest to get a left side, bottom, and front view

of the heart.
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Figure 1-5: Ortogonal projections of the vectocardiographic loop [10]

1.3.6 Heart rate and heart rhythm:

• Heart rate

The heart rate is defined as the number of times the heart beats in a minute.

This is the number of times it pumps to push blood round the body.

• Heart rhythm

Is the pattern in which the heart beats. This rhythm can be described as either

9



CHAPTER 1. ATRIAL FIBRILLATION

regular or irregular, and can also vary in speed, ranging from fast to slow.

1.3.7 Characteristics of the normal heart rhythm

We can divide ECG characteristics into two big categories:

1. Morphological features: ECG interpretation involves evaluating the mor-

phology (look) of the waves and intervals on the ECG curve. Thus, before

studying each component in depth, a brief summary of the waves and intervals

is provided (View Figure 1-6)

Figure 1-6: Normal ECG heart beat

Table 1.1 displays the values of the parameters in Figure1-6 that are typically

observed in healthy adults:

10
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Table 1.1: Normal heart beat waves and intervals typical values [11].

P wave PQ interval QRS Complex ST interval QT interval T wave

Duration

(ms)
0.08 - 0.10 0.12 - 0.20 0.08 0.20 0.36 0.20

Amplitude

(mv)
0.25 0 Q≺ 0R ≻ 0S ≺ 0 0 - T≻ 0

2. Heart rate variability features: Heart rate variability, or HRV, is a phys-

iological phenomenon characterized by variations in the time interval between

consecutive heartbeats in milliseconds. In a normal healthy heart, there is con-

stant variation in the milliseconds between heartbeats.

One of the most common methods for calculating HRV is to use time or fre-

quency.

Figure 1-7: Heart rate variability domains
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1.4 Heart rhythm abnormalities

In this section, we will outline the various types of arrhythmias, which are among

the most complex and insufficiently studied issues in modern cardiology. This makes

them one of the most urgent problems in the field.

1.4.1 Definition

Heart rhythm abnormalities, also known as arrhythmias, are a series of irreg-

ular heartbeats that can result in a heart rate that is either too slow or too fast, or

irregular in nature[7].

1.4.2 Classification of arrhythmias

Shown in Figure 1-8 a summary of the various heart rhythm abnormalities that

can be identified through medical diagnosis.

Figure 1-8: Classification of heart rhythm abnormalities

Cardiac arrhythmias can be categorized into the following groups:
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1. Bradyarrhytmias (bradycardia): Slow Heart Rate

Bradycardia is a heart rate that is too slow. What is considered too slow, can

depend on the age and physical condition. Elderly people, for example, are

more prone to bradycardia. [8].

They are characterized by a resting heart rate < 60 beats/minutes for adults

(a resting heart rate of fewer than 60 beats per minute (BPM) qualifies as

bradycardia ).

2. Tachyarrhythmias (Tachycardia): Fast Heart Rate

Refers to a heart rate that is too fast. Generally speaking, for adults, a heart

rate of more than 100 beats per minute (BPM) is considered too fast.

(a) Ventricular Tachycardia: is a fast heart rate that occurs in the lower

chambers (ventricles) of the heart. This type of arrhythmia may be either

well-tolerated, requiring immediate diagnosis and treatment[8].

The seriousness depends largely on whether other cardiac dysfunction is

present and on the degree of the ventricular tachycardia.

(b) Supraventricular Tachycardia (SVT): Atrial or supraventricular tachy-

cardia (SVT) is the most common type of abnormal tachycardia in adults.

with a fast heart rate that starts in the upper chambers of the heart. In

atrial or supraventricular tachycardia, electrical signals in the heart’s upper

chambers fire abnormally.

SVTs are usually identified by an explosion of rapid heartbeats that can be

chronic or begin and end suddenly. That can last a few seconds or several

hours and may cause the heart to beat over than 160 times per minute.

Symptoms include palpitations, chest pains, upset stomach, decreased ap-

petite, lightheadedness or weakness.

SVTs, or supraventricular tachycardias, often involve atrial fibrillation

and atrial flutter.

13
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1.5 Atrial Fibrillation

1.5.1 Definition

By the American College of Cardiology (ACC), the American Heart Association

(AHA) and the European Society of Cardiology (ESC) atrial fibrillation is defined as

“Tachyarrhythmia characterized by mostly uncoordinated atrial activation with con-

sequent deterioration of atrial mechanical function”. It is the most common cardiac

arrhythmia, occurring in 1-2% of the general population” [12].

Figure 1-9: Normal Heart vs Atrial Fibrillation Heart [13]

Atrial fibrillation is a rapid heart rate caused by irregular electrical impulses in

the upper chambers of the heart. These signals result in rapid, uncoordinated, weak

contractions of the atria. While the heart should pump blood properly so the body

gets the oxygen it needs; What happens in atrial fibrillation (AFib), the heart does

not beat appropriately rather than pulsing in a normal pattern, the atria quiver in

irregular and fast way [14].
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1.5.2 Symptoms of atrial fibrillation

Approximately 25% of all individuals with afib are asymptomatic (they have no

symptoms)[8] and insensible of their condition until it is often discovered first during

a hospital admission or a physical examination. Those who do have atrial fibrillation

often experience debilitating symptoms despite treatment such us:

• Heart palpitations, which are sensations of a racing, uncomfortable, irregular

heartbeat or a flip-flopping in the chest.

• Feeling faint at times.

• Angina (i.e. chest pain or discomfort).

• Dyspnoea (i.e. Shortness of breath).

• Asthenia (Weakness; lack of energy and strength).

• Fatigue.

• Sleeping difficulties.

Figure 1-10: Prevalence of atrial fibrillation symptoms [15]
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1.5.3 Types of atrial fibrillation

Atrial fibrillation (AF) can present in several ways and correct classification can

guide the choice of treatment. It is grouped according to the duration of the arrhyth-

mia.

Table 1.2 outlines the different classes of AF:

Table 1.2: Patterns of atrial fibrillation [16]

AF Pattern Definition

First diagnosed
Not previously diagnosed, irrespective of arrhythmia

duration or the presence and severity of symptoms

Paroxysmal
Self-terminating, usually within 48h, may continue

for up to 7 days.

Persistent Lasts more than 7 days

Long-standing persistent Continuous AF for more than 1 year with rhythm control

Permanent
The patient and physician accepts the AF, and the rhythm

is not controlled

Atrial fibrillation is a cumulative disease that usually evolves towards permanent

atrial fibrillation. This is generally a stepwise process in which persons with paroxys-

mal atrial fibrillation head for an increasing number of episodes until the arrhythmia

is persistent. Once persistent, the number of episodes with persistent atrial fibrilla-

tion tend to increase until the arrhythmia is long-standing persistent. It should be

noted, however, that some patients have paroxysmal or persistent atrial fibrillation

during their disease course, while others never return to sinus rhythm after a first

diagnosis [17].

Other types of atrial fibrillation:

• Lone atrial fibrillation : is used to describe a patient younger than 60 years

of age, who do not have any other concomitant heart diseases or risk factors, and

whose echocardiographic examination is normal. This type of atrial fibrillation

has a good prognosis and generally do not require anticoagulation therapy [18].
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• valvular atrial fibrillation: it affects people who have valve disease or an

artificial valve. Non valvular atrial fibrillation is caused by other things, such

as high blood pressure.

1.5.4 Causes of atrial fibrillation

A risk factor is something that increases the risk of developing a disease or condi-

tion. The main risk factors for getting atrial fibrillation are abnormalities or damage

to the heart’s structure are the most common cause of atrial fibrillation [14].

Possible causes of atrial fibrillation include :

1. getting older, particularly being 65 or older.

2. High blood pressure.

3. diabetes.

4. lung cancer.

5. Heart attack.

6. Congenital heart defects.

7. Exposure to stimulants, such as medications, caffeine, tobacco or alcohol.

8. Sick sinus syndrome: improper functioning of the heart’s natural pacemaker.

9. History of previous heart surgeries...

Atrial fibrillation is common in people with other heart conditions, also with other

medical conditions. However, in lone atrial fibrillation, the cause is often unclear, and

serious complications are rare where patients don’t have any heart defects or damage.
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1.5.5 Risks of having atrial fibrillation

AFib can cause potentially life-threatening health issues, We review the following

1.5.5.1 Blood Clots

Having atrial fibrillation increases the risk of developing a blood clot inside the

chambers of the heart. This is because the atrial fibrillation disturbs the normal flow

of blood through the heart, causing turbulence. The turbulence causes the blood to

form small clots. If a clot forms in the heart, it can travel through your bloodstream

and cause a stroke.

1.5.5.2 Stroke

The relationship between AF and stroke runs both ways. On the one hand,

AF markedly increases the risk of stroke[19]. For instance, AF increases stroke risk

five-fold compared with people without the arrhythmia[20],[19]. On the other hand,

strokes increase the likelihood of developing AF[21]. For instance, older people are at

increased risk: 25% of all stroke in people older than 80 years occur in AF patients[20].

Women are also at higher risk of experiencing a stroke from AF compared with

men[19].

About 50% of people die within a year of a atrial fibrillation (AF)-related stroke.

This compares with a mortality rate of 27% among people with strokes unrelated to

AF[22]. A study from Ireland reported five-year survival rates after an AF-related

stroke of 39.2%.

1.5.5.3 Heart failure

AFib can lead to heart failure, especially when the heart rate is high. When the

heart rate is irregular, the amount of blood flowing from the atria to the ventricles

varies for each heartbeat.
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1.6 Atrial fibrillation signature in the ECG signal

Atrial fibrillation (AF) diagnosis from an electrocardiogram (ECG) hinges upon

identifying several distinctive features. One prominent indicator is the absence of the

P-wave on the ECG, attributable to the rapid and irregular atrial activity as shown

in Figure 1-12. Instead, observers typically note low-amplitude and erratic ”fibril-

latory” waves occurring between the QRS complexes, indicative of disordered atrial

depolarization. Additionally, irregular and relatively shortened RR intervals often

manifest in ECGs with AF episodes. These irregularities stem from the erratic firing

activity in the atria, which variably affects ventricular response during the cardiac

cycle, as it is conducted through the atrioventricular node.

Detection and diagnosis of atrial fibrillation (AFib) typically occur non-invasively

in clinical settings, primarily through the evaluation of electrocardiograms (ECGs).

Key characteristics of AFib within the ECG trace include:

Table 1.3: Characteristics of ECG signal in atrial fibrillation [8]

Heart rhythm Irregular heart rhythm (irregular RR interval)

Heart rate

Ventricular rate : 60-100 beat

Atria rate : 400 - 600 beat

Average heart rate : less than 100 if AF is uncontrolled

P wave No P waves

PR intervals No PRi intervals since there are no P waves

QRS complex 0.06 - 0.10seconds

AF can be characterised from the irregular R-peak-to-R-peak (RR) intervals and

the presence of low amplitude fibrillatory waves (Figure 1-11).
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Figure 1-11: Illustration and comparison of typical electrocardiogram (ECG) record-
ings of A) sinus rhythm, and B) atrial fibrillation (AF) [23]

Figure 1-12: (A) Distribution of RR interval in AF and (B) in normal ECG [24]
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1.7 Smart Devices for Accurate AFib Detection

Technological innovations are continually growing in all sectors, but they are es-

pecially fascinating in medicine. The introduction of new technological devices, such

as smart phones and smart watches, has enabled a wide range of activities, including

recording daily steps, distance traveled, sleeping patterns, calories burned, and even

monitoring heart rate. However, the true potential of these technical improvements

resides in their ability to aid in disease diagnosis and abnormality detection, resulting

in timely treatment and prevention of potential problems. This is especially impor-

tant in the case of atrial fibrillation, a very common disorder with potentially serious

repercussions [25].

The most significant drawback is that AF is typically diagnosed after extensive

monitoring. On the other hand, intelligent devices with accurate monitoring capabil-

ities may overcome this constraint.

This section will introduce many clever gadgets meant to detect atrial fibrillation:

1. iBeat:is a smartwatch that uses heart rate monitoring to avoid heart-related

disorders. Its purpose was to save lives, more especially to lower the hundreds

of thousands of deaths caused by heart disease each year. Because iBeat can

identify heart attack and other cardiac disorders’ signs, it’s a great tool for

preventing cardiovascular illness [26].

2. KardiaMobile: takes a 30-second, medical-grade EKG anywhere, at any time.

The world’s top cardiac care physicians and patients use it to detect atrial

fibrillation, bradycardia, tachycardia, or normal heart rhythm.

3. Apple Watch: detects anomalies in the heart’s health and sends out alarms

when anything is dangerous. The smartwatch detects abnormally high or low

heart rates as well as irregular heart rhythms, and it warns the patient even if

they are not experiencing any symptoms. Notably, the Apple Watch features an

emergency button that enables those affected to get assistance when necessary.

His emergency contacts and emergency services are alerted as soon as he clicks
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the button. His companion can see how active he is thanks to the Apple Watch’s

ability to track exercise, blood pressure, and sleep in addition to heart rate.

Figure 1-13: From left to right : Apple watch, Kardia mobile, iBeat

1.8 Conclusion

Despite good progress in the management of patients with atrial fibrillation (AF),

this arrhythmia remains one of the major causes of stroke, heart failure, sudden death,

and cardiovascular morbidity in the world. It is also associated with poor quality of

life and adverse symptoms. Moreover, the number of patients with AF is expected

to rise steeply in the coming years. An early diagnosis of atrial fibrillation requires

rhythm documentation using an electrocardiogram (ECG) to reduce the risk of such

complications.

In the next chapter, we will delve into the latest techniques and methods used to

address this disease, aiming to improve outcomes and enhance patient care.
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Chapter 2

State of The Art

2.1 Introduction

Have you ever wondered how google translates an entire web page to a different

language in a matter of seconds or your phone gallery group’s images based on their

location? all of this is a product of deep learning.

This chapter delves into deep learning and the most recent studies in using this form

of analysis for assessing atrial fibrillation.

2.2 Theory of Deep Learning

In this section, we will outline the fundamentals behind a deep neural network,

which is essential for understanding what deep learning technologies have to offer and

the optimizations they use.

2.2.1 History and Origins

The concept of artificial neural networks dates back to 1940, whenWalter Pitts and

Warren McCulloch found that neurons in the human brain perform logical operations

and have binary outputs based on a specified threshold: active or not active [27].

Mathematical models have sparked attention in the AI community. At that time,
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computers were not yet advanced enough to handle sophisticated algorithms. Sci-

entists lost interest in Neural Networks over time due to lack of advancement and

alternative viable technologies. Backpropagation was discovered by Seppo Linnain-

maa in 1970, and it would subsequently change the performance of neural networks.

However, Neural Networks were not the focus of the Artificial Intelligence Community

until 2012, when students won the ImageNet Large Scale Visual Recognition Com-

petition with outstanding results. Since then, neural networks have been a popular

topic in artificial intelligence.

Figure 2-1: McCulloch (right) and Pitts (left) in 1949 [28]
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2.2.2 Definition

Deep Learning is a subset of machine learning (ML) which in turn is a subset of

artificial intelligence -a technique that enables a machine to mimic human behavior-.

Machine learning is a technique to achieve AI through algorithms trained with data

and finally deep learning (DL) is a type of machine learning inspired by the structure

of the human brain in terms of deep learning this structure is called an artificial

neural network or ANN [29].

Machine learning and deep learning both are subsets of artificial intelligence but

there are many similarities and differences between them. Table 2.1 and Figure 2-2

show main differences between the two.

Table 2.1: Main Differences between machine learning and deep learning

Traditional Machine Learning Deep Learning

Requires more human intervention to correct

and learn

Learns on its own from environment and past

mistakes

Can train on smaller data sets Requires large amounts of data

Shorter training and lower accuracy Longer training and higher accuracy

Can train on a CPU

(Central Processing Unit)

Better to use a GPU to train

(Graphics Processing Unit)

Figure 2-2: The difference between traditional machine learning and deep learning
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2.2.3 Strategic Application of Deep Learning

Deep Learning can outperform human specialists in some scenarios, making it a

potential solution for the following problems [30]:

• In situations where human specialists are not available.

• Situations in which humans are unable to explain conclusions made with their

expertise (language comprehension, medical decisions, and speech recognition).

• Cases where the problem solution changes over time (price prediction, stock

choice, weather prediction, and tracking).

• Adaptive solutions for specific scenarios, such as personalization and biometrics.

• Examples of large-scale problems outside our reasoning abilities, such as senti-

ment analysis, Facebook ad matching, and webpage ranking calculations.

2.2.4 Advantages of Deep Learning

Based on [30], we summarize the advantages in the following items:

1. Universal Learning Approach: Because DL can perform in almost all ap-

plication domains, it is also known as universal learning.

2. Robustness: In general, precisely defined features are not necessary in deep

learning algorithms. Instead, the optimum features are learned in an automatic

manner relevant to the task at hand.

3. Generalization: Different data types and applications can employ the same

deep learning (DL) technology, known as transfer learning (TL), as discussed

in the next section. Furthermore, it is an effective approach for problems with

insufficient data.

4. Scalability: Deep learning is very scalable. Microsoft invented ResNet, a

1202-layer neural network widely used in supercomputing. Lawrence Liver-

more National Laboratory (LLNL), a big company working on growing network
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frameworks, adopted a similar technique, allowing for the implementation of

thousands of nodes.

2.2.5 Challenges in Deep Learning

Although deep learning has made great strides in many areas, there are still certain

issues that need to be resolved. The following are a few of the primary obstacles in

deep learning:

• Data availability: To learn from, a lot of data is needed. Acquiring as much

training data as possible is crucial for deep learning applications.

• Computational Resources: It is computationally expensive to train the deep

learning model because it needs specialized hardware, such as GPUs.

• Time-consuming: Working with sequential data might take a very long time,

even in days or months, depending on the computational resources available.

• Deep learning models are intricate and operate in a mysterious manner.

The outcome is really hard to understand.

• Overfitting: Repetition of training causes the model to become excessively

specialized for the training set, which results in overfitting and subpar perfor-

mance on fresh data.

2.3 Neural Networks: From Biological to Artificial

Neural networks are computational models that closely resemble the structure and

function of organic brain networks. They are made up of interconnected pieces called

artificial neurons, which process information and learn patterns from data.

To understand how neural networks work, we must first consider how biological

neural networks function. The human brain is made up of billions of cells called

neurons that communicate with one another using electrical and chemical impulses.

28



CHAPTER 2. STATE OF THE ART

Figure 2-3 compares a biological neuron and an artificial neuron, illustrating its struc-

tural components [31].

Figure 2-3: a) Biological Neuron b) Artificial Neuron [31]

A biological neuron is made up of three basic parts: dendrites, soma, and axon.

Dendrites function as neuronal the antennas, receiving impulses from other neurons.

Soma functions similarly to the neuron’s processor, integrating and processing signals.

The axon functions as a neuron’s cable, conveying processed signals to neighboring

neurons via synaptic connections. Synapses function similarly to neural connectors,

transferring signals from one neuron to another.

In artificial neural networks, this complex process is simplified into weighted sums

and activation functions. An artificial neuron has multiple inputs, each assigned a
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specific weight that signifies its importance. These inputs are summed up and passed

through an activation function to produce an output. This is how artificial neurons

transform inputs into outputs [31].

Table 2.2: Comparison of Biological and Artificial Neurons [31]

Aspect Biological Neurons Artificial Neurons

Structure

Complex and organic struc-

ture, consisting of dendrites,

soma, axon, and synapses.

Simple and mathematical

structure, consisting of inputs,

weights, bias, and activation

function.

Function

Process and transmit electrical

and chemical signals, using ac-

tion potentials and neurotrans-

mitters.

Process and transmit numer-

ical values, using weighted

sums and activation functions.

Learning

Learn and adapt through

synaptic plasticity, changing

the strength and number of

synapses based on experience

and stimuli.

Learn and adapt through

weight adjustment, changing

the value and number of

weights based on error and

feedback.

Efficiency

Highly efficient and parallel,

processing and transmitting

signals at high speed and low

energy consumption.

Less efficient and sequential,

requiring more time and power

to perform computations and

communications.

2.4 Artificial Neural Network

Artificial neurons, or units, are components of artificial neural networks. The Ar-

tificial Neural Network of a system is made up of these units grouped in a sequence

of layers.
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Now after having explored what artificial neurons are, lets look at how they inter-

act to build a neural network. Artificial neurons are frequently grouped in layers to

form a neural network. The first layer receives the input data, the last layer gener-

ates the output, and the intermediate layers are known as hidden layers. Each layer

applies a specific change to the data before forwarding it to the next layer. A neural

network’s number of layers and neurons determines its ability to learn difficult func-

tions.

The input layer consists of several neurons, each representing one of the features of

the data. The hidden layer contains multiple neurons that perform computations on

the input data. Finally, the output layer has one or more neurons that generate the

final prediction or classification.

Deep Learning and neural networks are often used interchangeably in speech,

which can be confusing. As a result, it’s worth noting that the ”deep” in deep

learning simply refers to the number of layers in a neural network. A deep learning

algorithm is defined as a neural network with more than three layers, including the

inputs and output. A neural network with only two or three layers is considered a

simple neural network [32].

Figure 2-4: Deep Neural Network Layers [32]
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2.5 Activation Function

The activation function is an important component of artificial neurons since

it determines whether or not a neuron should be activated based on input signals.

Activation functions add nonlinearity to neural networks, allowing them to handle

complicated issues beyond linear separability. Linear separability indicates that data

may be separated by a straight line [31].

However, not every data collection is linearly separable. Some data sets are more

complicated and require curved or nonlinear borders to distinguish them. This is

when activation functions come in useful. They enable the network to learn nonlinear

functions and define nonlinear bounds. Depending on the network architecture and

the type of problem, various activation functions serve different objectives. We utilize

the following activation functions at this work:

1. Sigmoid: This function transfers the input to a value between 0 and 1, resulting

in a smooth curve. It is useful for binary classification tasks, such as determining

if an email is spam or not. However, it has several disadvantages, such as being

susceptible to saturation and vanishing gradients, which means that the network

stops learning when the input is too large or too little.

Figure 2-5: Segmoid Activation Function Graph [33]
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2. ReLU: This function translates the input to either 0 or the input itself, resulting

in a linear and nonlinear region. It is useful for accelerating convergence while

avoiding the vanishing gradient problem. However, it has some disadvantages,

such as being prone to dying neurons, which means that some neurons stop

reacting to input and become inactive.

Figure 2-6: Rectified Linear Unit Activation Function Graph [33]

2.6 Training a Neural Network

Neural networks function by altering the weights of the connections between neu-

rons based on the error of network predictions compared to the actual data.

The training procedure involves the network learning from the data and improv-

ing its performance. Various techniques can be used for training, including gradient

descent, backpropagation, stochastic gradient descent, and so on.

The training procedure aims to minimize the error or loss function, which assesses

how well the network fits the data. The network works better when there are fewer

errors or losses.

The training process can be repeated until the network reaches a satisfactory level of

accuracy or meets some predefined criteria.
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2.7 Deep learning for the detection of atrial fibril-

lation

In this section, we discuss in detail the approaches that closely related to our

work, which are widely used to detect AF.

2.7.1 1D-CNN Architecture

Typically, a 1-D CNN model involves two kinds of layers (as shown in Figure 2-7)

Convolution layers and Multilayer Feed Forward (MLFF) layers.

Figure 2-7: 1D-CNN Architecture

1. Convolution layers: Convolution, sometimes known as shiftcompute, is the

process of sliding a kernel over input signals.

2. Pooling layer: Pooling is a useful technique for reducing a mapping’s dimen-

sionality and emphasizing its key features. In order to decrease the convolution

output’s dimension, pooling is typically used after the convolution layer.

3. Flatten: Convolution layers may produce output with a depth greater than

one. The output of the convolution layers is concatenated to create a flat

structure called ”flatten,” which can be supplied as input to a multilayer feed

forward network as shown in Figure 2-8.
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4. Multilayer Feed Forward Network: A fully connected layer (Figure 2-8), or

MLFF, is a network structure in which every neuron in one layer is connected

to every other neuron in the layer above it. Convolution layers’ flattened output

is received by MLFF, which transfers it to the output

5. Output Layer: One-hot encoding format is most commonly used to represent

a classification outcome. The result of a N class problem is a vector with

dimension N. This output vector’s elements can only have values of 0 (ON) or 1

(OFF). Additionally, only one vector element may be ”ON” at once. Take the

case of four classes, for instance. The four classes are represented by:

Class 1: [1 0 0 0]

Class 2: [0 1 0 0]

Class 3: [0 0 1 0]

Class 4: [0 0 0 1]

Figure 2-8: a) Flatten Output, b) Fully Connected Network
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2.7.2 1D CNN vs 2D CNN for Atrial Fibrillation Detection

The automatic detection of atrial fibrillation (AF) is of paramount importance due

to its association with an elevated risk of embolic stroke. Traditional approaches for

AF detection have involved the transformation of one-dimensional (1D) time-series

electrocardiogram (ECG) signals into two-dimensional (2D) spectrograms, which were

then utilized to train complex AF detection systems. This process, however, is com-

putationally intensive and often incurs significant implementation costs.

Convolutional Neural Networks (CNNs) have demonstrated exceptional efficacy in

analyzing 2D image data, excelling in tasks such as object recognition, classification,

and prediction by extracting high-level features through multiple hidden convolu-

tional layers. Despite their success with 2D data, the intrinsic nature of physiological

signals, including ECGs, is inherently 1D. Consequently, there has been a growing

interest in adapting CNNs for the direct processing of 1D signals.

One approach to leverage CNNs for signal processing involves the conversion of

1D signals into 2D representations, such as spectrograms, which then facilitate the

application of conventional 2D CNN architectures. This method allows the network

to operate on signal data as if it were handling image data, benefiting from the ma-

ture techniques developed for 2D image analysis. However, the transformation of 1D

signals into spectrograms introduces additional computational complexity and may

lead to the loss of crucial temporal information, which is essential for the accurate

characterization of time-series data.

Using 1D time-series data directly in a neural network, particularly a 1D CNN, is

often preferable to converting it into spectrograms. This preference stems from the

1D CNN’s ability to maintain the original temporal resolution and characteristics of

the signal, thereby preserving its intrinsic temporal patterns and correlations. The

direct use of 1D CNNs in processing time-series data ensures that the sequential na-
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ture of the data is retained, which is critical for the accurate analysis of physiological

signals.

Furthermore, the transformation of 1D signals into 2D spectrograms not only in-

creases computational overhead but also risks omitting significant temporal features

due to the added complexity of the conversion process. In contrast, 1D CNNs, with

their lower computational demands and specialized efficiency in handling time-series

data, present a practical and effective solution. They capitalize on the sequential

nature of the data, facilitating a more streamlined and accurate analysis process.

In the context of AF detection, the utilization of 1D CNNs offers a compelling

pathway for the rapid and reliable examination of ECG signals. Their ability to

directly process 1D time-series data without the need for transformation into 2D

spectrograms provides an advantageous framework for the development of efficient,

cost-effective, and robust AF detection systems.

2.8 Literature Review

Electrocardiography (ECG) manual screening for AF is costly (time consuming)

and error-prone. The application of advanced signal processing and deep learning

approaches in the development of computer-aided diagnosis systems to enable auto-

mated identification of AF can help reducing subjectivity and human errors as well

as improve the accuracy and timeliness of diagnosis.

This section highlights the most recent advancements in deep learning for the inves-

tigation of atrial fibrillation and discusses the drawbacks of each method.

2.8.1 Related Works

Existing atrial fibrillation classification works can be classified into two paradigms:

intra-patient and inter-patient.

In intra-subject scheme, the dataset is based on segments of ECGs of subjects in
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both train and test/validation sets, so the ECG record will appear in two subsets.

According to [34], Because the patient’s traits are learned during the training phase,

the findings of this paradigm are biased yielding about 100% accuracy in the test phase

[35]. In real-world circumstances, the trained model should be capable of handling

inter-patient changes during the training process. Although, intra-subject evaluation

process leads to a relatively high performance in most of the cases, these results are

not realistic.

Using the inter-subject technique avoids using segments from the same subjects in

both training and validation/test sets, making it more practical.

The proposed AF detection models have limited generalization and performance

on new datasets. Current approaches have primarily been tested on a single dataset.

Previous research has primarily used intra-subject approaches for training and eval-

uation, rather than inter-subject paradigms.

According to [36] all deep learning methods used to automatically detect atrial fib-

rillation are illustrated in the following block diagram:

Figure 2-9: Block diagram representation of the general approach for deep learning-
based atrial fibrillation detection [36]

For instance, [36] examined the newest state of the art related to AFib detection.

Figure 2-10 depicts the distribution of publications on atrial fibrillation detection

using deep learning by year of publication.
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Figure 2-10: (a)type of model deployed (b). CNN, convolutional neural network;
DNN, deep neural network; LSTM, long short-term memory; RNN, recurrent neural
network [36]

After analyzing the various methods utilized in the articles, we can conclude the

advantages and cons of employing various deep learning algorithms for Atrial Fibril-

lation detection (Table 2.3).

Table 2.3: Deep learning models developed for automatic AF detection

Deep Models Advantage/Disadvantage

DNN In terms of speed, it is more advantageous.

CNN
Strong in obtaining representative properties,

but lacking in design difficulties and parameter tuning

RNN
Although it is used because of its memory structure,

it is poor at representing sequences.

LSTM
Although useful for sequence representations,

it is slow and consumes a lot of resources.

Hybrid (CNN+LSTM)

The use of both representation and sequence

features together is advantageous,

but it takes more time and cost.

Most articles use a 1D CNN for AF detection because of its ability to successfully
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extract features from raw ECG data and provide solid results in classification tests.

Unlike standard neural networks, one-dimensional CNNs excel at capturing local re-

lationships in time series data, making them ideal for ECG signal interpretation.

Furthermore, 1D CNNs strike an appropriate compromise between computational

efficiency and accuracy, avoiding the complexities and resource demands associated

with RNNs and LSTMs. This technique enables precise and efficient AF detection,

which is critical for quick medical action.

2.9 Proposed Method

In the preceding sections, we reviewed contemporary approaches for detecting

atrial fibrillation (AF). It was observed that employing a one-dimensional Convolu-

tional Neural Network (1D CNN) to extract features directly from raw electrocar-

diogram (ECG) data proves to be highly efficient. Moreover, the lack of continuous

ECG monitoring devices poses a significant challenge for cardiologists in identifying

AF episodes, particularly during periods when patients are sleeping or under similar

conditions.

Therefore, in this master’s project, we propose a novel methodology to address

these challenges. The key components of our approach are as follows:

• QRS Detection Algorithm for R Peak Identification: We propose the utilization

of a robust QRS detection algorithm to precisely identify the R peaks in ECG

signals. The identified R peaks will then be used to extract individual heart-

beats. These beats will be reshaped into image representations, allowing the

transformation of our 1D model into a two-dimensional (2D) format. This step

enhances the model’s applicability to new records and facilitates the integration

of 2D CNN techniques.

• Development of 1D-CNN and 2D-CNN Models: We propose the development of

innovative 1D-CNN and 2D-CNN models specifically tailored for AF detection.

The design will focus on optimizing cost efficiency by utilizing only two convolu-
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tional layers. This streamlined architecture aims to maintain high performance

while reducing computational complexity and resource requirements.

• Hyperparameter Tuning for Optimal Performance: We will conduct extensive

hyperparameter tuning to identify the optimal configuration of parameters.

This process ensures that the model achieves the best possible performance

by adjusting parameters such as learning rate, batch size, and the number of

filters in each convolutional layer.

• Fixed Seed for Consistent Results: To ensure consistent results across different

runs and facilitate reproducibility, we will establish a fixed seed value for ini-

tializing weights uniformly. This practice is critical for achieving reliable and

comparable outcomes in the model training and evaluation processes.

• Signal-Specific Data Augmentation: We will implement data augmentation

techniques specifically suited for ECG signals. These techniques will expand

the training dataset, thereby enhancing the model’s robustness and improving

its ability to handle unseen data effectively. Examples of augmentation tech-

niques include adding noise, varying signal amplitude, and time-warping.

• Inter-Subject Approach for Generalization: An inter-subject approach will be

employed to improve the model’s generalization capability. This approach in-

volves training and validating the model on data from different subjects, ensur-

ing that the model can generalize well to unseen data and is not overfitted to a

specific subset of the population.

The proposed methodology aims to leverage the strengths of both 1D and 2D

CNNs while addressing the limitations of existing AF detection techniques. By fo-

cusing on cost efficiency, computational simplicity, and robust performance, this ap-

proach offers a comprehensive solution for the automatic detection of atrial fibrilla-

tion, facilitating its timely and accurate diagnosis in clinical settings.
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2.10 Conclusion

This chapter reviewed recent research on detecting atrial fibrillation disease using

ECG data. 1D-CNNs are commonly used. In the following chapter, we will offer our

proposed system design to help handle these challenges.
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Chapter 3

Methodology and Results

Discussion

3.1 Introduction

In the previous chapter, we reviewed various methods for detecting atrial fib-

rillation (AF) and concluded that utilizing a one-dimensional Convolutional Neural

Network (1D CNN) to extract features from raw ECG data is particularly efficient.

This chapter introduces the proposed methodology for AF detection, offering a de-

tailed exposition of each phase, from signal filtering and peak detection to feature

extraction and the overall system architecture.

We present a comprehensive, step-by-step account of the advanced system archi-

tecture that enhances the capabilities of CNNs, ensuring precise AF detection from a

single heartbeat. This systematic approach involves several stages, each meticulously

designed to improve the accuracy and reliability of the detection process. The chapter

concludes with an in-depth analysis of the experimental results, providing valuable

insights into the system’s performance and demonstrating its efficacy in identifying

atrial fibrillation.
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3.2 Development Tools and Programming Languages

This section discusses the key tools utilized in the project, highlighting notable

Python libraries, such as NumPy, Pandas, Matplotlib, Scikit-learn, Keras, and Ten-

sorFlow. These libraries offer extensive capabilities for effective data manipulation,

analysis, visualization, and deep-learning tasks.

3.2.1 Programming Tools

3.2.1.1 Python

Python is an interpreted high-level general-purpose pro-

gramming language. Created by Guido van Rossum. Its lan-

guage constructs and object-oriented approach aim to help

programmers write clear logical codes for small and large-

scale projects. Python works on different platforms (Win-

dows, Mac, Linux, Raspberry Pi, etc). This language can be used on a server to

create web applications and connect them to database systems. It can also read and

modify files, to handle big data and perform complex mathematics and so many other

functionalities [37].

3.2.1.2 VScode

Visual Studio Code (VS Code) is a free and open-source

code editor developed by Microsoft that supports a variety of

programming languages and development tools.

It offers features such as debugging, task running, and ver-

sion control and is integrated into a seamless interface. The

lightweight nature of VS Code combined with its powerful extension marketplace

makes it a popular choice among developers owing to its versatility and customizabil-

ity [38].
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3.2.1.3 Anaconda

Anaconda is a free and open-source distribution of the

Python programming language for scientific computing (data

science, machine learning applications, large-scale data pro-

cessing, predictive analytics, etc.), that aims to simplify pack-

age management and deployment. [39].

3.2.2 Useful Frameworks and Libraries

3.2.2.1 Tensorflow:

TensorFlow is an open-source machine learning framework

developed by Google. It offers a wide range of tools and li-

braries for building and deploying machine learning models.

With support for tasks like deep learning, TensorFlow provides

flexible and scalable APIs, making it a versatile framework for

machine learning development.

3.2.2.2 Keras:

Keras is a high-level neural networks API written in

Python. It provides a user-friendly interface to build and train

deep learning models.

Keras is built on top of other deep learning frameworks such

as TensorFlow and allows for fast prototyping and easy exper-

imentation.

3.2.2.3 Pandas

Pandas is a powerful Python library for data manipula-

tion and analysis, offering efficient handling of structured data

through DataFrames. It is widely used by data scientists and
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analysts.

3.2.2.4 NumPy

NumPy is a vital Python library for numerical computing, offering powerful sup-

port for large arrays and mathematical operations. It is extensively used in scientific

and data analysis libraries, thanks to its efficiency and seamless integration with other

Python tools like Pandas and Matplotlib.

3.2.2.5 Matplotlib

Matplotlib is a versatile data visualization library in Python, offering extensive

functions and tools for creating high-quality plots, charts, and graphs. It integrates

well with other libraries like NumPy and Pandas, making it a popular choice for

exploratory data analysis and result presentation.

3.2.2.6 Scikit-learn

Scikit-learn is a Python library for machine learning, offering a userfriendly in-

terface and various algorithms for tasks like classification, regression, and clustering.

It is widely used and known for its simplicity, performance, and strong community

support.

3.3 Evaluation Metrics for Classification Tasks

The evaluation metric is crucial for attaining the best classifier during classification

training. Choosing an appropriate assessment metric is crucial for achieving optimal

classifier efficiency [40]. There are various metrics for measuring the performance of

classifiers based on the following four indicators:
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• True Positive (TP): is a test result that correctly identifies the presence of a

class or characteristic.

• True Negative (TN): A test result that accurately indicates the lack of a

class or characteristic.

• False Positive (FP): is a test result that incorrectly suggests the presence of

a class or characteristic.

• False Negative (FN): is a test result that incorrectly implies the absence of

a class or characteristic.

3.3.1 Confusion Matrix

Refer to the graphical representation in Figure 3-1. A confusion matrix is a

compact table that assesses the performance of a classification model by displaying

true-positives, false-negatives, and true-negatives. It calculates key measures, such as

precision, recall, accuracy, and F1 score. Confusion matrices can be created using R

and Python[41].

Figure 3-1: Confusion matrix for multi-class classification
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The scikit-learn library in Python was used to calculate a confusion matrix.

1 from sklearn.metrics import confusion_matrix

2

3 # Example true labels and predicted labels

4 true_labels = [0, 1, 1, 0, 1, 0]

5 predicted_labels = [0, 1, 0, 0, 1, 1]

6

7 # Calculate confusion matrix

8 cm = confusion_matrix(true_labels , predicted_labels)

9

10 print("Confusion Matrix:")

11 print(cm)

Listing 3.1: Example of Confusion matrix usage

The code above prints the following result: (In this matrix, the rows represent the

actual classes, and the columns represent the predicted classes. So, for example, the

value at row 1, column 1 (2) indicates the number of instances where the true label

was 0 and the predicted label was also 0)

1 Confusion Matrix :

2 [ [ 2 1 ]

3 [ 1 2 ] ]

3.3.2 Accuracy

Accuracy measures the frequency with which the model is correct. However,

relying solely on the accuracy can sometimes lead to misleading high-performance

results. The accuracy is given by Equation 3.1.

Accuracy =
True Positive + True Negative

TotalPredictions
(3.1)

Here, the Total Predictions represent the sum of the true positives, true negatives,

false positives, and false negatives.
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This is a commented section. None of these lines will be rendered. You can

comment out multiple lines using this environment.

Because it is a simple mathematical formula, we can use the following Python

function:

1 def calculate_accuracy(true_positive , true_negative , false_positive ,

false_negative):

2 total_predictions = true_positive + true_negative +

false_positive + false_negative

3 accuracy = (true_positive + true_negative) / total_predictions

4 return accuracy

Listing 3.2: Function for Accuracy calculation

3.3.3 Precision

Precision represents the accuracy of a model in classifying a sample as positive.

This was calculated using the following formula:

Precision =
TP

TP + FP
(3.2)

3.3.4 sensitivity

Recall, often called sensitivity, is a metric that assesses a model’s ability to cor-

rectly identify positive samples. The calculation involves dividing the number of true

positives (TP) by the sum of TP and FN. The equation for recall (sensitivity) is as

follows:

Precision =
TP

TP + FN
(3.3)

3.3.5 F1 Score

The F1-score evaluates a classifier’s precision and recall in a single metric using

the harmonic mean. It is often used to compare the performance of two classifiers.
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The F1-score was calculated using the following formula:

F1 score =
2 · (precision · recall)
precision + recall

(3.4)

In Equation 3.4, the precision and recall values are multiplied by two, and their sum is

included in the denominator. This calculation generates a single F1-score to evaluate

the classifier’s performance [42].

3.3.6 The loss function

To put it simply, the loss function is a way to gauge how effectively the algorithm

models the data that you have provided.

• Binary Cross-entropy / Log Loss: Binary cross-entropy, also known as log

loss or logistic loss, is a loss function commonly used in binary classification

tasks. It measures the dissimilarity between predicted probabilities and actual

binary labels (0 or 1). The binary cross-entropy loss function is particularly

well-suited for problems where the output of the model is a probability value

indicating the likelihood of an instance belonging to one of the two classes.

For a single instance, let y be the true label (0 or 1) and p be the predicted

probability that the instance belongs to class 1. The binary cross-entropy loss

L is computed as follows:

L(y, p) = − (y · log(p) + (1− y) · log(1− p)) (3.5)

Where:

– y is the true label (0 or 1), p is the predicted probability that the instance

belongs to class 1, log denotes the natural logarithm.

By minimizing the binary cross-entropy loss function during training, the model

learns to generate predicted probabilities that are closer to the true labels,

thereby improving its ability to discriminate between the two classes.
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3.4 Global conception

This section delineates our proposed automatic classification methodology for the

detection of AF, leveraging short-duration electrocardiogram (ECG) signals.

The proposed methodology for detecting atrial fibrillation (AF) leverages ad-

vanced signal processing techniques and Deep Learning models to accurately classify

heart rhythms from raw electrocardiogram (ECG) signals. The entire process is di-

vided into several critical stages, each playing a vital role in ensuring the accuracy

and reliability of AF detection. The subsequent sections provide a comprehensive

overview of each step, from initial data preprocessing to final model evaluation.

• Raw ECG Signal Acquisition: ECG signals are collected from patients, cap-

turing the electrical activity of the heart over time. These raw signals often

contain noise and artifacts that must be addressed to improve the accuracy of

subsequent analyses.

• Peak Detection Using XQRS Algorithm: The XQRS algorithm is employed to

identify the R-peaks in the ECG signals. Accurate detection of these peaks is

essential for segmenting the ECG signals into individual heartbeats.

• Segmentation Around Peaks: Once the R-peaks are identified, the ECG signals

are segmented into 80-sample windows centered around each peak. Each seg-

ment represents a single heartbeat and serves as a fundamental unit for feature

extraction and classification.

• Beat Normalization: The segmented heartbeats undergo normalization to stan-

dardize their amplitude and duration.

• Model Training and Data Splitting: With the preprocessed and segmented ECG

signals ready, the next step involves training machine learning models to classify

heartbeats as either normal or indicative of AF.
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Figure 3-2: Global Conception Architecture
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Overall, we describe the architecture of our early detection and monitoring system

as Figure 3-2 shows.

3.5 Data Analysis

This section focuses on improving data quality before moving to deep learning

part. We will read annotation files, use the XQRS algorithm to detect R-peaks,

extract beats, and apply normalization to ensure consistency and accuracy before

moving on to the deep learning part.

3.5.1 ECG Data Acquisition

PhysioNet web site:

The PhysioNet website offers a free web access to many

recorded physiological signals in databases, most of them be-

ing dedicated to the study and the analysis of the ECG signal.

In our project, we used the MIT-BIH AFDB and the

2017 PhysioNet/CinC Challenge atrial fibrillation

database.

1. MIT-BIH Atrial Fibrillation Database (AFDB): This database contains

25 long-term electrocardiogram (ECG) recordings from people who mostly ex-

perience paroxysmal atrial fibrillation. Each recording lasted 10 h and included

two ECG signals recorded at 250 samples/s with a 12-bit resolution (range from

±10 mV). The data, which came from Boston’s Beth Israel Deaconess Medical

Center, were manually prepared with rhythm annotations identifying various

rhythms such as atrial fibrillation and flutter. Although most records include

carefully corrected beat annotations, some are automatically recognized [43].

Each ECG record includes the following extensions:
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• .dat files: 23 records include two ECG signals, lead I and II ( raw ECG

signals).

Figure 3-3: Reading (.dat) file

• .atr files: annotations marking rhythms and any detected arrhythmias

(AFib [atrial fibrillation] , N [normal] , AFL [atrial flatter] , J [junction]).

• .qrs files: annotation files (R peak locations) that may be useful for

studies of methods for automated AF detection, where such methods must

be robust with respect to typical QRS detection errors.

Figure 3-4: Reading (.qrs) file
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2. The 2017 PhysioNet/CinC Challenge: aims to encourage the development

of algorithms to classify, from a single short ECG lead recording (between 30

and 60 s in length), whether the recording shows normal sinus rhythm, atrial

fibrillation (AF), an alternative rhythm, or is too noisy to be classified.

Figure 3-5: Data profile for CinC Challenge (used data)

This dataset is used to test the performance of the proposed model in later sections.

It contains the following extensions:

• .mat files: it is a binary file containing digitized signal samples. Luckily Python

offers multiple tools to treat such files.

Figure 3-6: Reading (.mat) file

• .hea files:it is a Short text file describing the content of associated signal file

(Name of record, number of leads, sampling rate, length, time of acquisition,

day of acquisition, start value etc.)
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• .csv files: it contains Class of each ECG record.

Figure 3-7: Example of .csv file

Where :

Table 3.1: ECG records classes

Class N A O ∼
Record’s type Normal atrial fibrillation Other heart problems Noisy

3.5.2 Data pre-processing

Our initial exploration of the database signals involved the utilization of The

WFDB Python package, a native Python tool designed for the comprehensive

handling of physiological signal and annotation data, encompassing reading, writing,

processing, and visualization functionalities.

Additionally, the BioSPPy package - Biosignal Processing in Python, was employed

to facilitate the pre-processing stage, aiding in the preparation and refinement of the

data.

Following the setup of the environment, which included the installation of WFDB

and BioSPPy, the process commenced as described Listing 3.3

57



CHAPTER 3. METHODOLOGY AND RESULTS DISCUSSION

1 %pip install wfdb

2 %pip install biosppy

3 import wfdb

4 from biosppy.signals import ecg # For segmentation

Listing 3.3: Installing necessary libraries and importing each

Electrodes positioned on the right arm and left leg to record the voltage difference

provides important information about the electrical activity of the heart, as described

in Chapter 1, Equation 1.2 of the Lead II system. Atrial fibrillation and other cardiac

anomalies can be identified using these data [44].

We provide an example of a record from our database. Figure 3-6 shows Record

’04015’ from MIT AFDB, as we can see it consists of lead I and lead II records.

The time in seconds ranges from 0 to 35000, therefore dividing by 3600s yields 9.72

hours (more than 9 hours).

Figure 3-8: The use of WFDB to display raw ECG record ’04015’

As depicted in Figure 3-8, two signals are presented: ECG1 and ECG2. As em-

phasized in [44], our focus lies solely on ECG2, acquired through lead II, as it offers

significant insights into atrial fibrillation (AFib).
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At this stage, we are equipped to visualize the records, inspect the contents of anno-

tated files, and access pertinent information associated with each record, leveraging

the comprehensive resources provided by the WFDB documentation [45].

With a comprehensive understanding of our dataset established, the next step entails

denoising and the detection of QRS complexes.

Another library is imported for that purpose which is neurokit2

1 %pip install neurokit2

2 import neurokit2 as nk

Listing 3.4: Neurokit2 installation

since it provides various QRS algorithms such as: (pantompkins1985, hamilton2002,

zong2003, martinez2004, christov2004, gamboa2008, elgendi2010, engzeemod2012,

kalidas2017, nabian2018, rodrigues2021, koka2022, promac).

We have determined that XQRS is the best method for qrs complex detection after

analyzing all of the algorithms on our database records (Table 3.2).

Figure 3-9 shows some templates that illustrates how XQRS algorithm is accurate:

Figure 3-9: First 10 detected R-peaks in record ’04048’ using XQRS algorithm
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Table 3.2: Performance of the XQRS algorithm across the MIT-BIH AFDB

Signals reference annotations test annotations True Positives False Positives False Negatives Sensitivity Positive Predictivity

04936 53646 55053 53542 1511 104 0.9981 0.9726

07162 39298 39501 8396 31105 30902 0.2136 0.2126

08219 59293 60738 58761 1977 532 0.9910 0.9675

08215 43356 44171 43173 998 183 0.9958 0.9774

08434 39850 40763 39797 966 53 0.9987 0.9763

05121 49881 48288 47010 1278 2871 0.9424 0.9735

04015 44005 44492 42968 1524 1037 0.9764 0.9657

06426 55155 56532 54690 1842 465 0.9916 0.9674

06453 34837 35004 34760 244 77 0.9978 0.9930

04746 47873 48738 47484 1254 389 0.9919 0.9743

04043 61915 63243 61790 1453 125 0.9980 0.9770

07879 56594 58062 56421 1641 173 0.9969 0.9717

04908 61760 63144 61719 1425 41 0.9993 0.9774

05091 36793 36692 35540 1152 1253 0.9659 0.9686

08455 59552 60128 59231 897 321 0.9946 0.9851

06995 55189 56634 55151 1483 38 0.9993 0.9738

07859 60266 61723 59837 1886 429 0.9929 0.9694

04126 42860 43862 42497 1365 363 0.9915 0.9689

04048 39934 40020 39829 191 105 0.9974 0.9952

08405 58856 60403 58657 1746 199 0.9966 0.9711

07910 36599 37789 36588 1201 11 0.9997 0.9682

05261 45534 46499 45343 1156 191 0.9958 0.9751

08378 45515 46310 45487 823 28 0.9994 0.9822

As outlined in Table 3.2, the decision has been made to exclude record ’07162’

from our analysis to mitigate potential challenges during the training phase of our

deep learning model.

We should note that While the primary focus of XQRS is QRS detection, it involves

some signal processing steps that can contribute to de-noising and filtering the ECG

records.

3.5.3 Beat Extraction (segmentation)

After the successful detection of R-peaks, a crucial step is the extraction of beats.

In cases of atrial fibrillation, where beats are closely spaced, a window of 80 samples

centered around the R-peak is selected. Each extracted beat is stored in an array,

serving as a representation of the feature (or input) for subsequent analysis. It is

worth noting that abnormalities within individual beats may manifest as symptoms
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of underlying maladies in the patient.

The goal of this study is to analyze the real efficacy of our algorithm in regardless

of the QRS detection process. However, given the documented efficiency of the XQRS

method and our desire for actual real-world use, we have chosen to use the R peaks

generated by this technique. This option enables the smooth preparation of new,

unlabeled, or unseen ECG recordings for input into our proposed model.

In the following figures, some of the extracted beats are shown.

Figure 3-10: First five extracted beats of label ’Normal’ of record ’08378’

Figure 3-11: First five extracted beats of label ’AFib’ of record ’08378’

We can clearly notice that we need a normalization step before the CNN part,

which will be done after organizing our data in csv files.
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3.5.4 Data split

Partitioning our dataset is the next step after obtaining the features; subsequently,

we add up the total occurrences for each category, namely, AFib and Normal. Ad-

ditionally, we grouped these attributes with their labels to accelerate the process for

later operations.

All the normal beats were placed in the CSV file. For each row, 80 cells were used.

The total number of rows is the total number of normal beats in a 1h record in the

database. Similarly, for AFib, the CSV file has the same shape as the first file.

Another two .CSV files for the labels (0 for AFib and 1 for normal).

Table 3.3 lists the total number of occurrences for each category. To prevent classifi-

cation bias, we ensured that equal numbers of normal and AFib beats were included.

This careful balancing of the dataset helps provide a fair comparison and accurate

assessment of the classification model’s performance for both classes.

Table 3.3: Data profile for the database after segmentation. The two classes are:
Normal Sinus Rhythm (N), Atrial Fibrillation (AF).

Class N AFib

Training Beats 19853 19853

Validation Beats 2205 2205

Testing Beats 5515 5515

3.5.5 Normalization of ECG Signals

In order to facilitate effective deep learning classification, an additional pre-processing

step called signal normalization was performed on MIT-BIH AFDB. The purpose of

signal normalization was to ensure that all ECG signals had a standardized amplitude

range between -1 and 1.

In our case we applied Gaussian normalization that involves standardizing the data

by subtracting the mean and dividing by the standard deviation, then scaling it to

the desired range.
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Figures 3-12 and 3-13 show the five beats for normal and atrial fibrillation of record

’08378’ after normalization (we can compare with 3-10 and 3-11)

Figure 3-12: First five normalized beats of label ’Normal’ of record ’08378’

Figure 3-13: First five normalized beats of label ’AFib’ of record ’08378’

3.6 Proposed Models Description

3.6.1 Experiment 01: 1D-CNN proposed Model

In this section, we employ a 1D CNN classifier to explore the performance of the

Convolutional Neural Network (CNN) model implemented using the Keras library.

Designed for classification tasks on sequential data, the CNN model takes an input
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shape of (80, 1). Its architectural design incorporates pivotal components such as

convolutional layers, max pooling layers, dropout layers, and fully connected layers,

thereby facilitating the adept extraction of features from the sequential data. The

model is meticulously configured with dropout rates set at 0.5, filter sizes spanning

264 and 528 in the convolutional layers, and undergoes rigorous training for 300

epochs.

Below is the architectural layout of the model:

Figure 3-14: model.summary() output

We will employ hyperparameter tuning to refine the model’s performance further.

By adjusting the dropout rate, filter sizes, and number of epochs, we can explore

alternative combinations to enhance the model’s effectiveness. Specifically, we will

vary the dropout rate within the range of 0.5 to 0.6, while adjusting filter sizes to

128 and 528 in selected scenarios. Additionally, the number of epochs will be varied

between 200 and 300 for each configuration.

To ensure a robust evaluation of the model’s performance, we will allocate 80%

of the data for training, 10% for validation, and reserve 20% for testing. This parti-

tioning strategy aims to optimize both the accuracy and efficiency of the model by
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meticulously fine-tuning hyperparameters and conducting thorough training.

The results obtained from each configuration will be meticulously documented

in a table format for straightforward comparison and in-depth analysis. Ultimately,

this methodological approach will enable us to make informed decisions regarding the

most suitable hyperparameter values for our 1-D CNN classifier.

Table 3.4: Model Performance over Different Hyper-parameters

Case Dropout Rate Epochs 1st Conv Size 2nd Conv Size Accuracy (%) F1 (%)

01 0.5 200 128 264 94.26 93.53

02 0.5 300 128 264 95.61 91.79

03 0.6 200 128 264 87.64 90.97

04 0.6 300 128 264 92.70 92.42

05 0.5 200 264 528 92.41 92.63

06 0.5 300 264 528 94.34 94.41

07 0.6 200 264 528 88.91 93.09

08 0.6 300 264 528 92.07 92.24

Note: It is worth noting that the weights in the model are initialized randomly.

Consequently, re-running the program may yield different results each time. To ensure

reproducibility and obtain consistent results across different computing environments,

it is advisable to fix the random seed before training the model. By setting a fixed

random seed, the same initial weights will be used for each run, resulting in consistent

outcomes.

From Table 3.4, it is evident that the most optimal scenarios, post hyperparam-

eter tuning, are represented by Case 01 and Case 06. To delve deeper into their

performance, we will analyze the corresponding confusion matrix and convergence

loss.

Training with Another Splitting Ratio

Following this, we proceeded to apply the model for the aforementioned cases (Case 01

and Case 06) utilizing an alternate data partitioning ratio: 70% allocated for training
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and 30% for testing. Here are the outcomes derived from this execution:

Table 3.5: Model Performance with Different Splitting Ratio

Case Dropout Epochs Filter Sizes Accuracy (%) F1 (%)

01 0.5 200 128/264 93.35 92.43

06 0.5 300 264/528 90.79 91.88

3.6.2 Classification Evaluation

Case 01: Results

Figure 3-15: Confusion Matrix of Case 01
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Figure 3-16: Convergence Accuracy and Loss Graphs for Case 01

Case 06: Results

Figure 3-17: Confusion Matrix for Case 06
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Figure 3-18: Convergence Accuracy and Loss Graphs for Case 06

We can clearly observe that model in case 06 gives best overall results.

Case 01 after Changing Splitting Ratio:

Figure 3-19: Convergence Accuracy and Loss Graphs
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Figure 3-20: Confusion Matrix for case 01 after Changing Splitting Ratio

Case 06 after Changing Splitting Ratio:

Figure 3-21: Convergence Accuracy and Loss Graphs

Note: This splitting ratio was not factored in, as it led to significant overfitting

beyond epoch 150.

69



CHAPTER 3. METHODOLOGY AND RESULTS DISCUSSION

Figure 3-22: Confusion Matrix

3.6.2.1 Discussion

Case 01: The results from Case 01 of our CNN model show that it performed

really well. We carefully adjusted some important settings to make sure the model

works effectively. For example, we used a dropout rate of 0.5 to prevent the model

from learning too much from the training data, and we trained it for 200 rounds to

make sure it learns well.

We also chose specific sizes for some parts of the model, which helped it understand

the data better and make more accurate predictions. The way we split the data for

training, testing, and validation showed that the model can work well with different

datasets. This consistency proves that the model is reliable.

Additionally, the graph showing how the model’s performance improved over time

without getting too good at just memorizing the training data indicates that the

model learned well without getting too fixated on specific examples.

Overall, Case 01 of our CNN model shows that we have built a good model that

can be used effectively for different classification tasks.

Case 06: This Case 06 stands out as one of the best-performing experimental

70



CHAPTER 3. METHODOLOGY AND RESULTS DISCUSSION

cases, showing strong potential for reliable performance under specific conditions. By

using a dropout rate of 0.5 and training for 300 epochs, along with employing a first

convolutional layer size of 264 and a second convolutional layer size of 528, Case 06

achieved impressive accuracy and F1 score metrics.

The standout feature of Case 06’s performance is its remarkable F1 score, reaching

94.41%, which surpasses all other cases. This is significant because the F1 score

provides a balanced measure of both precision and recall, demonstrating the model’s

effectiveness in handling false positives and false negatives.

It’s important to note that while Case 06 performed exceptionally well with an

80-20 data split for training and testing, it showed signs of overfitting when the data

split was changed to 70-30. During training, we noticed clear signs of overfitting as the

validation loss started to increase after epoch 150, while the training loss continued

to decrease. This indicated that the model was learning the training data too well,

capturing noise and specific patterns that didn’t generalize to unseen validation data.

This observation highlights how sensitive the model’s performance is to the dis-

tribution and quality of the training data. Despite the overfitting observed with the

alternative data split, Case 06 maintained its superiority when evaluated against the

initial 80-20 data split. This underscores the importance of carefully considering data

quality and partitioning strategies to achieve optimal model performance.

Furthermore, the learning curves associated with Case 06 show promising trends,

with no significant overfitting except for a slight deviation in validation loss towards

the end of training. This indicates that the model’s ability to generalize is favorable,

particularly when trained on the initial data split.
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3.6.3 Experiment 02: Dropout Rate effect

We will now attempt to manually fine-tune the hyperparameters by adjusting the

convolutional layer kernels to 64 and 128 while adding dropout after each layer with

rates ranging from 0.2 to 0.5. This process aims to optimize the model’s performance

by systematically varying these parameters and evaluating their impact on accuracy

and other performance metrics.

Figure 3-23: Proposed Model Summary

Table 3.6: Model Performance over varying droupout rates

Case Dropout Rate Epochs 1st Conv Size 2nd Conv Size Accuracy (%) F1 (%)

01 0.5 300 64 128 92.58 92.37

02 0.4 300 64 128 92.85 93.41

03 0.3 300 64 128 92.88 93.18

04 0.2 300 64 128 92.89 94.01
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3.6.3.1 Results

In our first scenario, as depicted in Figure 3-24, we observed the most favorable

performance in terms of learning curves, with no signs of overfitting.

Figure 3-24: Learning Curves for Case 01

For Case 04, which yielded the highest F1 score, we observe a somewhat distorted

learning curve towards the end, indicating evident overfitting (see Figure 3-25).

Figure 3-25: Learning Curves for Case 04

3.6.3.2 Discussion:

The proposed model architecture, illustrated in Figure 3-23, underwent thorough

evaluation across various dropout rates. Over 300 epochs, the model’s performance
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was consistently assessed using accuracy and F1 score metrics. Table 3.6 summarizes

the correlation between dropout rates and model performance.

Our findings underscore the pivotal role of dropout rates in determining both the

model’s accuracy and its susceptibility to overfitting. Remarkably, as the dropout rate

decreased, accuracy improved. However, this led to an elevated risk of overfitting,

highlighting the delicate balance between model complexity and generalization.

The learning curves depicted in Figure 3-24 reveal that Case 01 represents the

most optimal configuration among the tested scenarios. This model achieved a re-

markable equilibrium between accuracy and generalization, exhibiting minimal signs

of overfitting. Conversely, Case 04, despite boasting the highest F1 score, exhibited

pronounced overfitting, as evidenced by the distorted learning curve in Figure 3-25.

This experiment clearly shows that the dropout rate influences the model’s accu-

racy; as the dropout rate decreases, the accuracy increases, but an overfit-

ting problem occurs.

3.6.4 Expirement 03: Testing on Another Dataset

To evaluate the generalization capacity of the developed model, inter-subject test-

ing was conducted using an independent dataset. The objective was to determine

whether the model, trained on one dataset, could effectively classify data from a

distinct source.

To ensure reproducibility and consistency across multiple runs, the seed value was

set to 15000, ensuring that random initialization and data shuffling processes yield

consistent results with each model training iteration.

To gauge the model’s performance, a rigorous 5-fold cross-validation strategy was

employed. This methodology entails partitioning the dataset into five subsets, em-

ploying four subsets for training and reserving one for validation in each fold. By

iteratively repeating this process five times, with each subset serving as the valida-

tion set once, a robust evaluation of the model’s performance is attained.

The selection of 5-fold cross-validation was driven by its equilibrium between com-
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putational efficiency and statistical reliability. This approach facilitates a comprehen-

sive appraisal of the model’s efficacy while maintaining a manageable computational

burden.

Figure 3-26: Results after code modifications

Table 3.7: Summary of test accuracy after each fold

Accuracy Loss

Fold 1 0.9416 0.2126

Fold 2 0.9483 0.1311

Fold 3 0.9261 0.2003

Fold 4 0.9126 0.2998

Fold 5 0.9647 0.1058

Mean Test Values 0.9326 0.2049

Figure 3-27: Convergence loss and accuracy graphs
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Figure 3-28: Confusion matrix

3.6.4.1 Results

The performance metrics obtained from the 5-fold cross-validation are summarized

in Figures 3-26, 3-27, 3-28. The model achieved an average accuracy of 93.36% and an

average loss of 0.2049 across the five folds. These results demonstrate the effectiveness

of the proposed model in classifying cardiac signals, as evidenced by its high accuracy

and low loss.

3.6.4.2 Testing on The 2017 PhysioNet/CinC Challenge Dataset

After evaluating the model’s performance on the original dataset, we proceeded

to assess its generalization ability using an external dataset, namely, the 2017 Phy-

sioNet/CinC Challenge dataset available on the Physionet website. This dataset

comprises a total of 5154 Normal and 771 AFib records and is widely utilized for

benchmarking cardiac signal classification algorithms.

It’s noteworthy that despite the sampling frequency of 300 samples per second in

this dataset, which differs from that used in the Atrial Fibrillation Database (AFDB),
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there’s no necessity to resample the data. This is owing to the fact that our model isn’t

reliant on the specific sampling frequency, thus offering a distinct advantage. During

model training, our focus was on feature extraction based on 80 samples around the

R peak, a methodology that remains effective irrespective of the sampling frequency

employed.

To evaluate the model’s generalization capability, we saved the trained 1D-CNN

model in the native Keras file format, ensuring reproducibility and facilitating future

utilization. Subsequently, we loaded this saved model and subjected it to testing us-

ing a completely unseen dataset containing normal and atrial fibrillation (AF) beats.

The new data underwent preprocessing to align with the format used during train-

ing, including reshaping to an appropriate input shape for the model. Performance

evaluation of the model on this new dataset was conducted using metrics such as

the F1 score and a confusion matrix, validating the model’s proficiency in accurately

classifying heartbeats and showcasing its resilience across diverse data sources.

1 # Save the model in native Keras format

2 model.save(’cnn_model.keras ’)

3 print("Model saved to cnn_model.keras")

4

5 # Load the model

6 loaded_model = tf.keras.models.load_model(’cnn_model.keras’)

7 print("Model loaded from cnn_model.keras")

8

9 # Recompile the model with the same metrics

10 loaded_model.compile(optimizer=’adam’, loss=’binary_crossentropy ’,

metrics =[’accuracy ’])

Listing 3.5: Save and Load the Model

3.6.4.3 Results and Discussion

The F1 Score obtained from the evaluation of the model on the external dataset

was calculated to be 0.891, indicating a strong balance between precision and recall.

The confusion matrix for the classification results is as follows:
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Figure 3-29: Confusion Matrix of The Test on unseen Data

Prior to testing on the completely unseen data, after model training, an F1 score

of 94.57 was achieved, indicating high accuracy in classification tasks.

The obtained F1 score of 0.891 and the confusion matrix results provide insights

into the model’s performance on the external dataset. The relatively high F1 score

indicates that the model achieved a good balance between precision and recall in

classifying normal and atrial fibrillation (AFib) beats.

The confusion matrix reveals that the model performed well in identifying normal

beats, with a high percentage of correctly classified normal beats (89.58%). How-

ever, there was a relatively higher misclassification rate for AFib beats as normal

(12.65%) compared to normal beats misclassified as AFib (10.42%). This suggests

that the model might have slightly more difficulty in correctly identifying AFib beats,

potentially due to the complexity and variability of AFib patterns in the dataset.

These results could be attributed to several factors. First, the external dataset

may contain variations in AFib patterns that differ from those present in the training

dataset. Additionally, the model’s performance may be influenced by the quality and
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quantity of the data in the external dataset.

Overall, while the model demonstrated robustness and generalization capability

across different data sources, further fine-tuning and optimization may be required to

enhance its performance, particularly in accurately classifying AFib beats. Continued

refinement of the model architecture and training strategies could lead to improved

classification accuracy and reliability in real-world applications.

3.6.5 Experiment 04: Data Augmentation

Data augmentation is a technique used to artificially increase the size of a train-

ing dataset by applying various transformations to the existing data samples. These

transformations introduce variations that help improve the robustness and general-

ization ability of machine learning models.

3.6.5.1 The 1D-CNN Proposed Model

In Experiment 3, we applied data augmentation to the model to observe its effect.

Three common techniques were implemented:

• Random Scaling: Adjusts the signal’s amplitude randomly.

• Random Shift: Shifts the signal along the time axis randomly.

• Random Noise Injection: Adds random noise to the signal.

These techniques aim to diversify the training data, potentially enhancing the model’s

ability to generalize and perform well on unseen data. Each data augmentation func-

tion is applied independently to each ECG signal sample in the dataset, resulting in

multiple augmented versions of each original sample. By incorporating these aug-

mented samples during training, the model becomes more resilient to variations in

input data and is better able to generalize to unseen data.
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Table 3.8: Evaluation Metrics Before and After Data Augmentation

Experiment 03 Accuracy (%) F1 (%)

Before Data Augmentation 93.26 94.57

After Data Augmentation 95.00 96.81

Figure 3-30: Results after Data Augmentation

Figure 3-31: Confusion Matrix after Data Augmentation

80



CHAPTER 3. METHODOLOGY AND RESULTS DISCUSSION

Figure 3-32: Convergence Loss and Accuracy Graphs after Data Augmentation

In our study, we employed a 5-fold stratified cross-validation strategy to ensure

robust evaluation of our model’s performance. This approach involves dividing the

dataset into five equally sized folds while maintaining consistent class distributions

across folds.

During each iteration of the cross-validation loop: (72% of the data was allocated

for training, 8% for validation, and 20% for testing).

This partitioning scheme enabled us to train, validate, and test the model on

different subsets of the data, facilitating thorough assessment of its performance and

generalization ability.

Before applying data augmentation, our model achieved an accuracy of 93.26%.

Following the introduction of data augmentation techniques, this accuracy notably

improved to 95.00%. This enhancement indicates that data augmentation contributed

significantly to the model’s capacity to accurately classify instances, resulting in an

overall higher accuracy rate.

Similarly, the F1 score, which considers both precision and recall, experienced a

boost post data augmentation. Prior to augmentation, the F1 score stood at 94.57%,

climbing to 96.81% afterward. This indicates that data augmentation not only im-

proved the model’s accuracy but also its ability to strike a balance between precision

and recall, thereby enhancing its overall performance.

Our findings underscore the effectiveness of data augmentation in bolstering the
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model’s performance. The augmented data provided additional diverse examples

for the model to learn from, resulting in improved generalization and robustness in

classification tasks.

Testing The Model on Unseen Data After Data Augmentation Testing

the model on unseen data after applying data augmentation yielded promising results.

The F1 score, a metric that balances precision and recall, stood at 0.9019. This

score indicates that the model’s performance on the unseen data was robust, with a

good balance between correctly identifying normal instances (N) and atrial fibrillation

instances (A).

Examining the confusion matrix (shown in Figure 3-33) provides additional in-

sights into the model’s performance. The matrix reveals that the model correctly

classified the majority of both normal (NN) and atrial fibrillation (AA) instances,

with accuracies of 92.18% and 90.43%, respectively. However, there were instances

of misclassification, as evidenced by the presence of NA and AN entries, representing

cases where the model misclassified normal instances as atrial fibrillation and vice

versa.

Figure 3-33: Confusion Matrix of The Test on unseen Data After Training with Data
Augmentation
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3.8 Comparison of Results with Existing Litera-

ture

Table 3.10: Comparison of Results with Literature

Model Feature Methods Se (%) Sp (%) Acc (%)

[46] 5s ECG Records 1D-CNN+LSTM 84.89 84.89 80.23

[47] 30-min ECG SVM 81.1 79.3 80.2

[48] 10s ECG Record
1D CNNs,

LiteVGG-11
86.53 71.69 77.91

[48]
501×936

grayscale image

2D CNNs,

EfficientNet-B2
75.74 74.76 75.20

Proposed Method 01:
Single beat

of 80 samples
1D-CNN 95.87 95.56 95.00

Proposed Method 02:
Single beat

of 80 samples
1D-CNN 90.06 92.43 90.19

Proposed Method 03:
Single beat

of 80 samples
2D-CNN 100 99.69 99.84

3.9 Conclusion

In this chapter, we presented our 1D-CNN model, which showed impressive perfor-

mance with 95% accuracy and an F1 score of 96.81%. We then converted beats into

8x10 grayscale images and applied them to a 2D-CNN, yielding competitive results

comparable to previous studies.
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General Conclusion

Our project titled ”Atrial Fibrillation Analysis by Deep Learning ” aimed to ex-

plore the potential of deep learning techniques in identifying atrial fibrillation (AFib).

In our research, we initially focused on preprocessing the ECG signals by eval-

uating various QRS detection algorithms. Ultimately, we selected XQRS due to its

superior performance and ability to filter ECG signals effectively. Following this, we

employed beat segmentation, utilizing an 80-sample window around the R peaks, and

normalization to enhance data quality.

For the classification phase, we introduced a novel 1D-CNN architecture designed

to accurately extract crucial features from the beats. Our model achieved impressive

results, with an overall accuracy of 95.00% and an F1 score of 96.81% on the MIT-BIH

AFDB dataset. Furthermore, it demonstrated robust performance on totally unseen

data from The PhysioNet CinC 2017 Challenge for AFib, achieving an F1 score of

90.19%. This success validates the effectiveness of our model on unseen data and

fulfills our primary objective of utilizing an inter-subject scheme.

Subsequently, to further enhance our model’s performance, we proposed a 2D-

CNN model. By converting beats into grayscale images as features, this approach

yielded remarkable results, with an F1 score of 99.85% and an accuracy of 99.84%.

These findings challenge many state-of-the-art and published articles in the field.



Future Work

Due to time constraints, we were unable to deploy the model as originally intended.

For future endeavors, we recommend initially testing the proposed 2D-CNN model

on unseen data, ensuring that the preprocessing stage and reshaping of beats into

images are appropriately done to match the model’s input requirements. Afterward,

exploring algorithms to compress the model’s size would be beneficial for hardware

implementation. Furthermore, integrating electrodes and a compatible architecture

on a Raspberry Pi could aid in deploying the model, aligning with the goal of reducing

expenses linked to monitoring devices.
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