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Abstract
In this paper, a novel noncontact and nonintrusive framework experimental method is used for the monitoring and the
diagnosis of a three phase’s induction motor faults based on an infrared thermography technique (IRT). The basic struc-
ture of this work begins with this applying IRT to obtain a thermograph of the considered machine. Then, bag-of-visual-
word (BoVW) is used to extract the fault features with Speeded-Up Robust Features (SURF) detector and descriptor
from the IRT images. Finally, various faults patterns in the induction motor are automatically identified using an ensemble
learning called Extremely Randomized Tree (ERT). The proposed method effectiveness is evaluated based on the experi-
mental IRT images, and the diagnosis results show its capacity and that it can be considered as a powerful diagnostic tool
with a high classification accuracy and stability compared to other previously used methods.
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Introduction

Electrical systems condition monitoring plays a vital
role in maintenance costs minimizing as well as reliabil-
ity increasing. Recently, vibration signal analysis has
been the most widely used method to monitor rotating
machines and diagnose their faults. Several signal pro-
cessing techniques have been developed such as those
published by Zair et al.,1 Bettahar et al.,2 Nayana
et al.,3 Glowacz et al.,4 Ikhlef et al.5

Since vibration is considered a non-avoidable phe-
nomenon in dynamic systems, the isolation and the
diagnosis of coupled faults is generally difficult and not
easy to establish due to the complexity of the structure
and the machinery multiple components interactions.
For this purpose, accelerometers are usually needed.
However, they require being in contact with the object
that needs to be monitored. Multiple challenges are

encountered and must be considered before the installa-
tion of accelerometers, namely the high operating tem-
peratures and greasy surfaces.

Infrared thermal imaging is a noncontact and nonin-
trusive measurement technique that can detect all the
monitored system component temperature variation.
This technique has been largely used in nondestructive
examination,6 medical science,7 defense,8 and
automotive.9
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In recent years, it has been known that rich informa-
tion is contained in IRT images and can be used as
diagnosis data for several electrical machines such as
bearing diagnosis of rotating machinery,10 Grinder11

diagnosis, and fault diagnosis of electric impact drills.12

Electrical motor faults detection is performed based on
IRT images as demonstrated by Glowacz and
Glowacz13 who developed a technique called Method
of Area Selection of Image Differences (MoASoID)
which is mainly based on analyzing infrared thermal
images for three-phase induction motor different faults
identification. Li et al.14 adopted a technique to diag-
nose faults in rotating machinery using Conventional
Neural Network (CNN) for fault features extraction
from the captured infrared thermal images. After that,
fault pattern is identified by feeding the obtained fea-
tures into the Softmax Regression (SR) classifier.
Devarajan et al.15 propose a fault diagnosis method for
induction machines, at first, by using the temperature
pixels indicator of the thermal image, they addressed
three types of faults that are known to provoke an
increase in the stator temperature such as shaft misa-
lignment, air gap eccentricity, and cooling system fail-
ure, for which different degree of temperature variation
are directly related to pixels values of the IRT image.
Then, the extracted features were classified using
ANFIS structure model. The collected IRT images are
analyzed in order to verify the accuracy of the pro-
posed method.

Most of the methods presented above lack precision
and stability of their system, this leads us to look for an
efficient and more stable method for the monitoring and
the diagnosis of a three phase’s induction motor using
an infrared thermography technique. The current pro-
posed diagnosis method is a combination of fault extrac-
tion technology with a new machine learning method
called ensemble learning for faults pattern classification.

In this work, a sophisticated approach of IRT
images features extraction and indexing using SURF
and BoVW is adopted. Speeded-Up Robust Features16

(SURF) is a robust technique for image features extrac-
tion used to detect the interest points in IRT image and
produce their descriptors. In addition to the distinctive
and the resistance to noise and detection errors, the
points of interest are also insensitive to geometric and
photometric changes. They are key points with well-
defined locations in the image’s scale space and a rough
representation of the of the image object.

Bag of words (BoW) had shown a notable efficiency
in text retrieval, which extends it to image processing
under the name of Bag of Visual Word17 (BoVW). Like
BoW, BoVW transforms an image in the form of histo-
gram that can be defined as visual features frequencies
of occurrences in the treated image. It is considered as
a set of discrete words known for their unordered pat-
tern and non-distinctiveness, this can be seen as an

invariance to the spatial location of the objects in the
image. Furthermore, the histogram of the visual words
is considered as a bank of features to be used in image
classification.

The next and the most important step after image
features extraction is features classification. In order to
detect and identify different fault in a rotating machine
a robust and reliable classifier is needed. Classification
is one of the top research subjects and issues in the
machine learning discipline. In the area of fault diagno-
sis, several machine learning methods have been intro-
duced, such as decision tree (DT), support vector
machine (SVM), extreme learning machine (ELM),
k-nearest neighbor (KNN), ., etc.

However, machine learning present some limits. For
example, it requires lengthy offline/batch training and
doesn’t not learn incrementally or interactively in real-
time. Furthermore, it has a poor transfer learning abil-
ity, reusability of modules, and integration. The opacity
of the systems makes them very hard to debug. In order
to overcome these problems, researchers are oriented
toward a new machine learning techniques called ensem-
ble learning. Ensemble methods help machine learning
results improvement by combining multiple models.
Using ensemble methods allows to produce better classi-
fication compared to a single model method.

There are many ensemble learning techniques that
has been recently developed and embedded in the field
of classification such as Random Forest23 (RF) and
Extremely Randomized Tree18 (ERT).

This paper’s purpose is to propose a new intelligent
method to diagnose faults in electromechanical systems
based on IRT, image feature extraction using BoVW
and SURF methods, and Extremely Randomized Tree
(ERT) classifier. The proposed method had demon-
strated its effectiveness in three phase’s induction
machine faults diagnosis.

In addition to conventional techniques (KNN, SVM,
DT, LSSVM, RF), our method has been also compared
with some recently developed AI techniques, namely
Self-Organising Fuzzy logic classifier19 (SOF) and Semi-
Supervised Deep Rule-Based20 (SSDRB) approach for
image classification which are two classification methods
recently developed and published in 2018.

Experiments indicate that, based on Extremely
Randomized Tree (ERT) ensemble learning classifier,
the discussed method achieves high accuracy and best
stability in induction motor diagnosis and proves its
superiority over the traditional methods and standard
deep learning methods.

Image features extraction using Bag of
Visual Words (BoVW)

The great success shown by ‘‘Bag-of-Words’’ (BoW) in
text retrieval opened new horizons to its utility in other
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domains as a reliable features extraction method. Its
extension in image processing is called ‘‘Bag-of-Visual-
Words’’ (BoVW). Just like BoW, BoVW transforms an
image in the form of histogram that can be defined as
visual features in the treated image. This histogram is
considered as the effective features bank that will be
used later in image classification.10

In this paper, the applied image processing technique
is BoVW. It allows the extraction of features from the
infrared thermographs images for three phases induc-
tion motor faults diagnosis. The BoVW method14 is
obtained by the two steps that are presented below:

Step 1: Visual words extraction method

There are many local features detectors and descriptors
algorithms that have been used to procure the visual
words from the interests regions in the infrared thermo-
graphy images.

A pixel is basically described in an image by local
feature descriptors via its local content. These descrip-
tors must show a high robustness against localization
errors and deformations, they have to ensure the identi-
fication of the corresponding pixel locations in images
which capture the same kind of quantitative informa-
tion about the spatial intensity patterns in various states
modes.

In the next paragraph we succinctly explain the Scale
Invariant Feature Transform (SIFT) and Speeded Up
Robust feature (SURF) extraction methods of local
features and comparison between them.

Scale invariant feature transform (SIFT)

This method had been firstly introduced by Lowe.21 A
128-dimensional vector called SIFT descriptor which
saves in an histogram of eight main orientations the
gradients of 4 _ 4 locations around a pixel. A rotation
invariant descriptor is given by the alignment of the
gradients to the main direction. This descriptor
becomes scale invariant through vector’s computation
in different Gaussian scale spaces. The Invariant rota-
tion descriptors can lead to false matches in some
implementations such as face recognition. If invariance
with respect to rotation is not necessary, the descriptor
gradients alignment can be oriented toward a fixed
direction.

It is very important to detect and identify the stable
locations of the interest points in a scale space. This can
be done using the difference of Gaussian function scale-
space extreme.17

The scale space L (r,s) is known as the convolution
of a variable scale Gaussian function G (r,s) with the
original image I (r), it can be written as follows:

L (r,s)=G (r,s)*I (r) ð1Þ

Where * is the convolution operator and r =(x, y) is
a point in the IRT image.

The Gaussian function G (r, s) is defined as:

G (r,s)=
1

2ps2
e
�(x2 + y2 )

2s2

� �
ð2Þ

The scale-space extreme convolution using D (r, s),
allows us to separate the difference of two scales using
a multiplicative index k, which is given by the following
expression:

D (r,s)= G (r, ks) � G (r,s)ð Þ * I(r)

= L (r, ks) � L (r,s)
ð3Þ

While � represents the convolution product.
The local extreme of the function D can be detected

by accurately localizing the interest points with respect
to the proposed method known as Taylor expansion of
the scale-space function D (r, s) that is shown in equa-
tion (4).

D (r,s) =D +
∂DT

∂r
r+

1

2
rT ∂2D

∂2r
r ð4Þ

Speeded up robust feature (SURF)

The SURF algorithm which was firstly presented by
Bay et al.16 is a novel detector and descriptor of scale
and rotation invariant interest points. It generates a
group of interest points for each image with a set of
128 dimensional descriptors for each point.

In addition to its conceptual similarity to the SIFT,
the SURF descriptor likewise focusses on the gradient
information distributed space within the interest point
neighboring, where the localization and the description
of the interest point itself can be done by its detection
approaches or in a regular grid. SURF is characterized
by its invariance to rotation, scale, brightness and, after
reduction to unit length, contrast. That’s why SURF
computation is fast and it can increase distinctively,
without losing its robustness to rotation of about 6

15�, which is typical for most face recognition tasks.
The SURF descriptors are known for their higher
robustness compared to the locally operating SIFT
descriptors when it comes to dealing with different
kinds of image perturbations.

SURF detector interest point localization is based
on the Hessian matrix. If a point r =(x, y) in an IRT
image I, is considered then, the Hessian matrix
H =(r,s) at r and scale s is written as follows:

H =(r,s) =
Lxx(r,s) Lxy(r,s)
Lxy(r,s) Lyy(r,s)

� �
ð5Þ
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While Lxx(r,s) is the second order derivative of the
Gaussian convolution ∂2

∂ x2 G(r,s) with the image I , and
likewise for Lxy(r,s) and Lyy(r,s).

The SURF is close to second order Gaussian deriva-
tives with box filters named average filter, by contrast
the SIFT that is closer to Gaussian Laplacian (LoG)
using the Gaussian difference (DoG), this can be rap-
idly calculated through integral images like shown in
Figure 1. The selection of interest point’s location and
scale is realized by computing the Hessian matrix deter-
minant. The application of non-maximum suppression
in a 3 3 3 3 3 neighborhood allows us to localize the
interest points in scale and image space.

By using the SURF descriptor, a circular region is
constructed around the detected interest point and thus
a unique orientation is assigned. Haar wavelet response
in both x and y directions is used to compute the orien-
tation, that helps to gain invariance to image rotations.
Haar wavelets can be easily calculated by displaying
integral images.

The SURF descriptors are created by extracting
the square areas around the points of interest when the
dominant orientation is evaluated and included in the
information on the points of interest. Each windows
underlying intensity pattern (first derivatives) is repre-
sented by a vector V and each sub-regions are split up
in 4 * 4.

V =
X

∂x ,
X

∂y ,
X
j∂xj ,

X
j∂yj

h i
ð6Þ

Finally, we can summarize the SURF method in four
major steps:

a. Create the integral image of the supplied input
image and calculates pixels sums over upright
rectangular areas.

b. Construct the Hessian response map determi-
nant, and then localizes a scale space interest
points by performing a non-maximal suppres-
sion, this results in a localized interest point’s
vector. Finally the Hessian Matrix determinant
will be used.

c. Calculate the interest point dominant orienta-
tion and builds a 4 3 4 window around their
neighborhood. After that use Haar Wevelet
responses from each sub-region and extracts a
128 dimensional descriptor vector based on
sums of these Wavelet responses.

d. Save each interest point associated data.

Quick distinctive descriptors computation is consid-
ered one of the major SURF descriptor advantages.
Furthermore, its invariance to common image transfor-
mations such as image rotation, scale and illumination
changes, and small change in viewpoint makes it more
reliable in this task.

Based on what has preceded, it is fairly justified to
choose the SURF method as an adopted feature extrac-
tor in our experimental work.

Step 2: Histogram of SURF features

The obtained features are encoded as a histogram
which represents the occurrence frequency of these
visual words.17 Before encoding features, k-means clus-
tering16,22 is used to generate several interest points
called vocabulary.

A specified vocabulary size can be obtained by clus-
tering each faulty state extracted features and a set of k;
clusters is learned. After that, the centers of the learned
clusters are defined as the vocabulary. In this paper, a
set of n dimensional vectors of SUFT features (x1, x2,
., xn) is done. Via k-means clustering, the n SUFT
vectors are divided into k different groups such that S
= {S1, S2, ., Sk} with minimized intracluster squared
summed error (SSE), which is done as:

S = arg min
s

Xk

i

X
x2si

k x� uik2 ð7Þ

Where mi are the mean vector in Si.

Extremely randomized tree (ERT)
classifier

In both Random Forest23 (RF) and Extremely
Randomized Tree18 (ERT) based on a great number of
decision trees (DT) are used as proper classifiers in
order to attain the ultimate classification. These meth-
ods consist of four major stages: identification of the
input, selection of the optimal number of trees, the
analysis of the votes, and the final decision.

There are several differences between Random
Forests (RF) and Extremely Random Trees (ERT), of
which one can quote.24

a. Unlike the RF, the ERT uses all the training
samples to build each decision tree.

Figure 1. Second order partial derivatives of the Gaussian
function and its corresponding box filter.
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b. To bifurcate the decision tree, the ERT is com-
pletely random, while the RF uses a random
subset.

Random forest

RF method was originally developed by Breiman.23 It
is considered as one of the most successful ensemble
learning method. In order to perform a good classifica-
tion and regression, a great number (hundreds or thou-
sands) of independent decision trees are utilized. Since
it is an ensemble methodology, RF employs a number
of decision trees as weak classifiers or regressors, com-
bines the concept of bagging,24 and random feature
selection.25 The RF is a representative ensemble classi-
fier built by a multitude of decision trees. Thanks to its
excellent classification accuracy and high efficiency, RF
classifier has been attracting increasing attention and
wide using domains.

Extremely randomized trees

ERT method18 is a group of randomized trees. The
ERT maximizes RF algorithm randomization. Just like
RF, ERT shows a computational effectiveness and a
training capability even when fed with high dimen-
sional input vectors. However, ERT surpasses the RF
technique when the training time is taken into account.
This rapidity is thanks to a simpler manner to choose
the thresholds in ERT. Besides, unlike RF, ERT has a
lowers variance that is ensured by its increased rando-
mization. Furthermore, trees in ERT are autonomously
trained using the total training data points.

RF and ERT have different core methodologies even
if they are both considered as ensemble learning models
based on the decision tree algorithm.18,26 Random for-
est subsamples the data with replacement. This sub-
sampling enriches the data, thereby helping to form the
model with highly distinctive learning data.

Oppositely, ERT uses the whole data and hence
reduces bias which has a positive impact on the model’s
performance. Additionally, both methods have differ-
ent ways in splitting nodes, RF splits nodes by finding
the optimum split while ERT does it randomly. Data
variance is lowered in extremely randomized trees by
suing this random split. Thereby, both ERT and RF
first goal is to ensure an optimal balance of bias and
variance. RF and ERT are selected at first place for the
reason that their algorithms are based on an ensemble
of decision trees. This property gives them a higher per-
formance than the traditional decision tree algorithm.

An ERT classifier is similar to RF but differs in how
the randomness is introduced during the training. To
train an ERT classifier multiple trees are trained, each
tree is trained on all training data. Like the random
decision forest, the optimal division at the node level is

obtained by analyzing a subset of all available features.
Instead of searching for the best threshold for each fea-
ture a single threshold for each feature is selected at
random. Based on these random divisions, the division
that leads to the highest increment in the scale score
employed is then selected. The greater degree of ran-
domness through training results in more independent
trees and thus reduces the variance further. Due to that
extremely randomized trees tend to give better results
than random forests.

Experimental work

Experiments were conducted on a three phases
1.11 kW, 5A, 220/230V. In order to test and train the
model, a healthy induction motor and eight different
short circuit faults in the stator windings thermal
images are captured and considered. All artifact gener-
ated defects in this dataset are internal faults, with no
relation with external pieces or initial setup electrical
components failure.27

Thermal images acquisition was performed on
an Electrical Machines Laboratory workbench by a
Dali-tech T4/T8 infrared thermal image camera at an
environment temperature of 23�. Thermal camera
properties and induction motor specifications are repre-
senting in Table 1.

Nine sets of Images represent a health state and eight
different faulty states of the Induction Machine. The
%-stator stands for each phase short-circuit rate, while
a-phase is the number of phases that contain short-
circuit defects as representing in Table 2.

The thermal images acquisition under healthy and
defect conditions are shown in Figure 2. We can clearly
notice that the detection and identification of the defect
are almost impossible counting only on thermographs
direct observation because healthy and faulty condi-
tions thermal images are not distinctive and their

Table 1. Thermal camera properties and induction motor
specifications.27

Properties of the used thermal camera
Dali-tech T8 TIC
Detector resolution 384 3 288
Measurement accuracy 6 2� or 6 2%
(of reading, which is greater)
Imaging NETD <0.04�@30�
Measuring range 220� to + 650�
Imaging frame rate 50/60 Hz
Induction motor specifications
Phase Y-3
Power 1.11 kW
Voltage 220/380 V
Input current 5 A
Speed 2800 RPM
Frequency 50 Hz
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differences are not clear which makes bear aye classifi-
cation misleading and unreliable. This situation made it
necessary to research and to develop new machine
learning and artificial intelligence methods in order to
better differentiate between the studied cases.

In this context, we propose in this paper a new
induction motor condition monitoring method based
on extremely randomized trees (ERT) classifier com-
bined with SURF-BoVW features extraction. Figure 3
shows the proposed method flowchart. After the collec-
tion of infrared image thermography (IRT), in the first
step, features set (visual words) are extracted using the
SURF algorithm. Secondly, the histogram is generated
after the encoding of the extracted features using the
k-mean clustering. Then, the obtained features set are
randomly divided into training and testing samples.

Finally, ERT classifier is used for classification.
After the training phase is finished and the parameters
of the ERT classifier are fixed, the testing samples are
classified based on the adopted parameters.

Obtained results and discussion

In the aim to prove the robustness of the adopted
method, it is compared with other classification tech-
niques that include KNN, DT, SVM, least squares sup-
port vector machine (LSSVM), self-organizing fuzzy
logic classifier (SOF), Random Forest (RF), and Deep
Rule Based (DRB) respectively.

Moreover, this method’s classification stability had
been analyzed based on the standard deviation of 10
experiments. Additionally, the average, maximum, and
minimum values are taken to reduce the impact of the
contingency.

All the above mentioned classification methods con-
sider the features set extracted by BOVW and SURF as
an input. In standard SVM, the penalty factor equals
to 100, and the kernel function is 0.01. DTs minimum
number of father nodes is 5. K=5 is taken as the near-
est neighbor number of KNN. The Gaussian kernel
function of the LSSVM is 0.5, and its regularization
parameter is 10,000.

Table 2. General description of the nine considered states in the induction motor diagnostic.

Stator fault class 0% 50% 30% 10%

a-phase Healthy A&B A A&B&C A&C A A&B&C A&C A
Class label 1 2 3 4 5 6 7 8 9

Figure 2. thermal image of induction motor: (a) healthy, (b) 10% in phase A, (c) 10% in phase A&C, (d) 10% in phase A&B&C, (e)
30 % in phase A, (f) 30 % in phase A&C, (g) 30 % in phase A&B&C, (h) 50 % in phase A, and (i) 50 % in phase A&C.
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The obtained results from each classification method
are represented in Table 3.

Table 3 illustrates the low classification accuracy of
KNN compared to the other methods. In addition to
that, the standard deviation revealed the unsteadiness
classification effect of this method on different testing
samples, and the instability of its classification
algorithm.

KNN is lower than SVM both in the average classifi-
cation accuracy and its standard deviation by 3.7700%
and 0.0015 successively. The SVM standard deviation
classification accuracy is 0.0308. However its algorithm
is unstable, with a 10.2 % lower minimum classification
accuracy than that of ERT.

The maximum classification accuracy of SOF, DT,
SVM, LSSVM, RF, and DRB is 100%, but the stan-
dard deviation of classification accuracy are higher than
that of ERT classifier. The classification accuracy is
greatly influenced by the input of different samples in
SOF, DT, LSSVM, RF, and DRB.

Compared to ERT, the average classification accu-
racy of RF is considerably significant. Even so, if we

focus on the standard deviation of classification accu-
racy, the RF classification stability is not as good as the
proposed method.

Globally, the classification accuracy of our method
is the highest of all the tested methods. Consequently,
its classification result is the best and the most reliable.

In order to offer an intuitive illustration of the clas-
sification effects resulting from various methods,
Figures 4 and 5 respectively shows the confusion
matrix and classification results of the previously dis-
cussed methods in the eighth experiment.

From the figure of the KNN confusion matrix, we
can see that the KNN has the lowest classification
accuracy which equals 93.2099%, and we can also
clearly see that the KNN has a misclassification in cate-
gories 2nd, 3rd, 7th, and 8th. So that around 8.7% of
the test samples are misclassified for the second cate-
gory, 15.79% and 23.53% of the test samples for the
third and seventh category respectively, and 11.76% of
the samples are misclassified for the category 8.

In the classification results of KNN, 6.7901% of
testing samples are misclassified, of which 8.7% of

Figure 3. Overview of the proposed method.

Table 3. Obtained classification results of the tested methods.

KNN SOF ERT DT SVM LSSVM RF DRB

Max 0.9815 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
Min 0.8796 0.9444 1.0000 0.9259 0.8981 0.9630 0.9815 0.9537
Mean 0.9466 0.9779 1.0000 0.9786 0.9843 0.9879 0.9972 0.9815
Std 0.0293 0.0171 0.0000 0.0260 0.0308 0.0138 0.0070 0.0169

KNN: k-nearest neighbor; SOF: self-organizing fuzzy logic classifier; ERT: extremely randomized trees; DT: decision tree; SVM: support vector

machine; LSSVM: least squares support vector machine; RF: random forest; DRB: deep rule based.
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Figure 4. Confusion matrix of each classification method in the eighth experiment: (a) confusion matrix of KNN, (b) confusion
matrix of ERT, (c) confusion matrix of SOF, (d) confusion matrix of DT, (e) confusion matrix of SVM, (f) confusion matrix of LSSVM,
(g) confusion matrix of RF, and (h) confusion matrix of DRB.
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Figure 5. Classification results of each classification method in the eighth experiment: (a) classification results of KNN, (b)
classification results of ERT, (c) classification results of SOF, (d) classification results of DT, (e) classification results of SVM, (f)
classification results of LSSVM, (g) classification results of RF, and (h) classification results of DRB.
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category 2 are classified as category 4 and 9 equally,
15.79% of category 3 are classified as category 8,
23.53% of category 7 are classified as category 5 by
17.66% and category 1 by 5.882%, and 11.76% of
category 8 are classified as category 3.

A total of 1.2346% samples in the classification
results of SOF and DRB are misclassified, however, for
SOF classifier there are 4.348% of category 1 are classi-
fied as category 7 and 5.263% of category 4 are consid-
ered as category 2. On the other hand, in the case of
DRB 5.263% of category 3 are classified as category 8,
and 5.882% of category 7 are considered as category 5.

A total of 0.6173% samples in the classification
results of LSSVM are misclassified, where 5.88% of
category 7 are considered as category 6. On the other
hand, in the case of DT classifier a total of 3.7037%
are misclassified, where 23.53 of category 8 are classi-
fied as category 3 and 9.524% of category 9 are consid-
ered as category 4.

A total of 1.2346 % samples in the classification
results of SVM and RF classifiers are misclassified,
however, for SVM classifier there are 10.53% of cate-
gory 3 are classified as category 9, on the other hand,
in the case of RF 11.76% of category 8 are classified as
category 3.

In the classification results of proposed method
(ERT), there are no misclassified samples, and the clas-
sification accuracy is 100%.

Furthermore, the evaluation of this experiment’s
results from different perspectives is performed using
polygon Area Metric (PAM).

Classification evaluation using polygon
area metric

In order to assess a single scale classifier’s performance,
Polygon Area Metric28 is a novel method that is used
thanks to its stability and its profound measure.

Six existing metrics including CA, SE, SP, AUC, JI,
and FM are used to create a polygon, then the corre-
sponding area for PAM is calculated. The theoretical
formulas are mentioned bellow:

Classification Accuracy

=CA=
TP + TN

TP + TN + FP + FN

ð8Þ

Sensitivity= SE=
TP

TP + FN
ð9Þ

Specificity= SP=
TN

TN + FP
ð10Þ

Jaccard Index= JI =
TN

TN + FP
ð11Þ

F�measure=F =
2TP

2TP + FP + FN
ð12Þ

Area Under Curve=AUC =

Z 1

0

f (x) dx ð13Þ

Where TP, TN, FP, and FN are respectively known as
the correctly predicted positive and negative samples
numbers, and the incorrectly predicted positive and
negative samples ones.

The true-positive rate (SE) plot in function of the
false-positive rate (1-SP) for different cut-off points R
represents the receiver operating characteristic curve
f(x). It should be known that SE and SP respectively
refer to the ratios of correctly classified class 1 and class
2 samples total population.

As illustrated in Figure 6, the PAM calculation is
done using the polygon’s area created by CA, SE, SP,
AUC, JI, and FM points in a regular hexagon. It worth
noting that the regular hexagon is made up of 6 equilat-
eral triangles and each side length is equal to 1.
Therefore, it is fair to say that |OP1|= |OP2|=
|OP3|= |OP4|= |OP5|= |OP6|=1, with an area of
2.59807.

|OP1|, |OP2|, |OP3|, |OP4|, |OP5|, and |OP6| lengths
respectively are the values of CA, SE, SP, AUC, JI, and
FM. The calculation of the PAM is done based on the
following formula:

PAM =
PA

2:59807
ð14Þ

PA is the polygon’s area.
It should be mentioned that the normalization of the

PAM into the [0, 1] interval is ensured by dividing the
PA value by 2.59807.

Figure 7 shows the visual results of Polygon area
metric of each classification method in the eighth
experiment.

Figure 6. Polygon in regular hexagon.25

10 Advances in Mechanical Engineering



Figure 7. Polygon area metric graphs of each classification method in the eighth experiment: (a) polygon area metric of KNN, (b)
polygon area metric of ERT, (c) polygon area metric of SOF, (d) polygon area metric of DT, (e) polygon area metric of SVM, (f)
polygon area metric of LSSVM, (g) polygon area metric of RF, and (h) polygon area metric of DRB.
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From these visual graphs, it can be observed among
the PAM covered areas of all the tested classification
methods, ERT has largest area, followed by that of the
RF classifier.

Conclusion

A new induction motor fault diagnosis method based
on SURF-BoVW and ERT classifier is proposed in this
paper to diagnose various faults of induction motors.
The IRT-based method is proven to be effective non-
contact, nonintrusive, high sensitive, and stable to vari-
ous faults.

The efficiency of the proposed method is validated
by identifying eight sorts of induction motor stator
faults (the rate of short-circuit in each phase and the
number of phases included faulty phases in the induc-
tion motor).

Under the premise of the same input, the ERT clas-
sifier is always higher than that of RF, and the classifi-
cation effect is better and stable. By comparing it with
SVM, DT, KNN, LSSVM, and DRB, the ERT classi-
fier had demonstrated the highest classification accu-
racy, stability, and the best fitted to be used in the
diagnosis of induction motor faults, since its classifica-
tion precision had reached 100%.

In order to evaluate the proposed method, polygon
Area Metric (PAM) is used. The obtained results clearly
show that the ERT Polygon Area Metric followed by
the rest of the classifiers.

Compared to other existing classification methods,
the obtained experimental results using ERT classifier
indicate that the proposed method can be considered as
a reliable alternative to monitor the state of an induc-
tion motor.
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