
     People’s Democratic Republic of Algeria 

Ministry of Higher Education and Scientific Research 

University M’Hamed BOUGARA – Boumerdes 

 
Institute of Electrical and Electronics Engineering 

Department of Electronics 

Final Year Project Report Presented in Partial Fulfilment of  

The requirement for the degree of 

Master 

In Electrical and Electronics Engineering 

Option: Telecommunication Engineering 

Title: 

Antenna Selection in Massive MIMO Using Machine 

Learning  

Presented by: 

Rahma CHERIGUI 

Sarah BOUAZABIA 

 

Supervisor: 

Dr. Elhocine BOUTELLAA 

Co-supervisor: 

Dr. Fatima Zohra BOUCHIBANE 

Dr. Hakim TAYAKOUT 

 

Registration Number: 2024



 

 i 

 

 

 

 

To our beloved parents and siblings, for their endless encouragement and support … 

And our friends, Nouha, Katia, Ibtihel, Rania and Houria 

 

 

 

 

 

 

 

 

 

 



 

 ii 

 

Acknowledgements 

We are given, by these few lines, the opportunity to express our deepest appreciation and 

gratitude to the people who contributed to the successful completion of this project.  

First and foremost, we extend our heartfelt thanks to our supervisor, Mr. Elhocine 

BOUTELAA and co-supervisor, Mrs. Fatima Zohra BOUCHIBANE, whose guidance, 

expertise, time, insightful feedback, encouragement and unwavering help have been 

indispensable and invaluable. 

We would like to extend our thanks to the entire staff of CDTA, for their kindness and high 

level of professionalism in ensuring the health and safety of everyone involved. 

We are indebted to all the teachers at the institute for their tireless dedication and genuine care 

for all of us students, which have significantly helped us empower our knowledge and 

consistently strive for excellence. 

Finally, we are immensely grateful to our parents, whose love, patience and support have 

accompanied us throughout every step of this academic journey, helping us overcome every 

challenges. We cannot thank them enough for all what they do and sacrifice for us.  

Thank you all for making this endeavour possible. 

 

  



 

 iii 

 

Abstract 

In massive MIMO (Multiple Input Multiple Output) systems the overall performance 

(bit/s/Hz/cell) is significantly improved by equipping the base stations with arrays of a 

hundred antennas; which becomes one of its most significant challenges; economically and 

technically due to the high power consumption. To solve this, Antenna selection (AS) is 

increasingly gaining more interest, as it strategically reduces the hardware complexity while 

maximizing efficiency and throughput by selecting a specific subset of antennas to activate in 

each transmission slot. In this report, we examine the application of multi-label learning 

(MLL) based algorithms in AS, such as problem transformation methods, including first order 

binary relevance; and high order chain classification. Additionally, we investigate the Deep 

neural networks (DNN) based algorithms, namely Multi-Label Convolutional Neural 

Networks (MLCNN) and Multi-Layer Perceptron (MLP) classifier, and multi-View based 

algorithm. These proposed methods are rigorously evaluated based on their maximum 

capacity, performance and the computation time across various scenarios. Our work 

concludes that, in comparison with the convex relaxation based method, the Multi-view MLL 

achieves comparable results. 
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Introduction 

The digital age and new wireless communication are undergoing a very substantial increase in 

the mobile data traffic due to a number of emerging applications, which include machine-to-

machine communications and video streaming…etc in response, the telecommunications 

industry is continuously innovating and evolving, to meet the escalating demands of the 

digital age with technologies. 

Among the proposed new technologies capable of meeting these requirements is Massive 

MIMO (M-MIMO) also called Large-Scale Antenna Systems; a widely discussed and pivotal 

technology in the realm of wireless communication that stands as a beacon of innovation, 

offering immense potential to revolutionize wireless networks. M-MIMO employs a huge 

number of antennas at the base station while using a simple linear processing. It holds the 

promise of serving multiple users simultaneously in the same time-frequency resource with 

improved quality, capacity and without severe inter-user interference. However, amidst its 

advantages, challenges such as hardware complexity, cost and power consumption due to the 

number of Radio Frequency (RF) chains causes a significant issue that we aim to address 

within this work. 

Numerous techniques have been proposed to improve energy efficiency and capacity, one of 

which is Antenna Selection (AS). This method entails selecting specific subsets of antenna 

elements from the whole array within the base station (BS) system to attain optimal capacity 

while economizing energy.  

Our approach involves harnessing the power of a machine learning trained models for multi-

label classification to select an optimal subset of antennas at the BS which offers the perfect 

balance between capacity enhancement and power efficiency.  

The remainder of this report is outlined as follows: 

• Chapter 1: elucidates the fundamental concepts of MIMO (Multiple Input Multiple 

Output) systems, examines the benefits and drawbacks of Massive MIMO technology, 

in addition to the antenna selection in Massive MIMO systems, and explores its 

various techniques and related work 
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• Chapter 2: examines machine and deep learning systems and further explores multi-

label classification in the context of antenna selection for Massive MIMO systems. 

• Chapter 3: presents the obtained results and engage in a comprehensive discussion of 

their implications and significance. 

The report is finally concluded by summarizing the main findings and providing perspectives 

for future research endeavours. 
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Chapter 1 : Massive MIMO and Antenna Selection 

1.1 Introduction 

This chapter presents the groundwork by introducing the technology of Multiple-Input 

Multiple-Output (MIMO) wireless communication and its fundamental concepts. 

Subsequently, it presents Massive MIMO, elucidating its architecture, benefits, and 

drawbacks, where lays a critical issue concerning the energy consumption due to the 

deployment of many antenna elements in Massive MIMO systems. Additionally, Antenna 

Selection (AS) topic will be explored in this chapter, elaborating on several algorithms and 

techniques, aiming for the maximization of capacity considering both conventional MIMO 

and Massive MIMO. 

1.2 MIMO systems 

MIMO technology has gained significant attention for the past decades, representing a pivotal 

role in advancing wireless communication like Wi-Fi, LTE, and 5G, for it has Remarkably 

improved network capacity, reliability and spectral efficiency by employing multiple antennas 

at both transmitter and receiver ends, which enables the transmission of multiple data streams. 

Moreover, it mitigates interference and exploits spatial diversity making it particularly vital 

for applications such as wireless LANs and cellular telephony, where a single base station 

must communicate with numerous users concurrently. 

A MIMO system refers to a system where multiple antennas are deployed at one or both ends 

of the communication link as shown Figure 1-1. 
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Figure 1-1: MIMO System. 

 Considering having a system with M antennas on the Base Station (BS) and K receiver 

antennas. The received signal can be given as [1] 

 𝑌(𝑡) = 𝐻. 𝑥(𝑡) + 𝑛(𝑡) (1.1) 

where y(t) represents the K × 1 received vector sampled at time t, and x(t) represents the M 

×  1 vector transmitted by the antennas, n(t) is the K × 1  Additive white Gaussian noise 

(AWGN) vector at the receiver with zero mean and variance of σ2, H is the K × M channel 

matrix, whose ij-th element is the scalar channel between the i-th receive and j-th transmit 

antenna. 

 𝐻 = [

ℎ11
ℎ21

ℎ12   
ℎ22

 
⋯
…

ℎ1𝑀
ℎ2𝑀

⋮  ⋱       ⋱ ⋮
ℎ𝐾1 ℎ𝐾2     ⋯ ℎ𝐾𝑀

] (1.2) 

The general formula of capacity of a MIMO system is given by [2]: 

 𝐶 = 𝑙𝑜𝑔2[ det(𝐼𝐾+( ⁄ M). 𝐻𝐻†)]   bps (1.3) 

where IK is the K× K identity matrix,  is the mean Signal to Noise Ratio (SNR), and the 

superscript † denotes the Hermitian transpose. 

1.3 Basic Concepts of MIMO Technology 

 MIMO technology can be divided into three categories namely: point-to-point MIMO (P2P 

MIMO), multiuser MIMO (MU-MIMO), and massive MIMO (M-MIMO).  
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1.3.1 Point-to Point MIMO 

Point-to-point MIMO (P2P MIMO) represents the simplest MIMO system, where the BS is 

equipped with one array that transmits to a terminal with a receiving antenna array as shown 

in Figure 1-2. the users are accommodated in disjoint time/frequency blocks via a 

combination of time division and frequency division multiplexing [3]. P2P MIMO is 

commonly used in wireless communication scenarios where high data rates, reliability, and 

coverage are essential, such as backhaul links between base stations, wireless broadband 

access, and long-range communication links. 

 

Figure 1-2 Downlink and Uplink Point-to-Point MIMO [4]. 

 

The point-to-point MIMO system capacity in both the uplink and downlink system, is 

expressed in bits/s/Hz the same as (1.3). 
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1.3.2 Multi-User MIMO 

Multi-User MIMO (MU-MIMO) serves multiple users simultaneously by exploiting spatial 

multiplexing and interference management techniques. Multiple users communicate 

simultaneously with the BS using the same time-frequency resources where BS handles most 

of the processing, in both uplink and downlink scenarios. 

A MU-MIMO system can be derived from the point-to-point MIMO setup by dividing the K-

antenna terminal model into several independent and less complex terminals separated by 

many wavelengths as shown in Figure 1-3 [3]. The main difference between them is 

represented in the table 1-1. 

 

Figure 1-3: Uplink operation of a Multi-user link [3]. 

the Shannon sum-capacity for uplink Multi-User MIMO is identical to that of uplink Point-to-

Point MIMO [3]:  

 𝐶𝑈𝑝 = 𝑙𝑜𝑔2[ det(𝐼𝐾+( ⁄ M).  𝐻𝑢𝐻𝑢
† )]   bps (1.4) 

However, the formula for downlink Shannon sum-capacity requires the solution of a convex 

optimization problem, 

 𝐶𝑑𝑜𝑤𝑛 = 𝑠𝑢𝑝𝑎 {𝑙𝑜𝑔2 𝑑𝑒𝑡 ((𝐼𝑀 + (  𝐷𝑎𝐻𝑑𝐻𝑑
†))} bps ;  𝑎 >= 0, 1𝑇𝑎 = 1 (1.5) 
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where 𝐷𝑎 is a diagonal matrix, whose diagonal elements comprise the M × 1 vector, a, and 1 

represents the M × 1 vector of ones. Crucially, this capacity is predicated on both ends of the 

link knowing the downlink channels. 

Features SU-MIMO MU-MIMO 

Service One user at a time Multiple users simultaneously 

Complexity Relatively simpler 

implementation 

Requires sophisticated signal 

processing and coordination 

Spectral efficiency Limited by the channel 

conditions of a single user 
Improved spectral efficiency 

Spatial streams Multiple spatial streams 

dedicated to a single user 

Independent data streams to 

different users simultaneously 

Table 1-1: Comparison between SU-MIMO and MU-MIMO. 

1.4  Massive MIMO 

The demand for communication reliability, wireless throughput, and user density is on a 

perpetual rise; thus, future wireless communication requires developed technologies capable 

of serving numerous users simultaneously with exceptionally high throughput. One such 

technology that addresses these challenges is Massive MIMO. 

 The massive MIMO concept was first mentioned in the seminal paper [5] by Thomas 

Marzetta, defined as a MU-MIMO system with M antennas and K users per BS. The system is 

characterized by the vast provisioning of antenna elements at base stations that serves 

multiple users’ antennas simultaneously, operating in time-division duplexing (TDD) mode 

using linear Uplink (UL) and Downlink (DL) processing. 

In a massive MIMO system, the number of transmit antennas can be as large as hundreds. 

such criteria introduce many benefits, such as capacity, multiplexing, diversity, and energy 

efficiency. However, it faces challenges like: power consumption and hardware complexity 

[6]. 

1.4.1 Massive MIMO Characteristics 

 The theoretical mathematical aspect of massive MIMO is based on the law of large numbers 

and the theorem of Lindeberg-Levy. Let hi and hj be two mutually independent 1 × M channel 

vectors whose elements are zero-mean random variables with σi
2, σj

2 their corresponding 
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variances. For a Single user (SU) case, channel hardening can be mathematically illustrated 

from the capacity equation as [7]:  

 
1

𝑀
(ℎ𝑖ℎ𝑖

𝐻)
𝑎.𝑠.
→  𝜎𝑖

2  𝑎𝑠  𝑀 → ∞ (1.6)                           

And favourable propagation for two users: 

 
1

𝑀
(ℎ𝑖ℎ𝑖

𝐻)
𝑎.𝑠.
→  0  𝑎𝑠  𝑀 → ∞ (1.7)  

where 
𝑎.𝑠.
→  denotes almost sure convergence. Eq. 1.7 shows that the two vectors become 

orthogonal as the number M increases. 

1.4.1.1 Channel hardening 

Channel hardening involves minimizing the effects of channel fading and interference for a 

secure transmission. It might involve techniques such as beamforming, diversity schemes, and 

error correction coding. Given a user channel vector, the average received gain at user k when 

M antennas are transmitting converges to a deterministic value denoted βk, the large-scale 

coefficient. Mathematically, it can be written for user k as [7]: 

 
‖𝒉𝒌‖

𝟐

𝑴
 
𝑎.𝑠.
→  𝛽𝑘  𝑎𝑠  𝑀 → ∞ (1.8)  

1.4.1.2 Favourable propagation 

It represents the circumstances that are conducive to the successful transmission of signals. 

Where the ultimate favourite propagation condition occurs for two users, channel vectors 

become pairwise orthogonal, when hihj
H =0. Ultimately, the signals can be separated. 

However, this condition is very hard to satisfy. 

1.4.1.3 Time Division Duplex (TDD) 

In Time Division Duplex (TDD) mode, the same frequency band is used with different time 

slots for Uplink (UL) and Downlink (DL): In UL transmission, the channel is estimated based 

on the received K orthogonal pilot sequences signals sent by k users. Whereas, in the DL 

transmission, to make sure each user recovers its own data, the Base Station (BS) needs 

Channel State Information (CSI) to precode the transmitted signals. 
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In Frequency Division Duplex (FDD) mode, UL and DL use two different frequency bands to 

estimate the corresponding channel: In UL transmission, the process is same as in TDD. 

Whereas, in DL transmission, BS antenna elements send orthogonal pilot signals to K users, 

which then estimate the channel from the received signals relay this information back to the 

base station via a control channel, the achievable rates in bits/second [4]: 

In TDD: 𝐷𝑇𝐷𝐷 =
𝐵

2
 𝑙𝑜𝑔2 (1 +

𝑃𝑅

𝐵𝑁0
) (1.9) 

In FDD: 𝐷𝐹𝐷𝐷 =
𝐵

2
 𝑙𝑜𝑔2 (1 +

𝑃𝑅

(𝐵 2⁄ )𝑁0
) (1.10) 

Where B represent the Bandwidth (BW). PR denotes the power received by the user terminal, 

and N0 is the noise spectral density for the downlink scenario. 

TDD protocol is used in Massive MIMO, because the throughput required for channel 

estimation does not depend on the number of BS antennas M Unlike FDD protocol.  

1.4.2  Massive MIMO system  

We consider a Massive MIMO system (see Figure 1-4) with M transmit antennas and K 

receive antennas such that M ≫ K, where the input-output relationship is given by: 

 𝑦(𝑡) = 𝐻. 𝑥(𝑡) + 𝑛(𝑡) (1.11)  

y ∈ ℂKx1 is the signal received by the M antennas, x ∈ ℂM x 1 is the transmitted signal vector, 

H ∈ ℂK x M is the channel matrix composed of several independent and identically distributed 

wireless channels between the transmitter and the with zero mean and unit variance and n ∈ 

ℂKx1 is the AWGN noise vector at the receiver with zero mean and variance of σ2
n [8].  



Chapter 1: Massive MIMO and Antenna Selection 

 
10 

 

Figure 1-4: Massive MIMO architecture [9]. 

1.4.3  Why Massive MIMO? 

Massive MIMO systems offer a host of unparalleled benefits for wireless communication (see 

Figure 1-5). By harnessing a multitude of antennas, these systems enhance capacity and 

throughput, maximize data rates while optimizing spectral utilization and ensure robust 

connectivity across diverse environments, allowing simultaneous servicing of multiple users 

with advanced signal processing capabilities. Moreover, massive MIMO utilizes sophisticated 

beamforming techniques systems to extend coverage and range through, diminishing 

interference and ensuring robust connectivity and optimal user experience. The major benefits 

of massive MIMO are: 

• Improved Spectral Efficiency: By utilizing spatial multiplexing techniques in 

cellular networks, Massive MIMO systems achieve higher spectral efficiency, 

enabling more data to be transmitted over the available bandwidth (BW) [9]. 

 

• High Throughput: System throughput is a key parameter for performance evaluation, 

defined as the sum of data rates delivered to all users in a given cell and measured in 

bits per second (bits/s or bps), it is directly related to the BW and spectral efficiency 

(SE) as shown below: 

                   Throughput = Bandwidth (Hz)×Spectral efficiency (bits/s/Hz) 

Massive MIMO can increase the system capacity 10 times or more and simultaneously               

improve the radiated energy efficiency [10], due to the aggressive spatial multiplexing that is 
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transmitting multiple data streams simultaneously over the same frequency channel, utilizing 

multiple antennas at both ends. 

• Scalability: Massive MIMO is a Scalable Technology that accommodates a large 

number of users and devices, making them suitable for deployment in various 

scenarios. It departs from Shannon theoretic practice. First, the BS learns the channels 

via uplink training, under TDD operation. Second, the number of BS antennas can be 

made as large as desired with no increase in the channel estimation overhead since In 

a TDD system the time required to acquire CSI is independent of the number of base 

station antennas. Third, the signal processing at each user is very simple and does not 

depend on other users' existence. Therefore, as the number of the base station 

antennas increases, linear precoding and decoding performance can approach the 

Shannon limit [3]. 

• Linear processing: in a massive MIMO system, the large number of base station 

antennas over the number of users yields a favourable propagation when the channel 

matrix between the BS antenna array and the users is nearly orthogonal. Hence, a 

simple signal processing (linear combing schemes in the uplink and linear precoding 

schemes in the downlink) is preferable to remove the effect of interference, fading 

and noise [10]. 

Furthermore, massive MIMO reduces the constraints on accuracy and linearity of each 

individual amplifier and Radio Frequency (RF) chain by relying on the law of large numbers 

and beamforming to make sure that noise, and hardware imperfections average out. 

 

Figure 1-5: 5G requirements and benefits of M-MIMO [11]. 
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1.4.4  Disadvantages of massive MIMO 

Massive MIMO represents the key technology to this demand as it grants high spectrum 

efficiency and gain by deploying a large number of antennas at the BS; however, it faces the 

following issues: 

• Power consumption and cost:  Due to enormous antenna elements, a big amount of 

power is needed since the BS requires RF and Analog-to-Digital Converter (ADC) 

chains, which are expensive, and despite the hybrid combination to reduce RF chains 

that may decrease the hardware overhead cost, the price may rise as the propagation 

paths channel is larger than the mobile station (MS) antennas [9].  

• Pilot contamination: Typically, the maximum number of orthogonal pilot sequences 

in a 1 ms coherence interval is estimated to be about 200 (the available supply of 

orthogonal pilot sequences is easily exhausted) [4]. Hence, the reusage of pilots from 

one cell yields the consequence referred to as pilot contamination, illustrated in Figure 

1-6). This phenomenon affects the channel estimation accuracy and cannot be 

eliminated by increasing the number of antenna elements at the BS. 

 

Figure 1-6: Illustration of pilot contamination in M-MIMO [12]. 

Moreover, Determining CSI between each transmit and receive antenna uses a considerable 

number of spectral resources [10].  
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1.4.5 Massive MIMO architecture 

Beamforming is a signal processing technique used in sensor arrays for directional signal 

transmission or reception. It is applied to various technologies, including massive MIMO 

setups. The Three popular architectures of beamforming used in massive MIMO setups are 

illustrated in Figures 1-(7 and 8) as a, b, and c for analog, digital, and hybrid beamforming 

respectively, each with its unique applications and advantages. 

1.4.5.1 Digital Beamforming  

Digital Beamforming (DBF) is referred to as MU-MIMO in LTE/5G. It is already used in 

transmission modes 7, 8 and 9 in LTE Advanced Pro [8]. In this architecture, each radiating 

element in the antenna array is connected to its RF chain and signal pre-Processing circuit, 

including phase and amplitude adjustments for beamforming, is performed at the base station 

before transmission. Despite the usage of RF chains for each element, this setup allows for the 

simultaneous formation of multiple beams from the same set of antenna elements, providing 

full flexibility and adaptability to the system. 

1.4.5.2 Analog beamforming  

 Unlike digital beamforming, which performs signal processing in the baseband domain, 

analog beamforming (ABF) is a technique that manipulates the signals directly in the RF 

domain, same signal is fed to each physical antenna element and the signal phases are 

adjusted in the RF domain using analog phase-shifters after digital-to-analog conversion 

(DAC) for the single stream user [7]. ABF grants advantages such as simplicity and lower 

power consumption compared to digital beamforming. However, it cannot dynamically adjust 

beamforming parameters in response to changing channel conditions.  

 Despite ABF being the best compromise between coverage and power/cost constraints, it is 

not adequate for massive MIMO scenarios with a large number of receivers. Nevertheless, it 

can be used where link reliability and high data rates are a must and with mmW for potential 

wireless backhaul design applications [13]. 
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1.4.5.3 Hybrid beamforming  

For a balance between the simplicity and power/cost constraints of analog beamforming and 

the flexibility and adaptability of digital beamforming, hybrid beamforming (HBF) was first 

introduced and analysed in the mid-2000s [10]. In this setup, both ABF and DBF are 

combined: the array of antenna elements of BS is divided into sub-arrays, each connected to a 

number of RF chains, where ABF is applied to adjust the phase and amplitude of signals 

before they are combined across the sub-arrays. After signals have been combined from the 

different sub-arrays, DBF is performed at the baseband level adjusting the signals to further 

refine the beamforming process.  

 

 

 

Figure 1-7: (a) Tx Analog Beamformer and (b) Tx Full Digital Beamformer [7]. 
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Figure 1-8: Example of a Hybrid Beamforming Architecture [7]. 

 

1.5 Antenna Selection  

To transmit a signal from an antenna element at the BS, the element must be attached to an 

RF chain, that incorporates all analog components past the transmitting antennas, including 

power amplifiers, mixers, phase shifters, and ADCs/DACs (Analog-to-Digital 

Converters/Digital-to-Analog Converters). Hence, the total number of RF chains is equal to 

the number of transmitting antenna elements M at the BS, which represent the main power 

consumption and hardware cost of a cellular network. Antenna selection emerges as one of 

the most promising techniques. It involves identifying the most optimal subset of antennas for 

activation for further processing, while efficiently discarding the remainders. 
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1.6 Antenna selection in M-MIMO 

As shown in Figure 1-9, there are M transmit antennas at the base station with a number of LT 

RF chains (LT < M), and K receive antennas at the receiver side with LR RF chain (LR < K). 

We denote the overall M×K channel matrix by H, and the LT × LR channel matrix 

representing the selected antennas by H. 

 The object of AS is to select the best LR out of K antennas at the receive side and the best LT 

out of M antennas at the transmission side so that the resulting system capacity is maximized. 

Following this selection, the transmitter experiences a significant reduction in complexity 

[14]. 

 

Figure 1-9: Antenna selection system in M-MIMO [14]. 

 

1.7  Antenna selection approaches  

Over the span of decades, several antenna selection criteria and algorithms have been 

introduced for conventional small-scale MIMO systems. For instance, many research delved 

into error-rate-oriented selection criteria coupled with specific selection algorithms tailored 

for practical receivers. And many others focused on capacity-oriented selection criteria, 

including greedy search methods, convex optimization techniques, and dominant-submatrix 

searches [15].  However, many derivations in Antenna selection in MIMO (AS-MIMO) 

systems cannot be directly applied in massive AS-MIMO systems as deploying a large 

number of antennas will result in high computational complexity. To address this issue, some 

of these methods have been Adjusted and expanded for massive MIMO systems.  
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1.7.1 Exhaustive Search Method  

Exhaustive search method can be used to achieve the optimal antenna allocation. In particular, 

this technique checks all possible subsets of antennas, and selects the subset that satisfies the 

best performance metric. However, a significant drawback of this approach derives from its 

high computational complexity. note that the number of potential subsets is  ∑ 𝐶𝑚
𝑁𝑇𝐿𝑅

𝑚=1   which 

entails very high complexity if 𝑁𝑇 and/or 𝐿𝑅 are large as in M-MIMO [16]. 

Example: 

 For simplicity, we assume all channels experience the same SNR. Assuming a base station 

with NT =4 and the selected antennas is LT=2 antennas for transmission. The possible 

combinations are: (1,2), (1,3), (1,4), (2,3), (2,4), (3,4).  

For each combination, we calculate the capacity using the capacity equation (1.3) from the 

first chapter: the capacity for combination (1,2) might be 10 bps/Hz, for combination (1,3) is 

12 bps/Hz, and so on. Upon evaluating all combinations, we find that combination (1,3) yields 

the highest capacity of 12 bps/Hz. Consequently, the algorithm opts for the (1,3) subset to 

activate, resulting in a capacity of 12 bps/Hz.  

1.7.2 Related work 

A bio-inspired algorithm was employed in [17], where the author tackled the challenge of 

maximizing capacity in wireless MIMO systems using Particle Swarm Optimization 

(PSO)1,where the authors defined the “particle” as a set of antennas and the fitness function as 

the capacity achieved by the antenna subset. The work results showed better balance between 

capacity performance and computational complexity of PSO when compared with optimal 

Exhaustive Search Algorithm (ESA) method, and more effectiveness as the number of 

iterations increases leading to optimized MIMO system performance. 

 

1 PSO mimics the behaviour of organisms, like bird flocks, to seek optimal solutions through iterative updates of 

particle positions and velocities, influenced by local and global best solutions. 
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Heuristic Optimization algorithms can also be deployed to solve AS problem as discussed in 

[18]. However, a significant number of iterative calculations is required due to the large-scale 

antenna array, making them computationally impractical in real-world applications. 

Gorokhov [19] proposed an algorithm for fast antenna subset selection, that iteratively 

removes the antenna with the lowest contribution to system capacity continuously until the 

desired number of antennas is reached, though the algorithm is complex. In contrast, a faster 

near-optimal antenna selection algorithm was introduced in [20], that begins with an empty 

set unlike the previous algorithm, and adds the antenna with the highest capacity contribution 

in each step. This approach [20] achieves nearly the same capacity as both the optimal method 

and Gorokhov's algorithm, but with significantly lower computational complexity. 

While these traditional methods and heuristic approaches provide a foundation, Deep 

Learning (DL), a new Artificial Intelligence (AI) technique that has shown its powerful use in 

research domains such as image processing and speech processing, overcomes their 

limitations and enhances the performance and efficiency of antenna selection in massive 

MIMO systems. DL methods excel in addressing complex tasks such as multi-label 

classification, which is a challenging task in machine learning as it requires predicting 

multiple label categories for each input instance, which is practical yet difficult.   

It is noteworthy to mention that multi-label classification is different from the standard multi-

class recognition, as it predicts more than one label per instance (see Figure 1-10). And thus, 

different approaches have been adapted to solve multi label classification problem as it 

became more required by modern applications.  

One of the most well-known strategies is Binary Relevance (BR), this method treats each 

label as an independent binary classification problem, enabling separate handling of each task 

[21]. The author in [22] introduced AS in single-user and multi-user MIMO systems by 

approaching it as a series of binary classification tasks, in which he employed two 

conventional machine learning algorithms; support vector machine (SVM) and k-nearest 

neighbours (KNN); to detect the selected antennas. However, these methods required a large 

number of binary classifiers, resulting in heightened computational complexity.  

Furthermore, there have been efforts to utilize deep learning techniques in the context of a AS 

in massive MIMO systems. In [23], A pair of twin convolutional neural networks (CNNs) that 
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are trained using a substantial amount of labelled data was introduced. These networks are 

designed to sequentially carry out receive antenna selection and hybrid beamformer design in 

a single-user (massive) MIMO system, which is distinct from the configuration of our own 

system. Convolution layers are commonly employed in image processing tasks to capture the 

relationship between neighbouring pixels. CNN-based antenna selection algorithm was also 

introduced in [24]. However, the application of convolution in the context of wireless 

channels lacks a clear understanding of its physical implications [25]. 

 

 

Figure 1-10: The three types of classification. 

1.8 Conclusion 

In this chapter, we explored massive MIMO systems, along with its advantages, 

disadvantages and characteristics. We discussed antenna selection and its various methods 

that have been employed and studied in previous works on MIMO systems. These techniques 

include traditional approaches as well as machine and deep learning-based techniques. From 

our review, we conclude that deep learning-based methods demonstrate superior performance, 

lower computation complexity and are particularly well-suited for massive MIMO systems, 

where the number of transmitting antennas BS is significantly increased. 
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Chapter 2 : Multi-Label classification based AS  

2.1 Introduction  

This chapter provides a comprehensive analysis of different implementations of Multi-Label 

Learning (MLL) based algorithms in Antenna Selection (AS). We first review the concept of  

Multi-View Learning (MVL) in the scope of deep learning, and its methods. Then discuss the 

multi-View MLL model; combining both Deep Canonical Correlation Analysis (DCCA) and 

Auto-Encoder (AE) in a single network structure [25]; first order binary relevance, high order 

chain classifier, MLCNN, and finally MLP classifier. 

2.2 System model 

 We consider transmit AS in the downlink of a single-cell multi-user large-scale MIMO-

OFDM (Orthogonal frequency-division multiplexing) system with L subcarriers. The BS is 

equipped with N = 64 transmitting antennas and Ns RF chains that simultaneously serve k = 4 

single-antenna mobile users. Considering an ideal scenario with perfect CSI for all antennas at 

the BS, denoted by H ∈ ℂKxN Channel normalization is performed such that the elements of H 

have unit energy, averaged over L = 100 subcarriers. Both the transmit power and the number 

of selected antennas is assumed to be fixed. The objective of this study is to transmit signals 

over Ns antennas that maximize the key performance indicator (KPI), which is the channel 

capacity given by: 

 𝐶 = 𝑙𝑜𝑔2[𝑑𝑒𝑡(𝐼𝐾 + (
 
𝑁𝑠
⁄ ). 𝐻𝑠𝐻𝑠

†
)]    bps (2.1) 

where IK is the K× K identity matrix,  is the mean SNR, and the superscript † denotes the 

Hermitian transpose. from the complete MIMO matrix H, Ns columns are selected by using a 

diagonal matrix Δ of size N × K with binary diagonal elements. Each binary element indicates 

whether the i-th antenna is selected, ensuring that the sum of the diagonal elements is equals 

to Ns, ∑ ∆i𝑵
𝒊=𝟏  =Ns. 

 



Chapter 2: Multi-Label classification based AS 

 21 

 Δ =  {
1         , 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑
  0        , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

      (2.2) 

Equation (3.1) can be rewritten as: 

 𝐶 = 𝑙𝑜𝑔2[det (𝐼𝐾 + (
 
𝑁𝑠
⁄ ) .  H∆H† )] bps (2.3) 

Thus, the optimal ∆ can be found by: 

 ∆𝑜𝑝𝑡= 𝑎𝑟𝑔 𝑚𝑎𝑥∆(𝑙𝑜𝑔2[det (𝐼𝐾 + (
 
𝑁𝑠
⁄ ) .  H∆H† )]) bps (2.4) 

2.3 Multi-view overview 

The objective MVL is to uncover the common feature spaces or shared patterns by merging 

different sets of features or data sources [26]. Over the past few decades, MVL has 

experienced a notable surge in popularity within the realms of machine learning and computer 

vision, as evidenced by various studies [27, 28, 29, 30, 31]. This surge has led to the 

development of several promising algorithms, including the co-training mechanism [32], 

subspace learning methods [33], and multiple kernel learning (MKL) [34]. Among the various 

MVL approaches, one of the most widely adopted strategies involves mapping multi-view 

data (example in Figure 2-1) into a shared feature space that maximizes the consensus among 

multiple perspectives [35, 36, 37, 38, 39]; known as canonical correlation analysis (CCA) 

[27], which is a statistical technique utilized to explore the linear relationships between two 

sets of feature vectors. Moreover, many variations of CCA have been developed to learn 

about a common feature space with fewer dimensions for multiple modalities or viewpoints, 

covering a diverse set of uses, such as deep CCA [40]. However, CCA is a conventional 

learning technique. In this chapter we will discuss the multi-view extension works of 

conventional learning methods.  

 



Chapter 2: Multi-Label classification based AS 

 22 

 

Figure 2-1: Examples of multi-view data [40]. 

2.4 Deep Multi-view Canonical Correlation Analysis 

 In this section, we first introduce the conventional CCA technique, followed by the Deep 

Canonical Correlation Analysis with Autoencoders (DCCAE). 

2.4.1 Canonical Correlation Analysis 

 Canonical Correlation Analysis CCA is a widely used and well-known technique that aims to 

uncover the connections between two given variables by converting them into a shared 

subspace. The main goal of CCA is to find a linear transformation that brings the variables 

together in a unified space, where their correlations are both optimized and maximized. Its 

performance has shown great potential in multiple tasks, including classification [41, 42]. 

2.4.2 Deep Canonical Correlation Analysis 

The traditional CCA is constrained in its ability to uncover only the linear correlation between 

multiple views of data; thus, various nonlinear extensions of CCA have been proposed in the 

literature, such as DCCA, that was introduced by Andrew et al in [36]. DCCA aims to capture 

nonlinear associations among various perspectives by integrating deep neural networks 

(DNNs) and CCA techniques. 
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 As illustrated in Figure 2-2, Two separate neural networks labelled as f and g, are employed 

in deep CCA to optimize the parameters 𝜶𝒇  and 𝜶𝒈 of these networks. The main goal is to 

efficiently preserve the canonical correlation between the outputs generated by f and g at their 

highest level. These parameters are then trained using back-propagation to optimize the 

following objective function: 

 (𝜃𝑓
∗𝜃𝑔
∗) = 𝑎𝑟𝑔max

𝜃𝑓𝜃𝑔
𝑐𝑜𝑟𝑟( 𝑓(𝑋1; 𝜃𝑓), 𝑔(𝑋2; 𝜃𝑔))  (2.5) 

 

Figure 2-2: The framework of (DCCA) [40]. 

2.4.3 Deep Canonical Correlated Auto-encoders 

Wang et al. [43] introduced a novel deep learning model known as DCCAE, building upon 

the foundation of deep CCA and reconstruction-based methodologies. This model serves as an 

extension of the deep CCA framework, offering a new perspective on data representation and 

correlation learning. 

The DCCAE architecture consists of a pair of auto-encoders, as depicted in Figure 2-3. These 

auto-encoders are designed to optimize the compressed features' canonical relationship and 

the reconstruction errors simultaneously. 
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DCCAE’s objective function is defined as follows: 

 ℒDCCAE = max
𝜃𝑓,𝜃𝑔,𝜃𝑝,𝜃𝑞,𝑈,𝑉

−
1

𝑛
tr(𝑈𝑇 𝑓(𝑋1)𝑔(𝑋2)

𝑇𝑉)  

 +
𝜆

𝑛
∑ (‖𝑥1

𝑖 − 𝑝 (𝑓(𝑥1
𝑖))‖

2

+ ‖𝑥2
𝑖 − 𝑝 (𝑓(𝑥2

𝑖 ))‖
2
)𝑛

𝑖=1  (2.7) 

 𝑠.𝑡.,  𝑈𝑇 (
1

𝑛
 𝑓(𝑋1) 𝑓(𝑋1)

𝑇 + 𝑟𝑋1𝐼) = 𝐼 (2.8)  

 𝑉𝑇 (
1

𝑛
 𝑓(𝑋2) 𝑓(𝑋2)

𝑇 + 𝑟𝑋2𝐼) = I (2.9)  

 𝑢𝑖
𝑇𝑓(𝑋1)𝑔(𝑋2)

𝑇𝑣𝑗 = 0      , ∀𝑖𝑗 (2.10) 

Where the variable 𝐼 represents the identity matrix, U = {u1, u2, ..., uL} and V = {v1, v2, ..., vL} 

are the CCA directions that transform the characteristics of auto-encoders into a condensed 

space with L units. The terms (rX1, rX2) denote the regularization terms used [40]. 

 

Figure 2-3: The framework of (DCCAE) [40]. 

2.5 Multi-Label Learning Based AS 

In the given AS problem, the complete channel matrix H is regarded as the input instance that 

is received at every Transmission Time Interval (TTI). The AS vector α is considered as the 
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label vector consisting of N interdependent labels. Consequently, the AS in massive MIMO 

systems can be converted into an MLL problem, which focuses on constructing a classifier to 

forecast α based on H. Starting with the Multi-View Multi-Label Learning (MV-MLL), 

followed by the neural network-based approaches, namely the Multi-Layer Perceptron (MLP) 

classifier and Multi-Label Convolutional Neural Networks (MLCNN). Finally, we discuss 

traditional approaches such as Binary Relevance (BR) and Classifier Chains (CC), known as 

problem transformation methods, using Three base estimators: SVM, KNN, and Random 

Forest classifier.  

2.5.1 Multi-view MLL 

As discussed earlier, MVL Incorporates diverse representations of data to improve 

generalization. In the case of AS, labels are treated as the second view only in the training 

phase. To address this, we present a DNN-based framework, integrating the architectures of 

DCCAE for multi-label classification. 

2.5.1.1 Model architecture 

As illustrated in Figure 2-4, our Multi-view MLL combines two DNN models (i.e., DCCA 

and autoencoder), composed of three main components: an encoding network Fe, a decoding 

network Fd, and a feature mapping network Fx. Each of these components is structured with 

three fully connected (FC) layers, each with its own specific activation functions; including 

leaky ReLU, and sigmoid activation functions.  
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Figure 2-4: Multi-view MLL (DCCAE) architecture. 

Where, the objective function of the respective model is as follows: 

 𝜓 = min
𝐹𝑥𝐹𝑒𝐹𝑑

𝜙(𝐹𝑥 , 𝐹𝑒) +  𝛼Γ(𝐹𝑒 , 𝐹𝑑) (2.11)                    

The losses at the latent space and output of Multi-View MLL are represented by 𝝓(Fx ,Fe ) 

and Γ(Fe ,Fd ) respectively, with the parameter α serving as a balance between these two types 

of loss functions. 

After training, the test h channel matrix is transformed into the derived latent space by Fx, 

followed by the decoding mapping of Fx to predict AS vector (i.e., y = Fd (Fx(h))); where h is 

a MN × 1 real vector which is obtained by flattening the channel matrix H. 

DNNs based DCCA performs joint feature and label embedding by transforming both h and α 

into the same latent space. (i.e. common low-dimensional space, where the projected 

representations are highly linearly correlated) [44, 36]. 

In order to calculate Φ (Fx ,Fe) in equation (2.11), we employ the concept introduced by [45] 

and rewrite the objective function based on correlation as follows: 

  𝑚𝑖𝑛
𝐹𝑥𝐹𝑒

‖𝐹𝑥(ℎ) − 𝐹𝑒(𝛼)‖ 𝐹
2   (2.12) 

  𝑠.𝑡.    𝐹𝑥(ℎ)𝐹𝑥(ℎ)
𝑇 = 𝐹𝑒(𝛼)𝐹𝑒(𝛼)

𝑇 = 𝛪 (2.13) 
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the transformed feature and label data in the derived latent space L are represented by Fx(h) 

and Fe(α) respectively. Additionally, the identity matrix I ∈ ℝ𝒍×𝒍, where I represents the 

dimension of the latent space L used, As demonstrated in [31]. 

DNNs are employed to solve Fx(h) and Fe(α) in equation 2.12 with the aim of establishing a 

robust relationship between feature and label data. This enforces a cohesive and integrated 

association between the two. Furthermore, the autoencoder component of Multi-view MLL 

recovers the AS vector preserving cross-label dependency. The loss function is given by [46]: 

  𝛤(𝐹𝑒 , 𝐹𝑑) = ∑ 𝐸𝑖
𝑁
𝑖=1  (2.14) 

  𝐸𝑖 =
1

|𝛼𝑖
1||𝛼𝑖

0|
 ∑ 𝑒𝑥𝑝 (−(𝐹𝑑(𝐹𝑒(ℎ𝑖))

𝑝
− 𝐹𝑑(𝐹𝑒(ℎ𝑖))

𝑞))(𝑝,𝑞)∈𝛼𝑖
1×𝛼𝑖

0  (2.15) 

Where   αi
1{αp(i) = 1} and 𝛼𝑖

0{𝛼𝑞(𝑖) = 0} respectively denote the sets of selected and 

unselected antennas for the i-th sample.  

 (𝐹𝑑(𝐹𝑒(ℎ𝑖))
𝑝
− 𝐹𝑑(𝐹𝑒(ℎ𝑖))

𝑞) (2.16) 

 measures the distance between the network’s output consisting of the p-th selected antenna 

and the q-th unselected antenna. Therefore; by minimizing (2.15) we maximize the prediction 

of positive labels. 

2.5.1.2 Optimization  

To train the model we need to solve the optimization problem of (2.11), in which the loss 

terms Φ (Fx, Fe) and Γ(Fe, Fd) are computed in the latent space and at the output of the 

model, respectively. 

The technique of gradient descent is employed to update the network parameters for each loss 

term. The gradient of Φ(Fx,Fe) is responsible for updating the feature mapping Fx and 

encoding Fe, while the gradient of Γ(Fe,Fd) updates both the encoding Fe and decoding 

functions Fd. To compute the gradient term of Φ(Fx,Fe), equation (2.12) is reformulated with 

the assistance of Lagrange multipliers [25]. 

 𝜙(𝐹𝑥, 𝐹𝑒) = 𝑇𝑟(𝐶1
𝑇𝐶1) + 𝜆𝑇𝑟(𝐶2

𝑇𝐶2 + 𝐶3
𝑇𝐶3) (2.17) 
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Where;  

 𝐶1 = 𝐹𝑥(ℎ) − 𝐹𝑒(𝛼) (2.18) 

 𝐶2 = 𝐹𝑥(ℎ)𝐹𝑥(ℎ)
𝑇 − I (2.19) 

 𝐶3 = 𝐹𝑒(𝛼)𝐹𝑒(𝛼)
𝑇 − I (2.20) 

We can derive then the gradient of Φ (Fx ,Fe) with respect to  Fe  and  Fx to as follows: 

 
𝜕𝜙(𝐹𝑥,𝐹𝑒)

𝜕𝐹𝑥(ℎ)
= 2𝐶1 + 4𝜆𝐹𝑥(ℎ)𝐶2  (2.21) 

 
𝜕𝜙(𝐹𝑥,𝐹𝑒)

𝜕𝐹𝑒(𝛼)
= 2𝐶1 + 4𝜆𝐹𝑒(𝛼)𝐶3  (2.22) 

Next, the gradient of Γ(Fe,Fd) can be calculated using eq (2.15)  with respect to each   

𝐹𝑑(𝐹𝑒(𝑥𝑖))
𝑗 [25]. To simplify the calculations, we let: 

   𝑐𝑖
𝑗
= 𝐹𝑑(𝐹𝑒(𝑥𝑖))

𝑗 (2.23) 

The gradient is as follows [25]: 

  𝜕Γ(𝐹𝑒,𝐹𝑑)
𝜕𝑐
𝑖
𝑗 = ∑

𝜕𝐸𝑖

𝜕𝑐
𝑖
𝑗

𝑁
𝑖=1  (2.24) 

 𝜕𝐸𝑖

𝜕𝑐
𝑖
𝑗 = {

−
1

|𝛼𝑖
1||𝛼𝑖

0|
 ∑ exp (−(𝑐𝑖

𝑗
− 𝑐𝑖

𝑞)𝑞∈𝛼𝑖
0 ) , 𝑖𝑓 𝑗 ∈  𝛼𝑖

1

1

|𝛼𝑖
1||𝛼𝑖

0|
 ∑ exp (−𝑝∈𝛼𝑖

1 (𝑐𝑖
𝑝 − 𝑐𝑖

𝑗
)) , 𝑖𝑓 𝑗 ∈  𝛼𝑖

0
}   (2.25) 

Where 𝛼𝑖
1represent the sets of positive labels in 𝛼𝑖; 𝛼𝑖

0 represents the set of negative labels in 

𝛼𝑖. 

Based on these calculations, it is possible to train our model using gradient descent. The 

algorithm for this process is outlined in Algorithm 1. Upon the successful completion of 

training the model, making predictions on a test input h can be straightforwardly 

accomplished by rounding 

  𝑦 = 𝐹𝑑(𝐹𝑥(ℎ)) (2.26) 
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 s.t, 𝑦 and  ℎ are 2D vectors. 

 

2.5.1.3 hyperparameters 

The performance of the proposed DNN-based framework integrating DCCAE for multi-label 

classification is influenced by several hyperparameters. They are illustrated below in Table 2-

1. 

 

Hyperparameters  

Number of neurons in each layer 512 

Latent embedding dimension 51 

Batch size 500 

λ in (2.21) & (2.22) 0.5 

α in (2.11) 2 

Initial learning rate 10e-4 

Decay 2% 

Momentum 0.99 

Table 2-1: Hyperparameters for DCCAE Framework. 
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2.5.2 Neural network-based approaches  

2.5.2.1 Multilayer Perceptron classifier 

The multilayer perceptron (MLP) is a type of deep feedforward neural network (DFN) that 

maps the inputs to the outputs. It contains multiple fully connected layers (FCs), the Neurons 

within these layers use nonlinear activation functions, enabling the network to capture 

complex patterns in the data which makes MLPs powerful for tasks like classification, 

regression, and pattern recognition [47]. 

MLP is a finite acyclic graph (i.e. information flow is unidirectional, from the input layer 

through the hidden layers to the output layer, without any feedback loops) [48]. The nodes are 

neurons with logistic activation as shown in Figure 2-5 where: 

neurons of i-th layer serve as input features for neurons of i + 1th layer and every complex 

function can be calculated combining many neurons 

 

Figure 2-5: General model architecture of MLP [48]. 

 

2.5.2.1.1 MLP Architecture 

The model consists of three dense layers with a Rectifier Linear Unit (ReLU) as shown in 

Table 2-2, each followed by a dropout rate and an L2 regularization for a performance of 

models by reducing overfitting. The output layer uses a sigmoid activation with a number of 

units equal to the number of output classes which is equal to 64. For training and 

optimization, the model utilizes the Adam optimizer with an initial learning rate of 0.0001 and 

binary cross-entropy loss. 
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Layer Type Configuration Details 

Dense Layer 1 
Units: 512, Activation: ReLU, Kernel 

Regularizer: L2 (0.01), Dropout (Rate). 
 

Dense Layer 2 Units: 128, Activation: ReLU, Kernel Regularizer: 

L2 (0.01), Dropout (Rate). 

Dense Layer 3 
Units: 128, Activation: ReLU, Kernel Regularizer: 

L2 (0.01), Dropout (Rate). 

Output Layer 
Units: 64, Activation: Sigmoid, Kernel 

Regularizer: L2 (0.01). 
 

 

 

Table 2-2: MLP Architecture. 

2.5.2.2 Multi-Label Convolutional Neural Networks 

Convolutional Neural Networks are similar to conventional Artificial Neural Networks 

(ANNs) as they comprise of neurons that enhance their performance through learning. These 

networks carry out tasks such as scalar products followed by non-linear functions. Inspired by 

the visual cortex of animals, CNNs are primarily employed in image recognition, leading to 

quicker learning and reduced error rates [49]. And unlike the MLP model, that only consists 

of a classification part, CNN model has two distinct parts:  

− Convolutional part: the objective is to extract distinctive features from images by 

passing them through various filters, resulting in convolution maps which then are 

combined into a feature vector, known as the CNN code. 

− Classification part: The CNN code from the convolutional part is fed into fully 

connected layers (FC); that are positioned at the end of the CNN architecture and are 

fully connected to all output neurons from the convolutional layers; forming a Multi-

Layer Perceptron, that combine the features to classify the image.  

A modified version known as the multi-label CNN (MLCNN) is designed to handle tasks 

where each input can have multiple labels simultaneously like in our case. This enables the 

network to make more intricate and nuanced predictions compared to single-label 

classification. 
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2.5.2.2.1 MLCNN Architecture 

Our MLCNN model consists of 4 main layers as shown in Figure 2-6: an input layer, two 

convolutional layers, fully connected layers, and an output layer. A ReLU activation function 

defined as f(x)= max(0, x) was utilized in the layers to introduce non-linearity, in addition to 

the Sigmoid activation function at the output layer to produce the final classification output 

that is a 64 x 1 vector of ones and zeros representing selected and unselected antennas 

respectively. 

In terms of training and optimization, the model employs Stochastic Gradient Descent (SGD) 

with an initial learning rate of 0.0001 and binary cross-entropy as the loss function. Dropout 

ratios of 0.5 and 0.7 and L2 regularization are used to improve the generalization performance 

of models by reducing overfitting.  

Table 2-3: MLCNN Architecture. 

Layer Type Configuration Details 

Input Layer Input shape: (None, 1, NR, NT) 

Convolutional Layer 1 

Filters: 32, Kernel Size: 4x4, Strides: 1, 

Padding: 'same', Activation: ReLU, Kernel 

Regularizer: L2 (0.01). 

Convolutional Layer 2 

Filters: 32, Kernel Size: 5x5, Strides: 1, 

Padding: 'same', Activation: ReLU, Kernel 

Regularizer: L2 (0.01). 

Fully Connected Layers 

Flatten function 

Dense layer 1: Units: 512, Activation: ReLU, 

Kernel Regularizer: L2 (0.01), Dropout (ratio). 

Dense layer 2: Units: 218, Activation: ReLU, 

Kernel Regularizer: L2 (0.01), Dropout (ratio). 

Dense layer 3: Units: 256, Activation: ReLU, 

Kernel Regularizer: L2 (0.01), Dropout (ratio). 

Output Layer Units: 64, Activation: Sigmoid. 
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Figure 2-6: MLCNN architecture [50]. 

 

Remark: the proposed MLCNN model does not employ max pooling in the convolution layers 

like CNN models as shown in Table 2-3, and that is because the main functions of the pooling 

layer employed in conventional CNN models are down sampling, dimensionality reduction, 

redundant information removal, compression features and overfitting reduction [51]. 

2.5.3 Problem transformation methods 

Problem transformation methods aim to simplify the multi-label classification problem by 

converting it into single-label classification or regression problems. This makes it easier to 

apply existing algorithms and models designed for single-label tasks [50]. 

2.5.3.1 First-order approaches Binary Relevance 

Binary Relevance (BR) is by far the simplest approach: The fundamental concept behind this 

algorithm involves dividing the multi-label learning problem into qi distinct binary 

classification problems for each pi label. Each binary classification problem is specifically 

linked to one of the potential labels within the label space as shown in Figure 2-7 [51]. 

 For input h, predict independently:  

 𝛼𝑗 = 𝐶𝑗  (ℎ) (2.27) 

 ≡   arg max
𝛼𝑗∈{0,1}

𝑝(𝛼𝑗| ℎ)   (2.28) 
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Figure 2-7: Binary relevance [52]. 

To implement this approach, SVM was utilized as a binary classifier base estimator. SVM 

offers robust performance and flexibility in handling complex datasets. The Radial Basis 

Function (RBF) kernel function was employed in conjunction with grid search technique to 

optimize the gamma and cost parameters, enhancing the model's performance.  

Furthermore, the one-vs-rest strategy was used for the construction of multiple binary 

classifiers, each trained to predict the presence or absence of a specific label. This strategy 

provides versatility in handling diverse label sets and contributes to the model's overall 

accuracy. Additionally, the Calibrated Classifier (CV) was adopted to ensure reliable 

probability estimates and further enhance the accuracy of the model's predictions. 

2.5.3.2 High-order approach Classifier Chains 

Chain Classifiers (CC) involve converting the multi-label learning problem into a series of 

binary classification problems. Each subsequent binary classifier in the sequence is 

constructed based on the predictions made by the preceding classifiers, example in Figure 2-

8) [53]. 
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Figure 2-8: Chain classifier [52]. 

In this approach, three base estimators were employed: the K-Nearest Neighbours (KNN), 

which relies on proximity in feature space for classification; Random Forest, known for its 

ensemble-based approach and robustness to noise and overfitting SVM as well, famous for its 

ability to delineate complex decision boundaries. This diverse ensemble of classifiers offers 

versatility and resilience to various data distributions and complexities. 

For the parameters tuning, a Calibrated Classier was leveraged along with the grid search 

technique, exploring the hyperparameter space to identify the optimal configuration along 

with. For instance, grid search optimizes parameters such as 'n_neighbors' for KNN and 

'n_estimators' and 'max_depth' for Random Forest, to improve the models' predictive 

performance. 

2.6 Conclusion 

In our study of antenna selection, we have leveraged a combination of Deep Canonical-

Correlation analysis and Autoencoder DCCAE architectures within a DNN framework, which 

enables end-to-end learning and prediction with the ability to exploit label dependency. We 

have exploited the potential of neural network architectures such as MLCNN and MLP to 

capture complex data relationships and patterns. Furthermore, our methodology incorporated 

advanced techniques like ClassifierChain, hyperparameter tuning via grid search, and 

calibrated probability estimation to refine model performance, using various base estimators. 
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The outcomes of our endeavours will be discussed in detail in the subsequent chapter, 

culminating in the identification of the best model for antenna selection in communication 

systems. 
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Chapter 3 : Results and discussion 

3.1 Introduction 

This chapter presents the implementation of different multi-label Learning techniques, 

previously studied, for antenna selection in massive MIMO systems; using indoor channel 

measurements with three different antenna array configurations. We evaluate their 

performance in terms of average precision and Hamming loss, demonstrating their capability 

to identify the optimal subset of antennas that maximize system capacity. Additionally, we 

assess the computational complexity of each approach. 

3.2 Dataset generation 

In this work, we used a dataset collected in a realistic indoor setting using the KU Leuven 

Massive MIMO testbed and a CNC XY table. The dataset includes 252,004 CSI samples 

taken from various user locations within an office environment, where four single-antenna 

user devices were placed on CNC XY tables, allowing their antennas to move along a 

predefined path. 

This path followed a zigzag pattern on a grid with 5mm steps, covering an area of 1.25m by 

1.25m. The BS had 64 antennas capable of transmitting and receiving simultaneously and was 

set to a centre frequency of 2.61 GHz. Three antenna array configurations were used: an 8x8 

Uniform Rectangular Array (URA), a 64-antenna Uniform Linear Array (ULA), and a 

distributed scenario (DIS) where antennas were grouped in pairs of eight and distributed 

throughout the room. This dataset is available for download from [54]. 

The transmit AS problem has been formulated as a convex optimization problem and solved 

with numerical methods at CDTA, using the MATLAB based tool for convex optimization 

called CVX [55]. We then used the conducted results as the optimal benchmarks and 

compared them with our work findings. 
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All our simulations were implemented in Python. They were conducted in a virtual 

environment running on i5-8350U CPU with 16 GB RAM. All models were trained and 

tested on the same dataset for a fair comparison, with train, test and validation data of size 

6000, 2000 and 2000 respectively. 

3.3 Evaluation Metrics 

In a traditional supervised learning, conventional metrics such as accuracy, and F-measure are 

used to evaluate the model’s performance in single-label classification. However, in MLL, to 

gain a full understanding of the model's performance, specific MLL evaluation metrics should 

be used.  

In this work, Example-based metrics are used to assess the model's performance, namely 

Hamming loss, and Average precision. These metrics evaluate the performance on each test 

sample individually, then return the mean value across the entire test set. 

Before defining the metrics, it's essential to identify the types of predictions a classifier can 

make: 

• True Positive (TP):  Label: 1, Prediction: 1 

• False Positive (FP):  Label: 0, Prediction: 1 

• False Negative (FN):  Label: 1, Prediction: 0 

• True Negative (TN):  Label: 0, Prediction: 0.       

3.3.1 Hamming Loss 

Hamming loss represents the fraction of labels that are incorrectly predicted (Hamming 

Distance between predictions and labels), and is calculated as follows [56]: 

  𝐻𝑙𝑜𝑠𝑠 =
1

𝑝
∑ |ℎ(𝑥𝑖)∆𝑌𝑖|
𝑝
𝑖=1     (3.1) 

Where, ∆ stands for the symmetric difference between the two sets: h and Y that represents 

the channel matrix and the labels vector of size p, respectively. 
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3.3.2 Average precision:  

The average precision evaluates the average fraction of relevant labels ranked higher than the 

irrelevant ones for each instance. Its equation is represented as [56]: 

𝐴𝑣𝑔𝑝𝑟𝑒𝑐(𝑓) =
1

𝑝
 ∑

1

|𝑌𝑖|

𝑝
𝑖=1 ∑

|{𝑦′|𝑟𝑎𝑛𝑘𝑓(𝑥,𝑦′)≤𝑟𝑎𝑛𝑘𝑓(𝑥𝑖,𝑦),𝑦′∈𝑌𝑖}|

𝑟𝑎𝑛𝑘𝑓(𝑥𝑖,𝑦)
𝑦∈𝑌𝑖

 (3.2) 

3.4 Classification performance evaluation 

The histogram in Figure 3-1, compares the models’ performance across the three 

configurations: Distributed, Linear and Rectangular for the case of Ns=44 and SNR=0 Db. 

 

Figure 3-1: Performance evaluation of different multilabel classifiers for three antenna array 

configurations. 
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It is observed that the models that lack the ability to exploit label co-occurrence information 

such as, MLCNN, MLP, and SVM BR, fail to have a satisfactory result. However, the models 

that exploit label dependencies, namely: multi-View MLL, SVM CC, KNN CC, and Random 

Forest CC; multi-View MLL had the best performance results due to its low complexity and 

ability to perform joint feature and label embedding while simultaneously exploit cross-label 

dependencies with the label-correlation sensitive loss function introduced at the output of the 

DCCAE. 

Despite chain classifiers' ability to capture label correlations, errors may propagate down the 

chain, which explains the difference in performance compared to DCCAE based model.  

3.5 The antenna subset size impact on the capacity  

To evaluate the performance of the different MLL approaches relative to the size of the 

selected antenna subset, we compute the system capacity for various Ns values across the 

three different array topologies at SNR=0dB. As shown in Figures 3-(2,3 and 4), Capacity 

increases with the size of antenna subset. This is expected due to the increase of spatial degree 

of freedom for all schemes. 

 

Figure 3-2: Performance comparison Across Different Ns values for SNR=0 (Distributed). 
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Figure 3-3: Performance comparison Across Different Ns values for SNR=0 (Linear). 

 

 

Figure 3-4: Performance comparison Across Different Ns values for SNR=0 (Rectangular). 
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Noticeably, the DCCAE based approach showcased an overall better performance across all 

the cases, since integrating DCCA ensures maximizing features-labels correlations while 

simultaneously predicting labels; achieving a satisfactory labels recovery thanks to the 

integration of the autoencoder. 

Chain classifiers proved to outperform BR and MLP classifier since they can effectively 

exploit label correlations. Whereas both BR and MLP treat each label independently. 

Both DCCAE based approach and chain classifiers explicitly exploit label dependencies, 

either using custom loss function (like DCCAE) or using chaining property like chain 

classifiers (i.e. The first classifier makes a prediction of the first label; subsequent classifiers 

make use of predictions from the preceding ones), unlike CNN based model, it does not 

directly/ explicitly exploit label dependencies explaining the performance gap between 

them.(i.e. binary cross-entropy used in CNN fails to capture  dependencies among labels). 

3.6 Evaluation of MLL based Classifiers' Performance in Terms of 

Capacity 

We evaluate the performance of different MLL classifiers using channel capacity as the 

metric. This is calculated by averaging the results from 2000 individual capacity values, each 

corresponding to different CSI instances. For each instance, the capacity is computed 

independently by identifying the antenna subset using each classifier. We compare the 

obtained results to those of the convex relaxation-based method, with the SNR set in the range 

of 0 to 10 dB. 
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Figure 3-5: Performance Comparison Across Different Values for Ns=44 (Distributed). 

 

 

Figure 3-6 Performance Comparison Across Different Values for Ns=44 (Linear). 
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Figure 3-7: Performance Comparison Across Different Values for Ns=44 (Rectangular). 

 

Results depicted in Figures 3-(5,6 and 7) illustrate the capacity graphs of the case of Ns=44 

antennas across three array topologies: Linear, Distributed, and Rectangular. It can be seen 

that for the varying values of SNR from 0 to 10 dB, there is a slight difference between the 

three configurations and the DCCAE-based approach demonstrated superior performance 

across all cases. Additionally, chain classifiers (SVM CC and RF CC) outperformed both BR 

and MLP and MLCNN classifiers. 

3.7 Computational complexity 

One of the characteristics that reflects the model’s complexity is computational time, it is 

evident that in real life application, elapsed time plays a vital role in determining a model’s   

practicality. Moreover, Antenna Selection is a real-time task requiring fast prediction that lie 

within the channel coherence time interval [25]. 
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Ns=44 SNR 0 SNR 5 SNR 10 

DCCAE 0.1624 0.1605 0.1743 

KNN CC 12.0474 12.0773 12.1480 

RF CC 12.0470 12.0665 12.136 

SVM CC 33.2187 29.9430 29.9407 

MLP 0.3100 0.3100 0.3300 

MLCNN 0.4100 0.3500 0.3400 

SVM BR 46.9205 42.0679 42.4178 

Table 3-1: Inference time in the distributed configuration array. 

 

Ns=44 SNR 0 SNR 5 SNR 10= 

DCCAE 0.1597 0.1670 0.1683 

KNN CC 18.2705 16.4433 16.5751 

RF CC 12.0289 9.8039 10.0291 

SVM CC 26.3945 27.0207 26.7579 

MLP 0.1600 0.1650 0.1601 

MLCNN 0,3300 0.3200 0.3500 

SVM BR 46.6494 38.8872 38.8917 

Table 3-2: Inference time in the linear configuration array. 

Ns=44 SNR 0 SNR 5 SNR 10 

DCCAE 0,1699 0.1667 0.1560 

KNN CC 14.6173 13.9033 15.0775 

RF CC 8.7044 8.4613 8.0776 

SVM CC 12.8950 12.5829 12.7150 

MLP 0.1400 0.1401 0.1420 

MLCNN 0.7302 0.5100 0.7110 

SVM BR 20.3299 20.4463 20.05395 

Table 3-3: Inference time in the rectangular configuration array. 

In Tables 3-(1,2 and 3), computational time is compared for each case, all models need to be 

trained first then tested using unseen data. We notice that Neural network-based methods take 
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few minutes to converge, while the classifiers require a prolonged period of time; more than 

50 minutes for SVM BR. 

Despite the fact that the performance gap between DCCAE based model and the chain 

classifiers are relatively close, it is clear that these classifiers suffer from a high computational 

complexity, as for multi-View MLL DCCAE, it takes around 0.16 ms to predict the labels 

vector, meanwhile it takes the classifiers a minimum of 14 ms. 

Therefore, chain classifiers are not a practical solution for AS due to its high computational 

time, on the other hand, multi-View MLL network offers a substantial acceleration, combined 

with its low complexity architecture, positioning it as a viable option for AS. 

Moreover, we can see that multi-label learning is generally a difficult task to solve when the 

size of the label space becomes large i.e. As the number of class labels increases, the number 

of possible label sets grows exponentially. For example, in a label space with 64 class labels 

(q = 64), there would be over one million potential label sets (2^64). The key to overcome this 

challenge, is to improve the learning process by utilizing correlations or dependencies among 

labels [55]. For instance, if an image is tagged with labels such as pyramids and sands, there 

is a high likelihood that it will also be labelled as Egypt. Conversely, a document that pertains 

to entertainment is improbable to be categorized as science. In the context of wireless 

communication, labels are often correlated due to the underlying physical and operational 

dependencies between antennas; as an example, antennas that are closer to one another 

experience similar channel conditions such as interference pattern. hardware resources like 

RF chains are often shared among multiple antennas due to the overwhelming number of bs 

antennas and limited number of RF chains in Massive MIMO, and therefore selecting one 

antenna can affect the performance of others. Therefore, effectively exploiting label co-

dependency is considered essential for the success of multi-label learning techniques. 

3.8 Conclusion 

On the basis of our simulation results, along with the state of art studies and investigations, 

we can derive the following conclusions: 
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− The selection of the loss function is crucial for it directly influences to what extent the 

label-correlation is captured. 

− The Multi-View MLL model achieved comparable capacity results to Convex 

optimization with reduced prediction time. 

−  High computational models are not practical in real world application. 

−  Due to the large output space, problem transformation methods require a large 

number of binary classifiers, which results in high computational complexity. 

− Low complexity models are the best candidate for AS. 
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Conclusion 

This work aims to explore the possibility of using Machine Learning for Antenna Selection to 

mitigate the complexity of massive MIMO system by reducing hardware costs, power 

consumption, and signal processing complexity. Several approaches were tested and their 

ability to accurately predict a subset of the antenna set was evaluated. 

❖ Is it Possible to Approach AS as a Multi-Label Classification 

Problem? 

As shown, AS in massive MIMO can be transformed into a MLL problem by taking the 

channel matrix as the input and antenna vector can be treated as the label vector. The 

investigation then primarily focuses on which MLL algorithm is a potential candidate for AS 

to achieve comparable results to the near optimal ones calculated using convex optimization. 

In the case of AS, and unlike typical multi-label classification problems, the goal is to achieve 

the best communication performance instead of classification performance. That is, 

computation time, and capacity calculation were used in addition to average precision and 

Hamming loss for the purpose of performance evaluation. 

❖ What are the main MLL approaches? 

In this work, two main approaches were investigated: problem transformation methods, DNN 

based algorithms. The first is a machine learning-based approach and the latter is a deep 

learning-based approach. In problem transformation methods, the MLL problem is 

transformed into a single-label classification problem by dividing the MLL problem into N 

independent binary classifiers. 

Three different base estimators were used, namely: SVM, KNN, and Random Forest. 

In DNN based algorithms, three different architectures were investigated, CNN based-model, 

MLP classifier, and multi-View based model. CNN-based model employs convolutional 

layers to automatically extract spatial features from input data. On the other hand, MLP 

classifier Employs fully connected layers to learn and map input features to output labels. 

Meanwhile, the Multi-View based model integrates both DCCA and AE architectures in a 
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unified network, with label-correlation-sensitive function introduced at the output to ensure 

label-dependencies exploitation. 

❖ Which model yields the highest prediction performance? 

The multi-View based MLL model used consistently yielded higher prediction accuracies, 

faster prediction time, and achieved comparable capacity. The multi-View MLL integrates 

both DCCA and autoencoder architecture to perform joint feature and label embedding, while 

simultaneously extracting the interdependency among selected antennas. This low-complex 

architecture solves the large label space problem and achieved a trade-off between the 

computational complexity and the system performance, 

Future work 

In this report, the multi-View MLL was the best performing model. However, other aspects of 

the models’ generalization ability have not been investigated, such as, topology mismatch. 

That is, when there is a mismatch in terms of the user number. Therefore, there is still a lot of 

potential future work to do to investigate more MLL based approaches and how they can be 

combined with multi-View MLL to further enhance the performance.  

We note that there have been some recent advances to tackle multi-label classification 

problem: 

Advanced Kernel-Based Learning Systems: is recently introduced and specifically designed 

for multi label classification problems, it ensures faster convergence, and better generalization 

performance. Future research should explore the application of these systems to AS [57]. 

Multi-label Classification with Reinforcement Learning: Reinforcement learning offers a 

robust approach to achieving optimal decision-making in numerous complex tasks that 

involve multi-dimensional data. Applications of deep RL method should be further explored 

to develop RL-based AS algorithms that learn optimal antenna subsets through continuous 

interaction with the environment [58]. 
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