
Registration Number: 2023/2024

People’s Democratic Republic of Algeria

Ministry of Higher Education and Scientific Research

University M’Hamed BOUGARA – Boumerdès

Institute of Electrical and Electronic Engineering

Department of Electronics

Project Report Presented in Partial Fulfilment of

the Requirements of the Degree of

‘MASTER’

In: Electronics

Option: Computer Engineering

Title:

Design and Implementation of Spiking Neural

Networks on FPGA for Event-Based Spatio-

Temporal Applications

Presented By:

- BOUMERZOUG Nadhir

- ZERRARI Dhia Elhak

Supervisor:

- Prof. CHERIFI Dalila

Co-Supervisor:

- Prof. KHOUAS Abdelhakim

Abstract

Inspired by the intricacies of real biological neural systems, Spiking Neural Networks
(SNNs) represent an advanced type of artificial neural network. SNNs operate with
discrete spikes, closely mimicking the way neurons communicate in the human brain.
This unique method of information processing not only enhances the computational
efficiency of SNNs but also opens up new possibilities for developing low-power neu-
ral network systems. In this work, we proposed a generic hardware design of an SNN
based on Field-Programmable Gate Arrays (FPGA). The proposed design was imple-
mented and tested with the event-based benchmark dataset “Neuromorphic-MNIST”,
and managed to achieve a low power consumption and latency, while requiring very
minimal hardware resources, all this for an evaluated accuracy.

Keywords
SpikingNeuralNetworks, Neuromorphic Computing, Spatio-Temporal Pattern, FPGA,
RTL design, VHDL

i

Acknowledgments

First and foremost, we would like to extend our deepest gratitude to God Almighty
who provided us with his blessing and the opportunity to successfully conclude our
project.

In the successful accomplishment of our final year project titled ”Design & Imple-
mentation of Spiking Neural Networks on FPGA for Spatio-temporal Applications”,
wewould like to express our deepest gratitude to our supervisor, Prof.CHERIFI Dalila.
We are immensely grateful for her valuable advices regarding our research and future
career prospects. Her willingness to assist us, steadfast encouragement and continu-
ous support were instrumental in making this project a reality. We deeply appreciate
her patience, dedication, and unwavering belief in our abilities.

Wewould also like to express our appreciation to our co-supervisor, Prof. KHOUAS
Abdelhakim for his significant contributions. His expertise and willingness to provide
assistance have greatly enhanced the quality of this work.

We would like to thank BOUANANE Mohamed Sadek, for his insightful guidance
and help throughout the project duration.

Lastly but not least, we are immensely thankful to our parents and friends for their
unwavering support in completing this report. We would like to extend our gratitude
to all the individuals who have supported us throughout this journey.

ii

Contents

Abstract i

Acknowledgments ii

List of Figures v

List of Tables vii

List of Abbreviations viii

General Introduction 1

1 Overview on Neuromorphic Computing 3
1.1 Introduction . 4
1.2 Rethinking Computation . 4

1.2.1 Power Hungry Embedded AI Systems 4
1.2.2 Moore’s Law is dead . 5
1.2.3 Memory bottleneck . 5

1.3 Biological Neuron . 6
1.4 Human Visual System . 7
1.5 Event-Based Vision Sensors . 8
1.6 AI Generations . 8
1.7 Summary . 9

2 Overview of SNN for Inference Methodologies 10
2.1 Introduction . 11
2.2 Artificial Neuron . 11
2.3 Spiking Neuron Models . 12

2.3.1 Hodgkin-Huxley Model . 12
2.3.2 Leaky Integrate-and-Fire (LIF) . 13
2.3.3 Integrate-and-Fire (IF) . 14

2.4 Spike Train Encoding . 15

iii

2.5 SNN Topology . 15
2.5.1 Input Layer . 15
2.5.2 Hidden Layer . 16
2.5.3 Output Layer . 18

2.6 Address Event Representation . 18
2.7 Spatio-Temporal Data . 19

2.7.1 Conventional MNIST . 20
2.7.2 Event-based MNIST . 20
2.7.3 Neuromorphic-MNIST . 21

2.8 Numerical Representation . 21
2.8.1 Floating-point numbers . 22
2.8.2 Fixed-point numbers . 22

2.9 Summary . 23

3 Design and Implementation of a Hardware SNN 24
3.1 Introduction . 25
3.2 Design of SNN Architecture . 25

3.2.1 Neuron Model . 25
3.2.2 Spike Index Table Design . 27
3.2.3 Neuron Wrapper Design . 28
3.2.4 Output Encoding Module Design 29
3.2.5 Neural Network Design . 30

3.3 Implementation . 31
3.3.1 Targeted Application . 31
3.3.2 Tools and Equipment . 31
3.3.3 Planning and Preliminary Testing 33
3.3.4 Hardware Implementation and Simulation 36

3.4 Summary . 44

4 Evaluation of the Hardware SNN Implementation 45
4.1 Introduction . 46
4.2 Latency and Spiking Activity Analysis . 46
4.3 Power and Resource utilization Analysis 46

4.3.1 Data Transfer operation (PC-to-FPGA) 47
4.3.2 Weight Memory . 51
4.3.3 Results and Discussion . 54

4.4 Summary . 57

General Conclusion 58

iv

List of Figures

1.1 The anatomy of a biological neuron [4]. 6
1.2 Schema of synaptic transmission [4]. 7
1.3 Different types of Dynamic Vision Sensors [6]. 8
1.4 The three generations of neural networks [8]. 9

2.1 Equivalent electrical circuit of the Hodgkin-Huxley neuron [11]. 12
2.2 Equivalent circuit of the LIF neuron . 14
2.3 (A) Typical Artificial neuron pipeline (B)An equivalent Spiking neuron

system [18]. 17
2.4 Address Event Representation for chip-to-chip communication. 19
2.5 Digit 0 sample from the N-MNIST dataset. 21
2.6 Example of fixed-point number representation [31]. 23

3.1 IF/LIF neuron model architecture. 26
3.2 Handshake logic architecture. 26
3.3 Spike index table architecture. 28
3.4 Neuron wrapper block diagram. 29
3.5 Output Encoding Module Diagram . 29
3.6 Network diagram. 30
3.7 Picture of the Sipeed Tang Nano 4K FPGA development board. 31
3.8 Architecture overview of the GW1NSR-4C 32
3.9 N-MNIST pre-processing pipeline. 33
3.10 Spike index table simulation. 37
3.11 Neuron model ports and parameters. 37
3.12 IF neuron simulation. 38
3.13 LIF neuron simulation. 39
3.14 Neuron wrapper ports and parameters. 40
3.15 Neuron wrapper startup. 40
3.16 Neuron wrapper wind-down. 41
3.17 Output encoder ports and parameters. 42
3.18 Output encoder simulation. 42

v

3.19 Network ports and parameters. 42
3.20 State diagram of the network’s FSM. 43
3.21 Network simulation transitioning into the hidden layer state. 43
3.22 Network simulation transitioning into the output layer state. 43
3.23 Network simulation latching the output and preparing for a new frame. 44

4.1 Overall diagram of the test setup. 47
4.2 General format of a UART packet. 48
4.3 ESP32-CAM-MB USB-to-UART converter, and the ESP32-CAM board. . 48
4.4 Weight packet format. 49
4.5 Spike frame packet format. 50
4.6 State diagram of the packet processor FSM. 51
4.7 Burst read transfer using the Gowin HyperRAM IP. 52
4.8 Burst write transfer using the Gowin HyperRAM IP. 53
4.9 HyperRAM adapter block diagram. 54
4.10 Experimental Setup. 55

vi

List of Tables

3.1 Accuracy summary for weight conversion 34

4.1 Latency and spiking activity summary. 46
4.2 FPGA resource usage summary. 56
4.3 Power consumption summary. 56

vii

List of Abbreviations

AI Artificial Intelligence
ANNs Artificial Neural Networks
AER Address Event Representation
ASIC Application-specific integrated circuit
BRAM Block RAM
CNNs Convolutional Neural Networks
CUBA-LIF Current-Based LIF
DRAM Dynamic RAM
DSP Digital Signal Processor
DVS Dynamic Vision Sensors
FIFO First-In-First-Out
FPGAs Field Programmable Gate Arrays
FSM Finite State Machine
GPU Graphics Processing Unit
GPIO General-Purpose Input/Output
HDL Hardware Description Language
HDMI High-Definition Multimedia Interface
HPC High-Performance Computing
IF Integrate-and-Fire
JTAG Joint Test Action Group
LIF Leaky Integrate-and-Fire
LUT Look Up Table
MAC Multiply-and-ACcumulate operation
MNIST Mixed National Institute of Standard Technology
N-MNIST Neuromorphic MNIST
PCI Peripheral Component Interconnect
PLLs Phase-Locked Loops
RAM Random Access Memory
RNNs Recurrent Neural Networks
RTL Register-Transfer-Level

viii

SCNN Spiking Convolutional Neural Networks
SNNs Spiking Neural Networks
SoPC System-on-Programmable-Chip
SRAM Static RAM
TTFS Time-To-First-Spike
UART Universal Asynchronous Receiver / Transmitter
VHDL VHSIC HDL

ix

General Introduction

Artificial Neural Networks (ANNs) have garnered significant attention from academia
and industry in the last ten years. The abundance of publicly available data and the
increased processing power of modern computers have led to a significant increase in
interest in ANNs because they have made ANN training and inference very efficient.
Particularly deep neural networks have proven to be very effective at tasks like image
classification, making them standout instruments in machine learning and artificial in-
telligence research. However, there are still a lot of obstacles to overcomewhen it comes
to real-time processing on edge devices, like those found in autonomous cars. These
difficulties result from traditional hardware implementations’ high energy consump-
tion and high cost, which are ill-suited for the computational requirements of artificial
neural networks. In contrast, the human brain performs complex cognitive tasks effi-
ciently, using only a few watts of power. Inspired by this biological efficiency, Spiking
Neural Networks (SNNs) have emerged as a promising alternative, aiming to achieve
energy-efficientmachine intelligence bymimicking the brain’s neuralmechanisms. De-
spite their potential, there remains a considerable gap in understanding the differences
and impacts of various spiking neuronmodels, particularly concerning their hardware
implementation and performance in real-time applications.

This project seeks to address this gap by studying the effect of membrane leakages
in different spiking neuron models, which vary in their levels of biological abstraction,
on a spatio-temporal classification task. By analyzing metrics such as power consump-
tion, latency, spiking activity, and resource allocation, we aim to provide a compre-
hensive evaluation of these models’ performance on digital hardware. To facilitate this
comparative analysis, we propose a generic and efficient digital hardware design for
SNN inference. Our focus on inference, rather than training, is driven by the fact that
training is highly resource-intensive and not well-suited for hardware implementation.
Training a neural network requires substantial computational resources, but this pro-
cess is only performed once to determine the optimalweights and biases. Once trained,
the model can be efficiently deployed for real-time inference on hardware, making this
approach more feasible for practical applications.

This report is organized as follows: Chapter 1, introduces the field of neuromorphic
computing, discussing the motivations and challenges that have led to the exploration

1

of SNNs. Chapter 2, provides an overviewof existingmethodologies for SNN inference
and introduces the spiking neuron models used in our project. Chapter 3 details the
design and implementation of the various building blocks of the SNN, focusing on their
application to the handwritten digit classification task. The design is then evaluated in
Chapter 4, where various metrics were collected from two experimental setups.

2

Chapter 1

Overview on Neuromorphic
Computing

3

Chapter 1. Overview on Neuromorphic Computing 4

1.1 Introduction

As the need for Artificial Intelligence (AI) applications continues to grow, a critical
challenge arises: power consumption. Traditional computing architectures, such as
VonNeuman andHarvard architectures, while capable of handlingAI tasks, are known
for their massive power consumption. This power hunger becomes most noticeable
when working with spatio-temporal data, for instance, speech recognition, image de-
tection, and video processing. Furthermore, these applications demand immense com-
putational resources, often pushing conventional hardware to its limits and beyond.
Compounding this issue is the slowdown ofMoore’s law, the principle that has guided
semiconductor technology for decades. As transistor sizes approach physical limits,
the time of exponential growth in computing power seems to be coming to an end. As
a result, the search for alternative computing paradigms has received a lot of attention
from scholars in the field in recent decades. Neuromorphic computing, inspired by
the structure and function of the human brain, offers a promising approach into ad-
dressing the dual concerns of power consumption and resource utilization. By emu-
lating the very complicated connection and interchange of neurons in the human brain,
neuromorphic computing offers the potential to revolutionize AI models. These novel
models utilize bio-inspired neurons to perform complex tasks with enough higher ef-
ficiency. Moreover, they hold the promise of developing new AI Accelerators that are
not only less power-hungry but also more suitable at handling spatio-temporal data,
known as “Neuromorphic Chips”. Field Programmable Gate Arrays (FPGAs), with
their reconfigurable hardware architecture, afford us with the flexibility to design and
implement bio-inspired based AI accelerators. Their low power demand, reconfigura-
bility, and parallelism makes them an ideal platform for prototyping and deploying
neuromorphic AI models.

1.2 Rethinking Computation

It is noticeable the rapid advancement in computing systems for the last decades. How-
ever, such systems are not really efficient in terms of several factors, highlighting the
need to explore new computing primitives to address evolving demands and chal-
lenges in the digital landscape.

1.2.1 Power Hungry Embedded AI Systems

The growing use of Artificial Intelligence in embedded systems has resulted in a no-
table increase in power consumption. For instance, theGPT-3 transformermodel, which
boasts 175 billion parameters, necessitates a minimum of 350GB of GPU (Graphics

Chapter 1. Overview on Neuromorphic Computing 5

Processing Unit) memory just for inference. This translates to the need for approx-
imately 8 Nvidia A6000 GPUs, which are among the most advanced deep learning-
oriented High-Performance Computing (HPC) devices available, such a setup con-
sumes around 2400W of power. This is also noticeable in autonomous applications
like surveillance cameras, robots, and drones that rely on machine learning models for
their operation. The energy efficiency of these systems is important as they depend
most of the time on limited-capacity batteries and solar cells.

Consequently, the energy scalability of Machine Learning is becoming a pressing
concernwithin both scientific circles and the general public. This energy issue is partic-
ularly acute in the domain of embedded systems, where power efficiency is paramount.

1.2.2 Moore’s Law is dead

Moore’s Law, named after Intel co-founder Gordon Moore, posits that the number of
transistors on a microchip doubles approximately every two years [1]. This has led to
an extraordinary 3,500-fold increase in processor speeds over 30 years—from 1 MHz
to 5 GHz. In stark contrast, innovations in architecture only achieved about a 50-fold
improvement in the same period. It is worth mentioning that Moore’s law is not a law
of physics; it is more an empirical observation. Although, this principle has driven the
exponential growth of the computer science industry for over half a century, transistors
are approaching atomic scales, with the smallest ones commercially available being
only 3 nanometers wide, the pace of miniaturization has slowed. For instance, it took
Intel five years to progress from 14-nanometer to 10-nanometer technology, rather than
the two years predicted by Moore’s Law. This has led some, including MIT Professor
Charles Leiserson, to declare that Moore’s Law has been effectively over since at least
2016 [2].

The growing computational hunger of AI models poses a set of significant chal-
lenges, including increasing global carbon emissions and the escalating privatization
of AI research. In response to these challenges, the semiconductor industry has been
investigating future advancements and finding solutions to the death of Moore’s Law.

1.2.3 Memory bottleneck

The Von Neumann bottleneck is a fundamental limitation of the traditional computer
architecture design. However, it is important to note that this bottleneck is not just a
hardware issue. It is also closely tied to the way software is designed and executed. In
the traditional VonNeumann architecture, instructions and data are stored in the same
memory and processed sequentially [3]. This means that even if we could infinitely
increase the speed of our hardware, the sequential nature of software execution could
still limit the overall system performance.

Chapter 1. Overview on Neuromorphic Computing 6

1.3 Biological Neuron

The human brain is among the most intricate and complex entities known. It com-
prises approximately 100 billion neurons and nearly 40 trillion synapses, rendering
it one of the most challenging structures to study. Each neuron can form thousands
of synaptic connections, resulting in an incredibly dense and interconnected network.
This complexity is further enhanced by the diversity of neuronal types, with estimates
suggesting the presence of over tens of thousands of distinct types, each contributing
uniquely to the brain’s functionality.

The brain’s ability to perform a vast array of functions with remarkable efficiency
is a subject of great scientific interest. Despite its complexity, it operates with minimal
power consumption, utilizing approximately 20watts only. This efficiency is partly due
to the brain’s sophisticated mechanisms for energy conservation and optimization in
neural processing.

Figure 1.1: The anatomy of a biological neuron [4].

A biological neuron, also known as a nerve cell, is the fundamental building block
of the nervous system. Neurons are specialized cells responsible for transmitting and
processing information throughout the body, enabling complex functions such as sen-
sation, thought, movement, and homeostasis. They achieve this through electrochemi-
cal signaling, which involves the generation and propagation of electrical impulses and
the release of neurotransmitters.

Figure 1.1 depicts a simplified anatomy of the biological neuron. Each neuron con-
sists of three main parts: the cell body (soma), dendrites, and an axon. The cell body
contains the nucleus and other organelles essential for the neuron’smetabolic activities.
Dendrites are branched extensions that receive signals from other neurons and convey

Chapter 1. Overview on Neuromorphic Computing 7

them towards the cell body. The axon is a long, slender projection that transmits elec-
trical impulses away from the cell body to other neurons, muscles, or glands. The axon
often ends in a series of terminal branches, each of which forms synaptic connections
with target cells.

Figure 1.2: Schema of synaptic transmission [4].

As shown in Figure 1.2, Neurons communicate through synapses, specialized junc-
tions where the axon terminal of one neuron comes into close proximity with the den-
drite or cell body of another. When an electrical impulse, or action potential, reaches
the synaptic terminal, it triggers the release of neurotransmitters into the synaptic cleft.
These chemical messengers bind to receptors on the post-synaptic neuron, initiating a
response that can either excite or inhibit the generation of a new action potential.

1.4 Human Visual System

The human visual system, particularly the retina, is an exemplar of efficient informa-
tion encoding, reducing input from approximately 125 million photoreceptors to out-
put through just 1 million ganglion cells. This compression is achieved by organizing
photoreceptors into receptive fields of various sizes, each connected to a ganglion cell.
The structure of these fields, with center and surround cells, allows ganglion cells to
convey spatial contrast by comparing the differential firing rates within their recep-
tive field. Ganglion cells can fire independently and maintain a spontaneous firing
rate, ensuring continuous transmission of visual information via the optic nerve to the
brain. This inherent efficiency and specialization in contrast extraction have inspired
the field of neuromorphic engineering, which aims to mimic these biological processes
in artificial systems. Pioneered by Carver Mead in the late 1980s, neuromorphic en-
gineering gained significant momentum with Misha Mahowald’s creation of the first
silicon retina, designed to emulate the human retina’s center-surround receptive fields.
Subsequent advancements by Tetsuya Yagi and Tobi Delbrück led to the development
of refined temporal contrast sensors, known as event cameras.

Chapter 1. Overview on Neuromorphic Computing 8

1.5 Event-Based Vision Sensors

Current cameras acquire frames by reading the brightness value of all pixels at the
same time at a fixed time interval, the frame rate, regardless of whether the recorded
information has actually changed.

Trying to take inspiration from theway our eyes encode information, neuromorphic
cameras capture changes in illuminance over time for individual pixels corresponding
to one retinal ganglion cell and its receptive field.

If light increases or decreases by a certain percentage, one pixel will trigger what’s
called an event, which is the technical equivalent of a cell’s action potential. One event
will have a timestamp, x/y coordinates and a polarity depending on the sign of the
change. Pixels can fire completely independently of each other, resulting in an overall
firing rate that is directly driven by the activity of the scene. It alsomeans that if nothing
moves in front of a static camera, no new information is available hence no pixels fire
apart from some noise. The absence of accurate measurements of absolute lighting
information is a direct result of recording change information. This information can be
refreshed by moving the camera itself, much like a microsaccade [5].

Figure 1.3: Different types of Dynamic Vision Sensors [6].

1.6 AI Generations

Our brains, with their billions of neurons firing in intricate patterns, have long been
a source of wonder and inspiration. Traditional Artificial Neural Networks (ANNs)
have attempted to replicate its complexity, but they often fall short in terms of energy
efficiency and real-time processing. This yields in introducing the third generation of
neural networks, a more bio-inspired neuron based network architecture, known as
Spiking Neural Networks (SNNs). Unlike conventional neural networks, which rely
on continuous firing rates, SNNs communicate through discrete spikes, similar to the
way neurons in our brains function. This biologically mimicking approach holds the
potential to revolutionize computing, offering unparalleled efficiency and capabilities
[7].

Chapter 1. Overview on Neuromorphic Computing 9

Figure 1.4: The three generations of neural networks [8].

1.7 Summary

In this chapter, we discussed the challenges of traditional computing architectures in
handling AI tasks, especially regarding power consumption and efficiency. We intro-
duce neuromorphic computing as a promising solution, inspired by the human brain,
to address these issues. The chapter covers the limitations of Moore’s law, the biolog-
ical basis of neurons, and the potential of neuromorphic chips and event-based vision
sensors in advancing AI technology.

Chapter 2

Overview of SNN for Inference
Methodologies

10

Chapter 2. Overview of SNN for Inference Methodologies 11

2.1 Introduction

Existing research suggests that ANNs still outperform SNNs in terms of accuracy [9],
but the bio-plausibility, power efficiency and small hardware footprint [10] of SNNs
continue to attract researchers and manufacturers interested in bringing AI to edge
devices, where power consumption and chip area come at a premium.

Hardware circuits differ significantly from software execution, thus several compo-
nents need to be adapted or even redesigned when tackling the challenge of transition-
ing from a software proof-of-concept, to a digital hardware implementation. Hardware
design emphasizes attention to detail, whether it is the implementation of basic math
operators, or the integration of large scale multi-chip systems.

2.2 Artificial Neuron

Artificial neurons are the basic building blocks of artificial neural networks, which
are computational models loosely inspired by the human brain. These neurons, also
known as nodes or units, are designed to simulate the way biological neurons process
and transmit information. In an artificial neuron, multiple input signals are received,
each associated with a weight that signifies its importance. The neuron computes a
weighted sum of these inputs and then applies an activation function to produce an
output. This output is then passed on to subsequent neurons in the network. The most
common activation functions include the sigmoid function, hyperbolic tangent (tanh),
and Rectified Linear Unit (ReLU). These functions introduce non-linea-rity into the
model, enabling the network to learn complex patterns and make sophisticated pre-
dictions. Artificial neurons are the fundamental components of various neural net-
work architectures, such as feedforward neural networks, convolutional neural net-
works (CNNs), and recurrent neural networks (RNNs), which are applied in fields
like image recognition, natural language processing, and autonomous systems.

The design of artificial neurons was primarily pragmatic, iterations upon artificial
neurons and ANNs sought only to improve inference performance with little regard to
bio-plausibility. ANNs meet or even exceed human capability in specific classification
tasks, but the field is facing constant hurdles in terms of power consumption and chip
area. Many researchers branched out towards mimicking the internal processes of the
brain, in hopes of better replicating its energy efficiency andwell-roundedperformance
over innumerable tasks.

Chapter 2. Overview of SNN for Inference Methodologies 12

2.3 Spiking Neuron Models

Spiking neurons represent a more biologically realistic model of neural activity com-
pared to traditional artificial neurons. Inspired by the behavior of biological neurons,
spiking neurons communicate through discrete events known as spikes or action po-
tentials. Instead of continuously varying outputs, a spiking neuron emits a spike when
its membrane potential reaches a certain threshold. This event-based communication
mirrors theway neurons in the brain operate, making spiking neural networks (SNNs)
a powerful tool for modeling biological neural processes.

Many researchers in the field of neurophysiology sought, and continue to seek, to
identify and quantify the exact processes of the human brain. Significant progress
has been made in the area of modelling individual neurons, with many models being
proposed based on bio-plausibility, performance, ease of implementation and other
criteria.

2.3.1 Hodgkin-Huxley Model

The Hodgkin-Huxley (HH)model is a foundational mathematical framework that de-
scribes how neurons generate and propagate action potentials (electrical signals). De-
veloped by Alan Hodgkin and Andrew Huxley in 1952, the model is based on exper-
imental data from the giant axon of the squid and has been highly influential in the
field of neurophysiology. It represents the neuron as an electrical circuit with specific
components that mimic the biological behavior of ion channels and membranes.

TheHodgkin-Huxleymodel comprises a set of nonlinear differential equations that
describe the dynamics of the membrane potential Vm in response to ionic currents.
These equations are derived from the equivalent electrical circuit of a neuron demon-
strated in Figure 2.1.

Figure 2.1: Equivalent electrical circuit of the Hodgkin-Huxley neuron [11].

Chapter 2. Overview of SNN for Inference Methodologies 13

The neuron is modeled as a capacitor C that takes in the sum of the synaptic cur-
rents I , in parallel with a leak resistorRleaky in order to model the exponential decay of
membrane potential U over time. When the potential across the membrane capacitor
reaches a threshold value, the neuron fires an output spike and enters the refractory
period where its potential drops to the refractory level, often well below the typical
resting potential. The model also considers the ionic currents resulting from potas-
sium RK and sodium RNa ions permeating into and out of the membrane [12].

The total current I flowing across themembrane is the sum of the capacitive current
and the ionic currents, hence it can be described by equation 2.1:

I = Cm
dVm

dt
+ INa + IK + ILeaky (2.1)

Where:

• Cm is the membrane capacitance per unit area.

• dVm is the rate of change of the membrane potential.

• INa, IK , and ILeaky are the ionic currents through sodium, potassium, and leak
channels, respectively.

Despite its age, theHHmodel remains one of themost biologically plausible neuron
models to date. However, its accuracy comes at the cost of its implementation complex-
ity. Many spiking neural networks implement a subset of the HHmodel instead, while
still achieving favorable results.

2.3.2 Leaky Integrate-and-Fire (LIF)

The Leaky Integrate-and-Fire or LIF neuron is a simplification of the Hodgkin-Huxley
model, where the effects of the ionic currents are neglected due to their apparent in-
significance.

The LIF model reduces the neuron down to just the membrane capacitor and par-
allel leak resistance, and features similar refractory period mechanics. The differential
equation of the LIF neuron model is then given by:

τmem
dU(t)

dt
= − (U(t)− Urest) +RI(t) (2.2)

Where τmem is the membrane’s RC time constant.
The circuit parameters were shown experimentally to differ significantly between

neurons, even those taken from the same biological samples. The values of the circuit
parameters affect the neuron’s tendency to spike, and hence alters its output character-
istics. Hence, the training process of a spiking neural network involves finding the best

Chapter 2. Overview of SNN for Inference Methodologies 14

Figure 2.2: Equivalent circuit of the LIF neuron
[13].

circuit parameters, or ”weights”, for each neuron in the network in order to achieve
accurate predictions or classifications.

In the context of discrete algorithmic design, both in software and in hardware, it
is more convenient to consider the difference equation of the LIF neuron instead [14]:

I
(l)
i [t] =

∑
j

W
(l)
ij S

(l−1)
j [t− 1] +

∑
j

V
(l)
ij S

(l)
j [t− 1] (2.3)

U
(l)
i [t] = (βU

(l)
i [t− 1] + I

(l)
i [t])× (1− S

(l)
i [t− 1]) (2.4)

Since for a Feed-Forward Neural Network architecture (FFNN), the reccurency
term is removed, hence further simplification are made to result in equations 2.5 and
2.6

I
(l)
i [t] =

∑
j

W
(l)
ij S

(l−1)
j [t− 1] (2.5)

U
(l)
i [t] = (βU

(l)
i [t− 1] + I

(l)
i [t])× (1− S

(l)
i [t− 1]) (2.6)

Where W l
ij is the weight associated with the particular spike input j of a neuron

i in a layer l of a neural network. β is the exponential decay factor of the membrane
potential.

2.3.3 Integrate-and-Fire (IF)

The Integrate-and-Fire or IF model further optimizes the spiking neuron down to its
most fundamental operation: the accumulation ofweights, andfiring a spike if a thresh-
old is reached. It is represented by the following difference equations:

Chapter 2. Overview of SNN for Inference Methodologies 15

I
(l)
i [t] =

∑
j

W
(l)
ij S

(l−1)
j [t− 1] (2.7)

U
(l)
i [t] = (U

(l)
i [t− 1] + I

(l)
i [t])× (1− S

(l)
i [t− 1]) (2.8)

2.4 Spike Train Encoding

To make use of SNNs, information needs to be encoded into, or decoded from spike
trains. There exist multiple approaches to modulate information onto spike trains, the
primary contenders being rate coding and temporal coding, specifically time-to-first-
spike (TTFS) encoding. In rate coding, the number of spikes registered over a period
of time is proportional to the intensity of the stimulus, while in TTFS more emphasis is
placed on the exact time that a given spike was registered, where earlier spikes corre-
spond to stronger stimuli. Rate coding tends to outperform temporal coding accuracy
wise, especially in smaller datasets [15]. However, temporal coding continues to be an
active topic of research, such as in the work of Mostafa [16] where temporal coding
proves to be a potential avenue towards differentiable SNNs that can be trained using
conventional gradient-descent techniques.

2.5 SNN Topology

The basic architecture of typical SNNs closely mimics that of conventional ANNs, with
the onlymajor difference being the structure of each neuron. In fact, a commonmethod
of SNN training is the ANN-to-SNN conversion method, where an equivalent ANN is
constructed and trained, fromwhich the resultingweights are quantized and deployed
to the target SNN [9]. Most SNNs consist of an input layer, an output layer and one
or more hidden layers, with certain implementations making use of additional convo-
lutional and pooling layers as is the case in spiking convolutional neural networks or
SCNNs [15, 17].

2.5.1 Input Layer

The input layer neurons feed directly into the synapses of neurons in the first hidden
layer, and thus the input layer serves more as an interface to distribute incoming spike
events without performing any processing. Each neuron in the input layer represents
a tangible feature in the input data, for example the intensity of a specific pixel in an
image. The generation of input layer spikes occurs either in an event-based sensor,
or using encoders that convert data from conventional sensors into spike trains. In

Chapter 2. Overview of SNN for Inference Methodologies 16

most digital hardware implementations, the input layer is a simply a buffer (queue),
constructed using either logic elements or block RAM, that the input spike trains are
latched onto before being analyzed further in the hidden layer.

The transmission of sample data to the neural network can severely affect its latency,
i.e. the time it takes for the network to guess the correct output after being fed an input
sample. Multiple interfaces exist for connecting FPGAs either to computers or even to
sensors producing live data, ranging from simple chip-to-chip serial communication
protocols such as UART, to high-speed network-based interfaces such as Etherent, to
direct communication with a computer’s resources using low-level busses such as PCI
Express.

2.5.2 Hidden Layer

The hidden layer neurons perform feature extraction, which is the identification of rel-
evant abstract attributes in the incoming data in order to make a prediction or classifi-
cation. Feature extraction is achieved through a linear combination of input data and
weights obtained during the training process.

In conventional ANNs, the combination of input data with the weights of all the
neurons in the layer can be mathematically interpreted as a matrix multiplication, the
latter itself is a series of vector dot products performed over the various rows and
columns of inputs and weights respectively. Finally, at the heart of the dot product
is the multiply-and-accumulate operation (MAC)whichmultiplies corresponding ele-
ments in each vector and adds up each result in a running summation. While hardware
circuits generally benefit from increased concurrency by performing multiple tasks in
parallel, multiplication is considered a relatively expensive operation. Care must be
taken when designing hardware multipliers by balancing multiple constraints such as
latency, chip area, power consumption and portability of designs. The complexity of
the design is exasperated when attempting to implement more parallel multipliers.

In contrast, the binary nature of spike inputs in an SNN allows us to completely
bypass this problem, reducing theMAC operation down to a conditional accumulation
of weights, based on the existence or lack of a spike at a given weight index [18]. The
design of such accumulation process is trivial, especially when coupled with equally
simple numerical representations. In an SNN, the accumulated weights are added to
the membrane potential of the neuron, each neuron then makes a decision on whether
to spike or not in the current time-step based on whether the newmembrane potential
crosses a preset threshold. The membrane potential of spiking neurons is reset to zero,
it can also be reset to a level below zero in order to emulate the refractory period present
in biological neurons.

When IF neurons are used, the new membrane potential is stored directly to some

Chapter 2. Overview of SNN for Inference Methodologies 17

Figure 2.3: (A) Typical Artificial neuron pipeline (B) An equivalent Spiking neuron
system [18].

form of statememory, often implemented in block RAM, so that it can be used for spike
calculation in the next time-step. LIF neurons operate in mostly the same principle,
with an extra added step of multiplying by a decay factor β before memory write-back.
The decay factor depends on the time-step, hence in variable time-step systems a look-
up table is often used to fetch values from an exponential function. Some optimizations
were proposed, such as approximating the exponential decay with an arithmetic right
shift, which was implemented in the modified LIF neuron by Reddy at al. [19].

Hidden layer neurons typically feature a large number of input connections, a nu-
merical weight value is assigned to each input as part of the training process. The
storage of the weight matrix is an important design decision with impacts on both
performance and power consumption. The naive approach would be to encode the
weights directly using distributed RAM (i.e. within the logic fabric), this allows mul-
tiple access of the stored weights and can improve parallelism in theory, bringing the
architecture closer to memory-in-compute levels of latency. But this approach is not

Chapter 2. Overview of SNN for Inference Methodologies 18

scalable for non-trivial neural network. Instead, either on-chip block RAM or off-chip
DRAM are used to store the weights, granting much higher flexibility when it comes
to neuron counts.

Multiple SNN implementations have experimented with different neuron counts
and even multiple successive hidden layers, such as in the work of Sankaran et al.
[20] which reveals that increasing neuron counts in the hidden layers of an SNN can
help improve accuracy, but with diminishing returns relative to significant increases
in resource utilization. For image classification tasks, some SNNs incorporate addi-
tional convolutional layers like in the work of Zhang et al. [17], where input spikes are
grouped into 2D spike maps and then convolved by a fixed kernel, the results of this
operation are further aggregated into pooling layers, which down-sample the dimen-
sions of input data while retaining important information.

2.5.3 Output Layer

The final layer in a neural network is the output layer, with neuron counts correspond-
ing to the number of possible classification outcomes, the output of each neuron rep-
resents a likelihood that the associated classification decision is the correct one. For
example, in digit recognition tasks, ten neurons are used, each neuron corresponding
to a specific digit (’0’ through ’9’). Contrary to ANNs, which typically employ some
form of a “softmax” function to extract outcome probabilities, SNNs were combined
with a variety of output decoding techniques, often corresponding to the encoding
scheme used to generate the input spike trains in the first place. For rate coded SNNs,
the most likely output is that which corresponds to the highest frequency spike trains,
while in TTFS SNNs, the first output neuron to spike is considered thewinning output.

The design of output layer neurons tends to be identical to that of hidden layer
neurons, but one alternative approach involves the use of non-spiking neurons on the
output layer. These neurons accumulate their weights onto the membrane potential as
is the case with the aforementioned hidden layer neurons. However, their membrane
potential is allowed to grow beyond the spiking threshold without any reset. This ap-
proach is not present in biological neurons, but allows for easier training as membrane
potential growth features less discontinuities than spike activations. The winning neu-
ron in this approach is simply that with the highest peak recordedmembrane potential.

2.6 Address Event Representation

The spike-train communication between neurons within an SNN can be modelled by
digital systems with relative ease. Rather than receiving multi-valued (bit vector) in-
puts from pre-synaptic neurons, spiking neurons operate with single-bit inputs, each

Chapter 2. Overview of SNN for Inference Methodologies 19

input can only be either 0 (no spike) or 1 (spike). The vast reduction in the required
data lines not only reduces gate count and routing cost, but also opens the door to
alternative techniques of spike transmissions.

Many event-based sensors have adopted the Address Event Representation (AER)
protocol, where instead of assigning a unique bit input coming from each neuron, the
AER protocol transmits the address or index of the pre-synaptic neuron that spiked at
any given moment, ignoring any neurons that did not spike [21]. In effect, this allows
the neuromorphic system to simply skip weight calculations for non-spiking neurons,
vastly improving efficiency and bio-plausibility. The on-demand nature of neuromor-
phic systems corresponds to reduced switching in an equivalent digital system, a key
strategy in reducing power consumption. Finally, the AER protocol can be scaled up
to arbitrary neuron counts with a mere logarithmic increase in the required bit width
for transmission, making larger neuron layers more feasible.

Figure 2.4: Address Event Representation for chip-to-chip communication.
[22]

2.7 Spatio-Temporal Data

The innerworkings of the brain are directly influenced by the spiking-nature of our var-
ious senses, including our sense of sight as it is more event-oriented in nature rather
than behaving like a conventional digital camera. Even when passively observing a
static scene, the subtle timing differences in spike events registered in the eyes are of
utmost significance to the human vision system. Replicating the brain’s processing
prowess necessitates the interpretation of the world’s data the way a brain would ex-
perience it.

Chapter 2. Overview of SNN for Inference Methodologies 20

2.7.1 Conventional MNIST

The MNIST (Modified National Institute of Standards and Technology) dataset is a
collection of 28x28 pixel grayscale images depicting hand-written digits, it was first
proposed and used by LeCun et al. [23] as a filtered variant of the US NIST dataset.
The dataset is widely used for testing various digit recognition techniques, including
both DSP algorithms and machine-learning-based approaches.

The MNIST dataset only offers a spatial component and lacks any temporal in-
formation, but through its popularity among the research community, it serves as a
benchmark for evaluatingML vision models under development, and comparing their
accuracy against existing models. This implored researchers in the area of neuromor-
phic computing to adapt the dataset into spatio-temporal (event-based) formats, with
different approaches being explored across the literature.

2.7.2 Event-based MNIST

The early development of neuromorphic computing systems was stunted by a short-
age of neuromorphic datasets to train and test on. A common approach to bypass this
problem is to generate that data synthetically by converting conventional datasets into
event-based datasets, such as the case of Sequential MNIST [24]. However, the perfor-
mance disparity between ANNs and SNNs is often attributed to the disadvantage that
SNNs face by processing data that is not natively suitable for them [25]. Hence, devel-
opment efforts were directed towards the native generation of neuromorphic datasets,
these datasets were often open-sourced in hopes of reinvigorating SNN research.

Event-based (spiking) datasets remain relatively sparse, but the technology behind
them continues to develop. A recent development by See et al.[26] involved the use
of tactile (touch) events rather than vision, culminating in the spiking-tactile-MNIST
dataset. Pixels from MNIST samples were replicated by touch events recorded on a
”taxel” (tactile pixel) array constructed using a piezo-resistive thin film, a relatively
common material used in pressure and strain gauge sensors. This approach aims to
improve the training of high-precision robots, but the time domain sparsity of touch
events could increase latency for computer vision systems beyond acceptable levels.

Advancements in event-based camera sensors led to the creation of natively event-
based image datasets such as MNIST-DVS [27], where traditional MNIST samples are
moved on a computer monitor, and recorded by a fixed dynamic vision sensor into
spike trains. This approach was further developed for NMNIST [28].

Chapter 2. Overview of SNN for Inference Methodologies 21

2.7.3 Neuromorphic-MNIST

The Neuromorphic MNIST, or N-MNIST, is a neuromorphic vision dataset containing
MNIST samples recordedusing a dynamic vision sensor. The dataset can be considered
to be an evolution of MNIST-DVS, but its experimental setup was significantly altered.

MNIST samples were displayed on a computer monitor, but they were left static.
Instead, theDVS itself ismoved against the screen in a periodicmanner using a custom-
built pan-tiltmechanism [28]. This configurationmore accurately imitatesmicro-saccades
in the human eye, which are involuntary micro-movements believed to counteract vi-
sual decay when fixating on static objects [29]. This approach also eliminates certain
artifacts in the data due to the monitor’s refresh behavior.

Figure 2.5: Digit 0 sample from the N-MNIST dataset.

Each sample in NMNIST is composed of three saccades, each saccade lasts about
100 milliseconds and consists of spike recordings of DVS pixel activation and deactiva-
tion events, with a spiking pixel resolution of 34 by 34. Figure 2.5, shows a sample of
digit 0, after the accumulation of events for each of the three saccades. Each event is
encoded as an (x, y, t, p) tuple, where x and y are the image coordinates of the event, t
is the timestamp at which the event occurred (where time starts at the beginning of the
current sample recording), and p is the polarity of the event: ”On” events are denoted
by 1, while ”off” events are denoted by a 0. Pixels that did not experience a change in
the current timestamp are not recorded, significantly reducing the required bandwidth
for visual data transmissions.

2.8 Numerical Representation

Digital hardware ultimately deals only in zeroes and ones, and the basic laws of boolean
algebra. To do conventional math, it needs to be framed in the context of binary val-
ues. The framing or representation of real numbers is of particular nuance, as many
representational systems exist, each with their own advantages and hurdles.

Chapter 2. Overview of SNN for Inference Methodologies 22

2.8.1 Floating-point numbers

Floating point numbers are a way to represent real numbers in computing, allowing
for the representation of a wide range of values with varying degrees of precision. The
IEEE 754 standard is themost widely adoptedmethod for encoding these numbers, en-
suring consistency and accuracy across different computer systems and applications.
This standard specifies the format for floating-point arithmetic, detailing hownumbers
are stored in binary using three components: the sign, the exponent, and the mantissa
(or significand). By allocating specific bits to each of these components, IEEE 754 al-
lows for the representation of both very large and very small numbers, maintaining
precision within a defined range. Additionally, the standard outlines rules for round-
ing, handling exceptions such as overflow and underflow, and defining special values
like NaN (Not a Number) and infinity.

IEEE754 provides a great deal of flexibility and features used across different do-
mains. But a full implementation of the exact standard that accommodates such fea-
tures is a monumental task typically assigned solely to venerable hardware IP de-
sign companies. Such complex standard will also tend to consume more hardware
resources and have higher latencies compared to regular integer arithmetic.

2.8.2 Fixed-point numbers

Fixed-point representation is an alternative numerical format for performing arith-
metic using fractional numbers without the need for dedicated floating-point hard-
ware.

The principle of fixed-point representation is to interpret a regular two’s comple-
ment binary number, which would typically represent an integer, with a virtual deci-
mal point. This decimal point creates an inherent shift of the powers of two represented
by the individual bits, meaning that a portion of the integral range is traded for that of
a fractional range represented by negative powers of two. In this report, we default to
the Q notation for denoting fixed-point representations, first defined by Texas Instru-
ments [30]. The Q notation uses the format “Q(n-S).S” where n is the number of bits
in the entire binary string, and S is the number of bits allocated for the fractional part.

An n-bit binary string in the integer two’s complement format can represent any
whole number in the range of {−2n−1 .. 2n−1 − 1}, with a step size between any two
consecutive numbers (i.e. the resolution) of the smallest available power of two in the
representation, that being 20 = 1. When fixed-point format is employed, the aforemen-
tioned range is right shifted by the chosen number of bits allocated for the fractional
part. The right shift is equivalent to a division by 2S , resulting in a new representational
range of

{
−2n−S−1 .. 2n−S−1 − 2−S

}
, with a minimum resolution of 2−S . For a concrete

demonstration, an example of unsigned 8-bit integer binary and unsigned Q4.4 fixed-

Chapter 2. Overview of SNN for Inference Methodologies 23

Figure 2.6: Example of fixed-point number representation [31].

point representations is shown in Figure 2.6.
The primary advantage of using fixed-point format is the fact that the decimal point

is entirely virtual. There is no additional encoding overhead, and well-established in-
teger arithmetic circuits (both unsigned and two’s complement signed) can be reused
without anymodification, save for the re-scaling of any constants being used, resulting
in faster performance, lower power consumption and smaller chip area compared to
a floating-point system for a given clock frequency. The main disadvantage of fixed-
point format is the limited range of representation compared to floating-point formats,
in which as their name suggests the decimal point is free to move to better accommo-
date the numerical data being processed, with decent resolution and encoding effi-
ciency across a wide spectrum of magnitudes.

2.9 Summary

In this Chapter, we described the different techniques and methodologies used in the
topology of Spiking Neural Networks for inference. We also introduced a widely used
spatio-temporal benchmark dataset; Neuromorphic-MNIST. In the next chapter, we
will derive and explain our proposed design for the implementation of this neural net-
work type on a hand written digit classification task.

Chapter 3

Design and Implementation of a
Hardware SNN

24

Chapter 3. Design and Implementation of a Hardware SNN 25

3.1 Introduction

The implementation of SNNs on hardware is still a relatively immature field, the liter-
ature showed that there is often still points that can be improved upon [32]. We hope
to address some trouble points with our own SNN design, which aims to be compact,
power efficient and highly portable and adaptable. This chapter goes into detail about
the design of the spiking neuron itself, and all the needed infrastructure and support-
ing logic that is used to ensure fault-free context-switching andhigh-accuracy inference
capabilities.

3.2 Design of SNN Architecture

The key design choice of our SNN is the use of one physical neuron for each layer (hid-
den and output layers). Through the use of time-division multiplexing and context-
switching, a single neuron circuit can be used to perform the needed calculations for
all the neurons in the neural layer. This neuron shall be contained within a ”wrapper”,
which keeps track of the network neuron that is currently executing, and managing its
state data accordingly, the wrapper in effect represents one layer in the neural network.
We also designed an output encoder that converts the output layer’s weight accumula-
tion activity into tangible inference predictions. We will also define an abstraction that
represents the entire neural network, whose role is to assign time slots to the network
layers to ensure that the processing occurs in the correct order and with no shared
resource contention.

3.2.1 Neuron Model

The neuron model is the fundamental processing block of our SNN. Two neuron de-
signs were conceived, an IF neuron and a LIF neuron, where the latter is functionally
an extension of the former. Given the simplicity of the accumulation process, more
emphasis was placed on the spike-train/weight-procurement pipeline.

• IF Neuron
The primary function of the designed Integrate-and-Fire Neuron is to accumu-
late weights and generate an output spike. Initially, the neuron subsystem loads
the membrane potential from the previous time frame U

(l)
i [t − 1]. It then accu-

mulates the weightsW (l)
ij of the received spike indices for the current time frame,

in addition to the previously loaded potential. For hidden layer neurons, an out-
put spike is generated when the accumulated potential exceeds the set threshold
potential, before resetting to zero. Simultaneously, a valid signal is asserted to

Chapter 3. Design and Implementation of a Hardware SNN 26

indicate the completion of neuron processing, enabling the transition to the next
neuron and update of the state table. For non-firing readout layer neurons, the
action potential is used as an output instead. The architecture of the IF neuron
is shown in Figure 3.1, it should be noted that for the case of the IF neuron, β is
taken as one and no multiplication is required.

Figure 3.1: IF/LIF neuron model architecture.

The ready-valid handshake is used throughout the design, the key principle of
the handshake is that data transfer can only occur when the sender has valid
data, and the receiver is ready to receive said data at the same time. This allows
for composable interface design with minimum assumptions. The efficiency of
handshakes is improved by including a one element buffer to help smooth out
spike index and weight transfers, and avoid data stalls. The architecture of the
handshake logic cloud introduced in this neuron model design shown in Figure
3.1, is demonstrated in Figure 3.2. The same handshake circuit is used for the rest
of different modules design.

Figure 3.2: Handshake logic architecture.

• LIF Neuron

Chapter 3. Design and Implementation of a Hardware SNN 27

With the establishment of the IF neuron design, we turned our focus to the LIF
neuron. The LIF neuron features a near identical architecture to that of the IF
neuron, except for an added multiplier that multiplies the resulting membrane
voltage output by a decay factor β.

The β factor was designed as a constant. To accommodate this, the input spike
indices are grouped into frames such that they have an equal temporal spacing
between successive frames, eliminating the need for implementing an exponen-
tial function block in hardware as we only require one specific value for our test
dataset. We also refrained from utilizing bit-shift techniques that approximate
exponentiation in order to have more control over the exact value of β.

3.2.2 Spike Index Table Design

The spike index table is the backbone of our spike-stream oriented architecture. It
serves as a buffer that stores spike events occurring in a given layer in the address-event
representation (AER) format, meaning that it instead of referencing all the neurons in
the layer, it is meant to store only the indices (addresses) of the neurons that spiked in
the previous time frame.

The table will provide a ready-valid interface for reading and writing spike indices.
The indices are read in the same order they were written, which would suggest a First-
In-First-Out (FIFO) principle of operation. But our table differs from a typical FIFO
memory in that the elements that are read are not discarded; once all the indices in
the current frame have been read, the table will roll over and begin re-transmitting the
same set of indices from the beginning. This table was designed to complement the
neuron model, which itself is designed to stop reading spikes events if it detects the
”last input spike” flag. Evidently, the table will need provide said flag, indicating the
end of a frame. The table will also need a control signal to entirely clear the table in
preparation for a new frame.

Our proposed design takes the FIFO inspiration and tweaks it to fit our require-
ments. It consists of storage RAM, a memory read pointer, a size register and addi-
tional glue logic. The size register is incremented on every index write and is used to
check that the table’s contents do not exceed the set capacity, and it also doubles as
a memory write pointer as it always points to the next available RAM address. The
read pointer is similarly incremented on every index read, but when the read pointer
coincides with the write pointer, the read pointer resets back to zero in order to restart
the reading order. A summary of the architecture is shown in Figure 3.3.

Chapter 3. Design and Implementation of a Hardware SNN 28

Size register

 D Q

En <
Max depthSpike index

write valid

+1

0

Table clear

Read pointer

 D Q RAM

Read/Write
control

Spike index read

Spike index write

Address

Data in

Data
out

R/W

Spike index read valid

Spike index read last

Spike index read ready

+1

Spike index
write ready

En0

Figure 3.3: Spike index table architecture.

3.2.3 Neuron Wrapper Design

The neuron wrapper module encloses the bare neuron model, and implements addi-
tional control logic for loading and storing neuron state. The wrapper loosely repre-
sents a neuron layer in our architecture, as it contains a state table for storing the mem-
brane potential voltages of all neurons in the layer. A “neuron index” is used to identify
and keep track of the “virtual” neuron that is currently performing operations. This al-
lows the re-use of one instance of the neuron model to perform activation calculations
for every virtual neuron in the layer.

The wrapper takes in a stream of spikes provided by a spike index table, the afore-
mentioned spikes are a result from the output activations of the preceding layer. The
weight RAM interface passes through the neuron wrapper to the neuron model, and
the output spike ports in turn pass from themodel to the rest of the system through the
wrapper. All interfaces on the neuron wrapper’s ports follow the handshake principle
in accordance with the rest of the design. The output spike handshake is of particular
interest as it can be used to stall the wrapper’s execution flow if necessary.

The input spike stream goes through the neuron model, which accumulates the
appropriate weights. The neuron only specifies the weight index corresponding to a
particular spike input, while the wrapper selects the exact memory region in which the
current neuron’s weights are mapped, this is accomplished by using the neuron index
as the “high-order” component on the weight RAM address bus, the wrapper also sets
the upper address bits to match the designated layer. At the end of output calcula-
tion, the neuron asserts “spike out” valid. The wrapper then stores the resulting mem-
brane potential in the appropriate state table location. Simultaneously, the wrapper
also checks whether the downstream spike consumers are ready to sample the spiking
event, before incrementing the neuron index register and resetting the neuron model.
It is crucial that the output spike handshake is detected before attempting to increment

Chapter 3. Design and Implementation of a Hardware SNN 29

Figure 3.4: Neuron wrapper block diagram.

the neuron index, as the spiking event is transmitted not by the spiking bit, but by
the index of the neuron that spiked, in accordance of the address-event representation
protocol. Through the cyclical action of the index table, the same spike stream is pro-
cessed by the following virtual neurons. This continues until all neurons in the layer
are finished with their output activation calculations, upon which the neuron wrapper
asserts the “done frame” signal, indicating that it is ready to move on and process the
next stream of input spikes.

3.2.4 Output Encoding Module Design

The designed maximum membrane potential-based output encoding module com-
pares the output action potentials of all readout layer neurons and selects the maxi-
mum value. The inferred output digit is simply the index of the neuron corresponding
to this maximum value.

Figure 3.5: Output Encoding Module Diagram

Chapter 3. Design and Implementation of a Hardware SNN 30

3.2.5 Neural Network Design

The aforementioned building blocks of our design could only perform their tasks if
they are connected correctly, with careful consideration to the control of processing
flow starting from the input frame all the way to the predicted output. The required
interconnections and glue logic are primarily implementedwithin the networkmodule
which as the name implies, represents the overall neural network and thus encapsu-
lates the neuron layers, the index tables in between them and the output decoder.

The input layer consists of a spike index table, which then connects to the hidden
layer represented by a neuronwrapper. The resulting spikes fromhidden layer neurons
are stored by their neuron indices to a spike index table, where the neuron index is
written only if a spike is registered at the current time frame. This leads to the output
layer wrapper which performs additional processing and has a neuron count equal
to the number of output classes. Instead of a spike index table, an output encoder is
instead connected to the output layer in order to determine which output class was
predicted by the neural network. The block diagram of the neural network is shown in
3.6.

Figure 3.6: Network diagram.

The network entity governs the execution flow of the inner modules using a finite
state machine or FSM, which ensures the correct sequence of processing steps between
the different layers.

Chapter 3. Design and Implementation of a Hardware SNN 31

3.3 Implementation

After establishing the basic design of the hardware SNN and its components, we will
go through the details of implementing each component, and present the reasoning
behind our design choices along the way.

3.3.1 Targeted Application

Tovalidate our SNNdesign, we settled on a handwritten digit classification task, specif-
ically adopting the Neuromorphic-MNIST benchmark dataset. This initial assessment
aimed to ensure the functionality and reliability of our SNN implementation.

The samples ofN-MNIST consist of pixel activation anddeactivation events recorded
on a 34x34 grid, leading to a total dimension of 2312 elements, which maps directly to
a neural network with an input layer of 2312 neurons. Said network will naturally re-
quire 10 output neurons, each neuron corresponding to an output digit class.

As a continuation of previous SNN work done on the same dataset by Bouanane
et al [14], we opted to use one hidden layer of 200 neurons, which allowed us to reuse
the weights the authors obtained from training, and helped us focus on the hardware
inference. The aforementioned research also came to the conclusion that using a value
of β = 0.967 for the decay factor of LIF neurons produces the most ideal results in the
N-MNIST dataset.

3.3.2 Tools and Equipment

• FPGA Board
The Sipeed Tang Nano 4K is a development board based on the Gowin Little-
Bee GW1NSR-4C FPGA. It includes an on-board JTAG programmer and debug-
ger, camera interface, HDMI port, a 27MHz crystal oscillator and a whole host of
components needed for the proper functioning of the FPGA chip.

Figure 3.7: Picture of the Sipeed Tang Nano 4K FPGA development board.

Chapter 3. Design and Implementation of a Hardware SNN 32

• Gowin LittleBee GW1NSR-4C
TheGowinLittleBee series is a family of low-cost FPGAchips based onLUT4 logic
elements, with LUT counts ranging from about a thousand to over 20 thousand
look-up tables. Gowin FPGAs typically feature a variety of additional compo-
nents packaged within the same chip. The GW1NSR-4C in particular features
4608 LUTs, 256Kbits of integrated flash memory for non-volatile bitstream stor-
age, 180Kbits of block SRAM, two phase-locked loops (PLLs) for clock frequency
multiplication, an ARMCortexM3 processor core for System-on-Programmable-
Chip (SoPC) applications, dedicated hardware multipliers (referred to as ”DSP
resources”), as well as an 8MiB array of HyperRAMmemory.

Figure 3.8: Architecture overview of the GW1NSR-4C
[33].

• HDL Simulation & Synthesis
ToperformHDL synthesis for our FPGA,weused the vendor provided tool named
Gowin EDA. It provides basic code editing and synthesis for a variety of VHDL
and Verilog standards. However, it unfortunately does not provide a simulator.

The absence of a simulator was rectified with the combination of open-source
software: GHDL for VHDL-2008 simulation, and GTKWave for displaying sim-
ulation waveforms. Both tools are invoked through the terminal using docu-
mented commands and parameters, these commands were grouped into scripts
for more efficient development.

The bulk of code editingwasdoneusingVisual StudioCode thanks to the TerosHDL
extension, which provides VHDL syntax highlighting and linting, aswell as help-
ful documentation features like the generation of port diagrams for entities.

• Software Libraries
Given the popularity of Python in machine learning circles, various libraries and
frameworks have been developed for that purpose. We used the PyTorch library
to process the pre-trained weights and test the inference of our network. We

Chapter 3. Design and Implementation of a Hardware SNN 33

also used the Tonic [34] library to obtain and process the Neuromorphic-MNIST
dataset.

3.3.3 Planning and Preliminary Testing

Before advancing to hardware experiments, it was crucial to first evaluate the model
through software emulation. This step was essential to ascertain the accuracy and ef-
fectiveness of our network design. The emulation process provided a controlled envi-
ronment to conduct preliminary tests and identify potential issues without the com-
plexities introduced by hardware constraints.

A significant part of this preliminary analysis involved converting the neural net-
work’s weights. These weights, obtained through training, were initially in a 32-bit
floating-point format. For implementation on an FPGA, these weights needed to be
converted to a fixed-point format, a format which the neuron model in particular is
designed based on. Determining the best fixed-point format for our application was
the core objective of building the software model.

• Dataset Wrangling
The N-MNIST dataset is based on individual spike events, each sample consists
of a series of (x, y, t, p) tuples with no apparent image-like structure. Thus, we
performed some pre-processing as shown in Figure 3.9. The discrete spike events
of each sample are sorted into ”bins” using Tonic’s frame transform. This results
in two 34x34 frames, one representing a history of pixel-on events in a given time-
window, and the other represents a history of off-events in the samewindow. The
frames are combined and then flattened tomatch the input structure of the neural
network. Finally, the spike indices are extracted from the flattened frames and
stored as ASCII binary strings into a text file, we pre-pended the spike indices of
each frame with the number of spike indices in that frame.

Frame
transform

Flattening
Spike Indices

Extraction

Events Frames Spike IndicesSpikes

Figure 3.9: N-MNIST pre-processing pipeline.

Depending on the time window, the Tonic frame transform can result in multi-
valued (non-binary) spikes due to event overlap, we remedied this by repeating
the spike index in proportion to its magnitude.

Chapter 3. Design and Implementation of a Hardware SNN 34

• SNN Software Model
To test the basic architecture and weights, we constructed a software model for
our SNN in Python. The pseudocode for our model impelementation in python
is represented in Algorithm 1, where it consists of two parts, first the input data is
passed through hidden layer computation before proceeding to the output layer
neurons processing.

• Weights conversion
The process of converting model weights into fixed-point equivalents starts with
a floating-point tensor input. Each entry in the tensor input is multiplied by 2S

(where S is the number of bits assigned to the fractional part) and then rounded
to the nearest integer. The total desired number of bits are masked out using
bit manipulation techniques, obtaining a 16-bit value for example would require
bitwise-AND’ing the integer with the hexadecimal value 0xFFFF. The shifted
integer is then formatted as a binary string and written to a memory initializa-
tion file that can be used with VHDL testbenches; the process is repeated for all
the weights in a given layer. For testing purposes, we also converted the resulting
fixed-point weights back to floating-point in PyTorch tensor format in order to ex-
amine the effects of the conversion on accuracy, this was accomplished by casting
thewhole part of the fixed-point format into floating-point, and then dividing the
fractional part by 2S before adding it back into the casted floating-point number.

Table 3.1: Accuracy summary for weight conversion

Weight format IF LIF
FP32 97.50% 97.65%
Q2.6 19.90% 21.35%
Q2.14 97.24% 97.31%

Fixed-point formats excel in systems where the range of numerical data being
processed is well-defined in advance, this is the case in many pre-trained neu-
ral network implementations including our own work. This led us to allocate
more bits for the fractional part as the weights of our model fall in the range of
[−1.094027, 1.6090962], meaning that only two bits need to be dedicated for the
whole part of the fixed-point format. Earlier tests explored the use of the Q2.6
format, which decimated the inference accuracy down to 19.9% for the IF net-
work and 21.35% for the LIF network. Hence, 8-bit weights are ostensibly not
viable for our implementation. We believe that Q2.14 provides sufficient reso-
lution with negligible loss in inference accuracy, our testing revealed that Q2.14
weights can still achieve a maximum accuracy of about 97.24% for the IF network
and 97.31% for the LIF network.

Chapter 3. Design and Implementation of a Hardware SNN 35

Algorithm 1 run snn
1: FUNCTION run snn(inputs):
2: # Initialization
3: nb hidden = 200
4: nb outputs = 10
5: nb steps = sizeOf(inputs(2))
6: hidden synapse[nb hidden] = 0
7: Vmem[nb hidden] = 0
8: spikeout[nb hidden] = 0
9: Vmemout[nb outputs] = 0
10: output syn[nb outputs] = 0
11: # Compute hidden layer activity
12: h1 from input = inputs * w1
13: for t from 0 TO nb steps - 1 do
14: h1 = h1 from input(t)
15: if Vmem > Threshold then
16: spikeout = 1
17: Vmem = 0
18: else
19: spikeout = 0
20: end if
21: new Vmem = (Vmem + hidden synapse) * (1.0 - spikeout)
22: APPEND Vmem TO Vmem rec
23: APPEND spikeout TO spiking rec
24: Vmem = new Vmem
25: hidden synapse = h1
26: end for
27: SET mem rec TO stack of Vmem rec
28: SET spk rec TO stack of spiking rec
29: # Readout layer
30: h2 = spiking rec * w2
31: INITIALIZE Vmemout rec WITH Vmemout
32: for t FROM 0 TO nb steps - 1 do
33: output syn = h2(t)
34: SET Vmemout TO Vmemout + output syn
35: APPEND Vmemout TO Vmemout rec
36: end for
37: SET Vmemout rec TO stack of Vmemout rec
38: RETURN Vmemout rec
39: END FUNCTION

Chapter 3. Design and Implementation of a Hardware SNN 36

The final format we decided on is the Q2.14 format implemented in 16-bit binary
strings, as it assigns asmany bits as possible to the fractional part while also being
a multiple of 8 for better alignment in operations over byte-wide busses. As a
consequence, we truncated the decay factor to the value β = 0.966796875, which
is the closest number representable in the Q2.14 format.

3.3.4 Hardware Implementation and Simulation

Hardware implementation is an iterative process, requirements become clearer as the
design becomes more concrete and grounded. But performing full HDL synthesis for
a physical FPGA test at every step during this phase is time-consuming and redundant
when the implementation is still in its infancy.

After the software proof of concept, we began the hardware implementation of
the modules outlined in Chapter 3. These modules were realized using VHDL-2008
Register-Transfer-Level (RTL) modelling, and were each tested by writing an appro-
priate VHDL testbench that would then be simulated in GHDL. It was clear that we
first needed to simulate each building block of our network to validate its functional-
ity, before proceeding to the overall network simulation. The development started from
core neuron logic and spike transmission infrastructure, and we progressively worked
our way up the hierarchy of modules until we developed and successfully simulated
the neural network entity.

• Spike Index Table
The spike index table is a relatively trivial design, it was implemented as a block
RAM with read and write pointers similar to a typical FIFO. It includes various
generic parameters to tweak the maximum capacity and width of the input spike
indices. While FPGAs typically provide dual-ported blockRAMs capable of read-
ing and writing at the same time, we did not rely on this property and instead
opted to use the single-ported mode, where write operations take precedence
over read operations.

The results of a simple testbench simulation are shown in Figure 3.10 where the
table is filled until it reaches its capacity (a depth of 4 in the simulation), the con-
tents of the table are read and tested to verify their integrity. Theinedx_rd_last
signal is asserted at the end of the read operation to indicate the end of the cur-
rent set of spike indices. It should be noted that after the final index was read,
the reading process loops back to the first spike index.

• IF Neuron
The IF neuronmodelmakes use of fixed-point arithmetic to performweight accu-
mulation and threshold comparison. We made use of standard VHDL packages

Chapter 3. Design and Implementation of a Hardware SNN 37

500 ns 600 ns 700 ns 800 ns 900 ns 1 us 1100 ns 1200 ns 1300 ns 1400 ns 1500 ns

$80 $81 $82 $83 $84

0 1 2 3 4

$00 $80 $81 $82 $83 $80

Time
clk=1
index_wr[7:0]=$84
index_wr_ready=0
index_wr_valid=0
size_reg[2:0]=4
table_empty=0
index_rd[7:0]=$80
index_rd_last=0
index_rd_ready=0
index_rd_valid=1

Figure 3.10: Spike index table simulation.

intended for integer arithmetic rather than declare our own types and operators,
which simplified the implementation and helped ensure compatibility across dif-
ferent hardware vendors. The port listing generated by TerosHDL for the neuron
model is shown in Figure 3.11.

integer LAYER_ID
integer WEIGHT_WIDTH
integer VMEM_WIDTH
integer SPIKE_INDEX_WIDTH

std_logic clk
std_logic rst
std_logic enable
std_logic table_empty
std_logic spike_index_valid

std_logic_vector(SPIKE_INDEX_WIDTH-1 downto 0) spike_index_rd
std_logic spike_index_last

signed(VMEM_WIDTH-1 downto 0) Vmem_in
std_logic weight_index_ready
std_logic W_in_valid

signed (WEIGHT_WIDTH-1 downto 0) W_in

std_logicspike_index_ready
std_logicspikeOut
std_logicspikeOut_valid
signed (VMEM_WIDTH-1 downto 0)Vmem_out
std_logic_vector(SPIKE_INDEX_WIDTH-1 downto 0)weight_index
std_logicweight_index_valid
std_logicW_in_ready

Figure 3.11: Neuron model ports and parameters.

The model features a 24-bit weight accumulation register (w_acc) declared as
a signed bit vector from the numeric_std package, the package also defines
the addition and comparison operators used in the process of adding incoming
weights and comparing the result to a set spiking threshold, the latter was con-
figured to 1.0 as in the software inference model. The only consequence of using
Q2.14 fixed-point format for weight encoding is that we had to adjust the binary
value of the threshold, which simply involves a left shift of 14 bit positions. It
should be noted that the w_acc register itself as well as the membrane potential
signals use the Q10.14 format, providing headroom for overflows during weight
accumulation. Neurons in the readout layer are designed to be non-spiking, in
contrast to the spiking neurons in the hidden layer. Our design accommodates
both neuron types, configured by specifying a ”layer ID” during network instan-
tiation to ensure proper functionality across different layers.

The model was tested using a VHDL testbench featuring an instance of the neu-
ron model, an instance of a spike index table to store input indices and a simple
array to represent weight memory. Initially, the weight memory array is filled us-
ing a memory initialization file, and the spike index table is pre-filled with four
arbitrary spike indices, the neuron is also providedwith an arbitrary initial mem-

Chapter 3. Design and Implementation of a Hardware SNN 38

brane potential vmem_in. The neuron model instance is then enabled to start the
weight accumulation process, with the resulting waveforms shown in Figure 3.12
(All membrane potential andweight signals are depicted in decimal by assigning
a 14-bit fractional part).

900 ns 1 us 1100 ns 1200 ns 1300 ns 1400 ns 1500 ns 1600 ns 1700 ns 1800 ns 1900 ns 2 us 2100 ns 2200 ns

0.99993896484375

$000 $020 $021 $022 $023 $020
$000 $020 $021 $022 $023 $020

0 0.001525+ 0.001586+ 0.005187+ -0.005859375
0 0.001525+ 0.003112+ 0.008300+ 0.00244140625

0.99993896484375 1.00238037109375
0

Time
clk
enable
vmem_in[23:0]
spike_index_valid
spike_index_ready
spike_index_last
spike_index_rd[11:0]
weight_index[11:0]
weight_index_valid
weight_index_ready
w_in_valid
w_in[15:0]
w_acc[23:0]
done_acc
new_vmem[23:0]
vmem_out[23:0]
spikeout_valid
spikeout

Figure 3.12: IF neuron simulation.

The neuron reads in the first spike index then stalls for one clock cycle as it waits
for the weight memory to be ready for the next spike index, as the indices are
used to address said memory. Simultaneously, whenever a weight data value
(w_in) is presented to the neuron, it is added to the weight accumulator. When
the last spike index is read (7th clock cycle of Figure 3.12), the neuron stops read-
ing further indices, and when the weight value corresponding to the last index
is read, the neuron asserts the done_acc signal, indicating the completion of
weight accumulation.

Following the accumulation, the neuron’s spike output (spikeout) is calculated
based on the sum of the old membrane potential vmem_in and the weight accu-
mulator w_acc, the spike output is asserted if the summation (new_vmem) is
greater than the spiking threshold, otherwise it is left at zero (no spike). The
spike output is coupled with a validity strobe spikeout_valid, as well as the
resulting output membrane voltage vmem_out, the latter resets to zero in the
event of a spike hence the apparent lack of changes.

• LIF Neuron
As an extension of the IF neuron, most of the implementation details discussed
in the earlier IF neuron part apply to the LIF neuron model as well. The most
notable addition is the βmultiplier for themembrane potential output, whichwas
implemented using a combinational DSP multiplier provided within the FPGA
fabric.

Chapter 3. Design and Implementation of a Hardware SNN 39

For performing the fixed-point multiplication of the membrane potential by the
decay factor, a regular integer multiplier was used. The only caveat is that, sim-
ilar to how an n-bit integer multiplier produces a 2n-bit result, the fixed-point
multiplication introduces additional bits. In the case of calculating exponential
decay, it is clear that the result will shrink in magnitude rather than expand, ren-
dering the additional bits redundant. But unlike integer multiplication, it is not
sufficient to simply ignore the added bits on the left, as the result of a fixed-point
multiplication grows in both directions, meaning that both the fractional part and
whole part’s widths are doubled, shifting the decimal point leftward in the pro-
cess. We solved this by right-shifting the multiplication result by the number of
fractional bits to realign the position of the decimal point.

TheVHDL testbench for the LIF neuronwas almost identical to the IF neuron. For
brevity and completeness, we directly present the resulting waveforms in Figure
3.13.

900 ns 1 us 1100 ns 1200 ns 1300 ns 1400 ns 1500 ns 1600 ns 1700 ns 1800 ns 1900 ns 2 us 2100 ns 2200 ns

0.99993896484375

$000 $020 $021 $022 $023 $020
$000 $020 $021 $022 $023 $020

0 0.001525+ 0.0015869140625 0.005187+ -0.005859375
0 0.001525+ 0.00311279296875 0.008300+ 0.00244140625

0.99993896484375 0.96905517578125
0 0.96905517578125

Time
clk
enable
vmem_in[23:0]
spike_index_valid
spike_index_ready
spike_index_last
spike_index_rd[11:0]
weight_index[11:0]
weight_index_valid
weight_index_ready
w_in_valid
w_in[15:0]
w_acc[23:0]
done_acc
new_vmem[23:0]
vmem_out[23:0]
spikeout_valid
spikeout

Figure 3.13: LIF neuron simulation.

• Neuron Wrapper
The neuron wrapper manages the state data for all the neurons in the layer. It
keeps track of the current neuron through the neuron_index, and uses that in-
dex to address amembrane potential table implemented in block RAM so that the
neuron model can read and write the correct neuron state. The neuron_index
is incremented on the assertion of the neuron_spikeout handshake, and the
next state data is loaded. As shown in Figure 3.14, the neuron wrapper is param-
eterized with a generic that chooses the type of neuron being used, the following
simulations were performed using the IF neuron.

The weight RAM was organized in a layout that allows ease of addressing. To
obtain the weight valueWij associated with a spike input j coming into a neuron

Chapter 3. Design and Implementation of a Hardware SNN 40

integer LAYER_ID
integer SPIKE_INDEX_WIDTH
integer VMEM_WIDTH
integer NEURON_COUNT
integer NEURON_INDEX_WIDTH
integer DRAM_ADDR_WIDTH
integer DRAM_DATA_WIDTH
integer DRAM_LAYER_PAGE_OFFSET

string NEURON_TYPE

std_logic clk
std_logic resetn
std_logic wrapper_enable
std_logic spike_index_valid

std_logic_vector(SPIKE_INDEX_WIDTH-1 downto 0) spike_index_rd
std_logic spike_index_last
std_logic table_empty
std_logic neuron_spikeout_ready
std_logic dram_rd_addr_ready

std_logic_vector(DRAM_DATA_WIDTH - 1 downto 0) dram_rd_data
std_logic dram_rd_data_valid

std_logicdone_frame
std_logicspike_index_ready
unsigned(NEURON_INDEX_WIDTH-1 downto 0)neuron_index
signed(VMEM_WIDTH-1 downto 0)neuron_vmem_out
std_logicneuron_spikeout
std_logicneuron_spikeout_valid
std_logic_vector(DRAM_ADDR_WIDTH - 1 downto 0)dram_rd_addr
std_logicdram_rd_addr_valid
std_logicdram_rd_data_ready

Figure 3.14: Neuron wrapper ports and parameters.

i, the incoming spike_index_rd (equivalent to j) is placed on the low-order
bits of the weight RAM address bus dram_rd_addr, and the neuron_index
(equivalent to i) is placed on the high-order bits of the address bus. Finally, the
topmost bit in the address bus dram_rd_addrwas used to differentiate between
the hidden layer and the output layer.

A VHDL testbench was devised to test the neuron wrapper entity, the testbench
emulates a RAM block that is initialized with the neuron weights of the output
layer. The wrapper was configured with 10 neurons, and connected to a spike
index table that is first pre-filled with arbitrary indices. The wrapper is enabled
once the spike pre-fill process is done, upon startup it immediately begins load-
ing the previous value of the neuron potential from the state table, starting from a
neuron index of zero, and subsequently enables the internal neuron model (Fig-
ure 3.15).

Figure 3.15: Neuron wrapper startup.

When a neuron completes its output activation, the wrapper stores the resulting
outputmembrane potential in the state table. It then increments the neuron index
and re-initializes the neuronmodel by loading the state corresponding to the next

Chapter 3. Design and Implementation of a Hardware SNN 41

neuron, the cyclical action of the spike index table allows all neurons to process
the same set of spike indices. Note that for testing purposes, all neurons were
configured to have the same initial membrane potential, hence the apparent lack
of change ofcurrent_vmem_in. The process repeats until all neurons have fired
their outputs.

At each neuron activation, the wrapper checks if the neuron index reached its
final value. When the last neuron achieves an output, the wrapper asserts the
done_frame signal as shown in Figure 3.16, and freezes the neuronmodel by de-
asserting its enable signal. The wrapper remains in this state until reset, or until
its enable signal is toggled, signaling the beginning of a new frame to process.

Figure 3.16: Neuron wrapper wind-down.

• Output Encoder
The output encoder implements the maximum membrane potential classifica-
tion paradigm. As with the neuron models, the output encoder module makes
use of fixed-point comparison which was again implemented using the signed
type provided by numeric_std. The history of membrane potential peaks is
stored in a block RAM that is addressed by the incoming neuron_index. The
neuron_index associatedwith the peak recorded potential value vmax is stored
in the digit register which represents the classification output. The full signal
listing is shown in Figure 3.17.

The output encoder testbench features a neuron wrapper containing 4 neurons, a
spike index table for supplying arbitrary spikes and the output encoder module.
The simulation results are shown in Figure 3.18.

• Neural Network

Chapter 3. Design and Implementation of a Hardware SNN 42

integer VMEM_WIDTH
integer DATA_WIDTH
integer NEURON_COUNT
integer nb_output

std_logic clk
std_logic rst

signed(VMEM_WIDTH-1 downto 0) Vin
std_logic Vin_valid

unsigned (3 downto 0) neuron_index

std_logicVin_ready
unsigned (3 downto 0)digit

Figure 3.17: Output encoder ports and parameters.

2 us 3 us 4 us 5 us

0 0.0922241+ 0 0.4181518+ 0 -1.800476+ 0 0.0300903+ 0

0 1 2 3

0 0.09222412109375 0.41815185546875

0 1

Time
clk

vin[23:0]

neuron_index[1:0]

vin_ready
vin_valid

vmax[23:0]

digit[1:0]

Figure 3.18: Output encoder simulation.

The neural network primarily functions as a container that instantiates the afore-
mentioned modules and connects them together. The most notable block is the
control FSM which was primarily implemented as VHDL case-when statements
for the next state logic and combinatorial output logic.

integer INPUT_SPIKE_INDEX_WIDTH
integer HIDDEN_SPIKE_INDEX_WIDTH
integer HIDDEN_NEURON_COUNT
integer OUTPUT_NEURON_INDEX_WIDTH
integer OUTPUT_NEURON_COUNT
integer VMEM_WIDTH
integer DRAM_ADDR_WIDTH
integer DRAM_DATA_WIDTH
integer DRAM_LAYER_PAGE_OFFSET

std_logic clk
std_logic resetn

std_logic_vector(INPUT_SPIKE_INDEX_WIDTH-1 downto 0) input_spike
std_logic input_spike_valid
std_logic input_spike_last
std_logic frame_empty
std_logic network_enable
std_logic done_frame_ack
std_logic dram_rd_addr_ready

std_logic_vector(DRAM_DATA_WIDTH - 1 downto 0) dram_rd_data
std_logic dram_rd_data_valid

std_logicinput_spike_ready
std_logicdone_frame
std_logic_vector(DRAM_ADDR_WIDTH - 1 downto 0)dram_rd_addr
std_logicdram_rd_addr_valid
std_logicdram_rd_data_ready
unsigned(OUTPUT_NEURON_INDEX_WIDTH-1 downto 0)winning_digit

Figure 3.19: Network ports and parameters.

The network’s control FSM features one state for each layer in the network, as
well as two additional states: an initialization state (the default state upon reset)
where the spike index tables are cleared in order to prepare for the next frame,
and a “done” state where the predicted output is held stable until it is acknowl-
edged by a receiving module. The FSM advances to the following state when the
outputs of the current stage are valid, in the order described by the state transition
diagram in Figure 3.20.

For the network testbench, the weights of the entire network are initialized in an
array, and the spike indices of a chosen sample are inserted frame by frame to
the network. Based on the size of each frame, the input_spike_last signal
is asserted to indicate the end of a frame, which prompts the network to stop
accepting indices and start hidden layer processing, as shown in Figure 3.21.

Chapter 3. Design and Implementation of a Hardware SNN 43

Figure 3.20: State diagram of the network’s FSM.

59320 ns 59330 ns 59340 ns 59350 ns 59360 ns 59370 ns 59380 ns 59390 ns 59400 ns 59410 ns

init lyr_in lyr_hidden

257 689 1377 1408 1582 1884 256

Time
clk=1
snn_fsm_state=init
input_spike_table_clear=1
hidden_spike_table_clear=1
input_spike[11:0]=257
input_spike_ready=0
input_spike_valid=1
input_spike_last=0
hidden_layer_en=0

Figure 3.21: Network simulation transitioning into the hidden layer state.

During the hidden layer state, the hidden layer wrapper is given control of the
weight RAM buses in order to fetch and accumulate weights. When hidden layer
processing is finished, weight RAM control is transferred to the output layer
wrapper, which starts processing the indices of the previous layer as demon-
strated in Figure 3.22.

83370 ns 83380 ns 83390 ns 83400 ns 83410 ns 83420 ns 83430 ns 83440 ns 83450 ns 83460 ns 83470 ns 83480 ns

lyr_hidden lyr_out

01 48 55 01

Time
clk=1
snn_fsm_state=lyr_hidden
hidden_layer_en=1
hidden_layer_done=0
output_layer_en=0
hidden_spike_rd[7:0]=01
hidden_spike_rd_valid=1
hidden_spike_rd_ready=0
hidden_spike_rd_last=0

Figure 3.22: Network simulation transitioning into the output layer state.

Finally, when the output layer finishes processing, the digit output is sampled
from the output encoder. The network asserts thedone_frame strobe and awaits
acknowledgement from a consumer module, before clearing the index tables in
preparation for a new spike frame. These transitions are summarized in Figure
3.23, where the network has correctly classified the digit ’8’.

Chapter 3. Design and Implementation of a Hardware SNN 44

84390 ns 84400 ns 84410 ns 84420 ns 84430 ns 84440 ns 84450 ns

lyr_out done init lyr_in

8

Time
clk=1
snn_fsm_state=lyr_out
output_layer_en=1
output_layer_done=0
winning_digit[3:0]=8
done_frame=0
done_frame_ack=0
input_spike_table_clear=0
hidden_spike_table_clear=0
input_spike_ready=0

Figure 3.23: Network simulation latching the output and preparing for a new frame.

We have shown the example of processing a single frame in the simulation wave-
forms, but it should be noted that the actual testbench goes through all the frames
in the sample. The rest of the frames were omitted for brevity and clarity.

3.4 Summary

In this chapter, we finalized the design and implementation of our spiking neural net-
work. We performed preliminary testing that demonstrates the correctness of the basic
operations needed. In the following chapter, we will put our implementation under
rigorous testing and experimentation in order to quantify various metrics and identify
any special characteristics.

Chapter 4

Evaluation of the Hardware SNN
Implementation

45

Chapter 4. Evaluation of the Hardware SNN Implementation 46

4.1 Introduction

To test and validate our proposed design from Chapter 3, we will apply it to the basic
task of handwritten digit classification, using the Neuromorphic-MNIST benchmark
dataset discussed in Chapter 2. Following this, we will conduct various experiments
to analyze several metrics, focusing on the impact of membrane leakages on different
types of spiking neurons.

4.2 Latency and Spiking Activity Analysis

We used the Neural Network simulation testbench to calculate the latency and spiking
activity of the hidden layer, as both parameters (especially the latter) are difficult to
measure in a live hardware test. This method also eliminates any bottlenecks related
to physical weight RAM access and input spike transmissions, and allowed us to focus
on the inherent latency of our design.

The testbench recorded the number of clock cycles it took for the system to provide
a stable output based on the target sample. The same testbench also recorded the spik-
ing activity of the hidden layer neurons. Using the VHDL STD.textio package, a
helper module was implemented and used to count and store spiking events on every
assertion of neuron_spikeout of the hidden layer wrapper.

The experiment was conducted using 300 N-MNIST samples, 30 samples from each
digit, and repeated twice: Once for the IF neuron, and once for the LIF neuron.

Table 4.1: Latency and spiking activity summary.

System metric IF LIF
Latency (clock cycles) 201800 218700

Hidden layer spiking activity 1521 2194

Both IF and LIF neuron implementations delivered accurate results, with the LIF
implementation exhibiting slightly larger latency. As discussed in [14], the larger la-
tency is attributed to the properties of the N-MNIST dataset in relation with the train-
ing method being used. Our design also corroborates the difference in spiking activity,
with LIF neurons significantly spiking more often per sample. The spike sparsity of IF
neurons is a common theme in existing research.

4.3 Power and Resource utilization Analysis

With the testbench simulations confirmed to be functional, we were able to confidently
advance to the next step of testing a physical hardware implementation. We settled on

Chapter 4. Evaluation of the Hardware SNN Implementation 47

the Sipeed Tang Nano 4K FPGA development board to host and test our design.
The transition to real hardware introduces some additional board-specific compo-

nents, the design of which will be briefly discussed in the following sections.

Figure 4.1: Overall diagram of the test setup.

4.3.1 Data Transfer operation (PC-to-FPGA)

Our test setup relies on receiving weight and spike frame data from a computer. Multi-
ple approaches exist to carry out data transmissions, with increasing complexity as the
demand rises for higher speeds and lower latency. We settled on the UART protocol for
serial data transmissions, as it is low in complexity and UART adapters are ubiquitous
thanks to their popularity in embedded systems.

• UART Protocol

The UART protocol is one of the simplest protocols for data transmissions be-
tween a PC and an embedded device, such asmicro-controllers or in our case, FP-
GAs. UART is implemented over a variety of physical media and specifications,
from legacy RS-232 terminals, to modern USB-based implementations, to even
wireless implementations using infrared emitters and receivers. UART speeds
lag behind the processing capabilities of even the most low-powered of modern
devices, but the lower speed and lower pin count compared to common interfaces
allows live-circuit debugging even with less-than-ideal test equipment, and the
low complexity leads to minimal failure points.

The most common full-duplex UART configuration consists of just two signal
wires, one for each data direction between any two UART devices. A basic UART
transmission consists of an 8-bit data word surrounded by one start bit and at
least one stop bit, forming a frame. UART frames are transmitted serially one bit

Chapter 4. Evaluation of the Hardware SNN Implementation 48

at a time at an implicit baud-rate (transmission speed in bits-per-second) that is
agreed upon in advance by the two devices. It is possible to increase the reliability
of UART transmissions by appending additional parity bits for error checking,
frames that fail the parity check can then be dropped by the receiver.

Figure 4.2: General format of a UART packet.

We settled on a 921600 baud configuration with one stop bit and no parity bits
for our UART interfaces. This mode was chosen to reduce complexity, as modern
UART implementations are reliable enough to not require parity checking, com-
mon implementations also do not specify any re-transmission logic by default,
and the custom implementation of which is out of scope for our test. The afore-
mentioned configuration also ensures compatibility, as the chosen baud-rate can
easily be reached on typical UART adapters and converters.

• USB-to-UART Converter

In the absence of native serial ports on most modern computers, a USB-to-UART
converter is required. Such converters are commonly used to re-program micro-
controllers without the need for expensive, vendor specific flashing tools. We
chose one such converter, the ESP32-CAM-MB.

Figure 4.3: ESP32-CAM-MB USB-to-UART converter, and the ESP32-CAM board.

The ESP32-CAM-MB is a USB-to-UART adapter board designed for the ESP32-
CAMmicrcontroller development board. Despite being built specifically for pro-
gramming the latter in an add-on shield form-factor, the ESP32-CAM-MB is an
otherwise typical UART adapter based on theWCHCH340USB-to-UART conver-
sion IC. The adapter supports a variety of UART configurations including vary-
ing data widths and parity checking, and features a USB2.0 Micro-B port that
connects to a PC for firmware programming and serial terminal debugging.

Chapter 4. Evaluation of the Hardware SNN Implementation 49

The UART pins of the adapter board are exposed on a female 2.54mmpin-header.
We connected the RX pin to one of the GPIOs on the FPGA board, and configured
the UART controller in our design to match the parameters we declared earlier in
this section.

• UART Controller and RX FIFO

The final and most vital component of the UART communication is the UART
controller on the FPGA itself. Due to time constraints, we opted not to implement
a UART controller from scratch, and instead relied on the pre-verified and open-
source Simple UART for FPGA controller developed by Cabal [35].

The UART controller was implemented and simulated in VHDL, as well as tested
on physical hardware. It does not make any assumptions about the target FPGA
and hence can be configured to meet a variety of testing setups. The controller
features a write port with a read-valid handshake for transmitting data from the
FPGA to the PC, and a read port with only a valid strobe.

Unfortunately, the controller does not provide any additional flow control or
buffering logic, which led us to adding a block-RAM based FIFO between the
UART controller and the packet processor. The FIFO buffers incoming UART
transmissionswhen the packet processor is already busyprocessing a spike frame,
rendering it unable to react to further transmissions.

• Packet processor The packet processor decodes incoming data transmissions,
and performs weight RAM or spike frame initialization depending on the re-
ceived packet. It writes incoming weight data to the weight memory, and writes
received spike indices to the network’s input layer, where it also provides addi-
tional control signals to mark the beginning and end of a frame.

Incoming data is brought into the packet processor as a stream of bytes, each
individual byte is scanned until the processor detects a packet marker belonging
to either defined packet formats: Weight packets and spike frame packets. The
processor then reads in the rest of the packet header in preparation for the full
payload. The ad-hoc packet formats of weight packets and spike frame packets
are defined in Figure 4.4 and Figure 4.5 respectively.

Packet
identifier

Weight memory
start address

Payload size
(in bytes)

Payload
(Neuron weights)

1-byte 4-bytes 2-bytes n-bytes

Figure 4.4: Weight packet format.

Both packets contain a marker (packet ID), payload size field and a payload. The
weight packet is unique in that it also features a ”RAM start address” field, which

Chapter 4. Evaluation of the Hardware SNN Implementation 50

Packet
identifier

Payload
(Spike indices)

Payload size
(in bytes)

1 byte 2-bytes n-bytes

Figure 4.5: Spike frame packet format.

evidently defines the starting location of where the weight payload should be
written to. The packet processor keeps track of the current address to write to by
incrementing it on each successful reception of a weight value (each value being
two bytes long). We also avoided hard-wiring a starting RAMaddress to improve
flexibility of the design bydividing theweight transmission intomultiple packets,
especially considering the fragmented memory mapping of the neuron weights.

In both packet types, the payload size field defines the length of the payload in
bytes. The packet processor assumes that the following given amount of bytes
must belong to the same packet, which eliminates any confusion in case the pay-
load data happens to coincide with the designated packet markers. Knowing the
payload size is also crucial for spike frame functionality, as it allows the processor
to assert the ”last spike” signal required for the network to begin processing the
incoming frame.

In order to decode the various fields of packets from incoming the byte stream,
an FSM is used to keep track of processor’s positionwithin the packet, with states
corresponding to each possible field in the packet. A simplified state diagram of
the control logic FSM is shown in Figure 4.6, where the outputs are shown under
the state transition events similar to Mealy-style modelling, signals that are not
shown in a certain state are not relevant to that phase and are assumed to be in
their inactive state.

Per Figure 4.6, the packet processor starts out in the ”packet scan” state, where
it continuously reads each incoming byte through the 8-bit ”RX byte” port as it
looks for special predefined bytes that are used as packet identifiers, the hexadec-
imal values 0xCA and 0xFE are used to identify the weight packets and the spike
frame packets respectively. The processor controls the flow of the byte stream
using the ”RX ready”

At the end of a weight packet, the packet processor simply returns to the packet
scan state to listen for further instructions. Conversely, the neural network begins
processing the received frame right after the end of a spike index packet. The
processor remains in the ”network busy” state andwill not accept further packets
until the network finishes processing, at which point the processor goes back to
listening for packets.

Chapter 4. Evaluation of the Hardware SNN Implementation 51

Figure 4.6: State diagram of the packet processor FSM.

4.3.2 Weight Memory

In the matter of storing model weights, it was apparent from the preliminary phases of
design that using some form of dynamic RAMwould offer the best flexibility, cost and
scalability. But such memory would also come with numerous caveats, not the least
of which is the issue of DRAM refresh. We resorted to using the Winbond 4Mx16-bit
HyperRAMmemory, packaged on-chip along with the GW1NSR-4C FPGA, to help us
overcome the refresh issue and vastly simplify our design.

• HyperRAM Essentially, HyperRAM is a form of pseudo-static RAM or PSRAM,
which is merely an array of capacitor-based SDRAM coupled with a controller
integrated on the same chip that performs automatic refresh and fulfills memory
read/write requests. The controller internally reads and re-writes DRAM con-
tents on a row-by-row basis under a strict deadline, rejuvenating the data which
would otherwise be lost to leakages. The controller also helps reduce pin-counts

Chapter 4. Evaluation of the Hardware SNN Implementation 52

onHyperRAM chips by using a single ”command bus” for both address and data
transmissions.

FPGA soft-core solutions are also commonly used to solve the DRAM refresh
problem with conventional SDRAM chips, but one major benefit of integrating
the refresh controller is that it does not rely on the correct implementation or
integration of a user-supplied DRAM controller, which would add an additional
failure point within an already complex design.

A downside of theHyperRAM interface is that it requires address and data trans-
fers to be time-multiplexed on the same command bus, in accordance to a packet
format defined by the manufacturer. We employed a pre-fabricated IP block pro-
vided by the Gowin EDA to fulfill the bulk of the HyperRAM interfacing logic,
but we had to provide additional glue logic that adapts the IP block to our design.

• HyperRAM Adapter

The Gowin HyperRAM IP block is designed around burst transfers, that is read-
ing or writing successive memory locations in a single operation for maximum
performance, as can be seen in Figures 4.7 and 4.8. Even though the memory
is word-addressable with a word size of 16-bit, these operations are performed
with a 32-bit double-word data bus. This comes at odds with our single-word
(16-bit) access based design, yet we were able to conform to both constraints by
only considering the first double-word in a burst, and only considering either the
lower or upper word within that transfer depending on the desired address.

Figure 4.7: Burst read transfer using the Gowin HyperRAM IP.

To read a single 16-bit entry from the HyperRAM, the adapter places the desired
address in the IP block’s address bus save for the least significant bit, which is
fixed to zero to preserve 32-bit alignment; we concluded in an earlier test that
the IP block misbehaves when operations are not 32-bit aligned. When the read
request is fulfilled, the IP block reads a burst of data; a total of four 32-bit double-
words starting from the requested address. However, our design can only ac-

Chapter 4. Evaluation of the Hardware SNN Implementation 53

Figure 4.8: Burst write transfer using the Gowin HyperRAM IP.

cept one word at a time. To remedy this, the read valid strobe of the IP block
is scanned for changes, and a transfer from the IP block’s data bus to the data
bus of the adapter is only performed when a low-to-high transition on the read
strobe occurs, ensuring that the neural network only receives the desired (first)
word in a burst. Additionally, since the IP block operates on 32-bit double-words,
a single word has to be selected out of every transfer on the IP block’s data bus.
The least significant bit of the desired address is used to determine which word
would be read: If it is zero, the lower 16-bits are chosen by the adapter’s data bus
multiplexer. If it is one then the upper 16-bits are chosen instead.

Write operations are handled in a similar vein, but the roles of the adapter and
the IP block are somewhat reversed. The adapter still provides the write address
(the least significant bit is excluded once again), alongwith the data to be written
into that address. Furthermore, it must also provide a ”byte mask”, which is a
group of data validity strobes defined on a byte-by-byte basis. The mask value is
chosen based on the least significant bit of the desired write address: If it is zero
then themask indicates that the lower 16-bits are valid, and the adapter places the
data to be written on the lower 16-bits of the IP block’s 32-bit data bus. If it is one,
then the mask signifies that only the upper 16-bits are valid, and the write data
is placed on the upper 16-bits of the double-word write bus. The mask indicates
valid data only for one clock cycle, before it is de-asserted such that no bytes on
the write bus are valid. This conforms to the IP block’s burst design, as it expects
multiple double-words to be written unless it is explicitly forbidden from doing
so. The mask also remains in the de-asserted state when the adapter is idle as a
safeguard against any data corruption from unforeseen edge cases.

When a memory request is acknowledged, regardless of whether it is a read or
a write, the adapter blocks further operations until a timeout counter elapses.
This obstruction is imposed by the IP block, as it is incapable of queuing com-
mands while already processing a command, thus commands issued during a

Chapter 4. Evaluation of the Hardware SNN Implementation 54

Figure 4.9: HyperRAM adapter block diagram.

busy state are simply dropped without notice. The timeout counts the number of
busy cycles that the IP block must go through before being able to process a new
command, in our configuration this timeout is given by the manufacturer as 19
clock cycles.

4.3.3 Results and Discussion

The hardwarewas primarilymonitored for power consumption under different scenar-
ios, and resource usage. A full accuracy test was not feasible due to the low speed of
UART transmission, but to our knowledge the hardware implementation closely mim-
ics the simulations with no significant discrepancies.

Basic tests using the setup shown in figure 4.10 were first performed to make sure
the design recognizes digit samples correctly. To view the output, we used a simple
7-segment digit display driven using the network’s predicted output.

• Resource utilization Table 4.2 summarizes the resources used by our spiking
neuron network on FPGA for the two implemented types of spiking neurons.
The table was derived from the synthesis summary given by the GOWIN IDE.
It can be seen that both network types consume the same number of Look Up
Tables, Flip-flops, and Block RAMs, except for the extra DSP blocks used by the
LIF neuron due to the beta multiplication. Hence, IF network hardware system
uses less resources than the LIF network.

• Power consumption The power consumed by the FPGA board wasmeasured us-

Chapter 4. Evaluation of the Hardware SNN Implementation 55

Figure 4.10: Experimental Setup.

ing a voltmeter and an ammeter and then multiplying their results. Three trials
were performed using the same digit sample, each trial consisted of three power
consumption recordings: idle consumption, idle consumption with the reset but-
ton held, and active load consumption during spike processing.

The experiment starts with powering the board using an external 5V power sup-
ply, then sending all the network’s weights. For the idle consumption test, we
waited until the power metrics stabilized to collect the measurements: the volt-
age across the FPGA board’s power inputs, and the current flowing out of the
board towards power supply ground. We then held the board in the reset state
andmeasured its power consumption, in order to quantify the static (DC) power
leakages (Note that thanks to the HyperRAM’s self-refresh behavior, the weight
data is completely unaffected by the reset). Finally, the design was put under
load by continuously sending spike frames. The spike sample was sent in a loop,
subsequently recording the power measurements as soon as they stabilized. The
experimental setup is shown in Figure 4.10, with the only remark being that the
7-segment display was entirely removed from the circuit in order to prevent po-
tential voltage sagging or stray current losses.

Chapter 4. Evaluation of the Hardware SNN Implementation 56

Table 4.2: FPGA resource usage summary.

Module LUT4 Flip-flops BRAM (bits) DSP

Input layer Spike Index Table 29 20 6144 0
IF neuron 80 66 0 0
LIF neuron 80 66 0 4

Neuron Wrapper 14 11 4800 0Hidden layer

Spike Index Table 19 18 2048 0
IF neuron 47 61 0 0
LIF neuron 47 61 0 4Output layer

Neuron Wrapper 11 7 240 0
Output encoder 90 31 240 0
Neural network 43 3 0 0

IF network 333 217 13472 0
Total LIF network 333 217 13472 8

The same experiment was repeated three times: once with the IF neuron (us-
ing IF weights), once with the LIF neuron with a β of 0.966796875 (using LIF
weights), and once again with the LIF neuron but using a β of 1, effectively mak-
ing it behave like an IF neuron (using IF weights). The purpose of the first two
experiments was to quantify the difference in consumption depending on neuron
model dynamics, and the last experiment aimed to isolate the exact cause behind
any differences, as the LIF neuron with β set to 1 should exhibit similar spiking
characteristics to the regular IF implementation.

Table 4.3: Power consumption summary.

LIFSystem state IF
β = 0.966796875 β = 1

Idle power (mW) 220.43 252.93 250.19
Reset power (mW) 189.09 226.98 223.83
Load power (mW) 235.6 273.74 266.51

It was not unreasonable to predict that IF neurons would consume less power than
LIF neurons given the difference in spiking activity measured in Experiment II. How-
ever, setting β to one provided us with further insight. While the spiking activity
contributed a non-negligible percentage of the power consumption (a load power in-
crease of 2.71% when going from β = 1 to β = 0.966796875), it is clear that most of the

Chapter 4. Evaluation of the Hardware SNN Implementation 57

power consumed is dependent on the circuit design itself, where switching from the
multiplier-less IF to the IF-like LIF (β = 1) results in a 13.11% power increase under
load. Testing different implementations of β multiplication could provide additional
insight.

Overall, the system delivers correct results with evaluated accuracy and latency, all
while maintaining low resource utilization and power consumption.

4.4 Summary

In this chapter, we demonstrated the simulation and implementation of the proposed
design of Spiking Neural Networks on FPGA. By conducting different experiments, we
could analyze different metrics, highlighting the important experimental results and
findings, and being able to answer the question asked in the beginning of this work.

General Conclusion

This work demonstrates that neuromorphic computing is a highly interdisciplinary
field, encompassing computer science, machine learning, digital systems, and com-
putational and theoretical neurosciences. As a new generation of AI, neuromorphic
computing addresses the computational limitations and rigidity of traditional AI sys-
tems, which rely on deterministic and context-lacking interpretations of events. This
emerging technology promises to enhance AI’s capabilities to align more closely with
human cognition.

However, to be able to benefit of such paradigm, understanding the effect of mem-
brane leakages between the different neuron types on hardware is of a quite interest.
For this reason, this work attempted to propose a generic and efficient digital hardware
design of spiking neural network, implement it and test it on FPGA for a handwritten
digit classification task, adapting the benchmark dataset ”Neuromorphic-MNIST”.

The virtual neuron based methodology derived tended to allocate very low re-
sources compared to conventional architectures existing in literature, which makes it
powerful in scaling for more complex network topologies. The network was designed
in a generic manner, making it easily customizable and flexible for any other data for-
mats, spiking neuron types, and other classification tasks.

The analysis of different metrics was done based on the implementation of the two
different types of spiking neuron models, Integrate-and-Fire and Leaky Integrate-and-
Fire neurons. It was first necessary to validate the system performance by analysing its
accuracy.

The Leaky IF neuron outperformed the simple IF that does not have leaks by reach-
ing an accuracy of 97.31% and closely matched the IF neuron by reaching a 97.20%
accuracy. It was hence, clear that LIF neuron is more biologically plausible and accu-
rate than the IF neuron model.

It was then found that the Leaky IF neuron has higher spiking activity than the IF
neuron, this is due to the leak inmembrane introduced for the LIF neuron, enabling it to
spikemore than the IF. This was further justified by computing the power consumption
of both neuron models based networks, where truly the less spiky IF neuron turned to
consume slightly less power than the Leaky one with approximately 46.51 mW on our
test FPGA board.

58

General Conclusion

Further inspection included the study of system latency and resources utilization
for both networks. the two network designs uses same number of resources excepts
for the DSP blocks, which are used only by the LIF neuron network, making it complex
and expensive when converting to ASIC.

The most important findings and contributions of our work can be briefly summed
up as follows:

• We proposed a generic low resource allocation design of SNN, which tends to be
power efficient when implementing.

• The membrane leakage has a significant effect on spiking activity, hence on the
overall power consumption of the network.

• IF neuron is simple, hardware friendly, and sufficient in basic applications (low
complexity datasets.)

One of the limitations of our work is that our design do not follows the Pipe-lining
paradigm,which can be investigated in the future to decrease the system latency. More-
over, it isworth investigating the effect of synapses leakages emulated by theCUBA-LIF
neuron model, by redoing the same experiments on a modified LIF neuron to adapt
the CUBA-LIF mechanism. Furthermore, Our design was only tested and validated
on a simple classification task, adopting the benchmark dataset ”N-MNIST”, which
is not very rich in temporal information. Hence, we propose to test our network on
more rich spatio-temporal datasets, for instance: SHD (Spiking Heidelberg Digits),
CIFAR10-DVS, Tactile Braille Letters, and others. This would allow us to further study
the different types of spiking neurons and their best fit for specific tasks.

Bibliography

[1] G.E. Moore. “Cramming more components onto integrated circuits”. In: Pro-
ceedings of the IEEE 86.1 (Jan. 1998), pp. 82–85. doi: 10.1109/jproc.1998.
658762. url: https://doi.org/10.1109/jproc.1998.658762.

[2] Audrey Woods. The Death of Moore’s Law: What it means and what might fill the
gap going forward. https://cap.csail.mit.edu/death-moores-law-
what-it-means-and-what-might-fill-gap-going-forward. Ac-
cessed: 2024-06-06. 2021.

[3] Charles Shipley and Stephen Jodis. “Programming Languages Classification”.
In: Encyclopedia of Information Systems. Ed. by Hossein Bidgoli. New York: Else-
vier, 2003, pp. 545–552. isbn: 978-0-12-227240-0. doi: https://doi.org/10.
1016/B0-12-227240-4/00138-6. url: https://www.sciencedirect.
com/science/article/pii/B0122272404001386.

[4] The AGI Podcast. What is Spiking Neural Network? Accessed: 2024-06-05. 2019.
url: https://medium.com/@theagipodcast/what- is- spiking-
neural-network-fe818ecd0d1b.

[5] LenzGregor.Event Cameras. Accessed: 2024-06-05. 2023. url:https://lenzgregor.
com/posts/event-cameras/.

[6] Gideon Hinz et al. “Online Multi-object Tracking-by-Clustering for Intelligent
Transportation SystemwithNeuromorphic Vision Sensor”. In:KI 2017: Advances
in Artificial Intelligence. Ed. by Gabriele Kern-Isberner, Johannes Fürnkranz, and
Matthias Thimm.Vol. 10505. LectureNotes inComputer Science. Springer, Cham,
2017, pp. 204–216. doi: 10.1007/978-3-319-67190-1_11. url: https:
//doi.org/10.1007/978-3-319-67190-1_11.

[7] Fabrizio Ottati. Spiking Neurons: a Digital hardware implementation. Jan. 2023. url:
https://open-neuromorphic.org/blog/spiking-neurons-digital-

hardware-implementation/.

[8] Nandakumar S.R. et al. “Building Brain-Inspired Computing Systems: Examin-
ing the Role of Nanoscale Devices”. In: IEEE Nanotechnology Magazine 12 (Sept.
2018), pp. 19–35. doi: 10.1109/MNANO.2018.2845078.

60

https://doi.org/10.1109/jproc.1998.658762
https://doi.org/10.1109/jproc.1998.658762
https://doi.org/10.1109/jproc.1998.658762
https://cap.csail.mit.edu/death-moores-law-what-it-means-and-what-might-fill-gap-going-forward
https://cap.csail.mit.edu/death-moores-law-what-it-means-and-what-might-fill-gap-going-forward
https://doi.org/https://doi.org/10.1016/B0-12-227240-4/00138-6
https://doi.org/https://doi.org/10.1016/B0-12-227240-4/00138-6
https://www.sciencedirect.com/science/article/pii/B0122272404001386
https://www.sciencedirect.com/science/article/pii/B0122272404001386
https://medium.com/@theagipodcast/what-is-spiking-neural-network-fe818ecd0d1b
https://medium.com/@theagipodcast/what-is-spiking-neural-network-fe818ecd0d1b
https://lenzgregor.com/posts/event-cameras/
https://lenzgregor.com/posts/event-cameras/
https://doi.org/10.1007/978-3-319-67190-1_11
https://doi.org/10.1007/978-3-319-67190-1_11
https://doi.org/10.1007/978-3-319-67190-1_11
https://open-neuromorphic.org/blog/spiking-neurons-digital-hardware-implementation/
https://open-neuromorphic.org/blog/spiking-neurons-digital-hardware-implementation/
https://doi.org/10.1109/MNANO.2018.2845078

61

[9] Michael Pfeiffer and Thomas Pfeil. “Deep Learning With Spiking Neurons: Op-
portunities and Challenges”. In: Frontiers in Neuroscience 12 (2018). issn: 1662-
453X. doi:10.3389/fnins.2018.00774. url:https://www.frontiersin.
org/journals/neuroscience/articles/10.3389/fnins.2018.

00774.

[10] LyesKhacef,NassimAbderrahmane, andBenoı̂tMiramond. “Confrontingmachine-
learning with neuroscience for neuromorphic architectures design”. In: 2018 In-
ternational Joint Conference on Neural Networks (IJCNN). 2018, pp. 1–8. doi: 10.
1109/IJCNN.2018.8489241.

[11] Murat Isik. A Survey of Spiking Neural Network Accelerator on FPGA. 2023. arXiv:
2307.03910 [cs.AR].

[12] A.L. Hodgkin andA.F. Huxley. “A quantitative description ofmembrane current
and its application to conduction and excitation in nerve”. In: Journal of Physiol-
ogy 117 (1952), pp. 500–544.

[13] JiankunChen et al. SAR ImageClassification Based on SpikingNeuralNetwork through
Spike-Time Dependent Plasticity and Gradient Descent. June 2021.

[14] Bouanane Mohamed Sadek et al. “Impact of spiking neurons leakages and net-
work recurrences on event-based spatio-temporal pattern recognition”. In: Fron-
tiers in Neuroscience 17 (2023), p. 1244675.

[15] Qiang Yu et al. “Temporal Encoding and Multispike Learning Framework for
Efficient Recognition of Visual Patterns”. In: IEEE Transactions onNeural Networks
and Learning Systems 33.8 (2022), pp. 3387–3399. doi: 10.1109/TNNLS.2021.
3052804.

[16] Hesham Mostafa. “Supervised Learning Based on Temporal Coding in Spiking
Neural Networks”. In: IEEE Transactions on Neural Networks and Learning Systems
29.7 (2018), pp. 3227–3235. doi: 10.1109/TNNLS.2017.2726060.

[17] Ling Zhang et al. “A Cost-Efficient High-Speed VLSI Architecture for Spiking
Convolutional Neural Network Inference Using Time-Step Binary Spike Maps”.
In: Sensors 21.18 (2021). issn: 1424-8220. doi:10.3390/s21186006. url:https:
//www.mdpi.com/1424-8220/21/18/6006.

[18] Simon Davidson and Steve B. Furber. “Comparison of Artificial and Spiking
Neural Networks on Digital Hardware”. In: Frontiers in Neuroscience 15 (2021).
issn: 1662-453X. doi: 10.3389/fnins.2021.651141. url: https://www.
frontiersin.org/journals/neuroscience/articles/10.3389/

fnins.2021.651141.

https://doi.org/10.3389/fnins.2018.00774
https://www.frontiersin.org/journals/neuroscience/articles/10.3389/fnins.2018.00774
https://www.frontiersin.org/journals/neuroscience/articles/10.3389/fnins.2018.00774
https://www.frontiersin.org/journals/neuroscience/articles/10.3389/fnins.2018.00774
https://doi.org/10.1109/IJCNN.2018.8489241
https://doi.org/10.1109/IJCNN.2018.8489241
https://arxiv.org/abs/2307.03910
https://doi.org/10.1109/TNNLS.2021.3052804
https://doi.org/10.1109/TNNLS.2021.3052804
https://doi.org/10.1109/TNNLS.2017.2726060
https://doi.org/10.3390/s21186006
https://www.mdpi.com/1424-8220/21/18/6006
https://www.mdpi.com/1424-8220/21/18/6006
https://doi.org/10.3389/fnins.2021.651141
https://www.frontiersin.org/journals/neuroscience/articles/10.3389/fnins.2021.651141
https://www.frontiersin.org/journals/neuroscience/articles/10.3389/fnins.2021.651141
https://www.frontiersin.org/journals/neuroscience/articles/10.3389/fnins.2021.651141

62

[19] N. Reddy. “FPGA Realization of a High-Speed Spiking Neural Network with
Modified LIF Neurons for Pattern Recognition”. In: Tuijin Jishu/Journal of Propul-
sion Technology 44 (Oct. 2023), pp. 8526–8541. issn: 1001-4055.

[20] Anand Sankaran et al. “An Event-driven Recurrent Spiking Neural Network Ar-
chitecture for Efficient Inference on FPGA”. In: Proceedings of the International
Conference on Neuromorphic Systems 2022. ICONS ’22. Knoxville, TN, USA: As-
sociation for Computing Machinery, 2022. isbn: 9781450397896. doi: 10.1145/
3546790.3546802. url:https://doi.org/10.1145/3546790.3546802.

[21] R. Paz et al. “Test Infrastructure for Address-Event-Representation Communica-
tions”. In:Computational Intelligence and Bioinspired Systems. Ed. by JoanCabestany,
Alberto Prieto, and Francisco Sandoval. Berlin, Heidelberg: Springer Berlin Hei-
delberg, 2005, pp. 518–526. isbn: 978-3-540-32106-4.

[22] Fopefolu Folowosele et al.Wireless systems could improve neural prostheses. https:
/ / spie . org / news / 0854 - wireless - systems - could - improve -

neural-prostheses. Accessed: 2024-05-17. 2007.

[23] Y. Lecun et al. “Gradient-based learning applied to document recognition”. In:
Proceedings of the IEEE 86.11 (1998), pp. 2278–2324. doi: 10.1109/5.726791.

[24] Rui Ponte Costa et al. Cortical microcircuits as gated-recurrent neural networks. 2018.
arXiv: 1711.02448 [q-bio.NC].

[25] Lei Deng et al. “Rethinking the performance comparison between SNNS and
ANNS”. In:NeuralNetworks 121 (2020), pp. 294–307. issn: 0893-6080. doi:https:
//doi.org/10.1016/j.neunet.2019.09.005. url: https://www.
sciencedirect.com/science/article/pii/S0893608019302667.

[26] HianHian See et al. ST-MNIST – The Spiking Tactile MNISTNeuromorphic Dataset.
2020. arXiv: 2005.04319 [cs.NE].

[27] AmirrezaYousefzadeh, Teresa Serrano-Gotarredona, andBernabé Linares-Barranco.
MNIST-DVS and FLASH-MNIST-DVS Databases. http://www2.imse-cnm.
csic.es/caviar/MNISTDVS.html. Accessed: 2024-05-17.

[28] Garrick Orchard et al. “Converting Static Image Datasets to Spiking Neuromor-
phic Datasets Using Saccades”. In: Frontiers in Neuroscience 9 (2015). issn: 1662-
453X. doi:10.3389/fnins.2015.00437. url:https://www.frontiersin.
org/journals/neuroscience/articles/10.3389/fnins.2015.

00437.

https://doi.org/10.1145/3546790.3546802
https://doi.org/10.1145/3546790.3546802
https://doi.org/10.1145/3546790.3546802
https://spie.org/news/0854-wireless-systems-could-improve-neural-prostheses
https://spie.org/news/0854-wireless-systems-could-improve-neural-prostheses
https://spie.org/news/0854-wireless-systems-could-improve-neural-prostheses
https://doi.org/10.1109/5.726791
https://arxiv.org/abs/1711.02448
https://doi.org/https://doi.org/10.1016/j.neunet.2019.09.005
https://doi.org/https://doi.org/10.1016/j.neunet.2019.09.005
https://www.sciencedirect.com/science/article/pii/S0893608019302667
https://www.sciencedirect.com/science/article/pii/S0893608019302667
https://arxiv.org/abs/2005.04319
http://www2.imse-cnm.csic.es/caviar/MNISTDVS.html
http://www2.imse-cnm.csic.es/caviar/MNISTDVS.html
https://doi.org/10.3389/fnins.2015.00437
https://www.frontiersin.org/journals/neuroscience/articles/10.3389/fnins.2015.00437
https://www.frontiersin.org/journals/neuroscience/articles/10.3389/fnins.2015.00437
https://www.frontiersin.org/journals/neuroscience/articles/10.3389/fnins.2015.00437

63

[29] Ralf Engbert. “Microsaccades: a microcosm for research on oculomotor control,
attention, and visual perception”. In:Visual Perception. Ed. by S. Martinez-Conde
et al. Vol. 154. Progress in BrainResearch. Elsevier, 2006, pp. 177–192. doi:https:
//doi.org/10.1016/S0079-6123(06)54009-9. url: https://www.
sciencedirect.com/science/article/pii/S0079612306540099.

[30] TMS320C64x DSP Library Programmer’s Reference. Available at https://www.
ti.com/lit/ug/spru565b/spru565b.pdf. Texas Instruments Incorpo-
rated. 2003. Chap. Appendix A.2.

[31] DatNgo and BongsoonKang. “Taylor-Series-Based Reconfigurability of Gamma
Correction in Hardware Designs”. In: Electronics 10 (Aug. 2021), p. 1959. doi:
10.3390/electronics10161959.

[32] Ling Zhang. “A Cost-Efficient High-Speed VLSI Architecture for Spiking Con-
volutional Neural Network Inference Using Time-Step Binary Spike Maps”. In:
IEEE Transactions on Circuits and Systems I: Regular Papers 67.3 (2020), pp. 759–
772.

[33] GW1NSRSeries of FPGAProductsDatasheet. Available athttps://cdn.gowinsemi.
com.cn/DS861E.pdf. Guangdong Gowin Semiconductor Corporation. 2018.
Chap. 3.

[34] Gregor Lenz et al. Tonic: event-based datasets and transformations. Version 0.4.0.
Documentation available under https://tonic.readthedocs.io. July 2021. doi: 10.
5281/zenodo.5079802. url: https://doi.org/10.5281/zenodo.
5079802.

[35] Jakub Cabal. Simple UART for FPGA. https://github.com/jakubcabal/
uart-for-fpga. 2016.

https://doi.org/https://doi.org/10.1016/S0079-6123(06)54009-9
https://doi.org/https://doi.org/10.1016/S0079-6123(06)54009-9
https://www.sciencedirect.com/science/article/pii/S0079612306540099
https://www.sciencedirect.com/science/article/pii/S0079612306540099
https://www.ti.com/lit/ug/spru565b/spru565b.pdf
https://www.ti.com/lit/ug/spru565b/spru565b.pdf
https://doi.org/10.3390/electronics10161959
https://cdn.gowinsemi.com.cn/DS861E.pdf
https://cdn.gowinsemi.com.cn/DS861E.pdf
https://doi.org/10.5281/zenodo.5079802
https://doi.org/10.5281/zenodo.5079802
https://doi.org/10.5281/zenodo.5079802
https://doi.org/10.5281/zenodo.5079802
https://github.com/jakubcabal/uart-for-fpga
https://github.com/jakubcabal/uart-for-fpga

	Abstract
	Acknowledgments
	List of Figures
	List of Tables
	List of Abbreviations
	General Introduction
	Overview on Neuromorphic Computing
	Introduction
	Rethinking Computation
	Power Hungry Embedded AI Systems
	Moore's Law is dead
	Memory bottleneck

	Biological Neuron
	Human Visual System
	Event-Based Vision Sensors
	AI Generations
	Summary

	Overview of SNN for Inference Methodologies
	Introduction
	Artificial Neuron
	Spiking Neuron Models
	Hodgkin-Huxley Model
	Leaky Integrate-and-Fire (LIF)
	Integrate-and-Fire (IF)

	Spike Train Encoding
	SNN Topology
	Input Layer
	Hidden Layer
	Output Layer

	Address Event Representation
	Spatio-Temporal Data
	Conventional MNIST
	Event-based MNIST
	Neuromorphic-MNIST

	Numerical Representation
	Floating-point numbers
	Fixed-point numbers

	Summary

	Design and Implementation of a Hardware SNN
	Introduction
	Design of SNN Architecture
	Neuron Model
	Spike Index Table Design
	Neuron Wrapper Design
	Output Encoding Module Design
	Neural Network Design

	Implementation
	Targeted Application
	Tools and Equipment
	Planning and Preliminary Testing
	Hardware Implementation and Simulation

	Summary

	Evaluation of the Hardware SNN Implementation
	Introduction
	Latency and Spiking Activity Analysis
	Power and Resource utilization Analysis
	Data Transfer operation (PC-to-FPGA)
	Weight Memory
	Results and Discussion

	Summary

	General Conclusion

