
Abstract

I

Abstract

In an era where digital technology is transforming education, the rapid advancement

of digital tools such as simulators, virtual labs, video conferencing, and electronic learning

(E-learning) platforms underscores the necessity for flexible and accessible learning

environments.

Our project aims to create an E-Learning Web Application, named Student Portal, for

students at university. It offers both the student and the teacher experiences, ensuring that

each student receives his respective courses, with a modern, user-friendly, and accessible

interface. The frontend is developed using the React framework and Tailwind providing a

simple and clear user interface with efficient rendering. On the backend, Node.js and

Express.js deliver a scalable, non-blocking environment for handling real-time requests,

while MongoDB offers flexible, schema-less data management for evolving application

needs. Lastly, it is created with security as its core basis, implementing the latest

authentication and web security technologies utilizing JSON Web Tokens, Cross-origin

resource sharing (CORS), and bcryptJs.

By providing a modern, adaptable, and secure solution, Student Portal enhances the

accessibility and efficiency of educational delivery, meeting the diverse needs of today's

learners.

Keywords: HTML, CSS, Javascipt, React, NodeJS, ExpressJS, UML, Web developement, E-

learning, Coures.

Dedication

II

Dedication

To my parents, who planted the seed of knowledge in my mind and nurtured it.

To my dear siblings, Karim, Yasmine, and Mohamed.

To my friends who believed in me when I didn't and stood by my side.

To the pursuit of knowledge and the ones who make it possible, my teachers.

To everyone who lent a hand, each act of your kindness and support made a difference.

To myself, for showing up, pushing through, and finishing what I started.

Acknowledgements

III

Acknowledgment

First and foremost, I would like to praise Allah the Almighty, the Most Gracious, and

the Most Merciful for His blessing given to me during my study path and in completing this

project.

I would also like to express our sincere gratitude to my supervisor Dr. Sadouki Leila

for her continuous support, assistance, patience, and valuable feedback. Her guidance was

priceless for the realization of this project.

My deep appreciation also goes to all who supported me through my educational

journey at the Institute of Electrical and Electronics Engineering of the University M’Hamed

BOUGARA – Boumerdes.

Table of Contents

IV

Table of Contents

Abstract .. I

Dedication .. II

Acknowledgment .. III

Table of Contents .. IV

List of Figures ... VII

List of tables ... VIII

List of Abbreviations .. IX

General Introduction ... 1

Chapter 1: Web Development and E-learning Overview ... 3

1.1 Introduction ... 3

1.2 Web Development Overview .. 3

1.2.1 Definition .. 3

1.2.2 Frontend and Backend .. 4

1.2.3 Web Server and Web Client .. 4

1.2.4 Web Request ... 5

1.2.5 Web Hosting ... 6

1.2.6 Web Development Fundamental Technologies .. 7

1.2.7 Data and Databases ... 7

1.2.8 Libraries and Frameworks .. 8

1.2.9 Application Programming Interfaces (APIs) and REST API .. 9

1.2.10 The Document Object Model (DOM) ... 9

1.2.11 Static and Dynamic Websites ... 10

1.2.12 Single Page Websites .. 10

1.3 Student Portal and E-Learning .. 11

1.3.1 Definition .. 11

1.3.2 Existing E-Learning Platforms .. 11

1.4 Conclusion .. 14

Table of Contents

V

Chapter 2: Tools and Technologies .. 15

2.1 Introduction ... 15

2.2 Modeling Tools ... 15

2.2.1 Modeling Language .. 15

2.2.2 Unified Modeling Language (UML) ... 15

2.3 Development Tools ... 16

2.3.1 Visual Studio Code ... 16

2.3.2 Node Packet Manager (NPM) ... 16

2.3.3 Web Browser .. 16

2.3.4 Git and GitHub .. 17

2.4 Front-End Tools .. 17

2.4.1 Hyper Text Markup Language (HTML) ... 17

2.4.2 Cascading Style Sheets (CSS) ... 18

2.4.3 Tailwind CSS .. 18

2.4.4 JavaScript .. 19

2.4.5 React ... 19

2.4.6 Redux .. 19

2.4.7 Axios ... 20

2.5 Back-End Tools .. 20

2.5.1 NodeJs ... 20

2.5.2 ExpressJs ... 20

2.5.3 MongoDB ... 21

2.5.4 Mongoose .. 22

2.5.5 Multer .. 22

2.5.6 JavaScript Object Notation Web Token .. 22

2.5.7 BcryptJs ... 23

2.5.8 Cross-Origin Resource Sharing (CORS) .. 23

2.6 Conclusion .. 23

Chapter 3: System Design ... 24

Table of Contents

VI

3.1 Introduction ... 24

3.2 System Modeling .. 24

3.2.1 System Actors ... 24

3.2.2 Use Case Description .. 24

3.2.3 Use Case Identification ... 25

3.2.4 Use Case Diagrams ... 27

3.3 Database Design .. 29

3.3.1 Database Description .. 29

3.3.2 Relationships Between Documents ... 35

3.4 Conclusion .. 38

Chapter 4: Implementation ... 39

4.1 Introduction ... 39

4.2 Application Interfaces ... 39

4.2.1 Login Interface .. 39

4.2.2 Dashboard Interface .. 41

4.2.3 Profile Interface... 42

4.2.4 Courses Interface... 45

4.2.5 Course Interface .. 48

4.2.6 Edit Course Interface .. 50

4.2.7 Lecture Interface ... 55

4.3 Conclusion .. 57

Future Enhancements .. 58

General Conclusion ... 60

References ... 61

List of Tables and Figures

VII

List of Figures

Figure 1-1: Web Server and Web Clients Relationship ... 5

Figure 1-2: Web request... 5

Figure 1-3: Document Object Model structure example ... 10

Figure 1-4: EducateMe website ... 12

Figure 1-5: Google Classroom website.. 13

Figure 1-6: Moodle Platform ... 13

Figure 2-1: HyperText Markup Language ... 18

Figure 2-2: Cascading Style Sheets ... 18

Figure 2-3: JavaScript .. 19

Figure 2-4: MongoDB data storage .. 21

Figure 3-1: Teacher use case diagram ... 28

Figure 3-2: Student use case diagram .. 29

Figure 3-3: Database collections interface ... 30

Figure 3-4: User document example .. 31

Figure 3-5: Course document example .. 33

Figure 3-6: Announcement document example ... 34

Figure 3-7: Embedded data in a document .. 36

Figure 3-8: Referenced data in a document ... 36

Figure 3-9: Entity Relationship Diagram ... 38

Figure 4-1: Login initial page .. 40

Figure 4-2: Login form .. 40

Figure 4-3: Login page errors .. 41

Figure 4-4: Dashboard page ... 42

Figure 4-5: User profile dropdown .. 42

Figure 4-6: Profile details page for a teacher ... 43

Figure 4-7: Profile details page for a student ... 43

Figure 4-8: Edit profile page .. 44

Figure 4-9: Edit profile page after filling in the new information ... 44

Figure 4-10: Profile page after submitting the changes ... 45

Figure 4-11: Courses page for a student .. 45

Figure 4-12: Courses page for a teacher .. 46

file:///C:/Users/prett/Desktop/Project%20Report.docx%23_Toc178019069

List of Tables and Figures

VIII

Figure 4-13: Add a course modal ... 46

Figure 4-14: Add a course modal showing errors .. 47

Figure 4-15: Add a course modal when submitting a new course ... 47

Figure 4-16: Courses page after a new course is added ... 48

Figure 4-17: Course page for the student ... 49

Figure 4-18: Course page for the teacher ... 49

Figure 4-19: Delete course popup .. 50

Figure 4-20: Edit course page .. 51

Figure 4-21: Edit course details form .. 51

Figure 4-22: Edit course form after submission .. 52

Figure 4-23: Delete lecture popup ... 52

Figure 4-24: Add lecture modal ... 53

Figure 4-25: Add announcement modal .. 53

Figure 4-26: Lecture form upload .. 54

Figure 4-27: Lecture form successful upload .. 54

Figure 4-28: Edit course page after the refresh .. 55

Figure 4-29: Lecture page .. 55

Figure 4-30: Lecture page after pressing the "Mark as done" button 56

Figure 4-31: Lecture page displaying a video lecture .. 56

List of tables

Table 3-1: Use Case description table ... 25

Table 3-2: Use Case diagram notations ... 27

Table 3-3: Entity relationship diagram notations... 37

List of Abbreviations

IX

List of Abbreviations

API: Application Programming Interface

CORS: Cross-Origin Resource Sharing

CLI: Command Line Interface

CSS: Cascading Style Sheets

DOM: Document Object Model

HTTP: Hypertext Transfer Protocol

I/O: Input/Output

JWT: JSON Web Token

JSON: JavaScript Object Notation

LMS: Learning Management System

MOOC: Massive Open Online Course

NPM: Node Package Manager

NoSQL: Not Only SQL

REST: Representational State Transfer

RGB: Red Green Blue

SQL: Structured Query Language

UML: Unified Modeling Language

URL: Uniform Resource Locator

VPS: Virtual Private Server

XSRF: Cross-Site Request Forgery

ODM: Object Data Modeling

General Introduction

1

General Introduction

Programs are the building blocks of modern civilization [1]. Recent years have

witnessed an evolution of digital technologies in the field of education. From simulators and

virtual labs, video conferencing tools, and educational games, to e-learning platforms, the

development rate was increasingly expanding due to the growing demand for flexible and

accessible learning solutions, geographical constraints, and most importantly, the COVID-19

pandemic.

E-learning platforms provide online environments where learners can access

educational content, interact with their instructors and classmates, and complete assignments

and assessments remotely. From massive open online courses (MOOCs) to specialized

learning management systems (LMS), e-learning platforms offer a wide range of options for

individuals seeking to acquire new knowledge and skills.

Many students face geographical constraints that prevent them from attending

traditional on-campus courses, whether due to distance, transportation issues, or work

commitments. These challenges have been worsened by the COVID-19 pandemic, which has

forced educational institutions worldwide to adapt to remote learning environments to ensure

the safety of students and staff. As a result, there is an urgent need to overcome these

geographical constraints by offering online courses through e-learning platforms, enabling

students to pursue higher education regardless of their location. The transition to e-learning

has become a necessity to ensure the continuity of education during these times and to

provide students with the flexibility and accessibility they need to continue their academic

pursuits amidst the challenges posed by the pandemic.

A web application is the most suited solution for addressing this need because it's

easy to use, works on any device with an internet connection, and doesn't require installation.

Students can access their courses from desktops, laptops, tablets, or smartphones. Moreover,

website updates are automatic, so everyone always has the latest materials. Web apps can

handle large numbers of users without extra costs, making them ideal for schools. Overall,

they offer a convenient and adaptable platform for today's learners.

General Introduction

2

The "Student Portal" project aims to develop a comprehensive e-learning web

application tailored for university students. It offers an intuitive, user-friendly platform that

facilitates remote education through features like course management, announcements, and

lectures. Built using cutting-edge web development technologies, namely the React and

ExpressJs frameworks, this project ensures compatibility across all devices, while

maintaining security measures aligned with university policies, and safeguarding user data

through advanced authentication and web security protocols.

This report is divided into four main chapters. It begins with Chapter 1, offering a

comprehensive overview of the project, including insights into web development and the

significance of a student portal for e-learning. Chapter 2 dives into the tools and technologies

utilized, ranging from development tools to the programming languages used. Additionally,

Chapter 3 explores system modeling and database design, emphasizing the significance of

effective data management. Chapter 4 provides a detailed account of the implementation

process. We close our report with Future Enhancements, which outlines potential avenues for

project development, and a Conclusion that reflects on key findings contributions.

Chapter 1: Project Overview

3

Chapter 1: Web Development and E-learning Overview

1.1 Introduction

In today's digital era, technology has remarkably impacted education, reshaping

traditional learning methods and offering new opportunities for knowledge sharing. This

chapter begins with an overview of web development and its essential building blocks.

Additionally, it discusses the importance of E-learning in addressing modern educational

challenges. This introduction lays the groundwork for further exploration of our project's

objectives and outcomes in subsequent chapters.

1.2 Web Development Overview

1.2.1 Definition

web development is a discipline that encompasses all the activities involved in

creating, designing, putting online, and marketing maintenance of a website or web

application. This can range from the creation of a simple static page (composed solely of text

and images) to the creation of interactive sites with databases and advanced user interfaces

[2].

Building a website includes the following stages:

• Needs analysis Development: the development team must first determine the

objectives and expected functionalities of the site or application to be developed.

• Design: Once the first stage has been completed, the developers draw up the design

and technical architecture of the website in line with the needs expressed above.

• Development Programming: web developers then work on programming and writing

the code needed to implement the site's functionalities.

• Testing and integration: Before putting the site online, it is crucial to test that it

works properly and to integrate the graphic elements created by the designers.

• Going into production Development: once the project has been finalized, the

developers put the site or application online. This stage generally requires a good

knowledge of web servers and hosts.

Chapter 1: Project Overview

4

• Maintenance and upgrading: Finally, a good web developer must be able to maintain

his work and develop it in line with user needs and new technologies [2].

1.2.2 Frontend and Backend

Frontend and Backend are the two most popular terms used in web development.

Essentially, the difference between them is that the frontend of a website is what you see and

interact with on your browser. Also referred to as client-side, it includes everything the user

experiences directly: from text and colors to buttons, images, and navigation menus. And the

backend (or “server-side”) is the portion of the website you don’t see. It’s responsible for

storing and organizing data, and ensuring everything on the client side works. While these

two types of programming are certainly distinct from one another, they’re also like two sides

of the same coin. A website’s functionality relies on each side communicating and operating

effectively with the other as a single unit [3]. The languages used for the frontend are HTML,

CSS, and JavaScript while those used for the backend include Java, Ruby, Python, and

Node.js.

1.2.3 Web Server and Web Client

The primary function of the Web Server is the storage, processing, and administration

of websites. It is a computer system capable of storing both the website (HTML, JS, CSS, and

media files, …etc) and the user data as databases. Web servers handle incoming web requests

and provide security to web applications through encryption and authentication mechanisms.

The Web Client, on the other hand, is a software application that communicates with

the web server. By using Hypertext Transfer Protocol (HTTP) to perform the web request, it

allows the end-users to interact with the website to request or send data. The web client can

be either a browser, a phone application, or a desktop app.

Chapter 1: Project Overview

5

Figure 1-1: Web Server and Web Clients Relationship

1.2.4 Web Request

A web request is a request made by a client, such as a web browser, to a server in

order to retrieve a web page or other resource. Web requests are sent using the Hypertext

Transfer Protocol (HTTP), which is a standard protocol for transmitting data on the World

Wide Web. When a user enters a URL into a web browser or clicks on a hyperlink, the

browser sends a web request to the website’s server. The server then responds by sending the

requested resource back to the client [4].

Figure 1-2: Web request

a) HTTP Request and Response

HTTP is the core operational protocol of the Internet. It is the set of rules governing

the communication between the web server and the web clients. It is a request-response

protocol. As for the HTTP request, there are five types as follows:

• GET: This type of request is made on behalf of a client when it’s seeking data from a

specified resource. Once the client has requested a resource, the server will process

the request, get the information or data, and send it back to the client.

Chapter 1: Project Overview

6

• POST: The purpose of POST is to send data or information to the server. It is often

used when uploading a file or sending messages.

• PUT: This method allows the target to be entirely replaced with a new resource. PUT

should be utilized to replace or overwrite a resource that the client is clearly aware of.

• PATCH: This method is simply used to modify a specific part of the resource. While

it is similar to the PUT method, PATCH aims only to update or modify rather than

replace.

• DELETE: This method sends a request to the server to delete a resource. While this

is a possibility, it is not the most preferred choice [4].

A web request contains three parts, the request line, the request header, and the body.

A request line can be something like:

GET /home.html HTTP/1.1

On the other hand, the HTTP response contains a status code and message that

explains the response type and acts as feedback to the HTTP request. The categories of the

response are listed below:

• Code Range [100, 199] Information: Provides provisional information.

• Code Range [200, 299] Successful: The web request was successfully processed.

• Code Range [300, 399] Redirect: Moves the web page to a different path.

• Code Range [400, 499] Client Error: Either bad syntax or content.

• Code Range [500, 599] Server Error: Failure in server.

A web response also contains three parts, the response line, the header, and the body.

A response line may look like:

HTTP/1.1 200 OK

1.2.5 Web Hosting

Web hosting is an online service that enables you to publish your website or web

application on the internet, namely on a web server. It can be either of the following cases:

Chapter 1: Project Overview

7

• Shared Hosting: It is when many accounts are hosted in the same web server, which

makes all websites share performance and storage. This is especially good for small

websites and practice environments, and it can be free with the cost of running ads.

• VPS Hosting: VPS stands for Virtual Private Surface. This hosting grants each

account a fixed amount of resources on the server, which allows the performance to

stay stable. This web hosting is more expensive than the previous one.

• Dedicated Hosting: In this type of hosting, the account gets the full resources of the

web server as its website is being hosted alone. It is the most expensive server

hosting.

• Cloud Hosting: Cloud computing is the new trend of the internet, in which the

website is hosted in a cloud environment (i.e., a collection of many virtual and

physical servers). If one of the servers fails, the other works. It offers no limits on

resources, which makes it have a relatively higher cost depending on the resources

used.

1.2.6 Web Development Fundamental Technologies

The three fundamental building blocks of web development are HTML, CSS, and

JavaScript. Think of a shop, HTML is the actual building, the structure, CSS is the interior

decoration and landscaping outside, and JavaScript is just like the business, the services

offered and the people coming in and out.

 HTML stands for Hypertext Markup Language. It does not matter how big or

complicated your website is going to be; you will always start with HTML. It is the standard

language to create structures for the web [5]. Cascading Style Sheets or commonly known as

CSS is the presentation part of a web page. HTML creates a structure, and CSS converts it

into an attractive and more readable version. It is all about the color, style, and

responsiveness of the web page. Lastly, JavaScript is a scripting language that allows you to

control the behavior of your website and responses to user interactions. It is used on client-

side as well as server-side. Further information will be discussed in the following chapter.

1.2.7 Data and Databases

The data layer is a large information warehouse. It includes a database repository that

collects and saves data from the front end to the back end. It is where all the dynamic

Chapter 1: Project Overview

8

information is stored. To manage this information effectively, it can be stored in different

types of databases, which are primarily categorized into Relational and Non-Relational

Models.

• Relational and Non-Relational Databases

A relational database, also called a Relational Database Management System

(RDBMS) or SQL database, stores data in tables and rows also referred to as records. A

relational database works by linking information from multiple tables through the use of

“keys.” A primary key is a unique identifier for a row in one table, and when this key is

added to a related record in another table, it becomes a foreign key. The connection between

the primary and foreign key then creates the “relationship” between records contained across

multiple tables. Some of the more popular SQL databases are MySQL, PostgreSQL, SQLite,

and MariaDB [6].

The non-relational database, or NoSQL database, stores data. However, unlike the

relational database, there are no tables, rows, primary keys, or foreign keys. Instead, the non-

relational database uses a storage model optimized for specific requirements of the type of

data being stored. There are five popular non-relational types: document store, column-

oriented database, key-value store, and graph database. Often combinations of these types

are used for a single application. Some of the more popular NoSQL databases are MongoDB,

Apache Cassandra, Redis, and Apache HBase [6].

1.2.8 Libraries and Frameworks

It is possible to create a web page from the ground up, but it would take a long time,

especially if additional complexity is needed to be added. JavaScript frameworks can be

helpful in this situation. A framework for the website is similar to a pre-packaged structure of

pre-written code that defines how programs should interact. Frameworks help develop faster

and more efficiently. One of the most popular JavaScript frameworks is React [7].

Libraries, however, are reusable code that other developers have written to perform

specific tasks or functions. Unlike frameworks, libraries do not impose a particular structure

or architecture on the project, thus they are easier to replace, but instead, provide utility

functions or modules that can be integrated into the code as needed. A Notable JavaScript

Library is Mongoose.

Chapter 1: Project Overview

9

1.2.9 Application Programming Interfaces (APIs) and REST API

API, or an Application Programming Interface, is an interface that connects one

application to another through the end-points that the second offers. The first uses a key for

each end-point to either access data or get a job done. APIs allow frontend developers to

collect, modify, and delete data from a backend database.

An API is... I like to think of it as a digital librarian. Imagine having books stored in a

library and you need to use these books for a report. So, you go to the librarian and ask to

check out a book. You need to tell the librarian certain keywords (let's say the name of the

book and the name of the author) and have the right authorization (in this case, a library card)

to get this book. Now replace 'library' with 'server', 'books' with 'data', 'report' with 'website',

and 'librarian' with 'API' [8].

Common types of APIs encompass browser APIs, RESTful APIs, and sensor-based

APIs. a REST API (Representational State Transfer API) is a specific type of API that

follows the Representational State Transfer guidelines. It is a simple, uniform interface that is

used to make data, content, media, and other digital resources available through web URLs.

REST API defines how clients can request and manipulate data from a server using standard

HTTP methods like GET, POST, PUT, and DELETE.

1.2.10 The Document Object Model (DOM)

The DOM stands for Document Object Model. When the HTML file is loaded into a

browser, a tree-like structure is created. This structure has various nodes, and these nodes

represent various elements of the HTML document. The DOM structure of the HTML

document will look like the following structure [5].

Chapter 1: Project Overview

10

Figure 1-3: Document Object Model structure example

With JavaScript, it is possible to manipulate almost everything in HTML such as

content and styles, and even add new elements and remove the existing ones, which helps the

website be dynamic [5].

1.2.11 Static and Dynamic Websites

When you open a website, a web server sends the website's content to your browser.

The content can be static or dynamic. Static content is files that the server transfers just as

they are stored on the web server, such as videos or images. Dynamic content, on the other

hand, is generated when the HTTP request is made. For example, the content may be

generated based on input from a user, or when you visit a news website, it would be based on

the current date. What actually happens, is that the web server communicates with another

kind of server, called an application server or a back-end. The application server generates

the dynamic content that the web server sends back to the user's browser. This process allows

different users to see different contents on the web pages, which marks the website to be

dynamic.

1.2.12 Single Page Websites

The best request is no request, both for the client and the server [9]. Single-page web

applications are a relatively new idea. Instead of a website requiring a network request every

time the user navigates to a different page, a single-page web application downloads the

entire site (or a good chunk of it) to the client’s browser. After that initial download,

navigation is faster because there is little or no communication with the server. Single-page

Chapter 1: Project Overview

11

application development is facilitated by the use of popular frameworks such as React or

Angular [10].

1.3 Student Portal and E-Learning

1.3.1 Definition

E-learning is a fast and efficient way of providing and sharing knowledge with

learners in different parts of the world. It uses the Internet or other digital content for learning

and education activities and takes full advantage of modern educational technology to

provide a new mechanism for communication and a learning environment rich in resources to

achieve a new way of learning [11] [12].

1.3.2 Existing E-Learning Platforms

• EducateMe

EducateMe is a collaborative LMS platform designed to help instructors create hitch-

free learning sessions and students learn simultaneously. For effective collaboration,

EducateMe offers great peer-review options, group assignments, and in-built engagement

tools. Besides, it has progressive cohort management and reporting, as you can track all

student assignments from the unified dashboard, displaying deadlines and the progress of

students [13].

Chapter 1: Project Overview

12

Figure 1-4: EducateMe website

• Google Classroom

Google Classroom is a free teaching and learning service for schools, non-profits, and

anyone with a Google account. The focus on assignments and collaboration makes it suitable

for high school and college classrooms, as well as for distance learning and flipped

classrooms. For students, Google Classroom is a convenient tool to access their assignments

and course materials, submit papers, and communicate with their teachers and classmates

[13].

Chapter 1: Project Overview

13

Figure 1-5: Google Classroom website

• Moodle Platform

Moodle is an open-source, feature-rich, secure, and scalable learning management

system that integrates seamlessly with other platforms and can be customized for any

teaching or training method you choose. The software is used by over 30 million students

around the world. Moodle allows trainers to create their course materials and add them to a

virtual library [13].

Figure 1-6: Moodle Platform

Chapter 1: Project Overview

14

1.4 Conclusion

In this chapter, we had an overview of web development and its essential building

blocks. Furthermore, we discussed the importance of E-learning in addressing modern

educational challenges. This chapter served as a foundation for the next chapter, in which we

will cover the specific tools used in this project.

Chapter 2: Tools and Technologies

15

Chapter 2: Tools and Technologies

2.1 Introduction

This chapter introduces the tools and technologies used in the project. It covers

development tools like Visual Studio Code, NPM, Git, and GitHub, along with front-end

technologies such as HTML, CSS, React, and Redux. It also explores back-end technologies,

including NodeJs, ExpressJs, MongoDB, and security tools like JSON Web Token and

BcryptJs.

2.2 Modeling Tools

2.2.1 Modeling Language

A modeling language is any artificial language that can be used to express

information, knowledge, or systems in a structure that is defined by a consistent set of rules.

The rules are used for interpretation of the meaning of components in the structure. A

modeling language can be graphical or textual. Graphical modeling languages use diagram

techniques with named symbols that represent concepts and lines that connect the symbols

and that represent relationships and various other graphical annotations to represent

constraints. Textual modeling languages typically use standardized keywords accompanied

by parameters to make computer-interpretable expressions [14].

2.2.2 Unified Modeling Language (UML)

Unified Modeling Language (UML) is a general-purpose modeling language that is an

industry standard for specifying software-intensive systems. UML 2.0, the current version,

supports thirteen different diagram techniques and has widespread tool support [14]. UML

diagrams are used to portray the behavior and structure of a system. They can be categorized

into two main types:

a) Structural Diagrams: These represent the static aspects of a system, such as

the organization of system components and their relationships. They include

Class Diagrams and Object Diagrams.

Chapter 2: Tools and Technologies

16

b) Behavioral Diagrams: These focus on the dynamic aspects of the system,

such as how it responds to inputs and the flow of control and data. Examples

include Use Case Diagrams and Sequence Diagrams.

2.3 Development Tools

2.3.1 Visual Studio Code

Visual Studio Code is a lightweight but powerful source code editor that runs on your

desktop and is available for Windows, macOS, and Linux. It comes with built-in support for

JavaScript, TypeScript, and Node.js and has a rich ecosystem of extensions for other

languages and runtimes (such as C++, C#, Java, Python, Go, .NET) [15]. It is the most used

code editor for web development.

2.3.2 Node Packet Manager (NPM)

NPM is the world's largest software registry. Open-source developers from every

continent use npm to share and borrow packages, and many organizations use npm to manage

private development as well [16]. Simply put, NPM is like a giant online store for software

tools and libraries that developers use to build websites and applications.

npm consists of three distinct components:

• The website: Use the website to discover packages, set up profiles, and manage other

aspects of your npm experience. For example, you can set up organizations to manage

access to public or private packages.

• The Command Line Interface (CLI): The CLI runs from a terminal, and is how

most developers interact with npm.

• The registry: The registry is a large public database of JavaScript software and the

meta-information surrounding it [16].

2.3.3 Web Browser

A web browser is a software application used to access information on the World

Wide Web. It allows users to view web pages, browse websites, and interact with online

content. Web browsers use the Hypertext Transfer Protocol (HTTP) to request web pages

Chapter 2: Tools and Technologies

17

from web servers and display them on the user's device. They interpret HTML (Hypertext

Markup Language), CSS (Cascading Style Sheets), and JavaScript code to render web pages

with text, images, videos, and interactive elements. Popular web browsers include Google

Chrome, Mozilla Firefox, Apple Safari, Microsoft Edge, and Opera.

2.3.4 Git and GitHub

Version control, also known as source control, is the practice of tracking and

managing changes to software code. Version control systems are software tools that help

software teams manage changes to source code over time. As development environments

have accelerated, version control systems help software teams work faster and smarter [17].

Git, the most widely used modern version control system, is essential for tracking and

controlling code changes, as well as facilitating collaboration. It manages projects with

repositories1 and allows one to work on different parts and versions of a project by offering

branches and a merging ability. GitHub, a cloud-based platform that extends Git's

functionality, provides additional tools for project management, enabling developers to store

repositories online, collaborate more easily, and manage multiple project versions efficiently.

2.4 Front-End Tools

2.4.1 Hyper Text Markup Language (HTML)

The basic programming language for web creation is HTML. It contains the essential

elements of a website, such as words, titles, images, links, and paragraphs. HTML is made up

of a set of pre-defined tags that represent various functions and subsequently "translate" into

understandable information on the screen. These tags are always written between angle

brackets [7].

1 Repositories are central locations in which data is stored and managed.

Chapter 2: Tools and Technologies

18

Figure 2-1: HyperText Markup Language

2.4.2 Cascading Style Sheets (CSS)

Cascading Style Sheets, or CSS, is a style sheet that describes how HTML

components appear on a page. CSS is used to manage your website's appearance, style, and

formatting, including RGB values, border colors, background pictures, and more. CSS files

specify a set of rules for defining a set of properties and their values [7].

Figure 2-2: Cascading Style Sheets

Additionally, CSS plays a crucial role in making websites responsive, ensuring that

web pages adapt and display properly on various devices and screen sizes. By using CSS

media queries, flexible grid, and fluid images, developers can create layouts that adjust

dynamically to provide optimal viewing experiences across desktops, laptops, tablets, and

smartphones.

2.4.3 Tailwind CSS

Tailwind CSS is a utility-first CSS framework that streamlines web development by

providing a set of pre-designed utility classes. These classes enable rapid styling without

writing custom CSS, promoting consistency and scalability. Tailwind’s approach shifts focus

from traditional CSS components to functional classes, empowering developers to efficiently

build responsive and visually appealing interfaces with minimal effort [18].

Chapter 2: Tools and Technologies

19

2.4.4 JavaScript

JavaScript is a scripting language that allows you to control the behavior of your

website. It is one of the most widely used programming languages in the world, with a low

entry barrier and instant results based on your code's success. By manipulating different

HTML and CSS elements, JavaScript makes web pages interactive. Using JavaScript, a user

may click a button, scroll to the bottom of a page, or see pictures in a rolling carousel [7].

Figure 2-3: JavaScript

2.4.5 React

React is a free and open-source front-end JavaScript framework for building user

interfaces based on components. It is maintained by Meta and a community of individual

developers and companies.

React lets the developer build user interfaces out of individual pieces called

components. Create his own React components like Thumbnail, DeleteButton, and Modals.

Then combine them into entire screens, pages, and apps [19]. Whether he works on his own

or with thousands of other developers, using React feels the same. It is designed to let him

seamlessly combine components written by independent people, teams, and organizations

[20].

2.4.6 Redux

Redux is a JS library for predictable and maintainable global state2 management. It

helps you write applications that behave consistently, run in different environments (client,

2 State refers to an object that holds the data or information that a component or application needs to manage

and render. State is dynamic, meaning it can change over time based on user interactions, API responses, or

other factors.

Chapter 2: Tools and Technologies

20

server, and native), and are easy to test [21]. Redux provides a structured way to manage

states across the entire application, making it easier to handle complex state interactions and

ensuring that state changes are reflected on various parts of the application.

2.4.7 Axios

Axios is a client HTTP API and library based on the “XMLHttpRequest” interface

provided by browsers. It allows developers to make simple requests to either their server or a

third-party server to fetch data while ensuring wide browser support. It can be used to

intercept HTTP requests and responses and enables client-side protection against XSRF, and

it also can cancel requests. The key difference between using Axios and using the native API

lies in the level of abstraction and ease of use in addition to the additional features Axios

offers.

2.5 Back-End Tools

2.5.1 NodeJs

Node.js is a free, open-source, cross-platform JavaScript runtime environment that

lets developers create servers, web apps, command line tools, and scripts [22]. Node.js runs

JavaScript by utilizing V8, Google’s fast JavaScript engine designed for Chrome. This allows

Node.js to create a runtime environment that pushes JavaScript from the server to the client

quickly. Node.js has an event-driven architecture capable of asynchronous I/O that is

provided by the libuv C library. These design choices aim to optimize throughput and

scalability in web applications with many input/output operations, as well as for real-time

Web applications [22].

2.5.2 ExpressJs

Express is a minimal and flexible Node.js web application framework that provides a

robust set of features for web and mobile applications [23]. It is the underlying library for

several other popular Node.js frameworks. It provides mechanisms to:

• Write handlers for requests with different HTTP verbs (methods) at different

URL paths (routes).

• Integrate with "view" rendering engines to generate responses by inserting

data into templates.

Chapter 2: Tools and Technologies

21

• Add additional request processing "middleware" at any point within the

request handling pipeline.

• Scale applications by organizing routes, middleware, and logic into modular

components, making it ideal for building both small APIs and large, complex

web applications [24].

2.5.3 MongoDB

MongoDB is an open-source document-oriented non-relational database that is

designed to store a large scale of data and also allows the user to work with that data very

efficiently. It is a powerful and flexible solution for handling modern data needs. Unlike

traditional relational databases, MongoDB’s document-oriented architecture allows for

greater agility and scalability, making it a preferred choice for businesses and developers

aiming to handle large volumes of unstructured or semi-structured data. Because of its

NoSQL model, the data is stored in collections and documents. Hence the database,

collection, and documents are related to each other as shown below [25]:

Figure 2-4: MongoDB data storage

MongoDB was chosen for this project for its ability to handle unstructured and

dynamic data, offering flexibility without predefined schemas. This is ideal for educational

platforms, which deal with diverse and dynamic data like courses, assignments, multimedia,

and user interactions. Additionally, MongoDB's scalability and support for horizontal scaling

make it ideal for handling large volumes of data or high-traffic applications. It is optimized

for high-performance operations, making it well-suited for the real-time data processing

needs of an e-learning website, such as submitting assignments, participating in discussions,

or accessing course materials.

Chapter 2: Tools and Technologies

22

2.5.4 Mongoose

Mongoose is a JavaScript ODM (Object Data Modeling) library that creates a

connection between MongoDB and the Node.js JavaScript runtime environment. It provides a

straightforward, schema-based solution to model application data [26].

2.5.5 Multer

Multer is a Node.js middleware for handling multipart/form-data. It simplifies the

process of handling file uploads in Node.js making it an essential tool for developers dealing

with user-generated content [27]. It can process both single and multiple file uploads. It also

provides options to filter files, set size limits, and manage file storage.

2.5.6 JavaScript Object Notation Web Token

JSON Web Token, or JWT, is an open standard (RFC 75193) used to create compact,

self-contained tokens for securely transmitting information between different applications or

services. These tokens are typically used for authentication and authorization, as they can

contain information that verifies the identity of a user, and their permissions. In terms of

authentication, the information stored in the JWT is used to help servers establish trust

between an unknown client and themselves. JWTs work by encoding a set of claims into a

compact, URL-safe string. This string can be easily transmitted over the network and verified

by the receiver. The three main components of a JWT are the:

• Header

• Payload

• Signature

With these three components, JWTs allow developers to build a stateless

authentication or authorization flow that is easily scalable and eliminates the need for servers

to maintain session information. All three of these parts are Base64Url encoded strings

concatenated with periods ('.') [28].

3 RFC stands for Request for Comments. It is a series of documents that describe various specifications,

protocols, and standards related to the Internet and computer networking published by the Internet Engineering

Task Force (IETF). RFC 7519 is a technical specification document that outlines the standards and guidelines

for JSON Web Tokens (JWT).

Chapter 2: Tools and Technologies

23

2.5.7 BcryptJs

Bcrypt is a password-hashing4 function designed by Niels Provos and David

Mazières, based on the Blowfish cipher and presented at USENIX in 1999. The bcrypt

hashing function allows developers to build a password security platform that scales with

computation power so it remains resistant to brute-force search attacks. And always hashes

every password with a salt to protect against rainbow table attacks.

2.5.8 Cross-Origin Resource Sharing (CORS)

Cross-Origin Resource Sharing, or CORS, is an HTTP-header-based mechanism that

allows a server to indicate any origins (domain, scheme, or port) other than its own from

which a browser should permit loading resources. It helps prevent unauthorized access to

resources from websites that a browser shouldn't trust by default [29]. CORS is also a node.js

package for providing an Express middleware that can be used to enable the CORS

mechanism with various options.

2.6 Conclusion

This chapter provided an overview of the key tools and technologies used in the

development process. By covering both front-end and back-end frameworks, along with

essential development tools, it established a solid foundation for building and managing the

project's infrastructure.

4 Password hashing is the practice of algorithmically transforming plain-text passwords into secure, fixed-length

hashes that are difficult to reverse-engineer, as a means of blocking against the threat of hacking.

Chapter 3: System Design

24

Chapter 3: System Design

3.1 Introduction

This chapter focuses on the design phase of the system. Beginning with system

modeling, it introduces key elements such as system actors, use-case descriptions,

identifications, and diagrams to visually represent system interactions. The chapter then

transitions to database design, providing a detailed description of the database structure and

the relationships between documents. This sets the stage for understanding the system's

functionality and data flow.

3.2 System Modeling

3.2.1 System Actors

System actors are the entities that interact with the system. In our system, the primary

actors include:

a) Teacher: The teacher creates and manages courses and their content, creates

assignments, and grades students’ submissions.

b) Student: The student accesses his courses and their content, views his assignments,

and submits his work for evaluation.

Actors are typically represented in use case diagrams in UML, where they show how

these external entities engage with the system's functionality.

3.2.2 Use Case Description

Use cases represent the actions that the system offers to actors to help them

accomplish specific objectives. The table below summarizes all the use cases for each actor,

based on their respective roles within the system.

Chapter 3: System Design

25

Table 3-1: Use Case description table

Actors Use Cases

Teacher

a) Login: Authentification

b) View profile information: Full name, profile image, role, e-mail, and teacher

ID.

c) Edit profile: E-mail, password, and profile Image.

d) View courses: View his own courses.

e) Manage courses: Create edit and delete courses.

f) View course materials: Lectures, announcements, and assignments.

g) View students: View students for each course he teaches.

h) Manage lectures: Create and delete lectures.

i) Manage announcements: Create and delete announcements.

j) Manage assignments: Create and delete assignments.

k) Evaluate assignment submissions: View student submissions and give each one

a mark.

Student

a) Login: Authentification.

b) View profile information: Full name, profile image, role, e-mail, student ID,

academic year, academic level, major, and group.

c) Edit profile: E-mail, password, and profile Image.

d) View courses: View the courses he studies during the current academic year.

e) View course materials: Lectures, announcements., and assignments.

f) View classmates: View his classmates in each course.

g) Mark lectures as done: Mark what he has already studied as done.

h) Submit work on assignments: Submit his answers to the assignment questions.

i) View Marks: View his marks on assignments.

3.2.3 Use Case Identification

a) Login: The user needs to enter his e-mail and password correctly to get authenticated

and access the website.

b) View profile information: The user can view his information that was pre-registered

on the website by the administration. This information includes his full name, profile

picture, role as a teacher or student, e-mail, and user ID, while the student can also

view his academic year, academic level, major, and group.

c) Edit profile: The user is allowed to edit his login credentials i.e., e-mail and

password, and his profile picture.

Chapter 3: System Design

26

d) View courses: The teacher can view all the courses he teaches, and the student can

see the courses he studies during the current academic year.

e) Manage courses: The teacher can create new courses by giving them a title and

description and specifying to which academic year, level, and major they are for. The

teacher can also edit this information at any time, or delete any course he owns from

the database.

f) View course materials: The user can see the lectures, announcements, and

assignments of the courses he can access. He can also view the lecture content that is

registered in either a video (.mp4, .avi, or .mov) or a pdf (.pdf) format.

g) Mark lectures as done: The student can mark lectures that he has studied through the

platform as done so that he can … his progress.

h) View students/classmates: The teacher can see the student names and profile

pictures of each course he teaches, and the students can see their classmates as well.

i) Manage lectures: The teacher can add new lectures to any of his courses by

submitting the lecture file in either a video (.mp4, .avi, or .mov) or a pdf (.pdf) format,

accompanied by a title and a description. He can also delete them anytime.

j) Manage announcements: The teacher can add new announcements about the course

and delete them anytime.

k) Manage assignments: The teacher can create assignments by specifying a title,

description, due date, and any related resources or attachments in PDF format. He can

also delete assignments as needed.

l) Evaluate assignment submissions: The teacher can review students' submitted

assignments, provide feedback, and assign grades. This evaluation will be recorded in

the system for students to view.

m) Submit work on assignments: Students must submit their assignments by uploading

the required files (in PDF format) before the deadline. They can still submit late

though. They can also review their submissions.

n) View Marks: Students can view the grades and feedback provided by the teacher for

their assignments.

Chapter 3: System Design

27

3.2.4 Use Case Diagrams

Use case diagrams highlight the relationship between actors and their respective use

cases. A single use case diagram represents a specific functionality of the system. These

diagrams are especially important in organizing and modeling the behaviors of a system.

Notations used when representing use case diagrams include the following:

Table 3-2: Use Case diagram notations

Figure Name Explanation

Actor

The entities (users or systems) that interact with the

system.

Use Case

The specific functions or actions the system performs.

Association

The lines connecting actors to use cases, indicate their

interaction.

Include

A relationship between use cases, it is used when a use

case always calls or depends on another use case as part

of its execution.

Extend

A relationship between use cases, it is used when a use

case conditionally adds extra behavior to another use

case.

Chapter 3: System Design

28

The following figures show the use case diagram for each actor and the overall use

case for the system.

Figure 3-1: Teacher use case diagram

Chapter 3: System Design

29

Figure 3-2: Student use case diagram

3.3 Database Design

3.3.1 Database Description

Our database system contains five collections, which are the user, course,

announcements, assignments, and submissions collections.

Chapter 3: System Design

30

Figure 3-3: Database collections interface

a) User Collection

Documents in this collection contain twelve attributes5:

• _id: A unique identifier for each document in a collection auto-

generated by the database.

• firstName: The first name of the user.

• lastName: The last name of the user.

• userID: The user’s personal ID given by the university.

• email: The email of the user.

• password: The password of the user.

• role: The role of the user in the university; either a student or a

teacher.

• academicLevel: The academic level of the user; either Licence or

Master.

• academicYear: The academic year the user is currently in.

• major: The major of the user if he was a Master's student.

• group: The user’s group within the current academic program.

5 There is in fact an additional attribute in all of the collections called __v that represents the version of the

document. It’s automatically added by Mongoose, and when documents are updated, it increments to help

prevent concurrent data modification issues.

Chapter 3: System Design

31

• profileImage: The profile picture of the user.

Figure 3-4: User document example

b) Course Collection

Documents in this collection contain eleven attributes:

• _id: A unique identifier for each document in a collection, auto-

generated by the database.

• title: The title of the course.

• description: A brief description of the course.

• teacher: An id reference to the teacher collection, it indicates the

teacher of the course.

• academicLevel: The intended educational level for the course.

• academicYear: The academic year the course is designated for.

• major: The major the course is associated with.

• files: An array of the lectures that belong to the course. Each file

contains the following attributes:

o _id: A unique identifier for each file in the files array.

o fileName: The name of the file attached to the lecture.

Chapter 3: System Design

32

o fileType: The format of the file attached to the lecture. It can

be either “application/pdf ” or “video/mp4”.

o lectureName: The name of the lecture.

o description: A brief description of the lecture.

o completionStatus: An array of statuses, one for each student,

indicating whether he has completed studying a specific

lecture.

• _id: A unique identifier for each status in the

completionStatus array.

• student: An id reference to the student collection,

indicating the student associated with the completion

status for this lecture.

• completed: The status of completion of this lecture, can

be either True or False.

• markedAt: The time when the student marks the

lecture as completed.

o created_at: The time when the lecture was created.

• announcements: An array of the announcements that belong to the

course. Each announcement is an id reference to the announcements

collection, indicating an announcement that is part of this course.

• created_at: The time at which the course was created, automatically

added by the database.

• updated_at: The time at which the course was modified, automatically

updated by the database.

Chapter 3: System Design

33

Figure 3-5: Course document example

c) Announcements Collection

Documents in this collection contain five attributes:

• _id: A unique identifier for each document in a collection auto-

generated by the database.

Chapter 3: System Design

34

• content: The content of the announcement.

• teacher: An id reference to the teacher collection, indicates the teacher

who made the announcement.

• courses: An array of the courses where the announcement should be

posted. In this application typically it is an array of one element.

• created_at: The time when the announcement was made. It is

automatically added by the database.

Figure 3-6: Announcement document example

d) Assignments Collection

Documents in this collection contain eight attributes:

• _id: A unique identifier for each document in a collection auto-

generated by the database.

• title: The title of the assignment.

• description: The description of the assignment.

• fileName: The attached file to the assignment, contains the assignment

questions.

• deadline: The date and time by which the assignment must be

completed and submitted.

• course: An id reference to the course collection, indicates the course to

which this assignment belongs.

• teacher: An id reference to the teacher collection, indicates the teacher

who posted this assignment.

Chapter 3: System Design

35

• created_at: The time at which the assignment was added,

automatically recorded by the database.

e) Submissions Collection

Documents in this collection contain eight attributes:

• _id: A unique identifier for each document in a collection auto-

generated by the database.

• assignment: An id reference to the assignment collection, indicating

the assignment to which the submission pertains.

• student: An id reference to the student collection, indicating the

student who submitted this answer.

• fileName: The file submitted by the student containing his answers to

the assignment. It must be in “application/pdf” format.

• mark: The mark the teacher gives the student on his submitted work.

• notes: The teacher’s additional notes on the answer of the student.

• submitted_at: The time when the student submits his work on the

assignment.

• marked_at: The time when the teacher gives a mark to the student for

his work.

3.3.2 Relationships Between Documents

In MongoDB, relationships define how different documents are logically connected.

These relationships can be modeled using either the Embedded or Referenced approaches and

can represent various types, such as 1:1, 1:N, N:1, or N: M.

a) Embedded Relationships: Embedded documents store related data in a single

document structure. A document can contain arrays and sub-documents with

related data [30]. The following is an example of embedded data in a

document.

Chapter 3: System Design

36

Figure 3-7: Embedded data in a document

b) Referenced Relationships: References store relationships between data by

including links, called references, from one document to another. For example,

a teacher field in a course collection indicates a reference to a document in a

user's collection [30]. The following is an example of referenced data in a

document.

Figure 3-8: Referenced data in a document

• Entity Relationship Diagram

An Entity Relationship Diagram visualizes the relationships between entities, such as

people, objects, or concepts, within a database. It typically illustrates the entities, their

attributes, and the connections between them, providing a clear view of the database's logical

structure.

The following table summarises the notations used in the entity relationship diagram.

Chapter 3: System Design

37

Table 3-3: Entity relationship diagram notations

Symbol Name Description

Entity

A rectangle represents a collection of documents

and their attributes. The attributes underlined

illustrate the primary key of a document and the

ones that have * sign are foreigner id references.

Each document within the collection represents

an instance of that entity.

One and only one

A straight line with “1..1” on top indicates a

single instance in a relationship.

Zero or many

A line with “0..*” on top shows multiple

instances in a relationship.

Generalization/

Specification

An arrow indicates a generalization or

specification between two entities illustrating the

inheritance.

The entity relationship diagram of this system is represented in the figure on the next

page.

Chapter 3: System Design

38

Figure 3-9: Entity Relationship Diagram

3.4 Conclusion

In conclusion, this chapter presented the foundational elements of system design,

including system modeling through use case diagrams, and a detailed approach to database

design. These components are critical for structuring the system and ensuring proper data

management, forming the basis for the project's implementation in the next chapter.

Chapter 4: Implementation

39

Chapter 4: Implementation

4.1 Introduction

This chapter focuses on the implementation of the application interfaces, detailing the

key components that make up the user experience. It begins with the login interface, followed

by the dashboard, profile, and various course-related interfaces. Each section outlines the

design and functionality of these interfaces, which play a crucial role in how users interact

with the application.

4.2 Application Interfaces

Using the tools outlined in the previous chapters, we have implemented the

application to address the problem introduced at the start of this report. The following section

presents the different interfaces that users will engage with.

The frontend of this website is hosted on Github Pages and is accessible through the

link: “https://imonyaa.github.io/Student-Portal”. In contrast, the backend is hosted on a VPS

provided by DigitalOcean, maintaining the necessary server-side functionality and database

management to support the application's features.

The available users who can access the platform include the following:

Student e-mails: otmanine.imane@gmail.com, rosemii@gmail.com, tod@gmail.com.

Teacher e-mails: leila@gmail.com, ivan@gmail.com, racha@gmail.com.

Passwords: password123

4.2.1 Login Interface

Initially, when the user first enters the website, he encounters the login page shown on

the next page.

mailto:otmanine.imane@gmail.com
mailto:rosemii@gmail.com
mailto:leila@gmail.com
mailto:ivan@gmail.com
mailto:racha@gmail.com

Chapter 4: Implementation

40

Figure 4-1: Login initial page

After pressing the "Log in" button, the user will see the login form. Since the users'

collection documents are pre-filled by the administration, users are pre-registered, and their

information is already stored in the database, allowing them to log in seamlessly with the

provided credentials.

Figure 4-2: Login form

The users must enter both their email and password correctly to log in to their

account. Upon submitting the login form, the application sends an HTTP request to the

backend, containing the user's credentials. The backend then queries the database to verify if

Chapter 4: Implementation

41

the provided email and password belong to a pre-registered user. If the credentials are

correct, the backend responds to the frontend with an access token, which is stored in

cookies, granting the user access to their account. However, if either the email or password is

incorrect, the system triggers an error response. An error toaster will appear at the top of the

screen, and an error message will be displayed below the input fields, informing the user of

the mistake and prompting them to try again as shown in the figure on the next page.

Figure 4-3: Login page errors

Once the backend responds to the authentication request, it also sends the user information,

which is then stored in the Redux store, making it accessible across all pages of the website.

The user is then redirected to the dashboard page.

4.2.2 Dashboard Interface

After the student logs in he meets the dashboard page. On the left of the page, he can

see a sidebar illustrating five tabs, dashboard, courses, assignments, calendar, and grades. On

the dashboard page, he can see the last three lectures posted, the assignments he has to do,

and the announcements his teachers have made for the past 15 days. He can click on lectures

and assignments to quickly access them, and he can see the latest events through the

announcements and open the corresponding courses. The teacher can see the same

information on this page.

Chapter 4: Implementation

42

Figure 4-4: Dashboard page

4.2.3 Profile Interface

The users can see their profile and personal information by clicking on their profile

image on the top right of the website, and then clicking on the “View profile” button. This

will take them to the profile page. They can also log out by clicking on the “Logout” button.

By doing that the website will clear the access token from the cookies and redirect them to

the login page.

Figure 4-5: User profile dropdown

When students navigate to their profile page, they are presented with their personal

information, including their full name, profile picture, email, user ID, academic year, major,

and group. Teachers, on the other hand, see their full name, email, and user ID. These data

are retrieved from the Redux store and dynamically displayed based on the user’s role.

Chapter 4: Implementation

43

Figure 4-6: Profile details page for a teacher

Figure 4-7: Profile details page for a student

If the user wants to change his profile picture, email, or password, they can do that by

clicking on the “Edit profile” button. By clicking they open a form that they need to fill with

the new information they want to update. Also, the profile picture now becomes clickable,

and once clicked, it allows the user to upload a new image to replace the existing one.

Chapter 4: Implementation

44

Figure 4-8: Edit profile page

Figure 4-9: Edit profile page after filling in the new information

After submitting the changes, the updated information is sent to the backend, where

the current password is verified to ensure it is correct before allowing any updates. After

saving the new information in the database, a response is sent back containing the updated

details. The redux store gets updated with this information, and lastly, the user’s profile page

is refreshed to reflect the new changes.

Chapter 4: Implementation

45

Figure 4-10: Profile page after submitting the changes

4.2.4 Courses Interface

When a user clicks on the “Courses” tab on the sidebar, the web page navigates to the

courses page. The application requests the available courses for the user, in the case of a

student, the courses they are enrolled in are fetched, while for a teacher, the courses they

manage are retrieved. Once received they are displayed in the form of course cards consisting

of a course picture, the course name and description, and a button to view the course’s page.

Figure 4-11: Courses page for a student

Chapter 4: Implementation

46

Figure 4-12: Courses page for a teacher

For the teacher, an “Add Course” button is also displayed allowing the teacher to

create a new course. Once clicked, a modal opens containing a form in which they can fill in

the course name and description, and select which academic level, year, and major the course

is for.

Figure 4-13: Add a course modal

Chapter 4: Implementation

47

Figure 4-14: Add a course modal showing errors

When the teacher submits the course information, a new course gets created in the

database with it, and a success toaster is displayed on the top of the screen before it refreshes

to show the added new course.

Figure 4-15: Add a course modal when submitting a new course

Chapter 4: Implementation

48

Figure 4-16: Courses page after a new course is added

4.2.5 Course Interface

When this page is rendered, all the information about the course is retrieved from the

database. The course page is divided into two parts. On the right, there’s a sidebar for the

course name, description, teacher, and students attending the course. On the left, the

application displays the list of lectures and announcements sorted. Lectures are clickable and

they redirect the user to the specific lecture page. Announcements consist of the teacher’s

profile image, their name, date of posting, and the content of the announcement. Lectures, on

the other hand, consist of an image illustrating if the lecture is a video or a PDF, the lecture’s

title, a description of it, and the posting time.

For students, they also have a check box on each lecture card displaying if they have

completed studying the lecture or not.

Chapter 4: Implementation

49

Figure 4-17: Course page for the student

For teachers, however, there are two additional buttons: "Delete" and "Edit Course."

The Delete button allows the teacher to remove the course entirely from the database, while

the Edit Course button redirects the teacher to the course editing page.

Figure 4-18: Course page for the teacher

When the teacher clicks the "Delete" button, a confirmation popup appears, asking for

verification before proceeding with the deletion.

Chapter 4: Implementation

50

Figure 4-19: Delete course popup

4.2.6 Edit Course Interface

This page is divided into two sections; the first one is designated for editing the

course details, and the second is designated for editing course materials.

The Edit Course section consists of the course details: Course picture, course name,

description, academic level and year, and major (if the academic year is Master's). It also has

a button to enable editing them.

The Course Materials section consists of three tabs: Lectures, Announcements, and

Assignments. Each tab has a list of the respective items, along with a delete button for each

item.

Chapter 4: Implementation

51

Figure 4-20: Edit course page

In the first section, when the teacher clicks on the “Edit details” button the course

details show in a form allowing the teacher to edit them. Once he finishes making edits he

can either press save or cancel the changes.

Figure 4-21: Edit course details form

When the teacher clicks on “Save” a web request is sent to the backend with the new

course information. The backend then stores the information in the database and sends back a

successful HTTP response. A success toast notification appears at the top of the screen before

the page refreshes to reflect the new changes.

Chapter 4: Implementation

52

Figure 4-22: Edit course form after submission

In the second section of this page, Once the teacher clicks on delete on one of the

lecture cards, a confirmation popup appears, asking for verification before proceeding with

the deletion. If they click on delete again the course will be deleted from the database.

Figure 4-23: Delete lecture popup

In the same section, when the teacher presses on the “Add material” button, an “Add

course material appears to let the teacher add new course materials either a lecture, an

announcement, or an assignment. They can choose one of the tabs to select what material to

add. The Lecture tab consists of three input fields: Lecture title, Lecture description, and

Lecture content.

Chapter 4: Implementation

53

Figure 4-24: Add lecture modal

The Lecture tab consists of one input field for the announcement content.

Figure 4-25: Add announcement modal

On the lecture tab, when the user clicks on the upload area the file explorer opens,

allowing the teacher to choose a file to upload. Following his selection of the file and clicking

the “Create” button, the same changes to “Uploading” with a spinner next to it. In the

Chapter 4: Implementation

54

meantime, the file and the form details get sent to the backend; the first is stored in the server

and the second is stored in the database.

Figure 4-26: Lecture form upload

Once the lecture is saved, the backend responds with a success and a success toast

notification appears before the page auto-refreshes to reflect the new changes.

Figure 4-27: Lecture form successful upload

Chapter 4: Implementation

55

Figure 4-28: Edit course page after the refresh

4.2.7 Lecture Interface

The lecture page is divided into two parts: the right sidebar displays a list of other

lectures, while the left side features a PDF/video reader that shows the lecture content, which

was received from the backend server during page rendering. Below the file reader, the title

and description of the lecture are presented.

Figure 4-29: Lecture page

Chapter 4: Implementation

56

If the user is a student and hasn't yet completed the lecture, a “Mark as Done” button

is also displayed. Upon clicking it, the lecture will be marked as completed both in the

frontend interface and the backend, and the button changes to indicate the status update,

allowing the user to easily track their progress. A new button also appears for the user to

allow him to easily move to the next lecture page.

Figure 4-30: Lecture page after pressing the "Mark as done" button

Figure 4-31: Lecture page displaying a video lecture

Chapter 4: Implementation

57

4.3 Conclusion

In conclusion, this chapter provided a comprehensive overview of the application's

interfaces, highlighting the implementation of the login, dashboard, profile, and course-

related screens. These interfaces form the core of the user experience, ensuring smooth

navigation and interaction within the application.

Future Enhancements

58

Future Enhancements

As we look to expand and improve the Student Portal platform, several key

enhancements are proposed to enrich user experience and functionality:

a) Assignment, Grades, and Calendar Pages

To facilitate better management of academic tasks, dedicated pages for assignments

and grades will be added. These features will allow students to receive assignments, submit

their work, and view their marks. A calendar page will provide an overview of important

dates, including deadlines and events, enhancing students' ability to plan their study

schedules effectively and easily track due dates.

b) Comments Feature on Lectures

To promote interaction and facilitate communication, a comments feature will be

added to lecture pages. This will allow students to engage with content, ask questions, and

share insights directly on lecture materials, fostering a collaborative learning atmosphere.

c) Support for Additional File Formats

Currently limited to PDF and video files, the platform will expand its file upload and

display capabilities to support a wider range of formats, including PowerPoint presentations,

Word documents, and others. This enhancement will allow instructors to share diverse types

of resources, enriching the learning experience.

d) Cloud Integration for File Storage

Currently, files are stored directly on the server. To improve scalability and

accessibility, the platform will transition to cloud storage for file management. This will

provide more efficient storage solutions, enabling users to access materials from anywhere,

while reducing server load and ensuring better data redundancy and security.

e) Live Chat Between Students and Teachers

Implementing a live chat feature will enable real-time communication between

students and teachers. This functionality will support immediate assistance, clarification of

Future Enhancements

59

concepts, and enhance the overall engagement, making the learning process more dynamic

and interactive.

f) Laboratory Page with Embedded Simulator Software

To provide practical experience in the electrical and electronic fields, a dedicated

laboratory page will be introduced, by embedding a simulator software to the website. This

feature will enable students to conduct lab experiments and simulations through the platform

and be graded on them.

g) Arabic Language Support

The platform will include support for the Arabic language, making it accessible for

high school students. This feature will allow users to switch the interface language, ensuring

that students who are more comfortable in Arabic can effectively navigate and utilize the

platform.

These enhancements aim to create a more robust and user-friendly platform,

ultimately supporting better educational outcomes and a more enjoyable learning experience

for all users.

General Conclusion

60

General Conclusion

In summary, the development of the Student Portal e-learning platform represents a

significant advancement in the delivery of educational resources and support. By integrating

essential web technologies and modern development tools, the project successfully creates an

environment that fosters effective learning and collaboration among students and teachers.

Throughout this project, we have explored the finer points of web development, from

the underlying technologies to the design and implementation of user interfaces. The

emphasis on user experience has been a guiding principle, ensuring that the platform is

intuitive and accessible to all users.

Looking forward, the proposed enhancements will further enrich the platform's

capabilities, addressing the evolving needs of students and educators. By incorporating

features such as assignment tracking, diverse file support, interactive laboratories, and

improved communication tools, we aim to create a comprehensive educational ecosystem that

promotes engagement and academic success.

Ultimately, this project not only demonstrates the potential of modern web

technologies in education but also sets the stage for future innovations that can transform the

learning experience.

References

61

References

[1] M. Haverbeke, Eloquent JavaScript, No Starch Press, 2024.

[2] Web Agency Optimize 360, “Web development: diving into the world of website

creation,” [Online]. Available: https://www.optimize360.fr/en/agence-creation-

sitesweb/web-definitions/web-development/. [Accessed Mars 2024].

[3] N. Ferguson, “What's the Difference Between Frontend vs Backend Web

Development?,” 6 February 2024. [Online]. Available:

www.careerfoundry.com/en/blog/web-development/whats-the-difference-between-

frontend-and-backend. [Accessed Mars 2024].

[4] Source Defense, “What is a Web Request?,” [Online]. Available:

https://sourcedefense.com/glossary/web-request. [Accessed Mars 2024].

[5] W. B. Mastery, Web Development for beginners, Independently published, 2020.

[6] T. Pattinson, “Relational vs. Non-Relational Databases,” 9 November 2022. [Online].

Available: https://www.pluralsight.com/blog/software-development/relational-vs-non-

relational-databases. [Accessed March 2024].

[7] Northell Team, A Complete Web Development Guide, northell.design, 2021.

[8] J. Abu, “5 Coding Projects You Should Include in Your Front End Portfolio,” 8

February 2021. [Online]. Available: https://www.freecodecamp.org/news/coding-

projects-to-include-in-your-frontend-portfolio. [Accessed Mars 2024].

[9] S. Souders, High Performance Web Sites, Sebastopol: O’Reilly Media, Inc., 2007.

[10] E. Brown, Web Development With Node & Express, O’Reilly Media, Inc., 2014.

[11] L. Ching-Hong, “The comparison of learning effectiveness between traditional face-to-

face learning and e-learning among goal-oriented users,” Multimedia Technology and

its Applications (IDC), no. 6th International Conference on. 2010. IEEE., 2010.

References

62

[12] M. Shirzad, A. Hoseinpanah and M. H. Ahma, “Using Cloud Computing in e-learning

Systems,” in Cloud Computing Technologies, Applications and Management

(ICCCTAM), 2012.

[13] R. Gryshuk, “15 Great Google Classroom Alternatives,” 17 May 2024. [Online].

Available: https://www.educate-me.co/blog/google-classroom-alternatives. [Accessed

August 2024].

[14] Saylor Academy, “Introduction to Software Engineering/Methodology,” 10 June 2024.

[Online]. Available:

https://learn.saylor.org/mod/book/view.php?id=65499&chapterid=58136. [Accessed

September 2024].

[15] Visual Studio Code Team, “Documentation of Visual Studio Code,” Microsoft,

[Online]. Available: https://code.visualstudio.com/docs. [Accessed Mars 2024].

[16] L. Karrys, M. Rienstra, M. Borins and E. Thomson, “About npm,” npm, Inc., 23

October 2023. [Online]. Available: https://docs.npmjs.com/about-npm. [Accessed Mars

2024].

[17] Atlassian Team, “What is version control?,” 2024. [Online]. Available:

https://www.atlassian.com/git/tutorials/what-is-version-

control#:~:text=Version%20control%2C%20also%20known%20as,to%20source%20c

ode%20over%20time.. [Accessed August 2024].

[18] Geeksforgeeks, “Introduction to Tailwind CSS,” 7 June 2024. [Online]. Available:

https://www.geeksforgeeks.org/introduction-to-tailwind-css. [Accessed August 2024].

[19] React Team, “React,” Meta, 2024. [Online]. Available: https://react.dev. [Accessed

Mars 2024].

[20] R. Wieruch, The Road to React, Leanpub, 2016.

[21] Redux documentation authors, “Getting Started with Redux,” Redux, 31 Mar 2024.

[Online]. Available: https://redux.js.org/introduction/getting-started. [Accessed August

2024].

References

63

[22] NodeJs Team, “Run JavaScript Everywhere,” OpenJS Foundation © , [Online].

Available: https://nodejs.org/en. [Accessed Mars 2024].

[23] ExpressJs Team, “Express,” OpenJs Foundation, [Online]. Available:

https://expressjs.com/. [Accessed August 2024].

[24] MDN contributors, “Express/Node introduction,” 25 July 2024. [Online]. Available:

https://developer.mozilla.org/en-US/docs/Learn/Server-

side/Express_Nodejs/Introduction. [Accessed August 2024].

[25] A. Saini, “MongoDB – Working and Features,” 2 July 2024. [Online]. Available:

https://www.geeksforgeeks.org/what-is-mongodb-working-and-features/. [Accessed

August 2024].

[26] Mongoose Team, “Mongoose,” [Online]. Available: https://mongoosejs.com/.

[Accessed August 2024].

[27] C. Miner, “Handling File Uploads Using Multer In Node Js Express,” 5 April 2024.

[Online]. Available: https://medium.com/learn-to-earn/handling-file-uploads-using-

multer-in-node-js-cbe0389f4f9e. [Accessed August 2024].

[28] Descope Inc, “What Is a JWT & How It Works,” Descope Inc, 30 March 2024.

[Online]. Available: https://www.descope.com/learn/post/jwt. [Accessed August 2024].

[29] MDN contributors, “Cross-Origin Resource Sharing (CORS),” 26 July 2024. [Online].

Available: https://developer.mozilla.org/en-US/docs/Web/HTTP/CORS. [Accessed

August 2024].

[30] MongoDB Team, “Data Modeling,” MongoDB, Inc., 2024. [Online]. Available:

https://www.mongodb.com/docs/manual/data-modeling/. [Accessed August 2024].

