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Abstract

The industrial advancement has promoted the development of machine learning

based intelligent fault diagnosis methods for condition-based maintenance. Various

condition-monitoring techniques can be used. However, the most reliable approaches

require complex and high-cost data acquisition setups. This led to the use of acous-

tic signals for fault diagnosis in this study. The study presents a machine-learning

fault classification approach that leverages features extracted from the decomposed

acoustic signals using Empirical Mode Decomposition (EMD) and Maximal Overlap

Discrete Wavelet Packet Transform (MODWPT) decomposition methods. The

classification is performed using algorithms consiting of Support Vector Machines

(SVM), K-Nearest Neighbors (KNN), Decision Trees, and Ensemble Bag. These

machine-learning algorithms have been tested through different experiments to

evaluate the proposed approach on two datasets, MAFAULDA Machinery Fault

and the Air Compressor datasets. The results revealed that SVM exhibited superior

accuracy and outperformed other classifiers in most evaluation metrics. Also, it

demonstrated robustness in noisy environments, and exhibited the fastest prediction

time. Decision tree demonstrated that it is the most storage-efficient model.

Keywords: Acoustic analysis, Condition monitoring, Rotating machinery, Fault

diagnosis, MODWPT, Machine learning, Classification, Feature extraction.
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General Introduction

In the industry landscape, the efficient operation of rotating machinery is im-

portant in all different sectors. However, the occurrence of faults and failures in

critical machines in the process leads to heavy economic losses for the companies.

Therefore, effective fault diagnosis systems are essential to ensuring the machine’s

reliability and optimal performance.

Traditional maintenance strategies have become less reliable for modern and

complex rotating machines. As a result, industry leaders focus on implementing

advanced diagnosis systems as part of a condition-based maintenance strategy. The

advent of Industry 4.0, which emphasizes the integration of data and the Internet

of Things in manufacturing, further drives the adoption of data-driven analysis as

condition-based maintenance. The convergence of data availability with the increas-

ing need for advanced fault diagnosis systems highlights the importance of artificial

intelligence as a vital tool in addressing this gap, with its ability to learn complex

patterns in data-driven analysis.

Various signals of condition monitoring have been employed; the reliable ones

require an advanced and costly acquisition setup. Acoustic signals can be leveraged

effectively when combining signal preprocessing with machine learning and building

a reliable and early-detection fault diagnosis model.

This thesis focuses on building a reliable model based on machine learning us-

ing acoustic signals. The primary objectives are to develop a robust classification

model, investigate the effectiveness of acoustic analysis, and evaluate different signal

preprocessing techniques on two datasets. structuring this thesis as follows:

• Chapter 1 begins by exploring maintenance philosophies, different fault di-

agnosis techniques, and various condition monitoring strategies. concluding

on the importance of approaching condition-based predictive maintenance.

• Chapter 2 starts by exploring the 3 acoustic domains of time, frequency, and

time-frequency. And their significance in data-driven techniques for diagnosis.

Emphasizing the signal’s feature extraction to obtain the most informative in-

1



General Introduction

sight from the data, as they enable the identification of the underlying pattern

within the signal.

• Chapter 3 covers the methodology of the building classification model, start-

ing with an explanation of the dataset and data acquisition, then moving on

to data preprocessing, including signal decomposition using EMD and MOD-

WPT, then arrangement, and ending the chapter by describing the machine

learning models and hyperparameter tuning.

• Chapter 4 this chapter discusses the results obtained and evaluates the mod-

els’ performance using various metrics. Furthermore, a comparative analysis

with related literature that used the same dataset is conducted. After that,

the impact of noise on model performance is also investigated through noise

testing at different signal-to-noise ratios (SNRs) added to the raw signal. The

chapter analyses the strengths and weaknesses of the approaches taken and

provides insights into the efficacy of the proposed fault diagnosis method.

2



Chapter I

Overview of Maintenance

I.1 Introduction

Detecting and diagnosing faults in rotating machines is vital for ensuring reliable

operation and minimizing downtime. These machines, which include motors, gener-

ators, pumps, and turbines, often operate under harsh conditions and are prone to

mechanical stress. Effective fault diagnosis helps prevent breakdowns and enhances

safety. This chapter will discuss the maintenance strategies, such as reactive, pre-

ventive, condition-based, and predictive maintenance. It delves also into different

approaches for fault detection and diagnosis. And, focuses on Acoustic analysis.

Acoustic signals are discussed as a key method for diagnosing issues in rotating ma-

chines, covering signal representation, acquisition, and monitoring techniques used

in industrial applications.

3



CHAPTER I. OVERVIEW OF MAINTENANCE

I.2 Basic Terminology

I.2.1 Fault

A fault is an unpermitted deviation of at least one characteristic property (fea-

ture) of the system from the acceptable, usual, standard condition [1].

I.2.2 Failure

A failure is a permanent interruption of a system’s ability to perform the required

function under specified operating conditions[1].

I.2.3 Malfunction

A malfunction is an intermittent irregularity in the fulfillment of a system’s

desired function.

Development of events “failure” or “malfunction” from a fault is illustrated in the

figure below:

Figure I.1: Progression of fault toward failure or malfunction.

I.2.4 Reliability

”Ability of a system to perform a required function under stated conditions,

within a given scope, during a given period of time.” reliability is quality for some

time; the reliability can be affected by malfunctions and failures[1].
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I.2.5 Availability

”Probability that a system or equipment will operate satisfactorily and effec-

tively at any period of time.” fault detection and fault diagnosis can improve the

availability by early fault detection in combination with maintenance on demand

and by fast and reliable diagnosis (smaller MTTR)[1].

I.3 Maintenance Philosophies

Maintenance involves the integration of various actions throughout the entire

lifespan of an item. These actions are aimed at preserving the item’s health condition

to perform its function adequately.

The leading idea in maintenance is to part ways with costly reactive maintenance

to preventive and predictive maintenance, called also smart maintenance. Through-

out the industrial revolutions, as shown in Figure 1.2, maintenance strategies have

undergone a gradual evolution and it is currently a continuous process[2].

Figure I.2: Evolution of maintenance activities and methods[2].

There are various Maintenance approaches, the figure below will highlight the

strategies discussed.
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Figure I.3: Maintenance Approaches.

I.3.1 Reactive Maintenance

Reactive maintenance, or as some may call it, the ”run-to-failure” approach to

maintenance. Equipment, as the description suggests, is allowed to run until failure.

Then the damaged equipment is repaired or replaced. The cons of this approach

include unpredictability and fluctuating production capacity, higher levels of out-of-

tolerance and scrap output, and an overall increase in maintenance costs to repair

the failures[3].

Figure I.4: Reactive Maintenance Workflow

I.3.2 Preventive Maintenance

Preventive maintenance, also known as ”Scheduled” maintenance, is periodic

maintenance required to keep equipment in a specific condition; its technique is

built on the earliest expected failure time of similar machines. It includes, for

example, periodic inspections, condition monitoring, critical item replacements, and

calibration and servicing requirements such as lubrication and fueling[4].
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Figure I.5: Scheduled Maintenance Workflow

I.3.3 Condition-Based Monitoring

Condition-based monitoring (CBM) is a maintenance strategy that involves

maintenance decisions based on the information collected throughout condition mon-

itoring. It has three main steps:

1. Data acquisition step (information collecting): to acquire data relevant

to system health.

2. Data processing step (information handling): to handle and analyse

the data or signals collected in step 1 for better understanding and interpretation

of the data.

3. Maintenance decision-making step (decision-making): to recommend

efficient maintenance policies.

Diagnostics and prognostics are two crucial aspects in a CBM program. Diagnos-

tics deals with fault detection, isolation and identification when it occurs.Prognostics

deals with fault prediction before it occurs[5].
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Figure I.6: Diagram of Condition-Based Monitoring

I.3.4 Predictive Maintenance

Where maintenance is performed based on an approximation of the health status

of a piece of equipment, PdM systems consist of prediction tools based on histori-

cal data, health factors, statistical inference methods, and engineering approaches.

These attributes allowed for advanced detection of pending failures and enabled

timely pre-failure interventions[6].

Figure I.7: example of PdM in an Oil and Gas Company [7]
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I.4 Rotating Machines

Rotating machinery refers to machines with a rotating component that transfers

energy to a fluid or vice versa. It is commonly used in industrial applications in

order to transfer one energy form to another. Here are some examples :

I.4.1 Electrical Machines

An electrical machine is a device that can convert mechanical energy to electrical

energy or vice versa. When such equipment is used to convert mechanical energy to

electrical energy, it is referred to as a generator. When it converts electrical energy

to mechanical energy, it is referred to as a motor. Any given electrical machine can

convert power in either direction. Thus, any machine can be employed as either a

generator or a motor[8].

Figure I.8: Electrical Machine[9].

I.4.2 Turbomachinery

Turbomachinery refers to a type of machine that incorporates a rotating com-

ponent to facilitate the transfer of energy to or from a fluid. As a result, there is

dynamic interaction between the fluid and the rotor, enabling energy transfer. In

general, when the energy is transferred from the rotor to the fluid, the machine is

referred to as a pump or a fan.Conversely, when the energy transfer occurs from the

fluid to the rotor, the machine is known as a turbine[10].

9
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Figure I.9: Example of Turbomachinery[11].

I.5 Fault Detection and Diagnosis

Fault detection plays an important role in high-cost and safety-critical processes.

Early detection of process faults can help avoid abnormal event progression. Fault

detection can be accomplished through various means.

I.5.1 Fault Detection

Fault detection determines the occurrence of fault in the monitored system. It

consists of detection of faults in the processes, actuators and sensors by using depen-

dencies between different measurable signals. Related tasks are also fault isolation

and fault identification. Fault isolation determines the location and the type of fault

whereas fault identification determines the magnitude (size) of the fault. Fault iso-

lation and fault identification are together referred as fault diagnosis. The task of

fault diagnosis consists of the determination of the type of the fault, with as many

details as possible such as the fault size, location, and time of detection[1].

I.5.2 Fault Diagnosis

Fault diagnosis is a comprehensive process that extends beyond fault detection,

involving the determination of the specific type, location, magnitude, and other

relevant details of detected faults within a system. It encompasses fault isolation,

which involves identifying the location and type of fault, and fault identification,

which focuses on determining the magnitude or size of the fault. Fault diagnosis aims

to provide a deeper understanding of the root causes and implications of detected
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faults, enabling effective mitigation strategies. By characterizing faults with as much

detail as possible[12].

I.5.3 Approaches of Fault Diagnosis

The approaches to fault diagnosis encompass traditional manual techniques,

model-based methods, and data-driven approaches.

Figure I.10: Fault Diagnosis Approaches.

I.5.3.1 Manual Diagnosis

Human specialists utilize observation, testing, and analysis to diagnose faults,

drawing upon their expertise and knowledge.

I.5.3.2 Model-Based Diagnosis

This method involves comparing real measurements with predictions from math-

ematical models. Residual analysis, derived from the variance between predicted and

actual outputs, aids in fault detection and diagnosis. However, accurate representa-

tion of the system through mathematical equations or first principles is crucial for

its effectiveness.

I.5.3.3 Data-Driven Diagnosis

Leveraging modern information technology, data-driven methods utilize statis-

tical, mathematical, and signal processing techniques. Intelligent sensors gather

industrial data, which is then analyzed to establish input-output models, enabling

real-time monitoring and facilitating fault diagnosis objectives.
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Table I.1: Comparison of fault diagnosis approaches

Approaches Advantages and Disadvantages

Statistical approaches • Advantages:
– Do not require condition monitoring
– Population characteristics information enable longer-
range forecast
– Can be trained to recognize the types of faults

• Disadvantages:
– Only provide general, overall estimates for the entire
population of identical units

Model-based approaches • Advantages:
– Can be highly accurate
– Require less data than data-driven approaches

• Disadvantages:
– Real-life system physics is often too stochastic and
complex to model
– Simplifying assumptions need to be examined
– Various physics parameters need to be determined

Data-driven approaches • Advantages:
– Do not require assumption or empirical estimation of
physics parameters
– Do not require a priori knowledge

• Disadvantages:
– Generally require a large amount of data to be accu-
rate

I.6 Condition Monitoring Techniques for Rotat-

ing Machinery

Progress in technology has contributed in the effectiveness and reliability of con-

dition monitoring (CM), especially in bearings and gears in rotary machines. The

accuracy of fault diagnosis is heavily dependent on the appropriate data selection

techniques and signal analysis methods. CM techniques like acoustic emission mea-

surement, vibration measurement, oil analysis, and thermography are potentially

applicable to rotating machinery, with considerations given to their capabilities[13].
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Figure I.11: Condition Monitoring Techniques.

I.6.1 Vibration Analysis

Vibration is considered the most frequently measured parameter in CM of rotary

machines; it is utilized in numerous industrial applications such as material handling,

aerospace, and power generation. This is because vibration is easy to sense as an

effect of faulty machine components. These machines generate vibration signals

through the interaction between the rolling elements and a damaged. area. Thus,

vibration measurement can be a functional tool for diagnosing faults in bearings,

shafts,and gearboxes, and for all kinds of machine faults[13].

I.6.2 Thermography Analysis

Temperature data is integral for the health status of mechanical equipment. Re-

searchers are increasingly focusing on using temperature changes for fault diagnosis

in rotating machinery, often employing thermocouples or resistance temperature

detectors to detect abnormalities. unusual vibration and temperature fluctuations

are regular indicators of machinery issues during process. Thus, thermography has

emerged as a harmful testing technique for measuring temperature changes. It offers

several advantages such as non-contact operation, high efficiency, and provision of

infrared thermal images for indirect equipment condition monitoring[14].
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Figure I.12: The schematic diagram of Infra Red Thermography experimental
device[14].

I.6.3 Oil Analysis

This method is widely used in machinery operations reliant on oil. It serves the

purpose of giving out information about machine wear, lubricant contamination,

and lubricant condition. Oil condition monitoring is utilised to evaluate the state

of engine oils, lubricating oils, and other fluids. Thus, it is a very useful technique

for predictive maintenance[15].

Figure I.13: Functional diagram of offline oil monitoring experiment [16].
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I.6.4 Acoustic Emission

This technique detects equipment wear and tear by using sensors to pick up

sound waves, some of which are beyond human hearing (ultrasonic frequencies).

There are two main sensor types:

• Airborne Sensors (Microphones):They are notoriously sensitive to back-

ground noise and to anything standing in the path between the sensor and the

object being monitored.

• Structure-Borne Sensors (Piezoelectric Accelerometers):These con-

vert vibrations into electrical signals. Their effectiveness is dependent on the

chosen material and how they are installed. Since sensor performance is in-

fluenced by the equipment and environment, careful selection and installation

are essential for accurate monitoring[17].

Figure I.14: Acoustic emission monitoring [18].

I.6.5 Motor Current Signature Analysis (MCSA)

Motor current signature analysis can be described as a method that aids in

distinguishing the induction motor’s operating condition without interrupting the

process. In other words, it senses an electrical signal that has current components

and determines the faults in the initial stage. Therefore, it plays an integral role in

preventing damage and diagnosing motor failure[19].
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Figure I.15: Monitoring System for Motor Current Signature Analysis[20].

I.7 Acoustic Analysis

In this thesis, the focus is on utilizing Acoustic analysis as a mean of diagnosing

machines. Therefore, this section will introduce transmitted sounds as a parameter

for condition monitoring.

I.7.1 Definition

Before carrying on with the review of transmitted sound technique, it is integral

to distinguish it from acoustic emission monitoring. many researchers over the last

50 years have been focusing on vibro-acoustic techniques. the most well-researched

monitoring way is acoustic emissions(AE)[21].

Acoustic emission refers to generation of transient elastic waves produced by

fast energy release from a localized source within the material. There are different

causes for the occurrence of acoustic emission as compared to the natural events like

earthquakes or rocks cracks during the slip and disruption movements. It also has

fracture, fatigue, crack transmission, melting and material phase conversion[22].

Transmitted sound and acoustic emission share the same sources, in conjunction

with airborne noise from the surrounding environment. The range to consider this

audible sound is typically from 50 Hz to 20 kHz. and is measured using microphones.

The most useful advantage of using transmitted sound for monitoring is its ability

to be used remotely. This ability might make it feasible for TCMS to be used

outside of the laboratory, in harsh industrial environments and in the tight spaces

of micro-machining operations[21].

I.7.2 Acoustic Signal Representation

An acoustic signal is observed as a continuous-time function s(t) where t is a

continuous variable representing time. In Fig.Fig I.16 some examples of continu-

ous acoustic signals such as a pure tone, a room impulse response and speech are
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shown. The objects of acoustic signal processing include controlling the sound field,

identifying acoustic systems and synthesizing the spoken word.

Figure I.16: Examples of acoustic signals: (a) pure tone (periodic signal); (b) room
impulse response; (c) speech (vowel) and (d) white noise.

I.7.3 Acoustic Data Aquisition

During a process, sound signals will be picked up by a microphone (or microphone

arrays) [23].Array systems will provide the ability of measuring sound contributions

and locating the sound sources in space. This enables an effective tool for removing

background noise from the signal by focusing only on the data emanating from the

source of interest[21].
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Figure I.17: Schematic of microphone installation setup for miniaturised machines
(a) toy car (b) toy conveyor (c) toy train[24].

I.8 Conclusion

In summary, the maintenance techniques of CBM and PdM have been re-

garded widely as the better maintenance philosophies, especially the latter. Prac-

tice has shown it to have a proven track record of minimising unnecessary machine

downtime[23]. This chapter extensively explores different fault diagnosis techniques

and various condition monitoring methods. Placing specific emphasis on acoustic

analysis and the systems used for acquiring and monitoring acoustic data in modern

acoustic analysis practices.
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Chapter II

Acoustic Analysis and Fault

Diagnosis

II.1 Introduction

Acoustic analysis has become one of the most powerful techniques used in the

field of condition monitoring (CM) and fault diagnosis demonstrating its effective-

ness in early detection of faults and abnormal acoustic patterns in rotating machin-

ery, assisting the engineers diagnosis the root of the fault such as misalignment,

imbalance, and faults in bearing. This chapter will provide an overview of acoustic

signal analysis for fault diagnosis including manual analysis technique as well as

various method of data-driven analysis as shown in Fig II.1 [25, 26].

Figure II.1: Acoustic signal analysis approaches
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II.2 Acoustic Analysis for Fault Diagnosis

Acoustic Analysis involves utilizing acoustic signals to detect irregularities in

the patterns of a particular object. Any variation in the acoustic pattern can be

an indication of a modification in the physical characteristics of the object. Expert

analysts can detect abnormal patterns through various frequency and time plots

such as time domain and frequency spectrum analysis as the diagram in Fig II.2

presents. Once a deviation from the normal pattern is identified, a root cause

analysis is conducted to pinpoint the cause of the change. This process falls under

the category of knowledge-based fault diagnosis[27].

Figure II.2: Manual Signal Analysis.

II.2.1 Time Domain Analysis

Evaluating the raw signal data over time to identify and interpret patterns that

indicate potential faults. This approach is fundamental in condition monitoring as it

provides direct insights into the behavior of machinery. Among the most commonly

used techniques in time domain analysis are waveform inspection and statistical

measures.
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Figure II.3: Time Domain Analysis.

II.2.1.1 Waveform Inspection

Waveform time domain analysis involves examining the raw signal by plotting

signal amplitude against time to extract valuable information and insights. Fig II.3

presents two time domain analysis used. This technique focuses on understanding

the characteristics and patterns within the signal to derive meaningful conclusions

about the operational state of machinery. Waveform analysis is particularly crucial

for identifying transient events such as impact sounds, scrape noises, and impulsive

bursts. These transient events often indicate faults in machinery components, in-

cluding bearings and gears [28]. waveforms in Fig II.4 showcase patterns of different

states of a rotating machine.

Figure II.4: Time domain plots of four acoustic recordings of different states of a
single-stage reciprocating-type air compressor.

II.2.1.2 Statistical Measures

The application of statistical analysis in the time domain involves measuring

many features from the signal, like mean, variance, root mean square (RMS), stan-

21



CHAPTER II. ACOUSTIC ANALYSIS AND FAULT DIAGNOSIS

dard deviation, peak-to-peak factor, skewness, and kurtosis. Providing the sum-

mary of the signal as characteristic information. These features are calculated on

segmented windows of the acoustic signal, Analyzing how these features change over

time helps us detect faults by examining how these features deviate from normal

operating conditions or exceed established thresholds in these features [29].

II.2.2 Frequency Domain Analysis

Frequency domain analysis involves transforming the signal from the time domain

to the frequency domain using techniques like the Fourier Transform. Frequency-

domain analysis shows how the signal’s energy is distributed over a range of fre-

quencies. This reveals the frequency content of the signal and how much of the

signal is contained within certain frequency bands, as it enables the identification

of characteristic frequencies associated with specific faults[29]. the Fig II.5 showed

some of the frequency domain analyses that have been used for diagnosis.

Figure II.5: Frequency Domain Analysis.

II.2.2.1 Fast Fourier Transform

The Fast Fourier Transform (FFT) is an algorithm that computes the Fourier

transform of a discrete-time signal. It is an efficient implementation of the Fourier

transform, reducing the computational complexity from O(N2) to O(N logN), mak-

ing it much faster and more practical to use. The FFT is used extensively in signal

processing and data analysis applications, such as audio and video processing, im-

age processing, and spectral analysis. FFT is represented mathematically by the

equation:

Xk =
N−1∑
n=0

xne
(−i2πkn

N ), k = 0, . . . , N − 1 (II.1)
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The FFT is particularly useful for analyzing signals that contain multiple frequency

components, it allows engineers to identify the individual frequency components and

their amplitudes, which can be used to diagnose faults or analyze the behavior of

complex systems.Fig II.6 shows an example of detecting a fault from the frequency

Spectrum.

Figure II.6: Example of abnormality appearance in the frequency Spectrum.

II.2.2.2 Power Spectral Density

Power Spectral Density (PSD), is a fundamental concept used in signal processing

to measure how the average power or the strength of the signal is distributed across

different frequency components. The Average Power referred to is known as the

mean amount of the energy transferred or distributed throughout a given time range.

PSD has several characteristics that assist in fault diagnosis[30], such as :

• It describes the power distribution or the strength of the signal over a range

of frequencies.

• The shape of the plot gives an important characteristic like a narrower peak

describing that most of the power of the signal is concentrated at this particular

frequency whereas a broader peak describes that most of the power of the signal

is distributed over a wide range of frequencies.

23



CHAPTER II. ACOUSTIC ANALYSIS AND FAULT DIAGNOSIS

• The peak value in the plot represents the frequencies having higher or greater

power levels.

Figure II.7: Example of Power Spectral Density Curve [30].

II.2.3 Time-Frequency Domain Analysis

To overcome the limitations of time domain and frequency domain analysis

for non-stationary acoustic signals, time-frequency domain techniques are used.

These include Wavelet Transform, the Short-Time Fourier Transform (STFT),

Hilbert-Huang transform (HHT), and empirical mode decomposition (EMD). Time-

frequency analysis provides both time and frequency information by analyzing the

signal in windowed segments. This allows identifying how the frequency content

changes over time, which is useful for diagnosing faults in rotating machinery [29, 31].

Figure II.8: Time-Frequency domain analysis.
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II.2.3.1 Empirical Mode Decomposition (EMD)

Empirical Mode Decomposition (EMD) is a signal analysis technique that de-

composes a signal into its underlying oscillatory components, called Intrinsic Mode

Functions (IMFs) which are obtained through a process called sifting. The sifting

process is the core of the EMD algorithm, where each Intrinsic Mode Function (IMF)

is extracted from the signal. In this process, all the local maxima and minima of the

signal are identified and connect to form the upper and lower envelopes, respectively.

Then, the mean of the two envelopes is obtained as the local mean. this local mean

is subtracted from the original signal to obtain an oscillatory component called an

IMF [32].

EMD has been used in a variety of applications, including signal denoising, fea-

ture extraction, and trend analysis. It is particularly effective in analyzing non-

stationary signals, where the frequency content of the signal varies over time.

Figure II.9: Example of Emperical Mode Decomposition (EMD)[33].

II.2.3.2 Maximal Overlap Discrete Wavelet Packet Transform (MOD-

WPT)

MODWPT is a time-invariant powerful time-frequency signal analysis technique

in the time-frequency domain, it decomposes the signal into coefficients with equal
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pass-band periods. The input signal passes through high-pass filter and low-pass

filter, these coefficients also passes through low-pass and high-pass filters to pro-

duce numerous levels of decomposition. MODWPT is ideal for analyzing non-

stationary signals, since unlike Discrete Wavelet Packet Transform (DWPT), MOD-

WPT avoids down-sampling, resulting in a representation that captures more signal

details. Thus, resulting more detailed time-frequency decomposition [34].

Figure II.10: Two levels of the MODWPT decomposition.

II.3 Data Driven Analysis

Data-driven acoustic analysis involves utilizing data processing techniques to

extract valuable insights and patterns from acoustic signals for various applications.

This approach leverages advanced algorithms and computational methods to analyze

large volumes of acoustic data efficiently and accurately. By applying artificial

analysis, statistical analysis, and signal processing techniques to acoustic signals,

data-driven acoustic analysis can uncover hidden patterns, trends, and anomalies

that aid in fault diagnosis, environmental monitoring, and other acoustic-related

tasks.
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Figure II.11: Data driven approach procedure

II.3.1 Data Acquisition

The efficacy of the model depends on the quality of the data acquired from the

acoustic signal. As it needs careful consideration when choosing the right acquisition

setup, such as:

• The selection of appropriate acoustic sensors to ensure the capture of the

relevant frequency range of the targeted faults.

• Strategic sensor placement that allows to collect the most informative acoustic

signatures from the faulty part of the machine.

• A suitable DAQ system with a proper sampling rate and resolution ensures

capturing the details of the acoustic signal without distortion.

Figure II.12: Data acquisition process.
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II.3.2 Preprocessing

Preprocessing is an important step in building models for acoustic signal diag-

nosis. It involves using techniques to prepare the signal data and extract important

information from it. This is essential because acoustic data is often beset with sig-

nificant levels of noise and has unnecessary information that can make the model

perform poorly. the Preprocessing can be used to remove unwanted disturbances

resulting in cleaner and more reliable datasets. This clean data is essential for ac-

curate modeling, predictions, and other advanced data analysis tasks. In previous

studies, researchers have used different methods to Preprocess acoustic data such as

noise reduction which is a big challenge that faces signal processing engineers, also

feature extraction in order to get the most important information from the signal.

as we will explore in detail in chapter 3.

Figure II.13: Preprocessing Techniques.

II.3.2.1 Noise Handling

There exist many techniques of noise reduction and handling such as filtering

(low-pass, high-pass, band-pass, band-stop), spectral subtraction, and wavelet de-

noising. Smoothing is a common technique to handle noise by reducing the impact

of these random fluctuations. However, it is important to be careful to not remove
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any significant signal details.

II.3.2.2 Feature Extraction:

Calculating various statistical features in the time domain provides valuable

insights into the behavior of a time series[35].

• Mean: gives the central tendency of the data, providing an overall idea of the

data’s level.

• Variance: measures the spread or dispersion of the data points around the

mean.

• Skewness: quantifies the asymmetry of the distribution, indicating whether

the data is predominantly spread out on one side.

• Kurtosis: measures the thickness of the tails of the distribution, characteriz-

ing the presence of extreme values.

II.3.2.3 Principal Component Analysis (PCA)

PCA is a statistical technique used to reduce the dimensionality of a dataset, by

transforming a large set of variables into a smaller one that still contains most of

the information in the large set [36]. Its goal is to extract the important information

from the original data, to represent it as a set of new orthogonal variables called

principal components[37].

Figure II.14: Principal Component Analysis (PCA) Transformation[38].
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II.3.3 Model Development

Acoustic fault diagnosis models are revolutionizing the field of condition moni-

toring by leveraging the power of Artificial Intelligence (AI) and Machine Learning

(ML) techniques. These models analyze acoustic signal data to detect and classify

faults within machinery and equipment. This section explores the development pro-

cess of such models, focusing on the two primary learning paradigms: supervised

and unsupervised learning.

Figure II.15: representation of the relationship between AI - ML - DL [39].

II.3.3.1 Machine Learning

Machine learning is a subfield of artificial intelligence that involves the develop-

ment of algorithms and statistical models that enable computers to improve their

performance in tasks through experience. These algorithms and models are designed

to learn from data and make predictions or decisions without explicit instructions

[40].

II.3.3.2 Deep Learning

Deep learning is a branch of machine learning which is based on artificial neural

networks. It is capable of learning complex patterns and relationships within data.

It has become increasingly popular in recent years due to the advances in processing

power and the availability of large datasets. Because it is based on artificial neural

networks (ANNs), it is also known as deep neural networks (DNNs). These neural

networks are inspired by the structure and function of the human brain’s biological

neurons, and they are designed to learn from large amounts of data[41].
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Figure II.16: Hierarchical Structure of AI, ML, DL

Table II.1: Comparison of Deep Learning and Machine Learning for Fault Diagnosis

Aspect Deep Learning Machine Learning
Dataset Requirement Requires a large dataset

(data-hungry)
Can work with smaller
datasets

Computation Power Consumes significant
computation power

Requires less computa-
tion power

Feature Engineering Automatically extracts
features

Often requires manual
feature engineering

Complexity Handling Capable of handling
highly complex and
nonlinear relationships

May struggle with very
complex and high-
dimensional data

Training Time Typically longer training
times due to deep archi-
tectures

Generally faster training
times

Performance Potential for higher accu-
racy with sufficient data

Performance may plateau
with increasing complex-
ity

II.3.3.3 Supervised Learning

The predominant approach for acoustic fault diagnosis models utilizes supervised

learning. This method involves training the model on a labeled dataset containing

acoustic signals that have been Preprocessed and categorized according to the spe-

cific fault types present. Supervised models are generally considered to provide

higher accuracy than unsupervised methods because they can capture interdepen-

dencies between variables.
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II.3.3.4 Unsupervised Learning

Unsupervised learning trains without labeled data, aiming to discover hidden

patterns or intrinsic structures within the data. offers an alternative approach for

fault diagnosis, particularly in scenarios where labeled data for specific fault types

might be limited. Here, the model analyzes the acoustic data without prior knowl-

edge of specific fault categories. The focus is on detecting anomalies and deviations

from the normal operating sound signature of the machinery.

Table II.2: Comparison of Supervised Learning and Unsupervised Learning for Fault
Diagnosis

Aspect Supervised Learning Unsupervised Learn-
ing

Data Labeling Requires labeled data Works with unlabeled
data

Training Objective Learns to predict specific
output labels

Identifies hidden patterns
and structures

Fault Detection Effective at identifying
specific known faults

Good for anomaly detec-
tion and discovering new,
unknown fault patterns

Accuracy High accuracy with suffi-
cient labeled data

Accuracy can be lower
due to the lack of labeled
training data

Complexity Can handle complex
problems with well-
labeled datasets

Often simpler but power-
ful in discovering hidden
patterns

Implementation Time Implementation can be
time-consuming due to
the need for labeled data

Faster to implement as
it doesn’t require labeled
data
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II.4 Conclusion

This chapter explored the approaches in acoustic analysis for fault diagnosis,

with emphases on manual and data-driven techniques. The significance of Time

domain, Frequency domain, and Time-Frequency domain analysis was highlighted,

focusing on their roles in extracting valuable details from the acoustic signals.

Time domain analysis allows for the identification of abnormal events through wave-

form inspection and statistical measures. Additionally, frequency domain analysis

provides the signal’s frequency content, which is important for diagnosing faults

associated with specific frequency components. Also, advanced time-frequency do-

main such as Empirical Mode Decomposition (EMD) and Maximal Overlap Discrete

Wavelet Packet Transform (MODWPT) add more details on non-stationary signals,

which characterise acoustic signals.

The chapter drifts towards the data-driven technique, which involves utilising ad-

vanced analytical models that can detect and classify faults within machinery and

equipment. Preprocessing techniques were discussed, highlighting the significance

of feature extraction to organise the data. Finally, the topic of model development

was discussed, focusing on the AI models that can learn from the Preprocessed data

to accurately detect and diagnose faults.
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Chapter III

Methodology

III.1 Introduction

This chapter will examine the steps involved in building fault diagnosis classifica-

tion models, starting from data description and visualization. After that, the chapter

will shift towards the preprocessing the data in preparation for feature extraction.

Furthermore, a comprehensive description of the Machine Learning Algorithms used

to build our models is highlighted.
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III.2 Experimental Framework

In this study, we utilized various datasets from diverse applications and environ-

ments to test our model under different conditions and noise levels to establish a

reliable model.

III.2.1 MAFAULDA Machinery Fault Dataset

The first dataset used in this study was selected from MAFAULDA Machin-

ery Fault Database [42]. it is a database that was created to imitate the failure

scenarios that occur in rotating machinery due to misalignment, imbalance, and

bearing issues. The database contains 1951 data files that represent different fault

situations for six distinct operating states: Normal, imbalance, horizontal and ver-

tical misalignment, underhang, and overhang bearings. The Signals, Multimedia,

and Telecommunication Laboratory developed the database using the SpectraQuest

Alignment/Balance Vibration Trainer (ABVT) machine fault simulator.

III.2.1.1 Data Acquisition System

The experimental setup used to acquire this data is shown below in

Table III.1: Experimental Bench Specifications[42]

Specification Value Unit

Motor 1/4 CV DC

Frequency range 700-3600 rpm

System weight 22 kg

Axis diameter 16 mm

Axis length 520 mm

Rotor 15.24 cm

Bearings distance 390 mm

Number of balls 8

Balls diameter 0.7145 cm

Cage diameter 2.8519 cm

FTF 0.3750 CPM/rpm

BPFO 2.9980 CPM/rpm

BPFI 5.0020 CPM/rpm

Continued on next page

35



CHAPTER III. METHODOLOGY

Table III.1 – continued from previous page

Specification Value Unit

BSF 1.8710 CPM/rpm

The sensors’ utilized to acquire the data

• Three IMI Sensors, Model 601A01: accelerometers on the radial, axial

and tangencial directions.

Figure III.1: IMI Sensor, Model 601A01

- Sensibility : (±20%) 100 mV per g (10.2 mV per m/s2);

- Frequency range : (±3 dB) 16-600000 CPM (0.27-10.000 Hz);

- Measurement range : ±50 g (±490 m/s2).

• IMI Sensor triaxial accelerometer, Model 604B31:

Figure III.2: IMI Sensor, Model 604B31

- Sensibility : (±20%) 100 mV per g (10.2 mV per m/s2);
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- Frequency range : (±3 dB) 30-300000 CPM (0.5-5.000 Hz);

- Measurement range : ±50 g (±490 m/s2).

• Monarch Instrument MT-190: Analog tachometer.

Figure III.3: Monarch Instrument MT-190

• Two National Instruments NI 9234: 4 channel analog acquisition mod-

ules, with sample rate of 51.2 kHz.

Figure III.4: NI 9234.

• Shure SM81: A high-quality, unidirectional condenser microphone that is

widely used for professional audio recording, broadcasting, and sound rein-

forcement. It captures wide range of frequency (20-20.000 Hz). Also, it has

low-self noise [43].

37



CHAPTER III. METHODOLOGY

Figure III.5: Shure SM81.

III.2.1.2 Raw Data Description

A variety of faults were collected during the acquisition phase. Each sequence

was generated at at a 50 kHz sampling rate during 5 seconds, totaling 250.000

samples, they are described below :

• Normal sequence: There are 49 sequences without any fault, each with a

fixed rotation speed within the range from 737 rpm to 3686 rpm with steps of

approximately 60 rpm.

• Imbalance faults: Measured with ranging loads from 6g to 35g coupled

with the rotor. With limited rotation frequencies for loads above than 30g.

Totalling 333 sequences.

• Horizontal Parallel Misalignment: The motor shaft was shifted horizon-

tally by f 0.5 mm, 1.0 mm, 1.5 mm, and 2.0 mm. Totalling 197 sequences.

• Vertical Parallel Misalignment: The motor shaft was shifted vertically

0.51 mm, 0.63 mm, 1.27 mm, 1.40 mm, 17.8 mm and 1.90 mm. Totalling 301

sequences.

• Bearing faults: Three defective bearings, each one with a distinct defective

element (outer track, rolling elements, and inner track), that were placed one

at a time in two different positions, resulting in 558 Underhang sequence and

513 Overhang sequence. Three masses of 6 g, 20 g, and 35 g were added

to induce a detectable effect. The dataset was origanised in CSV (Comma-

Separated Values) files, each one with 8 columns. Our concern is the 8th

column which contains the microphone acoustic signal.
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III.2.1.3 Data Visualization

To comprehend the structure and format of the data we used MATLAB to plot

the Fig III.6 below of the time-domain to identify any trends or patterns, and the

frequency domain by applying the one-sided power spectral density plot to identify

the dominant frequency components and understanding the distribution of power in

the signal across different frequencies.

Healthy Imbalance

Horizontal misalignment Vertical misalignment

Underhang Overhang

Figure III.6: Visualization of spectral and waveform plots of the data.

In comparing the frequency distributions of healthy and faulty states from

Fig III.6 , it is observed that the overall shapes of all plots are similar, with the
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majority of power concentrated around lower frequencies and different distributions

of power across various frequencies. For example, the imbalance has some power

around 0 Hz. Also, the misalignment plots show less prominent peaks at the har-

monics of the peak frequency in the healthy state. In conclusion, the similarity in

the plots suggests the unreliability of spectrum graphs in analysing the machine’s

conditional state. Therefore, utilising alternative methods, such as machine learning-

based techniques, may be preferable in this scenario.

III.2.2 Air Compressor Dataset

The dataset consists of acoustic recordings collected on a single-stage

reciprocating-type air compressor. The data are sampled at 16 kHz. Specifications

of the air compressor are as follows:

- Air Pressure Range: 0-500 lb/m2, 0-35 Kg/cm2

- Induction Motor: 5HP, 415V, 5Am, 50 Hz, 1440rpm

- Pressure Switch: Type PR-15, Range 100-213 PSI

III.2.2.1 Data Acquisition System

Data acquisition is the first step of fault diagnosis where machine characteristics

are measured and recorded for further analysis. Data are collected using micro-

phones placed at many positions around 1.5 cm away from the machine. The data

acquisition setup is shown in Fig III.7 and Fig III.8 [44].

Figure III.7: data acquisition setup.
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Figure III.8: Positions taken on each side of the air compressor: (a) Top of Piston,
(b) NRV side, (c) Opposite NRV side, and (d) Opposite Flywheel side [44].

The microphones used are unidirectional. These microphones pick up less envi-

ronmental noise. The process of recording from these microphones is done using a

single NI 9234 data acquisition (DAQ) hardware unit with multiple ports, an NI-

9172 USB interface, and a LabVIEW-based data acquisition interface. The NI 9234

is used to sample the data. The sampled signal is then stored on a computer using

NI 9172 and a LabVIEW interface [44].

• NI 9172: or cDAQ-9172 is an 8-slot USB Compact DAQ chassis, designed

for creating small and portable sensor measurement systems.

- USB connectivity: It simplifies connection to a computer using a standard

USB interface.

- Plug-and-play functionality: Easy connection of various sensors and elec-
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trical measurement devices.

- Timing and synchronization control: Manages timing, synchronization,

and data transfer between C Series I/O modules and the computer.

Figure III.9: NI-cDAQ-9172.

• LabVIEW: is a graphical programming environment simplifies data acquisi-

tion by offering drag-and-drop tools for hardware configuration, real-time data

visualization, and basic analysis

- Graphical Programming: LabVIEW’s intuitive approach replaces tradi-

tional text-based coding with drag-and-drop blocks.

- Instrument Connectivity: It seamlessly connects to various instruments,

regardless of manufacturer, simplifying data acquisition from diverse test

equipment.

- Integrated User Interfaces: LabVIEW allows for building user interfaces

directly within the program, creating a cohesive test system environment.

Figure III.10: labview waveform graphical interface.
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III.2.2.2 Raw Data Description

Acoustic recordings were taken from the single stage reciprocating type air com-

pressor in 8 different designated states. These 8 states include a healthy state, and

7 faulty states:

a) Healthy is the state where the air compressor is healthy, and is free from all

faults.

b) LIV fault is the state that occurs when the inlet valve of the air compressor

is damaged. Hence, while the piston compresses the air, the air accordingly

leaks through the inlet valve.

c) LOV fault is the state that occurs when the outlet valve of the air compressor

is damaged.

d) NRV fault is the state that occurs when the non-return valve of the air

compressor is damaged, which creates air leakage from the tank. The leaked

air puts an additional load on the air compressor; hence, this fault can be

especially dangerous while the air compressor runs.

e) Piston ring fault is the state that occurs due to loosening of the piston ring

on the piston head, which results in leakage of air in the compressor.

f) Flywheel fault is the state in which wear on the flywheel causes a flywheel

fault.

g) Rider-belt fault is the state that occurs when the Rider-belt is not properly

aligned with the pulley.

h) Bearing fault is the state due to cracks in bearings.

each signal is recorded over 3.125 sec with 16kHz sampling frequency and saved

as .wav file with 50k samples. A total of 225 recordings were collected for each of 8

categories, for all compressor states giving a total of 1800 recordings. The acoustic

recordings were taken while the air compressor operated within a pressure range of

10 to 150 PSI [44].

III.2.2.3 Data Visualization

The following figures from Fig III.11 to Fig III.18 display the time domain and

power FFT of a signal from each category.
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Figure III.11: healthy Figure III.12: LIV

Figure III.13: LOV Figure III.14: NRV
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Figure III.15: Piston Figure III.16: Flywheel

Figure III.17: Rider-belt Figure III.18: Bearing

The time-domain signals show fluctuations in amplitude over time, with no clear

distinguishable patterns that the human can identify the faults. from the power

FFT side, it exhibits a similar overall shape with a broad distribution of power

across frequencies. The peaks and troughs in the plots are not significantly distinct

enough for a human observer to easily differentiate between the states. the general

trend shows a decrease in power with increasing frequency, with some variations

in the power levels at certain frequencies. The plots indicate that it is challenging

for humans to visually distinguish between the healthy state and the various faulty

states, a data-driven approach using machine learning models is essential. Machine

learning algorithms can analyze and detect patterns within the data more effectively

than human observation, allowing for accurate detection and classification of faults.
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III.3 Preprocessing

This section will delve into the preprocessing techniques utilized to obtain a

model matrix for the classification model, starting from the decomposition of each

signal using MODWPT and EMD. Then, the features extracted from each IMF

obtained.

III.3.1 Signal Decompositon

Decomposing the signal is highly effective in signal processing, particularly for

FDD, as it emphasizes localized time-frequency information as it identifies and an-

alyzes the underlying patterns and characteristics that are not easily discernible in

the raw signal. in this study, we tested two decomposition techniques EMD and

MODWPT.

Each signal from each class is decomposed to 10 IMFs using EMD and to 16

IMFs using MODWPT. the comparison between the two decomposition techniques

is analyzed in the fourth chapter.

Figure III.19: Decomposing each signal to IMFs

III.3.2 Feature Extraction

After decomposing each signal into Intrinsic Mode Functions (IMFs), the fol-

lowing statistical features are extracted from each IMF. This process enhances the

understanding of the characteristics of each IMF, helps in emphasizing the informa-

tive parts of the IMFs, minimizes the impact of noise of the original signal, enabling

machine learning algorithms to detect patterns associated with specific faults and

improve the model’s performance and reliability.

46



CHAPTER III. METHODOLOGY

• Root Mean Square (RMS): Depicts the IMF’s average energy content.

Changes in RMS over different IMFs can indicate variations in the machine’s

operating conditions.

RMS =

√√√√ 1

N

N∑
i=1

x2
i (III.1)

- xi: sample values of the signal.

- N : The total number of samples in the signal.

• Max-to-RMS Ratio: Compares the peak amplitude of the IMF to its overall

energy level (RMS). A high ratio might suggest impulsive events.

Max-to-RMS =
max(x)

RMS
(III.2)

• Peak-to-Peak Value: Indicates the variation in the IMF’s amplitude values

from maximum to minimum

Peak-to-Peak = max(x)−min(x) (III.3)

• Skewness: Measures the asymmetry of the probability distribution of the

signal.

Skewness =
E[(x− µ̄)3]

s3
(III.4)

-x: Sample values of the signal.

- µ: Mean (average) of the signal.

- σ: Standard deviation of the signal.

- E[(x − µ)3]: Expected value (or mean) of the cubed deviations from the

mean.

• Kurtosis: Measures the ”tailedness” of the probability distribution of the

signal.

Kurtosis =
E[(x− µ)4]

σ4
(III.5)

- E[(x−µ)4]: Expected value (or mean) of the fourth power of deviations from

the mean.

• Entropy: Measures the randomness or complexity of the signal.

Entropy = −
∑

p(x) log p(x) (III.6)
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- p(x): Probability distribution of the signal’s values.

• Mean: Average value of the signal.

Mean =
1

N

N∑
i=1

xi (III.7)

• Standard Deviation: Measures the amount of variation or dispersion of the

signal.

Standard Deviation =

√√√√ 1

N − 1

N∑
i=1

(xi − X̄)2 (III.8)

• Variance: Measures the spread of the signal values.

Variance =
1

N − 1

N∑
i=1

(xi − X̄)2 (III.9)

• Peak-to-RMS Ratio (Alternate): Another measure of the peak value rel-

ative to the RMS value.

Peak-to-RMS =
max(x)

RMS
(III.10)

• Root Sum of Squares (RSSQ): Sum of the squares of the values, square

rooted. Similar to RMS but summed before taking the root.

RSSQ =

√√√√ N∑
i=1

x2
i (III.11)

• Maximum Value: Maximum value of the signal.

Max = max(x) (III.12)

• Minimum Value: Minimum value of the signal.

Min = min(x) (III.13)

The features selected for fault diagnosis were chosen based on previous research on

fault diagnosis using acoustic signals and vibration signals [45, 46].
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Figure III.20: extracting features from each IMF

III.3.3 Data Arrangement

For the data arrangement, the following structure is applied: each dataset con-

sists of n classes (e.g., the air compressor dataset contains 8 classes). Each class

comprises m acoustic signals. Each signal is decomposed into X Intrinsic Mode

Functions (IMFs), and 13 features are extracted from each IMF. The labeling vec-

tor is filled with the class number corresponding to each signal.

2nd Signal

m Signal

1st IMF’s features 2nd IMF’s features

IMF’s features

1st Class

2nd Class

Last 

Class

Labeling 

vector

1st Signal

2nd Signal

m Signal

1st Signal

2nd Signal

m Signal

1st Signal

Figure III.21: Model matrix
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III.3.4 Data Splitting

The Data was randomly split into train and test sets, with ratios of 80% and

20% respectively. Applying 5 fold cross validation essential for assessing the gener-

alization of a model by training and validating it on multiple subsets of the data,

thereby mitigating the risk of overfitting.

Table III.2: Data Splitting

Dataset Class Train 80% Test 20%

MAFAULDA

Normal 39 10

Imbalance 158 39

Horizontal parallel misalignment 267 66

Vertical parallel misalignment 161 40

Underhang Bearing 446 112

Overhang Bearing 410 103

Air Compressor

Healthy 180 45

LIV 180 45

LOV 180 45

NRV 180 45

Piston Ring 180 45

Flywheel 180 45

Rider-Belt 180 45

Bearing 180 45

III.4 Algorithms and Hyperparameters

III.4.1 Support Vector Machine

SVM is a machine learning algorithm used for classification, regression, and

outlier detection tasks. It aims to fit an optimal separating hyperplane (OSH)

between classes. OSH is strategically placed such that it focuses on the samples

that lie at the boundaries of the class distributions; these data points are called

support vectors[47].
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Figure III.22: Data separation in SVM [48].

The SVM formulation aims to solve optimization problem, with a general equa-

tion being:

min

[
∥w∥2

2
+ C

r∑
i=1

ξi

]
(III.14)

Under the constraints of :

y (w · xi + b) > 1− ξi. (III.15)

Where:

• w is the weighted vector that makes the decision boundary.

• C is a parameter in SVM that helps control the trade-off between the training

error and the margin

• ξ is the slack variable for linearly separable classes.

• xi is an input vector (training example) that corresponds to a label yi.

• b is the bias term.

The Support Vector Machines can vary to two different types:

• Linear SVM : If the data is linearly separable,i.e: the data can be clas-

sified into different classes using a simple straight line, then Linear SVM is

recommended for usage.
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• Non-Linear SVM : If the dataset cannot be separated into different classes,

thus it is a non linearly separable. Then, one should use Non-Linear SVM.

One of the main advantages of SVM is that since SVM only needs support vectors

in the establishment of the decision surface, unlike other classifiers. Therefore, a

small sample size dataset is sufficient to make get good classification results [47].

Also, it has very excellent capability of dealing with high dimensional data and

non-linearly separable datasets.

III.4.2 K-Nearest Neighbors (KNN)

K-NN is a machine learning algorithm that determines the class of a certain

training data point. The prediction approach of this technique is known as the

majority rule, which is done by identifying K objects in the training set that are the

closest to the unclassified data point. Then, according to the predominant class, a

label is assigned to this data point. K-NN is a flexible classification approach, it

handle various datasets since it does not need to make any assumption about the

data. Also, the error rate of a K-NN algorithm tends towards being very minor [49].

Figure III.23: KNN Algorithm working visualization [50].

The distance metrics used in K-NN are various, some of which include:
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• Eucledean distance : in simple terms it is the length between two points

irrespective of their dimensions.

distance(x,Xi) =

√√√√ d∑
j=1

(xj −Xij)2 (III.16)

• Manhattan Distance : It is used if our interest is the total distance cov-

ered rather than the displacement. It sums absolute difference between the

coordinates of the points in n-dimensions.

d(x, y) =
n∑

i=1

|xi − yi| (III.17)

III.4.3 Decision Tree

Decision tree is a flow-chart tree structure, its concept as mentioned in [51] takes

as input an object or situation described by a set of properties, and outputs a yes/no

decision. Decision trees therefore represent Boolean functions’. Each node in the

tree denotes a feature, branches denotes the regulations and leafs denotes the result

of the algorithm [52].

Figure III.24: Decision Tree Flowchart [52].

III.4.4 Ensemble Bag

Ensemble Bag is a machine learning model, which trains multiple decision tree

simultaneously. Each tree is built around randomness (random section of data is
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set to measure a random section of feature). The final prediction is typically the

average or majority vote of the predictions made by individual trees. It is widely

known for their ability to handle complex data and reduce overfitting [53].

Figure III.25: Ensemble Bag Flowchart[53].

III.4.5 MATLAB Classification Learner App

Classification Learner is a tool that helps you with supervised machine learning

tasks for classification problems. It give you access to explore data, select features,

determine validation schemes, train numerous models, and evaluate their perfor-

mance. Also, there is an option that allows for automated training, which aids in

finding the optimized models [54].
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Figure III.26: MATLAB’s Classification Learner App

III.5 Hyperparameters Tuning

Hyperparameters tuning is a critical step in achieving the best model for the

model. The Classification Learner app provides algorithms that facilitate the opti-

mization of the models’ configurations.

Figure III.27: Optimization Algorithms provided by The Classification App.

The optimized hyperparameters selected for the Air Compressor dataset, for

both decomposition techniques are provided in Table III.3.

55



CHAPTER III. METHODOLOGY

Table III.3: The Optimized hyperparameters for the Air Compressor’s Dataset.

Classifier Optimized Hyperparameters Obtained

EMD

Decision Tree Maximum number of splits: 458, Split criterion:
Maximum deviance reduction

SVM Box constraint level: 447.8129, kernel: Linear,
Kernel Scale: auto, Standardize data: true, Mul-
ticlass coding: One-vs-One

KNN Number of neighbors: 17, Distance metric: Co-
sine, Distance weight: Squared Inverse, Stan-
darize data: no

Ensemble Bag Number of learners: 261, Maximum number of
splits: 1274, Number of Predictors to sample: 81

MODWPT

Decision Tree Maximum number of splits: 124, Split criterion:
Maximum deviance reduction

SVM Box constraint level: 998.9011, kernel: Linear,
Kernel Scale: auto, Standardize data: true, Mul-
ticlass coding: One-vs-All

KNN Number of neighbors: 1, Distance metric: Corre-
lation, Distance weight: Inverse, Standarize data;
true

Ensemble Bag Number of learners: 440, Maximum number of
splits: 1221, Number of Predictors to sample: 56

The optimized hyperparameters selected for the MAFAULDA dataset, for both

decomposition techniques are provided in Table III.4.
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Table III.4: The Optimized hyperparameters for MAFAULDA’s Dataset.

Classifier Optimized Hyperparameters Obtained

EMD

Decision Tree Maximum number of splits: 95, Split criterion:
Maximum deviance reduction

SVM Kernel function: Linear, Box constraint level:
35.9494, Kernel Scale: auto, Standardize data:
false, Multiclass coding: One-vs-All

KNN Number of neighbors: 1, Distance metric: City
block, Distance weight: Squared Inverse, Stan-
darize data: false

Ensemble Bag Number of learners: 256, Maximum number of
splits: 1406, Number of Predictors to sample: 36

MODWPT

Decision Tree Maximum number of splits=58, Split crite-
rion=Twoing rule

SVM kernel function: Linear, Box constraint level
=996.8985, , Multiclass coding= One-vs-All,
Standardize data=false

KNN neighbors=7, Distance metric=correlation,
Distance weight=Squared inverse, Standardize
data=true

Ensemble Bag Number of learners=355, Maximum number of
splits=110, Number of Predictors to sample = 84
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III.6 Conclusion

In conclusion, this chapter outlines the methodology for building a fault diagnosis

classification model, initiating with understanding the data and selecting the best

hyperparameters.

Firstly, the datasets of the air compressor and MAFAULDA were discussed, start-

ing with description and visualization, concluding on the limitations of the classical

approach to fault diagnosis and the need to introduce the data-driven approach using

machine learning combined with signal preprocessing in order to obtain an improved

model that can capture complex patterns and accurately diagnose anomalies.

Next, we delved into signal preprocessing. This includes Empirical Mode Decom-

position (EMD) and Maximal Overlap Discrete Wavelet Packet Transform (MOD-

WPT) signal decomposition, which emphasize localized time-frequency information

and identify underlying patterns that are not easily detectable in the raw signal.

Then feature extraction to identify the informative insight of the signal and the

data arrangement for the machine learning models.

Furthermore, we emphasized the implementation of several classification models

using the Classification Learner Toolbox including Support Vector Machine (SVM),

K-Nearest Neighbors (KNN), Decision Tree, Ensemble Bag, and Extra Tree classi-

fiers. Ending the chapter with hyperparameter tuning helps the models achieve the

best possible accuracy.
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Results & Discussion

IV.1 Introduction

This chapter presents the study’s results, evaluating and analyzing the model’s

performances and outcomes. Several fault diagnosis metrics are investigated in order

to examine the accuracy of the techniques implemented in the study. Also, this

evaluation includes a comparison with previous research findings. After that, an

evaluation of the model on real world scenarios through noise test is implemented.

All of these aspects combined provides a comprehensive study on the model, giving

us a deep understanding of the model’s strength and weaknesseses in the context of

fault diagnosis.
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IV.2 Model Performance Evaluation

The dataset is split into a training set and a test set. The model is then trained,

tested, and evaluated. The chosen classifiers consist of SVM, KNN, Decision Tree,

and Ensemble Bag. The evaluation process is done by choosing metrics aligned with

the specific goals of our applications. In the case of fault diagnosis, specific metrics

are selected.

• Accuracy: The ratio of correctly predicted samples to the total samples in

the dataset

Accuracy =
TP + TN

TP + TN + FP + FN
(IV.1)

• Precision: Measures the accuracy of the positive predictions made by the

model. It is the ratio of true positive predictions to the total predicted posi-

tives.

Precision =
TP

TP + FP
(IV.2)

• Recall: (Or Sensitivity) is the proportion of true positives to the total actual

positives. It measures the ability to capture all positive samples.

Recall =
TP

TP + FN
(IV.3)

• F1-Score: The harmonic mean of Precision and Recall, provides a single

metric that balances the trade-off between Precision and Recall. It is useful

for imbalanced datasets.

F1− score =
2× Precision × Recall

Precision + Recall
(IV.4)

TP ,TN ,FP and FN are respectively the true positives, the true negatives, the false

positives and false negatives data samples.

IV.2.1 Performance Metrics

The results of the metrics are summarized in Table IV.1.
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Table IV.1: Performance Evaluation Metrics

Dataset Decomposition Classifier Accuracy Precision Recall F1 Score

MAFAULDA

MODWPT

Linear SVM 98.92 98,96 98,84 98,92

KNN 93.05 93.74 90.82 89.73

Decision Tree 92.70 89.39 90,61 89.18

Ensemble Bag 97.30 97.41 96.46 96.41

EMD

Linear SVM 98.92 98.91 97.89 98.31

KNN 97.03 94.92 93.94 94.72

Decision Tree 90.00 80.05 83.66 82.01

Ensemble Bag 96.76 97.2 93.10 94.63

AIR COMPRESSOR

MODWPT

Linear SVM 99.72 99.73 99.72 99.72

KNN 88.61 89.04 88.61 88.62

Decision Tree 85.83 86.52 85.83 85.85

Ensemble Bag 98.61 98.36 98.6 98.47

EMD

Linear SVM 88.89 89.02 88.9 87.54

KNN 54.44 54.5 54.5 54.7

Decision Tree 81.39 82.4 81.4 81.6

Ensemble Bag 88.61 89.1 88.6 87.4

For the MAFAULDA dataset, SVM with a linear kernel with both MODWPT

and EMD decomposition techniques achieved the highest accuracy of 98.92%. The

MODWPT decomposition with linear SVM also yielded the best precision (98.96%),

recall (98.84%), and F1 score (98.92%). Ensemble Bag demonstrated close results

with accuracy of 97.30%, KNN and Decision Tree under mMODWPT decomposition

exibited slightly lower accuracies, with 93.05% and 92.70%, respectively. However,

under EMD decomposition, KNN showed an increase in accuracy of 97.03%, yielding

better results than Ensemble Bag with 96.76%.

For the Air Compressor Dataset, SVM with a linear kernel demonstrated higher

results across all metrics under MODWPT decomposition, with an accuracy of

99.72%. Assembly Bag is a close second (98.61% accuracy). Under EMD decompo-

sition, linear SVM showed reliable results in all metrics, with only Ensembla Bag

having superior precision (89.1%), while KNN experienced a significant drop. The

decision tree classifier exhibited relatively lower performance compared to MOD-

WPT decomposition.
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Figure IV.1: Air compressor -
MODWPT-EMD comparison.

Figure IV.2: MAFAULDA -
MODWPT-EMD comparision.

Based on the findings for both datasets, it is evident that the combination of

MODWPT decomposition and linear SVM consistently outperformed other classi-

fiers, implying its capability to accurately classify faulty samples and detect healthy

samples. The remaining three methods demonstrated slightly lower results com-

pared to linear SVM, but they still performed fairly well across all metrics.

IV.2.2 Prediction Speed

For real-world fault diagnosis, it is essential for fast predictions, which enable

the early detection of faults. Table IV.2 compares the classifiers used in terms of

their capacity to process a high number of observations per second.

Table IV.2: Models’ Prediction Speed.

Classifier
Prediction speed (obs/sec)

Mafaulda Air compressor

Linear SVM 20000 14000

KNN 3300 2300

Decision Tree 11000 15000

Ensemble Bag 970 900

In the case of the MAFAULDA dataset, it is shown that SVM has the high-

est prediction speed with 20000 (obs/sec), followed by Decision Tree with 11000

(obs/sec). KNN showcased a prediction speed of 3300 (obs/sec), while Ensemble

Bag is the slowest with 970 (obs/sec). However, in the case of the air compres-

sor dataset, Decision Tree was the classifier with the highest prediction speed with

15000 (obs/sec), followed closely by SVM with 14000 (obs/sec), KNN showcased

approximately the same result, and Ensemble Bag is the slowest once again with
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900 (obs/sec).

In summary, the table provides valuable insights into the suitability of different

classifiers for real-time fault diagnosis, where prediction speed is a critical factor.

IV.2.3 Model Size

For real-world fault diagnosis, effenciency and storage is essential, especially if

the working enviroment offers limited storage. Table IV.3 highlights a comparison

of the models’ compact size.

Table IV.3: Models’ compact size.

Classifier
Model size (kB)

Air Compressor Mafaulda

Linear SVM 314 223

KNN 2000 2000

Decision Tree 62 45

Ensemble Bag 33000 18000

With compact sizes of 62 kB and 45 kB, respectively, Decision Tree is the most

storage-efficient model in both datasets. SVM is next, with compact sizes of 314 kB

and 223 kB. While Ensemble Bag can be as big as 18 MB and up to 33 MB in size,

KNN and Ensemble Bag require more storage. KNN remained consntant at 2 MB

in size.

IV.3 Noise Test

Noise testing is a common technique used to evaluate the machine learning

model’s reliability in noisy conditions. In our study, we simulated a real-world

scenario by adding artificial noise to the acoustic data using the noise-to-signal ratio

(SNR), ranging from 10 dB to -4 dB. The SNR is calculated using the following

formula:

SNR = 10 log
Psignal

Pnoise

(IV.5)

• Psignal: The power of the original signal.

• Pnoise: The power of the added noise.

63



CHAPTER IV. RESULTS & DISCUSSION

The noise is random values generated from a normal distribution with zero mean

and unit variance. A high SNR indicates a low noise level added to the signal,

whereas a low SNR means that the signal is heavily obscured by added noise.

In our study, we obtained very good model performance results even though we

trained the models without any noise handling, which yielded very good results. The

reason behind not filtering the noise is based on: first, the complexity of filtering

the noise of a signal without knowing the recording environment, and also the risk

of filtering or removing valuable signal information from the raw signal. Second,

machine learning models have the capability to focus on intrinsic features of the

signal that are not obscured by noise, making them effective for classification tasks.

Table IV.4 and Table IV.5 illustrates the accuracy of four machine learning mod-

els (SVM, KNN, Ensemble, and Decision Tree) at various levels of SNR, on both

datasets.

Table IV.4: Air compressor - Noise Test Accuracy (%)

10 dB 0 dB -2 dB -4 dB

SVM 99.72 99.44 95.28 94.86

KNN 81.11 76.94 67.50 65.35

Ensemble Bag 92.78 91.94 84.17 84.44

Decision Tree 84.44 84.44 78.06 73.61

Table IV.5: MAFAULDA - Noise Test Accuracy (%)

10 dB 0 dB -2 dB -4 dB

SVM 98,2 96,97 96,96 93,93

KNN 87,49 76,76 70,7 67,35

Ensemble Bag 92,13 91,84 90,9 87,76

Decision Tree 88,31 82,82 81,63 75,28

Fig IV.3 and Fig IV.4 below shows the accuracy of four machine learning models

(SVM, KNN, Ensemble, and Decision Tree) at various levels of signal-to-noise ratio

(SNR):
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Figure IV.3: Air compressor - Accu-
racy results under noise test.

Figure IV.4: MAFAULDA - Accuracy
results under noise test.

Histograms from Fig IV.5 and Fig IV.6 below, illustrate how much the accuracy

of each model drops on each SNR levels

Figure IV.5: Air compressor - Model’s
Accuracy Drop at Different SNR Lev-
els.

Figure IV.6: MAFAULDA - Model’s
Accuracy Drop at Different SNR Lev-
els.

Histograms from Fig IV.7 and Fig IV.8 below, illustrate total accuracy of each

model drops from no noise added to -4dB

Figure IV.7: Air compressor - Model’s
Total Accuracy Drop.

Figure IV.8: MAFAULDA - Model’s
Total Accuracy Drop.

For both datasets, the results were relatively equal when considering the noise

impact. The results demonstrate that classifiers respond differently to the intro-

duced noise in the data. The charts show how the noise levels are affecting the

model.
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The SVM performance shows a minimal accuracy drop across all noise levels,

maintaining above 93% accuracy even at -4 dB, indicating its robustness. On the

contrary, the KNN model exhibits significant accuracy drops as noise levels increase,

which implies it is the most sensitive model in this study, with a total drop of over

21% from (no noise added) to -4 dB. Both the Ensemble and Decision Tree models

display similar total accuracy drops. However, the Ensemble model consistently

achieves higher accuracy than the Decision Tree, but the DT shows high resilience

to noise up to 0 dB, with only a 1% drop.

Decomposing the signal into multiple IMFs helped in isolating the noise within

certain IMFs while allowing the machine learning models to focus on the unobscured

IMFs. also, Feature extraction from each IMF and feeding the machine learning

model with informative insights is more effective than using the raw signal, which

contains noise fluctuations. Additionally, a larger dataset improves model perfor-

mance by enabling better diagnosis and reducing overfitting, which is a primary

concern for data scientists. Overfitting occurs when the model learns to recognize

noise patterns rather than the underlying signal. From this test, the robust model

between the others is SVM degraded by 5% with -4dB SNR added, we conclude

that our model of diagnosing faults using acoustic signals is robust to the intro-

duced noise. The suggested enhancement is augmenting the data with many levels

of noise and then training the model with this augmented data. This approach is

expected to yield a model with slightly less accuracy but greater robustness.

IV.4 Comparison with Prior Research

Several researchers have invested in the use of artificial intelligence for fault

detection and classification, using the same acoustic air compressor dataset.

C.Rahmoune et al. [45]. conducted a study with the premise of enhancing

air compressor multi-fault classification using new criteria for the Harris Hawks

optimisation algorithm in tandem with MODWPT and the Least Squares SVM (LS-

SVM) classifier. While S.Dixit et al. [55] proposed a novel Conditional Auxiliary

Classifier Generative Adversarial Network (CACGAN) Framework, which is a data

augmentation method, then classified using SVM.

Table IV.6 showcases the results obtained when using the same classifiers.
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Table IV.6: Accuracy (%) Comparison with related studies.

Author SVM KNN DT Ensemble BAG

Our study 99.72 88.61 85.83 98.61

C.Rahmoune et al. 97,81 86,28 89,02 97,02

Table IV.7 showcases the proposed models and their respective accuracy.

Table IV.7: Comparison between proposed models.

Author Proposed Model Accuracy(%)

Our study MODWPT-Linear SVM 99.72

Rahmoune et al. (2023) MODWPT-Least Square SVM 99.55

Sonal Dixit et al.(2021) CACGAN-SVM 98.89

As seen in Table IV.6 above, the resulting accuracies of the common classifier

techniques used in our study exibited greater accuracy than the resulting accuracies

of C. Rahmoune et al.’s study, except for the Decision Tree classifier, where our

study resulted in slightly lower accuracy.

However, as seen in Table IV.7, the C. Rahmoune et al. approach yielded an

accuracy of 99.55%, while S. Dixit et al. showcased lower results with an accuracy

of 98.89%. In comparison with previous studies, our proposed model showcased

superior results, with an accuracy of 99.72%, emphasising the efficacy of our model

in diagnosing faults.

IV.5 Conclusion

Our findings demonstrate that the SVM classifier, especially with a linear ker-

nel, achieved the highest accuracy, notably 99.72% for the Air Compressor dataset

using MODWPT. Ensemble Bagged Trees also performed well but were slower in

prediction speed. Decision Tree showcased its compactness in size. Noise testing

showed that SVM maintained relatively high accuracy even at high SNR levels, in-

dicating robustness, while KNN was most sensitive to noise. A comparative analysis

with prior research was done, with our proposed model showcasing high resulting

accuracy, emphasizing its efficiency in fault diagnosis.

Feature extraction from decomposed signals significantly improved fault diag-

nosis accuracy. The combined use of EMD, MODWPT, and SVM proved highly
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effective for fault diagnosis in rotating machinery.
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General Conclusion

In conclusion, this thesis’s primary objective was to build a data-driven, early-

detection fault diagnosis model using acoustic signals as a parameter of condition-

based monitoring in order to prevent failures in the industry process that may result

in heavy economic losses and unscheduled downtime. This study investigates differ-

ent preprocessing techniques on two datasets: the rotating machine MAFAULDA

and the Air compressor. Time-frequency analysis was used to obtain more under-

lying patterns in the signal, namely MODWPT and EMD decomposition methods.

Also, features were extracted from each IMF to get the signal’s informative charac-

teristics. To classify these fault patterns, we employed four machine learning algo-

rithms : Support Vector Machines (SVM), k nearest neighbours (KNN), Decision

Trees, Ensemble Bag. The performance of each model was assessed and evaluated

using a comparative analysis on significant metrics used to evaluate fault diagnosis

models.Additionally , noise testing was conducted.

The results of the analysis revealed that SVM exhibited superior accuracy and

outperformed other classifiers in most evaluation metrics, on both datasets and

decomposition methods. It demonstrated robustness in a noisy environments, and it

exhibited the fastest prediction time. Decision tree demonstrated that it is the most

storage-efficient model. MODWPT-based models outperformed EMD-based models,

indicating the effectiveness of MODWPT in capturing the underlying information

from acoustic signals.

While acoustic signals are generally considered late indicators of faults compared

to ultrasonic or vibration signals, the combination of signal preprocessing techniques

with machine learning significantly improved their early detection capabilities.

For future improvement, it is better to find the optimal acoustic data acquisition

setup that can capture more detailed information. It is also recommended to enhance

the model’s sensitivity to noise. Additionally, this study could be extended by using

deep learning models, given their ability to detect features and patterns of faults

without human intervention. Finally, enhancing the model’s ability to generalise

the diagnosis process using data from many other similar machines.
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