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Abstract: 

   Solar photovoltaic systems are being widely used in green energy harvesting recently. At 

the same rate of growth, the modules that come to the end of life are growing fast. Therefore, 

rapid fault detection and classification of PV modules can help to increase the reliability of 

the PV systems and reduce operating costs. Inspection and maintenance of solar modules are 

important to increase the lifetime, reduce energy loss, and environmental protection. A 

combination of infrared thermography and machine learning methods has been proven 

effective in the automatic detection of faults in large-scale PV plants. However, so far, few 

studies have assessed the challenges and efficiency of these methods applied to the 

classification of different defect classes in PV modules. In this dissertation, an efficient PV 

fault detection and classification method is proposed to classify different types of PV module 

anomalies using thermographic images utilizing convolutional neural networks (CNN) and 

artificial neural networks (ANN). Eleven types of PV module faults such as cracking, diode, 

hot spot, offline module, and other faults are utilized. Several evaluation metrics were used to 

assess the performance namely accuracy, recall, precision, and F1 score. The testing accuracy 

was obtained as 91% for the detection of anomalies in PV modules and 91% to classify 

defects for four classes and 73% for twelve classes.  

In conclusion, the integration of advanced imaging techniques and machine learning 

algorithms presents a promising avenue for enhancing the reliability of PV systems. As the 

demand for clean and sustainable energy continues to grow, such innovations will be 

instrumental in meeting global energy needs while minimizing environmental impact. The 

advancements outlined in this thesis represent a significant step forward in the pursuit of more 

efficient and resilient renewable energy infrastructures. 
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General Introduction  

      The emergence of sustainable energy technologies has profoundly influenced the course 

of worldwide energy solutions, with photovoltaic (PV) systems occupying a key role. 

The increasing reliance on solar energy, driven by its sustainability and environmental 

benefits, underscores the need for efficient and reliable PV systems. Photovoltaic systems 

convert sunlight directly into electricity through the photovoltaic effect, a process first 

discovered over a century ago. Technological advancements in materials science and 

engineering have progressively enhanced the efficiency and affordability of these systems, 

making solar energy a viable alternative to conventional energy sources.  

Fault detection and classification in PV modules are critical to maintaining the 

efficiency and longevity of these systems. As the deployment of solar energy systems 

expands, so does the necessity for effective maintenance strategies to mitigate faults that can 

lead to significant energy losses and increased operational costs. This essay addresses the 

critical need for efficient maintenance and inspection of solar photovoltaic systems as their 

deployment continues to grow globally. The integration of infrared thermography with 

machine learning models enables the detection of subtle and complex fault patterns that 

traditional methods might miss. The proposed methodology not only improves the reliability 

and performance of PV modules but also reduces downtime and operational costs. By 

classifying a wide range of faults, from minor cracks to significant hot spots, this research 

supports the sustainable advancement of solar energy technologies, ensuring a more stable 

and resilient energy supply. This dissertation is divided into four chapters: Chapter one 

provides a presentation of the PV system’s main components and its operation principle. 

Chapter two derives into the different fault and malfunctions that may occur in this system 

and the existing fault detection techniques. Chapter three offers and introduction to the 

principles and methodologies of deep learning. Chapter four details the experiments 

conducted on fault detection and classification and discusses the obtained results. 
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Photovoltaic Systems
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1.1. Introduction 

      Photovoltaic (PV) systems are at the forefront of renewable energy technology due to 

the global quest of sustainable energy solutions. An overview of PV systems is given in 

this chapter, along with a look at their main ideas, parts, and uses in the production of 

sustainable energy.  

Through the process known as the photovoltaic effect, which was first documented 

more than a century ago, photovoltaic devices directly convert sunlight into electricity. 

Progress in the fields of materials science and engineering has consistently improved 

photovoltaic technology, rendering it more cost-effective and widely available.  

Solar cells, which are semiconductor devices that produce energy when exposed to light, 

are the fundamental component of photovoltaic systems. These mostly silicon-based cells 

are essential for utilizing solar energy for a variety of purposes and supporting the 

worldwide shift to clean and sustainable power production.  

 

1.2. Photovoltaic Cell 

      A solar cell, also referred to as a photovoltaic cell, is a semiconductor device that 

converts sunlight directly into electricity through the photovoltaic effect. It typically 

consists of layers of semiconductor material, such as silicon, which absorb photons from 

sunlight, generating electron-hole pairs and producing an electric current. [1] 

                                                     

 Figure 1.1: Solar cell [1]  

 

1.2.1. History of Photovoltaic Systems 

      The term photovoltaic effect was first discovered in 1839 by a French    scientist 

Alexandre Edmond Bacquerel, who was the first who noticed that certain materials 

produce electricity when exposed to light [2]. 

However, the first silicon solar cell was accidently discovered by Russel Ohl in 1940 
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, that was proved after more studies that it was not only pure silicon but with some impurities 

which were giving negative regions (n-type) due to the excess of the electrons, and other 

positive regions due to the lack of electrons (p-type). The semiconductor revolution in 

1950s led to the first efficient solar cell in 1954 and the main                        commercial use of the new 

solar cell on a spacecraft was in 1958 until 1970s [3]. 

 

1.2.2. The Working Principle of a Solar Cell 

      A solar cell is a semiconductor device consists of a p-n junction created by an impurity 

doping. The n-region is created by adding phosphorous atoms which have five outer electrons, 

one more than silicon atom.  The fifth electron is mobile and free, and so in this region of the 

crystal there are many free negative charges. 

Vice versa for the p-region, by doping the crystal with boron atoms which have only 

three free outer electrons, one is always missing for a complete bounding into the crystal 

structure. This electron could be borrowed from the neighboring atoms, so the place of the 

missing electron is shifted. It could also be seen as a hole with a positive charge that is mobile 

and wandering. 

There are much more holes than electrons in the p-region so the electrons are called 

minority charge carriers there. 

Due to the large difference in the concentrations from n-type region towards the p- type 

region, causes the electric field that is responsible for separating the additional electrons and 

holes produces when light shines on the cell. 

An anti-reflective coating is applied to the exposed side of the cell prevents the light from 

reflecting [4], as is shown in Figure 1.2. 

 

 

                                 Figure 1.2: Structure of conventional solar cell [4] 
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1.2.3. Main Types of PV Cells 

      Photovoltaic (PV) cells serve as the central component of a photovoltaic system. Their 

primary role is to transform solar light into electrical energy, representing the fundamental 

function of PV cells within the system. 

1.2.3.1. Monocrystalline Solar Cells 

      Monocrystalline solar cells are made from a single crystal structure, typically silicon. 

They are known for their high efficiency and uniform appearance. These cells are sliced from 

a single, pure crystal ingot, making them more efficient in converting sunlight into electricity 

compared to other types of solar cells, their efficiency stands at around 17% to 22% [5]. 

1.2.3.2. Polycrystalline Solar Cells 

      Polycrystalline solar cells are made from silicon material that is melted and poured into 

molds, then cooled and cut into square-shaped wafers. These cells consist of multiple small 

silicon crystals, hence the name "polycrystalline." While they are slightly less efficient than 

monocrystalline cells, they are generally more cost-effective to produce, their efficiency is 

around 11% to 17% [5]. 

1.2.3.3. Thin Film Solar Cells 

      Thin film solar cells are photovoltaic devices made by depositing thin layers of 

semiconductor materials onto a substrate, like glass or metal. They are lightweight, flexible, 

and cost-effective, though generally less efficient than traditional silicon-based solar cells, 

with efficiency ranging from 6% to 11% [5].  

 

 

         Figure 1.3: Main types of PV modules [5] 
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1.3. PV Module and Array 

      A PV module, commonly known as a solar panel, is a collection of solar cells, which 

generate electricity when exposed to sunlight. These modules are designed to be durable and 

weather-resistant, typically consisting of multiple solar cells encapsulated within a protective 

material such as tempered glass and surrounded by a metal frame. PV modules are the basic 

building blocks of solar photovoltaic systems, and they are interconnected to form larger 

arrays capable of generating significant amounts of electricity from solar energy [6]. 

 

 

      
 

Figure 1.4: Difference between a solar cell, module and an array [6] 

 

 

1.4. PV Cell Modeling 

      Understanding the behavior of solar cells is crucial for optimizing their performance and 

enhancing their efficiency in converting sunlight into electrical energy. To facilitate this 

understanding, engineers and researchers have developed various mathematical models to 

describe the electrical characteristics of solar cells under different operating conditions. Two 

commonly used models are the single diode model and the double diode model [7]. 

 

1.4.1. Single Diode Model 

      The single diode model is a simplified yet effective way to describe the behavior of a solar 

cell. It assumes that the current-voltage (I-V) characteristic of the solar cell can be modeled 

using just one diode, along with other parameters: 

 Photocurrent (Iph): This represents the current generated by the incident light 
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on the solar cell. It's typically proportional to the intensity of the sunlight. 

 Diode Current (Id): Modeled using the Shockley diode equation, this 

component represents the current flowing through the p-n junction of the solar 

cell. It's a function of the voltage across the solar cell. 

 Series Resistance (Rs): This represents the resistance encountered by the 

current as it flows through the series connection of the solar cell components. 

It's usually caused by the resistance of the conductive materials and 

connections within the solar cell. 

 Shunt Resistance (Rsh): This represents the resistance across the solar cell 

junction, which allows some leakage current to flow. It's essentially the 

resistance parallel to the solar cell's diode [7]. 

 

 

 

 

 

 
 

Figure 1.5: The single diode equivalent circuit model of a solar cell 

[7]. 

 

 

 

The basic equations expressing the single diode PV cell: 

𝐼 =  𝐼𝑝ℎ − 𝐼𝑑 − 𝐼𝑝                                                                   (1.1) 

𝐼𝑑 =  𝐼𝑠(𝑒
𝑉𝐷

𝑎.𝑉𝑡  − 1)                                                                        (1.2) 

𝐼𝑝 =  
𝑉𝐷

𝑅𝑝
                                                                                                 (1.3) 

𝑉𝐷 = 𝑉 + 𝐼𝑅𝑠                                                                                       (1.4) 

By substituting (1.2), (1.3) and (1.4) in (1.1) we get: 

 

𝐼 = 𝐼𝑝ℎ −  𝐼𝑠 (𝑒
𝑉 + 𝑅𝑠.𝐼 

𝑎.𝑉𝑡 − 1) −  
𝑉+ 𝑅𝑠

𝑅𝑝
                                                                        (1.5) 
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1.4.2. Double Diode Model  

      The double diode model is a more sophisticated representation of solar cell behavior, 

which accounts for additional mechanisms influencing its performance. This model introduces 

a second diode component to the single diode model, aiming to capture more accurately the 

complex behavior of real-world solar cells. The double diode model includes the same 

parameters as the single diode model but adds another diode equation and its associated 

parameters [7]. 

 

The characteristic equation for two diode model is as given: 

                          𝐼 =  𝐼𝑝ℎ − 𝐼𝐷1 (𝑒
𝑉+ 𝑅𝑠
𝑎1.𝑉𝑡 − 1) −  𝐼𝐷2 (𝑒

𝑉+ 𝑅𝑆.𝐼

𝑎2.𝑉𝑡 − 1) − 
𝑉+𝑅𝑠.𝐼

𝑅𝑝
                                             (1.6) 

 

 

 

Figure 1.6: The two diode equivalent circuit model of a solar cell [7]. 

 

      The double diode model offers improved accuracy over the single diode model, especially 

at higher levels of illumination and with non-ideal operating conditions. However, it also 

introduces more parameters, which might require more sophisticated measurement techniques 

for characterization [7]. 

 

1.5. Types of PV Systems 

      Photovoltaic (PV) systems have emerged as a pivotal player in the realm of renewable 

energy, offering sustainable solutions to meet the growing global demand for electricity. 

These systems harness the power of sunlight to generate electricity through the photovoltaic 

effect, converting sunlight directly into usable electrical energy. Among PV systems, two 

primary setups have become prevalent: on-grid and off-grid systems [8]. 
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1.5.1. The ON-Grid System 

      An "ON-Grid" solar system is connected to the traditional electrical grid. It generates 

electricity from sunlight using solar panels and feeds any excess electricity back into the grid. 

This system relies on the grid for power when solar energy isn't sufficient, such as at night or 

during cloudy days [8]. 

 

 

Figure 1.7: ON-Grid System  

 

1.5.2. The OFF-Grid System 

      An "OFF-Grid" solar system operates independently of the grid. It generates electricity 

from solar panels and stores excess energy in batteries for use when sunlight isn't available. 

Off-grid systems are typically used in remote areas where connecting to the grid is impractical 

or too costly [8]. 

 

 

Figure 1.8: Stand-alone Solar System [8]. 
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1.6. Conclusion 

This chapter has been devoted to the presentation of PV system’s main components. The 

principle of operation of PV system, whether it is OFF-grid or grid connected, is based on the 

excitation of the PV cell junction by photons. It is clear that power production is very 

sensitive to environmental condition. To this, associating PV arrays to power electronic 

system is necessary to compare their efficiency and quality of generated power. 

However, this system is subject to fault. The next chapter will delve into the different 

faults that may occur in this system. 
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Faults in PV Modules 
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2.1. Introduction 

      Over the past decade, a rapid growth of photovoltaic technologies and systems have been 

experienced over the world. The PV is considered as the most promising and major renewable 

energy source due to providing a clean energy, however it can be affected by many failures 

and malfunctions that would sap their power.  

 

2.2. Defects in PV Modules 

      Faults in PV arrays can be classified according to their time characteristic as permanent, 

incipient, and intermittent. The intermittent defects refer to faults with temporary effect such 

as shading, dust, snow accumulation, and high humidity. Permanent faults include PV module 

damages such as short circuit, open-circuit and interconnection damage. On the other hand, 

partial damage in connections, corrosion, and cell deterioration are the causes of incipient 

defects. Faults that start out little (incipient) could become permanent ones. 

2.2.1. Hotspots  

      Hotspots happen when certain solar panel cells overheat because of localized shade, dirt, 

or flaws in the manufacturing process. These hotspots have the potential to lower the panel's 

overall output and cause irreversible harm to the afflicted cells.  

To identify hotspots, thermal imaging is used during the day when the panels are 

under full sunlight. Areas with noticeably higher temperatures than the rest of the panel will 

be identified as hotspots [9]. 

 

Figure 2.1: Hotspot in a PV panel 

 

2.2.2. Shading and Shadowing 

      Traditionally, solar panels are connected in a series of parallel ‘strings’. This implies that 

all of the linked panels in the string will lose power if one panel is shaded by a tree or 

chimney. This is because the panels are connected in a way that limits the output of each 
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panel in the system to that of the weakest panel. The output power of a module decreases by 

half when just one cell in the module is shaded [10]. 

 

 

Figure 2.2: Partial shading on a solar module  

 

2.2.3. Cracking  

      Cell cracking refers to the development of microcracks in the solar cells within PV 

modules. Microcracks, also known as microfractures, are tiny cracks in photovoltaic cells. 

This type of solar degradation is often caused by mechanical stress during installation, 

transportation, or environmental factors like temperature fluctuations. These microcracks 

cause reduced panel performance [9]. 

 

 

Figure 2.3: Cracked solar module  

 

2.2.4. Diode Failure 

      The bypass diode is a key element to ensure the safe operation of PV power plants under 

inhomogeneous irradiation conditions, namely in the case of partial shading. The reverse 

current of a diode rises exponentially with its temperature. If a critical temperature is 

exceeded in reverse bias mode, the power dissipation caused by the reverse current will heat 
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the diode even further. Consequently, reverse current and power dissipation will rise even 

more until the diode is destroyed [11]. 

 

 

Figure 2.4: Thermography of a solar panel with bypass diode damage 

2.2.5. Soiling 

      Soiling is the accumulation of dirt and debris that build up on the surfaces of PV panels. It 

negatively affects the performance of PV modules by blocking the irradiance incident onto the 

PV modules' surfaces; consequently, it lowers the PV array's power production [12].  

 

 

Figure 2.5: Soiling on a PV module  

 

2.2.6. Delamination  

      Delamination in PV panels is a serious issue. Delamination can appear in the encapsulant 

from the front glass, cells or back-sheet. The use of low-cost materials and improper 

processings are two frequent causes of delamination. It can happen due to moisture entering 

the backsheet which leads to a reduction in the panel's efficiency [9]. 
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Figure 2.6: Delamination effect on a PV module  

 

2.2.7. Snail Trails 

      Snail trails also named snail tracks are discolored lines that occurs in the front side 

metallization of PV cells. They are caused by a chemical reaction within the panel's 

encapsulation material caused by moisture and oxygen. This chemical reaction leads to a 

reduction the panel's efficiency [9]. 

 

Figure 2.7: Snail trail effect on a PV module  

 

2.2.8. Line to Line fault 

      A line-to-line fault involves high fault current or DC arcs between two different potential 

points in the PV array. line-to-line faults are defined as an accidental short-circuiting between 

two points in the array with different potentials. A line-to-line fault can reverse the current 

flow through the faulty string. The fault causes a reduction in open-circuit voltage, but short-

circuit current may stay the same. The voltage reduction will result in changing the V-I 

characteristics of the PV array. [13] 
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Figure 2.8: Schematic diagram of a PV system under a line-line fault 

 

 

2.2.9. Open Circuit Fault 

      An open-circuit fault is an accidental disconnection at a normal conductor during 

operation. Short circuit current and maximum power are decreased due to the open-circuit 

fault, while open voltage stays the same [13]. 

 

Figure 2.9: Schematic diagram of a PV system under a line-line and open-circuit faults 

 

2.2.10. Ground Fault 

      A ground fault happens due to unexpected short-circuited path involving one or more 

currying current conductors and the ground, which would cause a huge increase in the current 

passing through the affected conductors causing mismatched currents and changes of the PV 

array configuration. Several potential reasons for ground faults: 

1. cable insulation damage during the installation, due to aging, impact damage, 

water leakage, and corrosion 

2. ground fault within the PV modules 

3. insulation damage of cables due to chewing done by rodents 

https://www.google.com/url?sa=i&url=https%3A%2F%2Fwww.researchgate.net%2Ffigure%2FSchematic-diagram-of-a-PV-system-under-a-line-line-fault_fig2_254027370&psig=AOvVaw3TKuYTayJDy80lzTQuds78&ust=1718162311967000&source=images&cd=vfe&opi=89978449&ved=0CBQQjhxqFwoTCPC77tDL0oYDFQAAAAAdAAAAABAI
https://www.google.com/url?sa=i&url=https%3A%2F%2Fwww.researchgate.net%2Ffigure%2FSchematic-diagram-of-a-PV-system-under-a-line-line-fault_fig2_254027370&psig=AOvVaw3TKuYTayJDy80lzTQuds78&ust=1718162311967000&source=images&cd=vfe&opi=89978449&ved=0CBQQjhxqFwoTCPC77tDL0oYDFQAAAAAdAAAAABAI
https://www.google.com/url?sa=i&url=https%3A%2F%2Fwww.researchgate.net%2Ffigure%2FSchematic-diagram-of-a-PV-system-under-a-line-line-fault_fig2_254027370&psig=AOvVaw3TKuYTayJDy80lzTQuds78&ust=1718162311967000&source=images&cd=vfe&opi=89978449&ved=0CBQQjhxqFwoTCPC77tDL0oYDFQAAAAAdAAAAABAI
https://www.google.com/url?sa=i&url=https%3A%2F%2Fwww.researchgate.net%2Ffigure%2FSchematic-diagram-of-a-PV-system-under-a-line-line-fault_fig2_254027370&psig=AOvVaw3TKuYTayJDy80lzTQuds78&ust=1718162311967000&source=images&cd=vfe&opi=89978449&ved=0CBQQjhxqFwoTCPC77tDL0oYDFQAAAAAdAAAAABAI
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4. accidental short circuit inside the PV combiner box, often at the time of 

maintenance 

Ground fault may result in a number of hazards such as electric shocks and fire 

hazards [13]. 

 

 

Figure 2.10: Schematic diagram of a PV system under a ground fault  

 

2.2.11. Arc Fault 

      Arc fault is a result of any intermittent connections including soldered joints and aging of 

electronic components the chance of its occurrence rises. such faults may produce fire in the 

PV panels [14]. 

 

 

          Figure 2.11: Damaged PV system due to an Arc fault 

 

2.3. Fault detection techniques 

      PV fault detection techniques enable the location of various PV system problems to be 

identified. To extend the system's lifespan and ensure safe functioning, such techniques ought 

to be strong. It is also important for the techniques to identify evolving defects rapidly in 

order to prevent consequences and additional failures. 

https://www.google.com/url?sa=i&url=https%3A%2F%2Fwww.researchgate.net%2Ffigure%2FSchematic-diagram-of-a-PV-system-under-a-line-line-fault_fig2_254027370&psig=AOvVaw3TKuYTayJDy80lzTQuds78&ust=1718162311967000&source=images&cd=vfe&opi=89978449&ved=0CBQQjhxqFwoTCPC77tDL0oYDFQAAAAAdAAAAABAI
https://www.google.com/url?sa=i&url=https%3A%2F%2Fwww.researchgate.net%2Ffigure%2FSchematic-diagram-of-a-PV-system-under-a-line-line-fault_fig2_254027370&psig=AOvVaw3TKuYTayJDy80lzTQuds78&ust=1718162311967000&source=images&cd=vfe&opi=89978449&ved=0CBQQjhxqFwoTCPC77tDL0oYDFQAAAAAdAAAAABAI
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2.3.1. Visual Inspection Method 

      Visual inspections are usually conducted regularly to detect defects in fielded photovoltaic 

modules. They are the first step in identifying any mechanical or electrical defects and 

determining whether to carry out additional tests [15].  

The major drawback in the visual inspection of PV cells is that it depends on human 

capabilities. This task could be sometimes boring and not reliable, as it may take longtime to 

detect fault. 

2.3.2. Imaging Solutions 

2.3.2.1. Infrared Imaging 

      Thermal imaging, often known as infrared (IR), is an efficient way to identify defects in 

solar cells. An IR camera is used to scan the PV array while it is operating. The camera 

records variations in temperature in the cells and modules as a result of faults in the wiring or 

interconnection of the modules, hot spots due to internal short circuits, defective bypass 

diodes, variations in series resistance, cell mismatch, snail trails, and cell cracks are detected 

[16].  

 

           Figure 2.12: Fault diagnosis of PV systems using infrared thermal imaging cameras 

 

2.3.2.2. Ultrasonic Imaging Method 

      The ultrasonic imaging inspection method is used primarily for detecting cracks before the 

production of PV modules [16].  It also identifies unbounded cells in a module as well as 

degradation cracks after PV modules are fielded.  

2.3.2.3. Electroluminescence Imaging  

      This method is utilized for cells and modules defects like cracks, broken gate, and identify 

solar cells with different conversion efficiency (inhomogeneities). In this method ramped 

voltage is injected to the module and produce electroluminescence that reveals non-

uniformities and defects [16]. 

 

https://www.researchgate.net/figure/Fault-diagnosis-of-PV-systems-using-infrared-thermal-imaging-cameras-Courtesy-Avio_fig2_337432354
https://www.researchgate.net/figure/Fault-diagnosis-of-PV-systems-using-infrared-thermal-imaging-cameras-Courtesy-Avio_fig2_337432354
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Figure 2.13:  PV module Electroluminescence image Processing 

 

2.3.3. Electrical Detection Methods 

2.3.3.1. Electrical Current–Voltage (I-V) Measurement Method 

      The PV string is often the target of the electrical I-V measurement method. The reason for 

this is that the PV array often has multiple strings connected in parallel at the junction box, 

enabling the measurement of each string's output separately. string output voltage and current 

can be measured and checked to identify potential defects like disconnection or degradation in 

advance. Because such faults reduce string output power or disturb the string I-V curve [17]. 

2.3.3.2. Power Loss Analysis (PLA) Technique 

      This method analyzes the PV system's power losses in order to identify and categorize 

faults. PV system behavior is simulated in real time using climate information data, and 

parameters that are computed from monitoring data. The monitored data in real work 

conditions of system DC side are compared with the simulated results to detect system power 

losses and classify faults [18].  

2.3.4. Protection Device Based Technique 

      PV systems typically have components that may quickly interrupt an electric circuit to 

stop ongoing defects. When having a ground fault, the PV array is protected by a ground 

fault detection and interrupt (GFDI) device. When having a line to line and line to ground 

faults a residual current device (RCD) can be installed to protect PV strings or the entire 

PV array, it detects the difference in current passing through string terminals or array 

output terminals, and isolate the string or the array from the system in case the faults 

happened [19]. 

2.3.5. Machine Learning (ML) Method 

      The performance and efficiency of PV cells are subject to various conditions, such as 

irradiance, temperature, humidity, wind speed, dust, rain, snow, shading… many defects are 

difficult to define in specific projects. Machine learning techniques can overcome these 

difficulties very well due to their self-learning nature, making them widely used in this type of 

https://www.google.com/url?sa=i&url=https%3A%2F%2Fieeexplore.ieee.org%2Fiel7%2F5503869%2F8809931%2F08744467.pdf&psig=AOvVaw25gjl7F2_rm_h5_1GjCKkD&ust=1718163118162000&source=images&cd=vfe&opi=89978449&ved=0CBQQjhxqFwoTCID8jdvO0oYDFQAAAAAdAAAAABAE
https://www.google.com/url?sa=i&url=https%3A%2F%2Fieeexplore.ieee.org%2Fiel7%2F5503869%2F8809931%2F08744467.pdf&psig=AOvVaw25gjl7F2_rm_h5_1GjCKkD&ust=1718163118162000&source=images&cd=vfe&opi=89978449&ved=0CBQQjhxqFwoTCID8jdvO0oYDFQAAAAAdAAAAABAE
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detection [16]. 

 

2.4. Conclusion 

      This chapter introduced faults (defects) in PV solar modules, their causes and how they 

can affect our systems and finally the faults detection techniques including visual method, 

imaging techniques, electrical detection methods, machine learning technique and 

protection device based technique. 
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3.1. Introduction 

      In this chapter, we undertake a methodical investigation into deep learning, an essential 

element in contemporary artificial intelligence research. Our aim is to offer a thorough 

introduction to the principles and methodologies of deep learning pertinent to this thesis. 

Through a systematic approach, we seek to clarify the foundational concepts, trace its 

historical development, and outline its practical significance. 

 

3.2. Machine Learning and Deep Learning 

3.2.1. Machine Learning 

      Within the field of artificial intelligence (AI), machine learning allows computer systems 

to automatically gain experience and improve their performance on a given task. Large 

volumes of data are fed into algorithms to enable them to recognize patterns and provide 

predictions or choices without needing to be specifically trained to do so [20]. Machine 

learning techniques are crucial to PV module analysis because they can automatically 

identify, categorize, and forecast faults. Through the use of labeled PV module data during 

model training, machines can be trained to identify patterns and characteristics linked to 

various types of anomalies. After analyzing real-time thermographic images of PV modules, 

these algorithms can determine whether particular faults are present, send out timely alerts, or 

take the necessary action. Based on the methods and way of learning, machine learning is 

divided into mainly three types: 

 Supervised Machine Learning 

      When a computer is educated with properly "labelled" training data, it can perform 

supervised learning, which involves the machine making output predictions based on the 

training data. Given that the data is marked, some input data has already been assigned the 

appropriate output.  

In supervised learning, the training data serve as the supervisor, teaching the machine to 

accurately predict the output. It uses the same idea that a student would learn under a 

teacher's guidance [21]. 
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 Unsupervised Machine Learning 

       Unsupervised learning is a machine learning technique in which training datasets are not 

used to supervise models. Rather, the models themselves extract the insights and latent patterns 

from the provided data. It is comparable to the process of learning that occurs in the human brain 

when something is learned [22]. 

 Semi Supervised Machine Learning 

      Semi-supervised learning builds a bridge between supervised and unsupervised learning 

methodologies. In semi-supervised learning, a small number of labeled samples are used to train 

an initial model, which is then repeatedly applied to a larger dataset [23]. 

3.2.2. Deep Learning 

     Deep learning is a subset of machine learning that uses artificial neural networks to learn and 

make decisions based on data. It involves constructing multiple layers of artificial neurons that 

can extract higher-level features from raw input data, such as images or sound. Deep learning is 

used in a variety of applications, including image and speech recognition, and natural language 

processing. DL algorithms can effectively handle the complexity and variability of PV module 

data. By training deep neural networks on labeled PV module data, the models can learn to 

automatically recognize and classify different types of anomalies. The multiple layers of the 

network allow for the extraction of intricate representations, capturing both global and local 

patterns within the data. This enables deep learning models to detect subtle variations and 

distinguish between various types of PV module faults with high accuracy. 

3.3. Artificial Neural Networks 

      An artificial neural network (ANN) is a mathematical model that attempts to mimic the 

architecture and functions of biological neural networks. An artificial neuron is the fundamental 

building component of any artificial neural network; it is a straightforward mathematical model 

(function).  

Three basic sets of rules—multiplication, summation, and activation—are present in such a 

model. Each input value is multiplied by its unique weight at the artificial neuron's entry when it 

is weighted. The sum function, located in the middle of the artificial neuron, adds up all of the 

weighted inputs plus bias. The sum of the inputs that have been previously weighted and the bias 
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are sent through the activation function, also known as the transfer function, at the exit of the 

artificial neuron.  

 

 

Figure 3.1: Working principle of an artificial neuron. 

 

 

3.3.1. Artificial Neuron 

      The fundamental component of each artificial neural network is the artificial neuron. Its 

structure and operations are based on the study of a biological neuron, which is the fundamental 

unit of biological neural networks, or systems, that comprise the brain, spinal cord, and peripheral 

ganglia. Figure 3.2 illustrates how the left side of a figure depicts a biological neuron with its 

soma, dendrites, and axon, and the right side of a figure represents an artificial neuron with its 

inputs, weights, transfer function, bias, and outputs. These similarities in design and functionality 

can be seen [24]. 
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Figure 3.2: Biological and Artificial Neuron design. 

 

 
 

In case of biological neuron information enters by its dendrite, is processed by the soma, and 

then is transferred via an axon. When it comes to artificial neurons, data enters their bodies 

through weighted inputs (each input has the potential to be amplified by a weight on its own). 

The body of an artificial neuron then sums the weighted inputs, bias and “processes” the sum 

with a transfer function. The information that has been processed is finally sent via output(s) by 

the artificial neuron. The following mathematical explanation demonstrates the benefit of the 

artificial neuron model's simplicity: [24] 

𝑚 

              𝑦(𝑘) = f (∑ w𝑖(𝑘) · 𝑥𝑖(𝑘) + 𝑏)                        (3.1) 
𝑖=0 

 

Where: 

 𝑥𝑖(𝑘) is input value in discrete time 𝑘 for i =0,…..,𝑚. 

 w𝑖(𝑘) is weight value in discrete time 𝑘 for i =0,…..,𝑚. 

 𝑏 is bias, 

 𝐹 is a transfer function, 

 𝑦(𝑘) is output value in discrete time 𝑘 for i =0,…..,𝑚..  

 

3.4. Neural Network Training   

      In machine learning research, training neural networks is an essential phase. Gradient descent 

and other error minimization techniques must be used to iteratively optimize the network 

parameters. Neural networks Training allows them to catch detailed patterns from large datasets, 

improving their capacity to generalize and generate accurate predictions across a wide range of 

applications such as computer vision, natural language processing, and reinforcement learning. 

3.4.1. Loss Function 



Chapter3: Deep Learning models 
 

26 

 

      When deep learning models are trained, we feed data to the network, generate predictions, 

compare them with the actual values (the targets) and then compute the loss. In essence, this loss 

indicates how well the network works overall; the larger it is, the poorer the network performs 

[25]. The Binary Crossentropy function was used in the binary classification and for the multi-

class classifications the Categorical Crossentropy function was used. 

3.4.2. Gradient Descent 

      When training a neural network-based model, Gradient Descent (GD) is a popular 

optimization algorithm used in machine learning and deep learning that minimizes the cost 

function of the model. It does this by iteratively changing the model's weights or parameters in 

the direction of the loss function's negative gradient until the minimum is reached. 

  The learning happens during the backpropagation while training the neural network-based 

model [26]. 

 

3.4.3. Backward Propagation 

      The primary strategy for training neural networks is called backpropagation, or backward 

propagation of mistakes, and it is combined with gradient descent optimization techniques.  

The technique uses the current parameters to calculate the network's predictions during 

the forward pass. As a result, after being fed into the loss function, the predictions are compared 

against the corresponding ground truth labels.  

The model updates the parameters by taking a step of size η in the direction of 

minimized loss after computing the gradient of the loss function with respect to the current 

parameters during the backward pass [27]. 

The gradients (∇) of the loss function (L) with respect to the parameters (θ) are computed 

mathematically during back propagation as follows: 

∇=
𝑑𝐿

𝑑𝛉
                                       (3.2) 

                                                          

These gradients are then used to update the parameters in the opposite direction of the 

gradient as shown in Figure 3.3: 
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Figure 3.3: Gradient descent and weights update in backpropagation algorithm [28]. 
 

 

3.4.4. Dropout 

Dropout is a regularization technique that is frequently used in deep learning models to 

prevent overfitting. During training, it randomly removes (sets to zero) a certain number of 

neurons from the neural network. This prevents the network from being overly dependent on any 

specific features or neurons, and forces it to learn more reliable ones by promoting better 

generalization to unseen data. dropout is a popular method for improving the robustness and 

performance of deep neural networks in a variety of applications [28]. 

3.4.5. Batch Normalization 

      Batch normalization is a technique for training deep neural networks that standardizes the 

inputs to mini-batch layers. This process has the effect of stabilizing the learning process and 

reduces the number of training epochs significantly. By using BN, the CNN model performs 

better, has a faster training rate, and is less sensitive to the weight initialization. Additionally, it 

functions as a regularizer by lessening over-fitting and enhancing the network's generalization 

capabilities [29]. 

3.5. Hyperparameters  

      Neural networks have a large number of hyperparameters such as the learning rate, the rate of 

regularization, and so on. The term ”hyperparameter” is used to specifically refer to the 

parameters regulating the design of the model (like learning rate and regularization), and they are 

different from the more fundamental parameters representing the weights of connections in the 

neural network [30]. 
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3.5.1. Learning Rate 

      The learning rate is a hyperparameter that controls the magnitude of parameter changes 

during training. It controls how much to update the weights with respect to the loss gradient. A 

high learning rate means you are taking large steps, which might cause you to overshoot the 

minimum. On the other hand, a low learning rate means smaller steps, which can lead to slow 

convergence or getting stuck in a local minimum [31]. 

3.5.2. Batch Size  

      Batch size represents the number of samples used in one forward and backward pass through 

the network and has a direct impact on the accuracy and computational efficiency of the training 

process. One way to understand the batch size is as a trade-off between speed and accuracy. 

While smaller batch sizes can yield better accuracy but can be more computationally expensive 

and time-consuming, larger batch sizes can result in faster training durations but may also cause 

lower accuracy and overfitting [32]. 

3.5.3. Epochs 

      An epoch is a full training cycle that goes through every sample in the training dataset. The 

number of epochs determines how many times the model will see the entire training data before 

completing training.  

The number of epochs is a crucial hyperparameter to set accurately because it can impact 

the accuracy and computational efficiency of the training process. If the number of epochs is set 

too small, the model may not learn the underlying patterns in the data, which could lead to 

underfitting; on the other hand, if the number of epochs is set too large, the model may overfit the 

training data, which could result in suboptimal generalization performance on new, unseen data 

[32]. 

3.5.4. Optimizer 

      The optimizers determine the way the model makes updates to the network weights and the 

learning rate with an aim to reduce the errors and losses. The optimization algorithms are greatly 

responsible for reducing the errors as well as the losses and, consequently, provide much more 

accurate results. I have used an Adam Adaptive Moment Estimation optimizer (Adam) for my 

experiment and it is used for optimizing the gradient descent [33]. 

3.5.5. Evaluation Metrics 
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      Evaluation metrics are used to measure the quality of the machine learning model. Evaluating 

machine learning models is essential for any project. There are various model evaluation metrics 

available to test a model. These include classification accuracy, logarithmic loss, confusion 

matrix, and others. Classification accuracy is the ratio of the number of correct predictions to the 

total number of input samples, which is usually what we refer to when we use the term accuracy. 

[34] 

3.6. Activation Functions 

      Activation functions or non-linear functions have degree more than one and have a curvature 

when plotted. If an activation function is not used in a neural network then the output signal 

would simply be a simple linear combination of the output. A neuron without an activation 

functions acts as a linear regression model with limited performance and power most of the 

times. 

Thus, we need to apply an activation function to make the network dynamic with the ability to 

extract complex and complicated information from data and represent nonlinear convoluted 

random functional mappings between input and output [35]. 

Applying an activation function to the weighted sum of a neuron’s inputs, which includes the 

bias term, yields the neuron’s activity as shown below: 

y =  f(w1x1  + 𝑊2x2  +··· +w𝑛x𝑛  + b)                       (3.3) 

 Such that: 

 y: output of the neuron.  

 f: activation function. 

 w: weight.  

 xi : features.  

 b: bias. 

3.6.1. Sigmoid Function 

      It is the most widely used activation function as it is a non-linear function. Sigmoid function 

transforms the values in the range 0 to 1. It can be defined as:  

𝑓(𝑥)  =
1

1+ 𝑒−𝑥
                                         (3.4) 

 Sigmoid function is continuously differentiable S-shaped function [35]. 
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                                                       Figure 3.4: Sigmoid Function 

 

3.6.2. Rectified Linear Unit (ReLU) Function 

      ReLU stands for rectified linear unit and is a non-linear activation function which is widely 

used in neural network. 

It is more efficient than other functions because as all the neurons are not activated at the 

same time, rather a certain number of neurons are activated at a time [35]. It can be defined 

mathematically as: 

                                                     f(x) = max(0,x)                                       (3.5) 

 

 

                                           Figure 3.5: ReLU Activation Function plot 
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3.6.3. Softmax Function 

      Softmax function is a combination of multiple sigmoid functions. Unlike sigmoid functions 

which are used for binary classification, softmax function can be used for multiclass 

classification problems [35]. It can be expressed as: 

                                                  𝑓(𝑥) =  
𝑒𝑥𝑖 

∑ 𝑒𝑥𝑗𝑘
𝑗=1

                                                   (3.6) 

 

 

3.7. Convolutional Neural Network 

      Convolutional Neural Networks are very similar to ordinary neural networks from the 

previous chapter: they are made up of neurons that have learnable weights and biases. Each 

neuron receives some inputs, performs a dot product and optionally follows it with a non-

linearity. The whole network still expresses a single differentiable score function: from the raw 

image pixels on one end to class scores at the other. And they still have a loss function on the last 

(fully connected) layer and all the tips we developed for learning regular Neural Networks still 

apply. CNN architectures make the explicit assumption that the inputs are images, which allows 

us to encode certain properties into the architecture. These then make the forward function more 

efficient to implement and vastly reduce the amount of parameters in the network [36]. The CNN 

architecture includes several building blocks, such as convolution layers, pooling layers, and fully 

connected layers. A typical architecture consists of repetitions of a stack of several convolution 

layers and a pooling layer, followed by one or more fully connected layers. 

 

Figure 3.6: Convolutional Neural Network structure 

3.7.1. Convolutional Layer 
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      A convolution layer is a fundamental component of the CNN architecture that performs 

feature extraction, which typically consists of a combination of linear and nonlinear operations, 

i.e., convolution operation and activation function. Convolution is a specialized type of linear 

operation used for feature extraction, where a small array of numbers, called a kernel, is applied 

across the input, which is an array of numbers, called a tensor. An element-wise product between 

each element of the kernel and the input tensor is calculated at each location of the tensor and 

summed to obtain the output value in the corresponding position of the output tensor, called a 

feature map. This procedure is repeated applying multiple kernels to form an arbitrary number of 

feature maps, which represent different characteristics of the input tensors; different kernels can, 

thus, be considered as different feature extractors. Two key hyperparameters that define the 

convolution operation are size and number of kernels (Filters) [37]. 

 

 

            

Figure 3.7: Example of convolution operation with a kernel size of 3×3 

 

 

 

3.7.2. Pooling Layer 



Chapter3: Deep Learning models 
 

33 

 

      A pooling layer is another building block of a CNN. Its function is to progressively reduce the 

spatial size of the representation to reduce the amount of parameters and computation in the 

network. Pooling layer operates on each feature map independently. The most common approach 

used in pooling is max pooling. Max pooling is a pooling operation that selects the maximum 

element from the region of the feature map covered by the filter. Thus, the output after 

maxpooling layer would be a feature map containing the most prominent features of the previous 

feature map [38]. 

3.7.3. Fully Connected Layer 

      The fully connected layer is an important component in artificial neural networks, especially 

in feedforward neural networks. It takes input from the final convolutional or pooling layer, 

which is in the form of a set of metrics (Feature maps) and those metrics are attended to create a 

vector. This vector is then fed into the fully connected layer to generate the final output of the 

CNN (classifications) [39].      

 

 

3.8. Conclusion: 

This chapter provided details of background study on deep learning convolutional neural 

networks and outlined the basic concepts of Convolutional Neural Networks in addition to the 

advanced techniques to apply for training a deep learning model better. 
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4.1. Introduction 

      In this chapter, the outcomes of our comprehensive analysis in the field of PV faults image 

classification is unveiled. Building upon the foundation laid in the previous chapters where the 

background of PV defects and deep learning methodologies were explored, and the approach 

used, this chapter serves as the culmination of the research efforts. 

The investigation centers on the utilization of deep neural networks and datasets sourced from 

Kaggle. This exploration extends to both binary classification and multi-class classification.  

The primary objective is to enhance the accuracy of PV fault detection and classification 

compared to existing deep learning methods.  

4.2. Dataset Description 

      In this work, I used the Infrared Solar Modules dataset that was published in 2020 by 

Raptor Maps Inc for research community, which includes 20000 infrared images with equal 

anomaly and no-anomaly classes. Each IR image is 24 by 40 pixels. There are 11 different 

anomaly classes and one nominal module (No-Anomaly) class. The number of anomaly 

samples varies from 175 to 1877 images in the dataset. The imbalance of classes in the dataset 

is a big challenge of the deep learning technique. It is noted that the proportion of the classes 

in the dataset is according to the total existing global findings. Some PV modules could be 

easily observed differently, such as Cell vs. Diode or Hot-spot vs. Offline-Module. However, 

there are challenges to distinguish some classes such as Cell vs. Soiling or Cell-Multi vs. 

Vegetation. [40] 
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Figure 4.1: Canonical examples of solar module anomalies observable in infrared imagery [40]   

 

Table 4.1: Description of Classes [40] 

 Class Name     Images Description 

Cell 1,877 Hot spot occurring with square geometry in single cell. 

Cell-Multi 1,288 Hot spots occurring with square geometry in multiple cells. 

Cracking 941 Module anomaly caused by cracking on module surface. 

Hot-Spot 251 Hot spot on a thin film module. 

Hot-Spot-Multi 247 Multiple hot spots on a thin film module. 

Shadowing 1056 Sunlight obstructed by vegetation, man-made structures, or adjacent 

rows. 

Diode 1,499 Activated bypass diode, typically 1/3 of module. 

Diode-Multi 175 Multiple activated bypass diodes, typically affecting 2/3 of module. 

Vegetation 1,639 Panels blocked by vegetation. 

Soiling 205 Dirt, dust, or other debris on surface of module. 

Offline-Module 828 Entire module is heated. 
No-Anomaly 10,000 Nominal solar module. 
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Figure 4.2: Number of images of each class in the Infrared Solar Modules dataset 

 

 

4.3. Methodology 

4.3.1. Used Tools 

4.3.1.1. Kaggle  

      Kaggle is an online community platform for data scientists and machine learning enthusiasts. 

It provides access to a diverse array of datasets and hosts competitions that challenge data 

scientists and machine learning enthusiasts to solve real-world problems. 

       The aim of this online platform is to help professionals and learners reach their goals in their 

data science journey with the powerful tools and resources it provides [41]. 

4.3.1.2. Python 

      Python is an interpreted, object-oriented, high-level programming language with dynamic 

semantics. Its high-level built in data structures, combined with dynamic typing and dynamic 

binding, make it very attractive for Rapid Application Development, as well as for use as a 

scripting or glue language to connect existing components together. Python’s simple, easy to 

learn syntax emphasizes readability and therefore reduces the cost of program maintenance. [42] 

4.3.1.3. Tensorflow  

      TensorFlow [43] is an open-source numerical computing library developed by Google that 

focuses on machine learning and deep learning applications. It provides an adaptive and fast 

framework for executing multi-dimensional array-based mathematical computations known as 
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tensors. TensorFlow is intended to make it easier to construct, train, and deploy machine learning 

models, particularly neural networks, across a variety of platforms and computing environments. 

4.3.1.4. Keras  

      Keras [44] is a high-level, deep learning API developed by Google for implementing neural 

networks. It is written in Python and is used to make the implementation of neural networks easy. 

It also supports multiple back-end neural network computation. 

4.3.2. Evaluation Metrics  

      A metric help in evaluating any designed model's performance. The metrics show how 

accurate the designed model is. [45] They give a comparison between actual and predicted values 

as follows: 

– True Positive(TP): The actual value and the predicted values are the same. 

– True Negative(TN): The actual value and the predicted values are the same. 

– False Positive(FP): The actual value is negative, but the model has predicted it as 

positive.  

– False Negative(FN): The actual value is positive, but the model has predicted it as 

negative. 

 

 Figure 4.3: Confusion Matrix 

4.3.2.1. Accuracy 

     Accuracy is how close or far off a given set of measurements are to their true value [45]. 

 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
                                         (4.1) 

       

4.3.2.2. Precision 
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      Precision is a statistic for determining the percentage of input data cases that are reported to 

be true [45]. 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃 

𝑇𝑃+𝐹𝑃
                          (4.2) 

  

4.3.2.3. Recall 

      Indicates the percentage of total relevant results properly classified by the model. [45] It can 

be calculated using the following formula: 

 

𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                   (4.3) 

 

4.3.2.4. F1-Score 

      The F1-Score is a metric in classification that combines precision and recall scores of a model 

into a single value. The F1-Score ranges between 0 and 1, with higher values indicating better 

model performance. [46] 

 

𝐹1 𝑆𝑐𝑜𝑟𝑒 =  
2×(𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑟𝑒𝑐𝑎𝑙𝑙)

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙
                   (4.4) 

4.4. Binary Classification 

4.4.1. Data Preprocessing  

      In this binary classification, the Infrared Solar Modules dataset downloaded from Kaggle was 

used, the dataset consists of 12 classes one no-anomaly class and 11 anomaly classes. After 

merging the eleven anomaly classes to get one class (anomaly) the dataset became balanced with 

10000 images for each class. 

       Several combinations of hyperparameter values were carefully evaluated to determine the 

most successful ones. 

        After extensive testing the hyperparameters presented in Table 4.2 were chosen. The 

subsections that follow give thorough results, analyses, and discussions for the model and 

imaging technique, giving light on their adaptability to different data situations and their 

implications for practical PV faults picture classification. 

Table 4.2: Selected hyperparameters values for binary classification 
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Hyperparameter Fixed value 

Number of Epochs 80 

Learning rate 0.0001 

Batch size 32 

Optimizer Adam 

Loss function Binary crossentropy 

Metrics Accuracy 

 

4.4.2. Model Description 

      The Convolutional Neural Network (CNN) architecture employed in this study comprises 

multiple layers designed to effectively extract and classify features from input images. The model 

begins with a convolutional layer with 32 filters of size 3x3, reducing the input dimensions from 

40x24 to 38x22 and outputting 32 feature maps, followed by a max pooling layer that further 

reduces the spatial dimensions to 19x11. This is succeeded by a second convolutional layer with 

64 filters, yielding 64 feature maps of size 17x9, and another max pooling layer that reduces the 

size to 8x4. A third convolutional layer with 64 filters reduces the feature map size to 6x2. The 

output from these layers is then flattened into a 1D vector of 768 elements, which is passed 

through a fully connected layer with 64 neurons. A dropout layer is applied to prevent overfitting 

by randomly dropping 20% of the connections during training. Finally, a dense layer with a 

single neuron using a sigmoid activation function outputs the probability for binary classification. 

As shown in Table 4.3.  
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Table 4.3: CNN architecture used in the binary classification of faults in PV modules 

Layer (type) Output Shape 

 

Number of Paramet

ers 

 

conv2d (Conv2D) (None, 38, 22, 32) 320 

max_pooling2d (MaxPooling2D) (None, 19, 11, 32) 0 

conv2d_1 (Conv2D) (None, 17, 9, 64) 18,496 

max_pooling2d_1 (MaxPooling2D) (None, 8, 4, 64) 0 

conv2d_2 (Conv2D) (None, 6, 2, 64) 36,928 

flatten (Flatten) (None, 768) 0 

dense (Dense) (None, 64) 49,216 

dropout (Dropout) (None, 64) 0 

dense_1 (Dense) (None, 1) 65 

 

4.4.3. Classification Report  

       As can be seen from Figure 4.4, the training and validation accuracy graph exhibit a 

noticeable upward trend, indicating successful learning progress, while the loss graph indicates a 

consistent downward trend, indicating effective convergence during training and validation.  
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Figure 4.4: Accuracy and Loss graphs for binary classification 

 

Further information is extracted from the confusion matrix in Figure 4.5: 

As can be noticed, it is easier to detect the No-Anomaly PV modules than the Anomaly 

PV modules.  

 

 

 
 

Figure 4.5: Confusion matrix of the binary classification  

 

 

As we can see from the confusion matrix is giving good results. In addition, other metrics 

are covered in Table 4.4: 

 

 

Table 4.4: Performance metrics for the binary classification 
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Class  Precision  F1-Score Recall  Total accuracy  

Anomaly 0.93  0.91   0.88 

No-anomaly 0.89 0.91 0.94 0.91 

 

 

It shows the performance of the binary classification. Notably, it demonstrated high accuracy 

at 0.91, indicating satisfactory classification. In particular, the Anomaly class achieved a 

precision of 0.93, recall of 0.88, and F1-Score of 0.91, showing an outstanding performance in 

detecting defective PV modules. On the other hand, the Anomaly class achieved a precision of 

0.89, recall of 0.94, and F1-Score of 0.91, showing a remarkable performance in detecting the 

non-defective modules.  

4.5. Multi-Class Classification  

4.5.1. Twelve-Class Classification  

      In multi-class classification, the Infrared Solar Modules dataset was used, the dataset consists 

of 12 classes one no-anomaly class and 11 anomaly classes.  

      After doing many tests the hyperparameters presented in Table 4.5 were chosen. The 

subsections that follow give thorough results, analyses, and discussions for the model and 

imaging technique.  

Table 4.5: Selected hyperparameters values for twelve-class classification 

 

Hyperparameter Fixed value 

Number of Epochs 200 

Learning rate 0.0001 

Batch size 32 

Optimizer Adam 

Loss function categorical 

crossentropy 

Metrics Accuracy 

 

4.5.1.1. Classification Report  

      Using the model architecture described in Table 4.3 we got the following results seen in 

figure 4.6  
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Figure 4.6: Accuracy and Loss graphs for twelve class classification 

 

         As can be seen the training and validation accuracy graph exhibit a noticeable upward 

trend, indicating positive learning progress, while the loss graph indicates a consistent downward 

trend, indicating effective convergence during training.  

 

 

 

Figure 4.7: Confusion matrix of the twelve class classification  

 

The confusion matrix in figure 4.7 shows that it is easier to detect the No-Anomaly PV 

modules than the Anomaly PV modules. The false prediction of the No-Anomaly module is 

mostly on the Offline-module class. This is reasonable because the all the part in the Offline-

module is heated and the entire area will have a similar temperature like a No-Anomaly module. 
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 The Cell, Cell-Multi, and Vegetation modules are the most false prediction on each other. 

The soiling module is the most difficult to classify, which has missed prediction on many other 

modules such as Cell, Cell-Multi, Cracking, Hot-Spot-Multi, and Vegetation. The soiling, hot 

spot, hot-spot-multi modules and diode-multi are the most difficult to classify due to their low 

number of samples. The other remained modules have the most false-prediction on the No-

Anomaly module, this could be because the model was still biased for the No-Anomaly module 

due to a large number of samples (50% in total) on the No-Anomaly module. The Cell has a spot 

but it was predicted as a Cell-Multi because it has a long-shape like a merge of two spots. 

The Diode, cracking and No-anomaly modules are some of the easiest predicted modules, 

which have high accuracies of 66%, 90% and 82%, respectively, as shown in Table 4.6.  

 

Table 4.6: Performance Metrics for the twelve class classification 

 

Class  precision Recall F1-Score Total Accuracy 

Cell  0.49 0.49 0.49 0.74 

Cell-Multi 0.49 0.25 0.33 

Cracking  0.66 0.67 0.66 

Diode  0.90 0.86 0.88 

Diode-Multi 0.59 0.47 0.52 

Hot-spot 0.38 0.06 0.10 

Hot-Spot-Multi 0.43 0.23 0.30 

No-Anomaly 0.82 0.97 0.89 

Offline-Module 0.65 0.27 0.38 

Shadowing 0.63 0.43 0.51 

Soiling 0.36 0.13 0.19 

Vegetation 0.57 0.61 0.59 

 

           As it can be seen from Table 4.6 our model achieved a total accuracy of 74%. The best 

performance was that of the Diode, Cracking and No-Anomaly modules. It can be noticed that 

the minority classes (classes that have the least number of samples) which are Hot-spot, Hot-

Spot-Multi, Diode-Multi, Cell-Multi and Soiling have the worst accuracy due to their low number 
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of samples which makes it difficult for the model to learn and perform a correct classification. 

           Also, the similarity of the IR images makes it difficult for the model to classify the correct 

anomaly types. It requires additional images for better prediction of the anomalies. 

 

4.5.2. Four-Class Classification 

This proposed case evaluates the effect of the elimination of the minority classes

on the performance of the model. 

4.5.2.1. Data Preprocessing 

Based on the results we got from the twelve class classification, it was noticed that the 

classes with the least number of samples have the lowest accuracy and they affect the total 

accuracy and efficiency of the classification of PV module faults.  

The proposed solution is by merging some cases that have similar features and deleting 

the minority classes and leaving the classes that have the highest accuracy. 

As noticed in Table 4.6 the Diode, Cracking and No-anomaly modules have high 

accuracies and by knowing also that Diode and Diode-Multi have almost same features and so is 

the case for Cell and Cell-Multi modules, it was decided to merge the classes together and delete 

the minority classes which are Hot-Spot, Hot-Spot-Multi, Soiling, shadowing and vegetation.  

Which lead to having a four class classification of the No-Anomaly, Diode, Cracking and 

Cell. 

Several combinations of hyperparameter values were carefully evaluated to determine the 

most successful ones. 

After extensive testing the hyperparameters presented in Table 4.7 were chosen. 

 

 

 

 

 

Table 4.7: Selected hyperparameters values for four class classification 

 

Hyperparameter Fixed value 
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Number of Epochs 120 

Learning rate 0.0001 

Batch size 32 

Optimizer Adam 

Loss function categorical 

crossentropy 

Metrics Accuracy 

 

4.5.2.2. Classification Report 

      Using the model architecture described in Table 4.3 we got the following results seen in 

Figure 4.8  

 

 
 

Figure 4.8: Accuracy and Loss graphs for four class classification 

 

 

         As can be seen the training and validation accuracy graph exhibit a noticeable upward 

trend, indicating positive learning progress, while the loss graph indicates a consistent downward 

trend, indicating effective convergence during training.  

Further information is found from the confusion matrix in Figure 4.9: 
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Figure 4.9: Confusion matrix for the four class classification  

 

The confusion matrix in Figure 4.9 shows that it is easier to detect the No-Anomaly PV 

modules than the other three Anomaly classes. The false prediction of the No-Anomaly module is 

mostly on the Cell class. The Cell and Cracking classes are the most false prediction on each 

other. The Cracking class was the most difficult to be correctly classified comparing to the other 

classes.  

More information are mentioned in Table 4.8: 

 

Table 4.8: Performance Metrics for the four class classification 

 

Class  precision Recall  F1-Score Total Accuracy 

Cell  0.83 0.81 0.82 0.91 

Cracking  0.77 0.60 0.68 

Diode  0.92 0.85 0.88 

No-Anomaly 0.94 0.98 0.96 

 

The reduction to the four classes showed a high impact in the performance of the automatic 

classifier that achieved up to 91% accuracy. It is concluded from the results that some classes like 

Hot-Spot and Soiling that have a small and not enough samples can have a huge impact on the 

efficiency, also that some classes that have similar features can reduce and mislead the classifier 

so it is for the better to merge the classes that are similar and remove the minority classes. 
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4.6. Comparison 

      Automated fault classification in photovoltaic modules is critical for maintaining optimal 

energy production and system reliability. Convolutional Neural Networks (CNNs) have 

emerged as powerful tools for this task with their ability to capture patterns in image data. The 

purpose of this literature review is to compare the findings of this thesis work with those of a 

relevant paper by Ricardo Henrique Fonseca Alves [47]. 

Both studies utilized the Infrared Solar Modules dataset. The proposed model achieved an 

accuracy of 91% for binary classification and a 74% for the twelve-class classification and 

91% for the four-class classification after merging some classes that have similar patterns and 

deleting the minority classes that affected the total accuracy which gave us an improvement 

and a good result. In contrast, the paper reported accuracies of 92% and 66% for the binary 

classification and eleven-class classification and an efficiency of 78% for eight-class 

classification after deleting some of the minority classes. 

The differences in accuracy between the proposed model and that of the paper may be 

attributed to the model architectures and the training procedures. 

The approach demonstrated a higher accuracy in the multi-class classification task and 

outperformed the result of Alves. 

Also the strategy of merging and deleting some cases enhanced the quality of the date and 

increased the accuracy and by comparing it with the eight-class classification where only 

deleting some classes was considered and only 78% accuracy was achieved, it is clear that it 

was more efficient. 

  

4.7. Conclusion   

      In conclusion, this chapter has presented an analysis of binary and multi-class PV module 

defects image classification using a CNN model using the Infrared Solar Modules dataset. The 

findings confirmed the significance of model selection in achieving accurate and reliable PV 

fault detection and classification. 
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General Conclusion 

The work presented in this dissertation underscores the pivotal role of advanced machine 

learning techniques in enhancing the reliability and efficiency of photovoltaic systems. By 

integrating infrared thermography with convolutional and artificial neural networks, the proposed 

method successfully addresses the critical need for rapid and accurate fault detection and 

classification in PV modules. The empirical results, demonstrating high accuracy in anomaly 

detection and classification, validate the effectiveness of the approach and highlight its potential 

for real-world application in large-scale solar plants. 
This study contributes to the ongoing efforts to improve the operational efficiency and 

sustainability of renewable energy systems by ensuring timely identification and rectification of 

faults. The methodology not only extends the lifespan of PV modules but also optimizes their 

performance, thereby reducing energy losses and maintenance costs. The findings pave the way 

for further research and development in the field of automated fault detection, offering a robust 

foundation for future innovations in solar energy technology. 

This proposed method that provides a 91%, 91% and 74% accuracy on the classification 

of 2-class, 4-class and 12- class, respectively. The easy class prediction modules are on the No-

anomaly and Diode modules. The difficult prediction modules are Soiling, Cell-Multi modules, 

Hot-Spot, Hot-Spot-Multi, Diode-Multi and Vegetation which are the classes that have the least 

number of samples. 
In conclusion, the integration of advanced imaging techniques and machine learning 

algorithms presents a promising avenue for enhancing the reliability of PV systems. As the 

demand for clean and sustainable energy continues to grow, such innovations will be 

instrumental in meeting global energy needs while minimizing environmental impact. The 

advancements outlined in this thesis represent a significant step forward in the pursuit of more 

efficient and resilient renewable energy infrastructures. 
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