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Abstract

Fault Detection and Diagnosis (FDD) is an important part of industrial plants because
monitoring systems are responsible for capturing faults as soon as they occur to avoid
major casualties in equipment, operators, and the environment. FDD can be classified
into two major categories: model-based approaches and model-free approaches. For large
systems such as industrial plants, it is difficult to build a model-based monitoring system
because these plants are complex and difficult to identify. Model-free approaches are more
flexible and simpler to develop for these systems since they rely directly on plant data.

Principal Component Analysis (PCA) is a well-known model-free approach used for
fault detection due to its efficiency and lower complexity compared to other methods. Un-
fortunately, PCA is only designed for systems that exhibit linear characteristics between
variables. Kernel PCA (KPCA) is one of the alternatives of PCA that were developed
to overcome this problem. KPCA’s main idea is to map data from the input space to a
higher-dimensional space via a kernel function and then apply PCA there. When dealing
with large data sets for monitoring, KPCA faces several challenges: increased storage re-
quirements, longer execution times, and potential degradation in monitoring performance.
Reduced KPCA (RKPCA) is an alternative to KPCA used to overcome problems related
to the size of the data set. RKPCA reduces the number of samples in the training data
set while retaining most of the information in the resulting reduced data set, which is
then used to build the KPCA monitoring model.

For this thesis, three RKPCA-based algorithms were proposed to reduce the size of the
data set without a significant loss of information from the original data set. This study
aims to achieve impressive monitoring performances and surpass existing ones. The first
proposed algorithm is the Correlation Dimension RKPCA. It uses chaos theory and frac-
tal dimension to select samples that share the same correlation dimension as the original
data set. Keep in mind, this approach is only applicable if the system being monitored
is chaotic. The second algorithm is the Variogram-based RKPCA; this algorithm uses
spatial continuity, specifically a variogram, to retain only non-correlated samples from
the original data set. The last algorithm is the Histogram-based RKPCA, which uses
class intervals (histograms) to reduce the size of the data set by maintaining the same
data distribution as the original.

These three algorithms were thoroughly evaluated using the Tennessee Eastman Pro-
cess, a well-known simulated chemical plant, and real-world data from the Ain El Kebira
cement plant in Algeria. This diverse evaluation not only confirmed their effectiveness
but also facilitated direct comparison with established methods. Ultimately, the results
obtained from both applications were decent and satisfactory.

Keywords: Fault Detection; Principal Component Analysis (PCA); Kernel Principal
Component Analysis (KPCA); Reduced Kernel Principal Component Analysis (RKPCA);
Non-linear processes; Correlation Dimension; Variogram; Class Interval; Histogram.
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Résumé

La Détection et le Diagnostic des Défauts (FDD) est une partie importante des usines
industrielles, car les systèmes de surveillance sont responsables de capturer les défauts dès
qu’ils se produisent afin d’éviter des accidents majeurs sur les équipements, les opérateurs
et l’environnement. FDI se divise en deux grandes familles: les approches basées sur des
modèles et celles basées sur les données. Pour les grands systèmes comme les usines indus-
trielles, il est difficile de construire un système de surveillance basé sur des modèles, car
ces usines sont complexes et difficiles à identifier. Les approches bassées sur les données,
en revanche, sont plus flexibles et plus faciles à construire pour ces systèmes car elles sont
basées sur les données collectées de l’usine.

L’Analyse en Composantes Principales (PCA) est une approche bassées sur les données
bien connue et utilisée pour la détection de défauts en raison de sa simplicité et de sa moin-
dre complexité par rapport à d’autres méthodes. Malheureusement, PCA est uniquement
conçue pour les systèmes ayant des caractéristiques linéaires entre les variables. PCA à
Noyau (KPCA) est l’une des alternatives à PCA qui a été développée pour surmonter ce
problème. L’idée principale du KPCA est de mapper les données de l’espace d’entrée à un
espace de dimension supérieure par une function à noyau, puis d’appliquer le PCA dans
cet espace. Si l’ensemble de données utilisé pour le modèle de surveillance est grand, alors
la KPCA confronte certains nouveaux défis car elle prendra plus d’espace de stockage
pour le modèle, le temps d’exécution sera plus long et dans certains cas, elle peut perdre
ses performances de surveillance. PCA à Noyau Réduite (RKPCA) est une alternative à
la KPCA utilisée pour surmonter les problèmes liés à la taille de l’ensemble de données.
La RKPCA réduit le nombre d’échantillons dans l’ensemble de données d’entrâınement
et conserve la plupart des informations dans l’ensemble de données réduit résultant qui
est ensuite utilisé pour construire le modèle de surveillance KPCA.

Pour cette thèse, trois algorithmes basés sur la RKPCA ont été proposés pour réduire
la taille de l’ensemble de données sans une perte importante des informations de l’ensemble
de données d’entrâınement. Cette étude vise à donner des performances de surveillance
impressionnantes et à surmonter les performances existantes. Le premier algorithme pro-
posé est la RKPCA basée sur la Dimension de Corrélation qui utilise la théorie du chaos,
la dimension fractale, pour conserver certaines observations avec la même dimension de
corrélation que l’ensemble de données original. La RKPCA basée sur la Dimension de
Corrélation nécessite que le système surveillé soit un système chaotique pour être ap-
pliqué. Le deuxième algorithme est la RKPCA basée sur le Variogramme, cet algorithme
utilise la continuité spatiale, le variogramme, pour ne retenir que les échantillons non
corrélés de l’ensemble de données original. Le dernier algorithme est la RKPCA basée
sur l’Histogramme qui utilise l’intervalle de classe, l’histogramme, pour réduire la taille
de l’ensemble de données en conservant la même distribution des données que celle de
l’ensemble de données original.

Ces trois algorithmes ont été rigoureusement évalués en utilisant le Tennessee Eastman
Process, une simulation d’un processus chimique bien connue, et des données réelles de
l’usine de ciment d’Ain El Kebira en Algérie. Cette évaluation diversifiée a non seulement
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confirmé leur efficacité, mais a également facilité la comparaison directe avec d’autres
méthodes. Finalement, les résultats obtenus des deux applications se sont avérés décents
et satisfaisants.

Ces trois algorithmes et d’autres sont appliqués aux ensembles de données du Pro-
cessus Tennessee Eastman et de l’usine de ciment de Ain El Kebira pour tester leurs
performances et les comparer avec celles existantes. Les résultats obtenus en utilisant ces
approches sont remarquables et satisfaisants.

Mots clés: Détection de Défauts; Analyse en Composantes Principales (PCA); Anal-
yse en Composantes Principales à Noyau (KPCA); Analyse en Composantes Principales
à Noyau Réduite(RKPCA); Processus Non-linéaires; Dimension de Corrélation; Vari-
ogramme; Intervalle de Classe; Histogramme.
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General Introduction

Importance of Fault Detection and Diagnosis

In real-world systems, the constant risk of faults can severely affect plant devices and
subsystems, such as sensors and actuators. These issues can disrupt normal operating
conditions and even endanger personnel[1, 2]. As a result of rapidly developing technolo-
gies, industrial systems have become more complicated and sophisticated than before, so
observing these systems all the time is a must. Fault Detection and Diagnosis (FDD)
systems are used to fulfil this task because they ensure that monitored systems are in a
healthy state to avoid casualties, revealing the importance of these FDD systems. For
such an important role, FDD systems must be reliable, accurate, and fast. An example
of a tragedy that happened due to a failure of the monitoring system is the Bhopal Gas
Tragedy; this incident occurred in 1981 at the Union Carbide India Limited pesticide
plant in Bhopal, India. This incident was caused by chemicals, water mixed with methyl
isocyanate gas in one tank, which caused an exothermic reaction that resulted in a massive
increase in pressure. The consequences of this incident were the following.

• The immediate death toll is estimated to range from 3000 to 5000 people, with
long-term estimates reaching up to 25,000.

• Environmental contamination and long-lasting health effects on the local population.

• More than 500,000 people were exposed to the toxic gas, causing severe respiratory
problems, eye irritation, and other long-term health problems.

All of this happened because ineffective monitoring systems failed to detect the early
signs of the chemical reaction. This incident underscores the critical importance of robust
fault detection and diagnosis systems in industrial processes to prevent such devastating
accidents.

Motivation

This work utilizes Reduced Kernel Principal Component Analysis (RKPCA) for model-
free fault detection. Current RKPCA methods struggle with practical limitations, often
requiring either predefined parameters or extensive computations for data set reduction.
A key challenge is their potential failure to maintain homogeneity between the reduced
and original data sets. Preserving this homogeneity is crucial for ensuring the reduced
data accurately represent the original.

Three RKPCA algorithms are introduced to address issues related to managing a large
number of observations. Notably, these three algorithms do not require optimization or
predefined number of clusters. The first approach exploits chaos theory and utilizes the
correlation dimension to retain only the most relevant observations from the original data
set. This reduction method is specifically designed to minimize the execution time and
memory storage requirements. It is particularly useful in scenarios where the embedded
system must perform additional tasks while maintaining the FDD capabilities.
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The second algorithm employs a variogram-based approach to select non-correlated
samples to form the reduced dataset. This method aims to preserve homogeneity with the
original dataset while effectively reducing the number of observations. By maintaining a
high level of similarity to the original data, this approach ensures that the fault detection
and diagnosis performance remains robust and reliable.

The third and final algorithm utilizes a histogram-based method to select represen-
tative observations, forming a reduced dataset that maintains the original distribution.
This approach aims to balance the preservation of data homogeneity with reductions in
both execution time and memory storage requirements. By retaining a data set that
reflects the original distribution, the algorithm achieves a compromise between efficiency
and performance, delivering a satisfactory overall monitoring outcome.

Processes Used in the Study

To evaluate algorithms, two distinct data sets are employed: one from the Tennessee
Eastman Process (TEP) and the other from the Ain El Kebira Cement Plant (CP) Rotary
Kiln. Both data sets exhibit nonlinear characteristics, which provides a robust test of the
algorithms’ capability to manage nonlinearity. The primary goal is to assess whether the
proposed algorithms can effectively handle the nonlinear nature of the data while suc-
cessfully reducing the number of observations. Additionally, it is crucial to determine if
these algorithms preserve the fundamental characteristics of the original data set despite
the reduction in data size.

Objectives of the Study

The primary aim of this dissertation is to address and overcome the main limitations
of KPCA concerning the size of the training data set. The focus of this study is to de-
velop effective strategies for reducing the number of samples in the training data while
maintaining optimal performance. This involves employing various techniques to identify
and remove irrelevant or redundant samples from the data set.

The reduced data set should achieve several key objectives:

• Decrease execution time: The reduction should streamline the online phase of the
KPCA algorithm, leading to faster processing times.

• Minimize Storage Requirements: The size of the monitoring model should be re-
duced, lowering the storage space needed.

• Maintain High Monitoring Performance: The reduced data set should deliver mon-
itoring performance comparable to or better than that of the conventional KPCA.

Additionally, the reduced data must preserve its homogeneity with the original data
set to ensure that it can credibly replace the original data without compromising the
integrity of the monitoring results. The proposed reduction methods are designed to be
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relatively fast and efficient, ensuring that they do not require excessive computational
time.

Layout of this Thesis

This thesis is structured as follows:

• Chapter 1: This chapter introduces the fundamental concepts of FDD. It covers es-
sential knowledge about various fault detection approaches, Multivariate Statistical
Process Monitoring, and introduces key FDD metrics.

• Chapter 2: This chapter presents literature review, PCA, and KPCA within the
context of Multivariate Statistical Process Monitoring. It delves into the mathe-
matical foundations of these techniques as applied to fault detection.

• Chapter 3: This chapter provides a detailed explanation of the proposed RKPCA
algorithms and the homogeneity test employed in this study. It also presents a
review of related work in the field.

• Chapter 4: This chapter details the application of the proposed algorithms to
both the Tennessee Eastman process and the Ain El Kebira cement plant, following
their introduction. A comparison of the proposed method’s performance against
existing techniques is presented, evaluating the effectiveness of the monitoring, ex-
ecution time, required storage space, and homogeneity with the original dataset.
The obtained results are discussed in detail.

• Comprehensive Conclusion of the work, summarizing the findings and contributions
of the thesis. This chapter also gives a hint of future work.

3



1 FDD Generalities and Background

1.1 Introduction

In recent years, FDD approaches have seen significant advancements due to their
critical importance in various industries. Researchers have been actively working on both
developing new FDD methodologies and improving the performance of existing ones. This
chapter aims to provide foundational knowledge about faults and FDD systems, offering
an overview of the essential attributes that make an FDD system effective. It discusses
the fundamental concepts of faults and the various approaches to FDD, highlighting the
key features and capabilities that are desirable in an FDD system. By covering different
FDD strategies, this chapter helps readers gain a comprehensive understanding of the
field, including how different approaches can be applied and what criteria are important
for evaluating their effectiveness.

1.2 Faults, Failures, and Malfunctions

The nature of the operating condition of a given process can be either healthy or
faulty, a faulty operating condition means that this system does not work properly, and
it contains one or more faults. A fault can be classified as a malfunction or as a complete
failure. Figure 1 is utilised to distinguish between a failure and a malfunction. The plots
presented at the bottom of this figure illustrate the distinct behaviours of these two fault
types over time. In both plots, the y-axis represents the fault status, with a value of 0
indicating normal operation (no fault) and 1 signifying the presence of a fault. The x-axis
for both plots consistently denotes the progression of time.

Fault

Failure Malfunction

1
0 Time

1
0 Time

||f|| ||f||

Figure 1: Distinguishing Between Failure and Malfunction via Fault Status.

To clarify, let’s define fault, malfunction, and failure in this context:

1. Fault: A fault is an unacceptable deviation of one variable or more from the normal
operating conditions, the property of a fault is that it can’t be controlled adequately
by controllers.
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2. Failure: Failure is a fault, it appears when the behaviour of a given system that is
working under certain conditions is permanently interrupted.

3. Malfunction: Malfunction also is a fault. Unlike failure, malfunction is an intermit-
tent irregularity in the behaviour of a given system.

Faults can be classified based on different criteria, they can be categorized based on
the place of occurrence:

• Sensor faults: these are faults that occur at sensors.

• Actuator faults: Here actuators are the faulty components.

• Plant faults: these are faults that occur in the plant components.

Faults can also be categorized based on the form of the fault itself:

• Abrupt faults: these faults behave as a step function.

• Incipient faults: these faults behave drift-like.

• Intermittent faults: these faults come with interrupts.

Figure 2 illustrates various types of faults based on their distinct form, referring to the
temporal pattern or signature they exhibit over time. These include common fault pat-
terns such as Abrupt, Incipient, and Intermittent faults. In each of these graphs, the
y-axis represents the magnitude of the fault, while the x-axis denotes the progression of
time.

t t t
Abrupt Incipient Intermittent

||f|| ||f|| ||f||

Figure 2: Different Types of Faults based on the Magnitude Deviation of the Faulty
Variable.

Faults can be classified according to how the fault is added.

• Additive faults: faults change a given variable by addition; generally these are
sensors’ offsets.

Y (t) = U (t) + f (t) (1)

• Multiplicative faults: these faults appear as a multiplication value; generally, these
are changes in the process parameters.

Y (t) = f (t)U (t) (2)

f(t) is the fault function, Y (t) is the faulty value, and U(t) is the healthy value of the
same system.
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1.3 Process Monitoring

Process monitoring is a procedure associated with the following tasks: i) Fault detec-
tion. ii) Fault diagnosis. iii) Identification of faults. iv) Process recovery [3].

1. Fault Detection: The task determines whether the monitored system is faulty or
not.

2. Fault diagnosis: This task determines the types of fault, the location and when the
faults occurred, and the amplitudes of these faults.

3. Fault identification: This task is responsible for identifying the variables that con-
tribute to the occurrence of the fault.

4. Process recovery: This is the final task in process monitoring, also known as inter-
vention. It is responsible for removing the effect of the occurred faults.

1.4 Desirable Attributes of an FDD System

The FDD systems have some desired characteristics, these characteristics help to com-
pare different FDD systems and to choose which one is suitable to use depending on the
desired attributes which are listed as the following in [4]:

1. Quick detection and diagnosis: FDD systems should respond quickly to faults; when
this system is too responsive and sensitive, it considers high-frequency influences and
noises as faults, leading to higher FAR values. So, it is better not to be too greedy
and increase the sensitivity of the FDD system to the fullest.

2. Isolability: It is the ability to differentiate between faults; if someone increases
isolability too high the FDD system will have a deficient ability to reject model
uncertainties and vice versa.

3. Robustness: The FDD system can reject the effects of noise and uncertainty of the
model. One should balance between the isolability and robustness of a given FDD
system.

4. Novelty Identifiability: It is one of the most important features of the FDD system.
It is the ability to decide whether the monitored system is operating in healthy
conditions or not and, if not, whether the faults are known or not.

5. Classification error estimate: This feature is responsible for evaluating the reliability
of the monitoring system, which gives confidence in the diagnostic decisions.

6. Adaptability: The FDD system can adapt to changes in the monitored system be-
cause these changes are applied either by the user or due to changes in environmental
conditions. So, the FDD system should adapt when more information about the
system is available.
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7. Explanation facility: FDD systems should provide explanations about faults as the
cause and consequence relationship; in other words, they give the trail of the faults
from the causes to their detection, and then FDD systems give why such hypothesis
is made.

8. Modeling requirements: The modeling requirement of FDD systems should be min-
imized as much as possible.

9. Storage and computational requirements: FDD systems require algorithms and com-
putations that take time for execution and memory space to save the needed infor-
mation.

10. Multiple fault identifiability: The FDD systems can identify different multiple faults
which is difficult because of the interactions between faults.

1.5 FDD Approaches

As was mentioned in the introduction, the FDD systems are categorized into two ma-
jor methods which are Model-based approaches and Process history-based approaches,
”Model-free approaches”. Figure 3 presents different FDD approaches and shows their
classification as well.

FDD Methods

Model-based Data-driven

QualitativeQuantitative QualitativeQuantitative

Kalman Filter
Parity Space
Observers

Abstraction
Hierarchy

Causal
Methods

Digraphs
Fault Tree
Qualitative
Physics

Structural
Functional

Expert Systems
QTA

Neural
NetworkStatistical

PCA
PLS

Figure 3: Classification of FDD Approaches [4].
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1.5.1 Quantitative Model-based

Generally, quantitative model-based approaches are based on input/output or state-
space models. These approaches consist of two steps; the first step is set to bring on the
residuals between the actual and the expected behavior of the monitored system, whereas
the second one is responsible for making the decision rule for diagnosis. Redundancy is
used to check for residuals. Residuals are simply the discrepancies between the observed
behavior of a system and its mathematical model prediction. They’re typically zero when
everything is working right, but they spike with significant values when a fault is present,
making it easier to spot and pinpoint the problem. There exist two types of redundancy,
analytical and hardware redundancies [4]. Hardware redundancy is not flexible because
of its cost and the space required for implementation. Analytical redundancy is based on
algebraic or temporal relationships between variables. It can be direct or temporal; direct
redundancy is the result of finding algebraic relationships among variables of the system.
The difference and differential relationships between the sensors’ output and actuators’
inputs are used to obtain the temporal redundancy.

The most used quantitative model-based approaches are:

• Observers: Observer-based FDD systems commonly utilize a bank of observers,
each meticulously designed to exhibit selective sensitivity, allowing it to detect only
certain faults. Since these observers rely on the generation of residuals derived from
system redundancies, it is imperative that these residuals are inherently robust to
unknown inputs and structured uncertainties [5].

• Parity Space: Parity Space is a powerful model-based technique for FDD that trans-
forms system measurements into fault-sensitive residual signals, enabling the detec-
tion and isolation of abnormalities by observing deviations from expected behavior
[6].

• Estimated Kalman Filter: Kalman filter (KF) is a recursive state estimation al-
gorithm which is widely used in chemical and industrial processes. KF is used to
estimate both sensors’ and actuators’ biases then they are compared to a threshold
to decide whether there are faults or not [7].

Quantitative model-based approaches have some control over the residuals’ behaviour.
Unfortunately, the use of these approaches is highly related to the system’s complexity,
high dimensionality, process nonlinearity, and lack of good data about the process [7].

1.5.2 Qualitative Model-based

Qualitative model-based approaches characterize the relationships between the inputs
and outputs of a system as qualitative functions, often centered around the behavior
and interactions of different process units or components. This allows for modeling at a
more abstract level, which is particularly useful when precise quantitative knowledge is
unavailable [8]. Topographic search and symptomatic search are used for fault diagnosis.
Figure 4 shows how these search methods are classified. Fault diagnosis often employs
distinct strategies for pinpointing abnormalities. A topographic search analyzes deviations
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from a template of healthy operating conditions to identify mismatches and their locations
within the system. Conversely, a symptomatic search directly correlates observed system
symptoms (representing an abnormal state) with a library of known fault conditions to
locate the fault [9].

Search
Methods

Symptomatic
Search

Topographic
Search

Topographic
Search

Topographic
Search

Hypothesis
and Test

Look-up
Table

Hypothesis
and Test

Hypothesis
and Test

Figure 4: Different Search Methods [9].

As given in [9], the different qualitative approaches are:

• Digraphs Causal method: Digraphs are utilized to represent the cause-effect rela-
tionships within a given system, thereby modeling the process’s intrinsic structure.
These relationships are typically depicted as signed digraphs (SDGs), where nodes
represent system variables and signed edges illustrate the qualitative (e.g., positive
or negative) relationships between them. The core reasoning in this method involves
identifying functional changes and their propagation patterns from faulty operat-
ing conditions. This allows digraphs to offer a powerful, intuitive, and explainable
approach to FDD, proving particularly strong in fault isolation and understanding
propagation paths, and thus bridging the gap between qualitative process knowledge
and structured diagnostic analysis.

• Fault Tree Causal Method: The system’s reliability and safety are surveyed by fault
trees, these trees are logic trees that propagate from low-level events (i.e. primary
events or faults) to the top-level events. They consist of layers of nodes with each
node having one of the logic operators, unlike SDGs which only use OR operator.
Fault trees are built following these steps:

1. System definition.

2. Fault tree construction.

3. Qualitative and Quantitative evaluations.
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• Qualitative Physics Causal method: Qualitative physics is broadly categorized into
two main approaches. The first focuses on deriving qualitative differential equations,
often referred to as confluence equations. The second approach aims to derive
qualitative behavior directly from ordinary differential equations, which then serve
as a valuable knowledge source.

• Structural Abstraction Hierarchy: Structural hierarchies illustrate how the informa-
tion is connected between the system and its subsystems.

• Functional Abstraction Hierarchy: Unlike structural hierarchies, functional hierar-
chies characterize the means-end relationships between a system and its subsystems.

Qualitative model-based FDD approaches are particularly advantageous when deal-
ing with uncertainty, noise, and the need for human-understandable diagnoses, making
them valuable complements or alternatives to purely quantitative methods, especially in
complex or ill-defined systems [10]. While qualitative model-based FDD excels in inter-
pretability and robustness to uncertainty, its main limitations stem from the inherent loss
of numerical detail, which can lead to ambiguity, limited resolution, and challenges in
precisely detecting subtle faults or handling complex dynamics [8].

1.5.3 Drawbacks of Model-based FDD Approaches

The most common drawback of model-based approaches is the model complexity,
complex processes can be very challenging to model accurately let alone the sensitivity to
uncertainties in the parameters disturbances from outside the process. These approaches
are designed for certain conditions, need to be updated regularly, and are more expensive
than model-free approaches. Model-based approaches may not be robust enough for new
faults that were not taken into account during the modelling of the monitoring system [11].

1.5.4 Model-free

Unlike the model-based approaches, the priori knowledge of a given system is obtained
from a large amount of process data that has been transformed using feature extraction
which may be qualitative or quantitative [12]. The model-free approaches can be classified
as:

• Expert systems: Expert systems represent a category of qualitative, model-free ap-
proaches specifically designed for fault detection and diagnosis. These systems are
highly dedicated and specialized to solve particular types of problems. An expert
system’s architecture typically comprises several key components: knowledge ac-
quisition, a chosen knowledge representation scheme, the coding of knowledge in a
knowledge base, and the development of input-output interfaces alongside inference
procedures for diagnostic reasoning. A significant advantage of expert systems in
FDD is their ease of development, coupled with their transparent reasoning capa-
bilities. Furthermore, they can effectively reason under uncertainties and provide
explicit explanations for their diagnostic conclusions [5].
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• Qualitative Trend Analysis (QTA): QTA is a qualitative, model-free approach highly
valuable in FDD and supervisory control. It serves as a potent tool for explaining
significant process events, performing fault diagnosis, and predicting future system
states. However, a notable limitation of QTA is its reliance on filters, which can
unfortunately distort the underlying qualitative information of the process [13].

• PCA and Partial Least Squares (PLS): PCA and PLS are robust statistical meth-
ods utilized for quantitative feature extraction from process history data matrices
in FDD. These matrices typically encompass all relevant process variables. PCA
operates by orthogonally decomposing the covariance matrix of the process data.
Its primary objective is to reduce the dimensionality of the data matrix while pre-
serving the majority of the data’s variability and essential process characteristics.In
contrast, PLS employs two distinct data matrices from the process: one containing
process variables and another holding related product quality variables. PLS aims
to simultaneously model and compress the relationships between these two sets of
variables. It achieves this by extracting latent variables that not only explain signif-
icant variability within the process variables matrix but also capture the variation
most predictive of the product quality variables in the second matrix. This unique
ability makes PLS particularly powerful for process monitoring where quality is a key
concern, distinguishing it from PCA’s unsupervised focus on maximizing variance
alone [14].

• Statistical Classifiers: Statistical classifiers constitute another category of quantita-
tive, model-free approaches widely employed in FDD. Their utility stems from the
inherent nature of FDD as a classification problem, where the goal is to categorize
system states as normal or various types of faulty conditions. This approach typ-
ically leverages a range of classification algorithms, commonly incorporating prin-
ciples such as Gaussian density functions for probabilistic modeling and Euclidean
distances as a measure of similarity or dissimilarity between data points [15].

• Neural Networks (NN): NN constitute a class of non-statistical, quantitative ap-
proaches widely employed in model-free FDD. Their application in FDD can be
broadly categorized by two main dimensions: their network architecture (e.g., sig-
moidal, radial basis function networks) and their learning strategy (e.g., supervised
or unsupervised learning). NN offer the advantage of constructing ’black box’ mod-
els directly from process data, thereby circumventing the need for explicit first-
principles system models, which can be particularly beneficial for complex systems
where detailed physical models are difficult to obtain [16]. However, a significant
limitation is their substantial data requirement for achieving robust performance,
as their effectiveness is largely confined to the range of the training dataset [16].

Table 1 shows the difference between different approaches in terms of desirable at-
tributes [12].
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Table 1: Comparison Between Different FDD Approaches

Attributes Observers Digraphs
Expert
Systems

QTA PCA
Neural
Network

Quick Detection
and Diagnosis

suitable
not

assessed
suitable suitable suitable suitable

Isolability suitable
not

suitable
suitable suitable suitable suitable

Robustness suitable suitable
not

suitable
suitable suitable suitable

Novelty
Identifiablity

not
assessed

suitable
not

suitable
not

assessed
suitable suitable

Classification
Error

not
suitable

not
suitable

not
suitable

not
suitable

not
suitable

not
suitable

Adaptability
not

suitable
suitable suitable

not
assessed

not
suitable

not
suitable

Explanation
Facility

not
suitable

suitable suitable suitable
not

suitable
not

suitable
Modelling

Requirement
not

assessed
suitable suitable suitable suitable suitable

Storage
and Computation

suitable
not

assessed
suitable suitable suitable suitable

Multiple Faults
Identifiability

suitable suitable
not

suitable
not

suitable
not

suitable
not

suitable

As it is seen from table 1, the choice of the method used for the FDD system is based
on the requirements needed in monitoring the system.

1.5.5 Drawbacks of Model-free FDD Approaches

Model-free approaches depend entirely on the quality and quantity of the data set
used for the training and validation part, so they lack physical insights and act like a
black box system. Since these approaches are implemented in a hardware system they
need to be fast enough to process the current samples and wait for the new ones. Feature
extraction tasks are crucial in building the model so they must be extracted effectively.
If some new type of fault is present then monitoring systems should be retrained [3].

1.6 Statistical Process Monitoring

The repetition of taking the measurements multiple times for the same process under
the same conditions creates variations, common cause variation is a term used in Statis-
tical Process Monitoring (SPM) for the variation obtained or expected to occur based on
statistical distribution, special cause variation on the other hand occurs due to change in
the process variables and they determine as unnatural variations such as faults [17]. SPM
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is a tool used to decide which of these variations are presented in the monitored system
and to accomplish this task two limits are computed the upper control limit (UCL) of
the distribution and its lower control limit (LCL) normal variations are presented within
those limits and special cause variations are outside these limitations and the term upper
is used to express that the limit is above the mean of the distribution and lower determines
the limit under the mean of the distribution [17]. Multivariate Statistical Process Mon-
itoring (MSPM) can monitor multiple variables simultaneously which is essential when
dealing with processes where variables are interrelated and traditional univariate moni-
toring methods may fall short. MSPM offers an accurate and comprehensive monitoring
approach and it can detect deviations in the process that might not be apparent when
variables are treated individually. The most common techniques related to MSPM are
the T 2 index and the Q index which are largely used in model-free process monitoring [14].

1.6.1 Monitoring Indices

Monitoring indices are crucial to understanding the health of a given system, providing
information on various anomalies that could be present. In MSPM, these statistical indices
are used to track the complete behavior of complex systems. Among these, the most
fundamental monitoring indices include:

• Hotelling’s T 2 index: This index evaluates the variation in the principal component
subspace.

• Prediction Square Error (SPE) or Q index: This index is responsible for evaluating
the variation in the residuals subspace.

• Combined index φ index: this index evaluates the variation in both principal com-
ponents subspace and residuals subspace at the same time.

Usually, one of these indices is used for process monitoring, but for some application
more than one index can be used.

1.6.2 FDD Performance Metrics

For FDD evaluation of system performance, different metrics were introduced, these
metrics are used on a given MSPM distribution with its UCL, the metrics are related and
changes in some of them affect the others [[18]]. False Alarm Rate (FAR) which gives a
percentage of how much healthy samples act as faulty as in (3). Missed Detection Rate
(MDR) used to see how much faulty samples act as healthy ones as in (4). Detection
Time Delay (DTD) which is the time (or number of samples) required for the monitoring
system to detect the fault as in (5).

FAR (%) =
NF

NOC
∗ 100 (3)

MDR (%) =
FN

FOC
∗ 100 (4)
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DTD = td − to (5)

where NF is the non-faulty samples acting as faulty ones, FN is the faulty samples acting
as non-faulty ones, NOC is the total samples of normal operating condition, FOC is the
total faulty samples, td is the detection time where to is the occurrence time.

1.6.3 Cost Functions

The cost functions proposed in this study are designed to optimize the monitoring
model by focusing on reducing the number of abnormal samples. These functions play a
critical role in parameter selection for the monitoring model and are also used to evaluate
and compare the performance of different monitoring approaches.

For monitoring systems based on a single monitoring index (T 2, Q, or φ), the cost
function utilized is defined by (6). This cost function serves multiple purposes:

• Parameter Optimization: It helps in determining the optimal parameters for the
monitoring model. By minimizing the cost function, one can select parameters that
reduce the inclusion of abnormal samples and enhance the model’s effectiveness.

• Performance comparison: The cost function allows for the comparison of various
monitoring models. By evaluating the values of the cost function for different mod-
els, it is possible to assess which model performs better in terms of handling and
reducing abnormal samples.

Js = a1FARs%+ a2MDRs%+ a3
(
1− e−0.1DTDs

)
100% (6)

The weighting factors a1, a2, and a3 are introduced to adjust the emphasis placed on
different metrics within the cost function. When these factors are set equally, it means
that all metrics are considered equally important. DTD is an integer because it represents
the number of samples from the occurrence of the fault until detection, to ensure that
DTD is comparable to the percentage metrics (FARs% and MDRs%), it is transformed
using the exponential function 1 − e−0.1DTDs . This transformation normalizes DTD so
that it falls within a range similar to percentage metrics, the value of 0.1 was used such
that the normalized values has an almost similar changes like the other two metrics, and
this value is selected empirically. This normalization helps in preventing any single metric
from disproportionately influencing the overall cost function value.

For a more comprehensive evaluation of monitoring systems, a general cost function is
proposed. This cost function, denoted by J , represents the mean performance across all
monitoring indices, providing a global view of the algorithm’s effectiveness. The purpose
of this general cost function is to enable users to assess the overall performance of a given
algorithm based on multiple indices simultaneously.

In this approach, each monitoring index contributes equally to the overall cost function.
By averaging the performance metrics across all indices, this cost function provides a
balanced measure of the algorithm’s performance, accounting for the various aspects of
fault detection and monitoring.
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The general cost function (7) allows users to compare different algorithms based on
their performance across all relevant indices, rather than focusing on any single index.
This comprehensive assessment helps in identifying algorithms that offer a well-rounded
performance and are effective across multiple aspects of monitoring.

J =
1

3
(JT 2 + JQ + Jφ) (7)

1.7 Conclusion

This chapter provides a foundational overview of FDD, outlining various approaches
and their underlying principles. It discusses the different methods available for FDD
and emphasizes the importance of selecting the appropriate approach based on the spe-
cific process being monitored. Model-based approaches are often more suitable for certain
processes due to their ability to leverage process models for fault detection, whereas model-
free approaches may be more appropriate for others, depending on their characteristics
and requirements. The chapter also highlights the significance of model-free methods,
such as Model-Free Statistical Process Monitoring (MSPM), which plays a crucial role in
fault detection without relying on a process model.

To conclude the chapter, a cost function is introduced, designed to assess the perfor-
mance of monitoring systems by focusing on the number of abnormal samples detected.
This cost function serves as a tool to evaluate the effectiveness of different monitoring sys-
tems, providing a quantitative measure to compare their performance in detecting faults.
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2 Multivariate Statistical Approaches

2.1 Introduction

PCA and Kernel PCA (KPCA) are unsupervised process monitoring methods based
on process history data, they are flexible and easy to use without the need for optimiza-
tion or a large data set like NN. This chapter details PCA and KPCA as fault detection
tools, the drawbacks of each one of them, and how to use different indices and metrics to
monitor a given system.

2.2 PCA and Its Nonlinear Extensions: Challenges and Solu-
tions

MSPM is used to monitor and analyze a given system that has multiple interrelated
variables; by doing this, it can maintain the quality and stability of the process. MSPM
is widely used in different fields. PCA is one of the widely used methods in MSPM, it
gained this reputation because of its efficiency, simplicity, and flexibility [19]. MSPM uses
PCA’s Principal Components (PC) to identify and detect abnormal behavior in the given
monitored system.

The idea of PCA is to reduce the dimensionality of the process data while preserving
most of the variability of this data [20]. This reduction is conducted using orthogonal
decomposition of the covariance matrix and selecting some PCs from the original data set.
The PCA technique is performed while assuming that the monitored system’s data have
linear characteristics between its variables, which is not the case for large and complicated
industrial systems. Many alternative PCA techniques have been introduced to overcome
this kind of problem. Proposed by Kramer et al. [21], Nonlinear PCA excels at model-
ing complex or curved data relationships, offering greater accuracy and potentially fewer
components than traditional PCA. However, its reliance on sophisticated mathematical
functions (e.g. artificial NN) means that it demands sufficient data to avoid overfitting
and ensure reliable estimations. In the same context as in the previous paper, Tan &
Mavrovouniotis [22] uses NN with a single hidden layer network unlike Kramer et al. [21]
which uses NN of three hidden layers. Dong and McAvoy [23] introduced a Nonlinear
PCA method that merges principal curves with NN modeling to capture nonlinear data
relationships, a crucial advantage in complex real-world applications. However, this ap-
proach can be computationally intensive and its performance is highly dependent on the
proper selection of network architecture and parameters. Hiden et al. [24] proposed an
alternative PCA technique that uses Genetic Algorithm, making it suitable for various
complex systems. However, a limitation is the necessity to predetermine the number of
nonlinear components, which reduces its flexibility compared to standard PCA and may
require more robust mathematical functions for challenging data. Scholkopf [25] intro-
duced the kernel PCA (KPCA), its idea is simple, which starts by mapping data into
a higher-dimensional Hilbert space, called feature space, and then applies conventional
PCA on this mapped data. The main advantage of KPCA over other solutions is that
it does not require optimization since it is based on the decomposition of eigenvalues as
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conventional PCA [25]. KPCA can easily deal with the nonlinear characteristics of a given
data set. Unfortunately, KPCA’s kernel matrix size is related to the number of samples in
the training data set so if the data under study have a large number of observations then
the KPCA algorithm becomes disadvantageous because the large matrix can affect the
accuracy of eigenvalue computation as stated in [25], furthermore, the more observations
the data set has, the larger the execution time and memory storage space become. The
time complexity of the KPCA algorithm is given as O(n3) and the space complexity is
O(n2) where n is the number of samples in the training data set. To overcome this kind
of problem, the reduced KPCA (RKPCA) is introduced. RKPCA is composed of two
parts; the first part is responsible for data reduction, which means it reduces the number
of observations using a certain technique, while the second part builds the KPCA model
upon the reduced data obtained from the first part.

2.3 PCA Monitoring Technique

2.3.1 Definition and Mathematical Formulation

PCA is an MSPM technique that aims to reduce the dimensionality of the process
data set by mapping this data into lower dimensional space where only uncorrelated vari-
ables remain possessing most of the process information, this is done by an orthogonal
decomposition so that a set of PC represents the same system [26].

Let Xo ∈ Rn×m be the original data set collected from m measurements variables for
n times (n is the number of observations). Before carrying on with the PCA procedure
Xo must be transformed, this data is normalized to zero mean and unit standard de-
viation. This step is important because variables with larger magnitudes or variances
can disproportionately influence PC, causing them to overshadow other potentially more
important features. Normalization ensures that all variables contribute equally, allowing
PCA to accurately identify the most significant underlying relationships across the data
set. Equation (8) is the normalization formula used in this thesis.

X̃ =
Xo − Vm

Vs

(8)

Where X̃ is the normalized data set used in PCA approach, Vm is vector of the means of
m variables, and Vs is the standard deviation.

The following step is the computation of the covariance matrix, C, because PCA is
based on this matrix decomposition as in equation (9).

C =
1

n− 1
X̃T X̃ (9)

The singular value decomposition is used to rewrite the covariance matrix using eigenval-
ues and eigenvectors of C as in (10).

C = PΛP T (10)
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Eigenvectors of C are the column vectors of P , and the diagonal elements of Λ are eigen-
values in decreasing order.

The scores matrix, T , is the mapped matrix of the input data set using loading vectors,
P , to the new dimension space [18, 27].

T = X̃P (11)

Using PCA, only some eigenvalues and their corresponding eigenvectors are selected
to characterise most of the information from the input data set. This number, l, is known
as the PCs of the system, the first PC contains most variance of the data then followed by
the second PC and so on. The eigenvalues, eigenvectors, and scores matrix of the training
data set is then given by (12), (13), and (14).

Λ =

[
Λ̂l×l 0l×(m−l)

0(m−l)×(l) Λ̄(m−l)×(m−l)

]
(12)

P =
[
P̂m×l P̄m×(m−l)

]
(13)

T =
[
T̂m×l T̄m×(m−l)

]
(14)

Normalised data can be divided into model variation, X̂, obtained from PC loading vectors
and non-model variation, X̄, obtained from residual loading vectors as explained in (15)
and (16).

X̃ = X̃P̂ P̂ T + X̃P̄ P̄ T = X̃P̂ P̂ T + X̃
(
I − P̂ P̂ T

)
(15)

X̃(n×m) = X̂(n×l) + X̄(n×(m−l)) (16)

PCA maps data to the PC subspace that contains most of the characteristics and
variations of the original data set, and the remaining data is assigned to the residual
subspace [28].

2.3.2 PCs Selection Techniques

Although the covariance matrix in PCA generates m components, a carefully chosen
subset of l PCs (l < m) is utilized to develop a fault detection system that is more focused,
efficient, and sensitive. This selection allows to concentrate on meaningful variations
while filtering out noise. The choice of l PC directly determines the dimensionality of the
PC subspace and how much of the input data’s characteristics are retained for a given
application, with various techniques available to make this determination.

• Cumulative Percent Variance (CPV): The number l is the smallest value for which
CPV (l) is greater than a defined limit CPVlimit [19].

CPV (l) =

∑l
i=1 λi∑m
j=1 λj

× 100 ⩾ CPVlimit (17)

λi’s are eigenvalue from Λ. l is the smallest number which results CPV (l) ⩾ CPVlimit.
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• Scree Plot: the scree plot uses a graph between eigenvalues and the number of
PC, it explains the variance associated with each PC. To apply this method, start
by ploting eigenvalues in descending order, then search for the elbow pointand the
number of PC before this point is the number of selected number of PC l [29].

• Kaiser Criterion: This is a straight forward technique which retain eigenvalues that
are greater than 1.00 and use them as PC [30].

• Cross Validation: It minimizes the prediction error in supervised learning context.
It starts by splitting data to a training and testing data sets then performs PCA with
different numbers of PC. After that, it evaluates the performance of the training
set using testing set. The appropriate number of PC is the one with the best
performance [31].

In this study, CPV technique is used due to its simplicity and it is the widely used
one for fault detection techniques.

2.3.3 Monitoring Indices

The Hotelling’s T 2-index is responsible for determining deviations of variables from
their means, this is evaluated in the PC subspace [32]. The T 2-index is given by (18).

T 2 = x̃T P̂ Λ̂−1P̂ T x̃ (18)

For MSPM, a limit of this index is needed to decide whether the system’s behaviour
is normal or abnormal. The UCL of the T 2-index is given based on Fisher-Snedecor
distribution, Fα, as shown in (19).

T 2
α =

(n2 − 1) l

n (n− l)
Fα (l, n− l) (19)

l & n− l are the distributions’s degrees of freedom and α is the significance level.

The Q-index is responsible for monitoring residuals of the PCA model. Unlike the
T 2-index, Q-index evaluates variations in Residuals subspace [32]. The Q-index and its
UCL are given by (20) and (21), respectively.

Q = x̃T P̄ P̄ T x̃ (20)

Qα =
σ2
Q

2µQ

χ2

(
α,

2µQ
2

σ2
Q

)
(21)

where σ2
Q represents the variance of Q-index, and µQ is its mean. χ2 is the Chi-squared

distribution.

Another index was introduced by [33], this index is known as φ-index which is the
weighted linear combination of the other two indices (T 2 and Q).

φ =
T 2

Tα

+
Q

Qα

(22)
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the UCL of this index is given based on χ2 distribution, g and h are given by the following
equations.

φα = gχ2 (α, h) (23)

g =

l
(T 2

α)
4 +

∑n
i=l+1

λ2
i

Q4
α

(n− 1)
(

l
(T 2

α)
2 +

∑n
i=l+1

λi

Q2
α

)

h =

(
l

(T 2
α)

2 +
∑n

i=l+1
λi

Q2
α

)2
l

(T 2
α)

4 +
∑n

i=l+1
λ2
i

Q4
α

2.3.4 Fault Detection Using PCA

This subsection explains the application of the PCA approach for FDD. This approach
is fundamentally divided into two parts: an offline (training) part in which a PCA model
of the monitored process is constructed and an online (monitoring) part in which new
incoming data are examined using the monitoring model.

The algorithm 1 shows the inputs and outputs of the PCA algorithm for the offline
part. From the same algorithm, it is seen that PCA starts by normalizing data with zero
mean and unit variance to ensure that the used data has the same range because variables
with large range and means can affect the model built for the monitoring, then computes
the covariance matrix and deduces the sorted eigenvalues and eigenvectors of the system.
Next, the CPV method is used for the selection of PCs, the ultimate goal is to achieve
strong monitoring performance, characterized by an FAR (e.g., 5%), a minimal MDR
(e.g., less than 5%), and an acceptable DTD. The most important guideline here is to
avoid ”greed”, trying to include too many PCs risks overfitting the model to the training
data. This means the model might inadvertently capture noise and minor fluctuations
specific to the training set, leading to an overly sensitive model that triggers frequent
false alarms when applied to new, unseen data. Near the end, PCA computes different
monitoring indices and their limits. In the end, the monitoring model is stored; this model
contains the necessary parameters and data used in the online part of the PCA approach.
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Algorithm 1 Offline part of PCA for Fault Detection

1: Input: Data matrix Xo ∈ Rn×m.
2: Output: Monitoring model.
3: Step 1: Standardize data
4: Normalize and center Xo as in (8)
5: Step 2: Compute the covariance matrix
6: Compute C as in (11), C ∈ Rm×m

7: Step 3: Compute eigenvalues Λ and eigenvectors P
8: [P,Λ] = eig(C)
9: Sort eigenvalues λ1 ≥ λ2 ≥ . . . ≥ λm and reorder eigenvectors accordingly.

10: Step 4: Select PC
11: Choose l largest eigenvalues Λ̂ and corresponding eigenvectors P̂ using CPV as in

(17).
12: Step 5: Compute different monitoring indices
13: Compute T 2, Q, and φ indices using (18), (20), and (22).
14: Step 6: Compute the UCL of these indices
15: Compute Tα

2, Qα, and φα limits using (19), (21), and (23).
16: Step 7: Store monitoring model

Algorithm 2 presents the online part of the PCA approach, it starts by scaling the
newly acquired samples with the mean and standard deviation of the training data set
and then projects these newly collected and scaled data onto the PC subspace. After
this projection, it calculates the different monitoring indices and then compares them to
their limits from the offline part. In the end a decision about the system is taken upon
these comparisons, if at least one of these indices exceeds its limit then a fault is declared
otherwise the system is healthy and no alarm is triggered. One should take note that it
is not always necessary to use all the monitoring indices, some applications may require
just one of them.

Algorithm 2 Online part of PCA for Fault Detection

1: Input: New observations Xτ ∈ Rτ×m, monitoring model
2: Output: Fault detection result
3: Step 1: Standardize Xt

4: X̃τ = Xτ−Vm

Vs
▷ Standardize using training data mean and std

5: Step 2: Project onto PC
6: Tτ = X̃τ P̂ ▷ Projection onto the PC subspace
7: Step 3: Compute different indices
8: Compute different indices using new observations and equations (18), (20), and (22).
9: Step 5: Fault Detection
10: if T 2 > T 2

α or Q > Qα or φ > φα then
11: Fault Detected
12: else
13: No Fault Detected
14: end if
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A flowchart of the PCA algorithm, presented in figure 5, offers a generalized repre-
sentation of its operation in fault detection. In particular, this flowchart is adaptable for
KPCA and RKPCA methods with appropriate modifications. The blue section of this
flowchart represents the offline part of the PCA algorithm (Algorithm 1), while the green
section depicts the online part (Algorithm 2). The online part operates in an iterative
manner by processing new data immediately upon arrival.

Monitored System

Offline data
Online data

Training Testing

Build PCA model

Eigenvalues & Eigenvectors 
Select PCs
Monitoring Indices and UCLs

Validate the
model

Compute different
Monitoring indices 

Check if one index
 exceeds 
its UCL

No
alarm

Set
alarm on

Offline
part

Online
part

No

Yes

UCLs

PCA model

Figure 5: Flowchart of FDD based on PCA.

2.3.5 Disadvantages of PCA

Although PCA is widely used and has a good reputation in FDD it requires some as-
sumptions on the data collected from the monitored system, PCA requires that this data
has linear characteristics between its variables, and the mapping performed by the PCA
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is a linear mapping which results in a loss of nonlinear information from the training data
set during the mapping [34], also the small number of PCs affects the ability to detect
nonlinearities within the data set [25]. Another main drawback is that PCA is designed for
time-invariant processes because it can not adapt the monitoring model to the online part.

2.4 KPCA Monitoring Technique

2.4.1 Definition and Mathematical Formulation

KPCA is a powerful variation of PCA designed to handle nonlinearities in data set.
This is achieved by first transforming the data into a higher-dimensional feature space.
Nonlinear relationships in a lower-dimensional space can become linear relationships in a
sufficiently higher-dimensional space [35]. Once data is transformed into this new feature
space, those formerly tangled nonlinear patterns are ”unfolded” or ”untangled” in such
a way that they become linearly separable. This means separating different groups of
data points in this higher dimension can be achieved by a straight line or a flat plane (a
hyperplane).

Let X̃ ∈ Rn×m be the normalized data set obtained from the monitored process using
equation (8), let’s define a mapping function Φ as: Φ : Rm −→ F, X̃ −→ X̃F . F is a
Hilbert space and its dimensionality is larger than the one of the input space and it could
be infinite [25].

To compute the covariance matrix, it is assumed that the mapped data set using Φ is
centred,

∑n
k=1Φ (x̃k) = 0 and x̃k is a row vector from X̃ [25]. The covariance matrix in

F is then given by (24).

CF =
1

n

n∑
j=1

Φ (x̃j) .Φ (x̃j)
T (24)

As conventional PCA, KPCA is also based on eigenvalues decomposition as shown in
equation (25) [25].

PFΛF = CFPF , ΛF ≥ 0 & PF ∈ F (25)

All solutions PF with ΛF ̸= 0 lie in span of [Φ (x̃1) , Φ (x̃2) , · · · , Φ (x̃n)], as a result the
following equations are considered [25].

ΛF (Φ (x̃k)PF ) = (Φ (x̃k)CFPF ) , k = 1 · · ·n (26)

PF =
n∑

i=1

aiΦ (x̃i) , i = 1 · · ·n (27)

Equation (28) is obtained by combining the previous two equations.

ΛF

n∑
i=1

ai (Φ (x̃k) Φ (x̃i)) =
1

n

n∑
i=1

ai

(
Φ (x̃k)

n∑
j=1

Φ (x̃j)

)
(Φ (x̃j) Φ (x̃i)) , k = 1 · · ·n (28)
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Let’s define matrix Kn×n such that Kn×n = Φ(x̃j) Φ (x̃i), i & j = 1 · · ·n. By substi-
tuting in equation (28), it can be written as:

n ΛF K o = K2 o, o = [a1, a2, · · · , an] (29)

Which can be simplified as:
n ΛF o = K o (30)

The last equation denotes an eigenvalue problem to be solved, Λdenotes non-zero positive
eigenvalues of K and o correspond to eigenvectors and these eigenvectors are normalized
ok.ok =

1
λk
, k = 1 · · ·n .

The mapping function Φ does not necessarily need to be known or used explicitly, the
mapping is replaced or substituted by a kernel function to compute the matrix Kn×n, this
is known as kernel trick [25].

Kn×n = [κ (x̃i, x̃j)] = [Φ (x̃i) Φ (x̃j)] i, j = 1 · · ·n (31)

κ (x̃i, x̃j) is a kernel function, a kernel function is used only if it satisfies Mercer’s
theorem and this is known as a kernel trick [25]. Mercer’s theorem is given in Appendix
A. There exist different kernel functions, these are the most popular ones:

1. Polynomial: κ (x̃i, x̃j) = (x̃i x̃j)
d , d ≥ 1 & d ∈ N . This function satisfies Mer-

cer’s theorem for positive nonzero integer d.

2. Radial Basis Function (RBF): κ (x̃i, x̃j) = exp
(
−∥x̃i−x̃j∥2

2σ2

)
, 2σ2 > 0. This func-

tion satisfies Mercer’s theorem for and nonzero positive real number 2σ2.

3. Sigmoid kernels: κ (x̃i, x̃j) = tanh (f (x̃i x̃j) + p). this function satisfies Mercer’s
theorem for a few combinations of numbers p & f .

RBF is used in this thesis because of its flexibility, it is widely used, and it has a
wide range of allowed hyper-parameter 2σ2 [36]. The hyper-parameter is then given as
σ2 = r m v2 where m is the dimensionality of input space, v2 is the variance of input data,
and r is empirically obtained for most unsupervised learning [37]. For the PC’s selection,
the CPV approach is used as presented in equation (17).

2.4.2 Monitoring Indices

Since KPCA is an alternative PCA approach and they are mostly similar, the same
monitoring indices (T 2, Q, and φ indices) are used along with their UCLs [38], these
indices are computed as in equations (32), (33), and (34).

T 2 = κ (x̃)T P̂F Λ̂
−1
F P̂ T

F κ (x̃) (32)

Q = κ (x̃, x̃)− κ (x̃)T
(
In − P̂F P̂ T

F

)
κ (x̃) (33)

φ =
T 2

T 2
α

− Q

Qα

(34)
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The corresponding UCLs are given as in equations (19), (21), and (23).

2.4.3 Fault Detection Using KPCA

The KPCA algorithm consists of two parts offline part where the KPCA model is built
and an online part for fault detection.

Algorithm 3 presents the offline part of KPCA algorithm. KPCA starts by normaliz-
ing training data set with zero mean and unit variance then it computes the the kernel
matrix using a selected kernel function. This kernel matrix needs to be centered before
solving the eigenvalues problem, scale these eigenvalues and eigen vectors. After that,
select the right number of PC and compute different indices and their limits. At the end,
the necessary data used in the online part is stored.

Algorithm 3 Offline part of KPCA for Fault Detection

1: Input: Training data matrix Xo ∈ Rn×m.
2: Output: Monitoring model.
3: Step 1: Standardize data
4: Normalize training data set with zero mean and unit variance using (8).
5: Step 2: Compute the Kernel Matrix
6: Choose a kernel function κ(x̃i, x̃j) and compute the kernel matrix K ∈ F n×n where

Kij = κ(x̃i, x̃j)
7: Step 3: Center the Kernel Matrix
8: Kc = K − 1nK −K1n +1nK1n where 1n is a n× n matrix with all elements equal to

1
n

9: Step 4: Compute Eigenvalues and Eigenvectors
10: [PF ,ΛF ] = eig( 1

n
Kc)

11: Sort eigenvalues λ1 ≥ λ2 ≥ . . . ≥ λn and reorder eigenvectors accordingly
12: Step 5: Select PC
13: Choose l largest eigenvalues and corresponding eigenvectors using CPV.
14: Step 6: Compute monitoring indices
15: Compute different monitoring indices T 2, Q, and φ using (32), (33), and (34).
16: Step 7: Compute limits of monitoring indices
17: Compute different monitoring indices limits Tα

2, Qα, and φα using (19), (21), and
(23).

18: Step 8: Store monitoring model

Algorithm 4 presents the online part of the KPCA algorithm. it normalizes the newly
collected τ samples with the mean and standard deviation of the training data set and
then computes the testing kernel matrix using both newly acquired data and the training
data set after that it centres this testing kernel matrix. The different monitoring indices
are then computed and compared to the limits obtained in the training part, if at least
one of them exceeds its limit then a fault is declared.
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Algorithm 4 Online part of KPCA for Fault Detection

1: Input: New observations Xτ ∈ Rτ×m, monitoring model
2: Output: Fault detection result
3: Step 1: Standardize Xτ normalize using (8)
4: Step 2: Compute Kernel Matrix Kτ

5: Compute the kernel matrix κ(Xτ , X) ∈ F τ×n. where X is the scaled training data set
6: Step 3: Center Kτ

7: K̃τ = Kτ − 1τK −Kτ1n + 1τK1n where 1τ is a τ × n matrix with all elements equal
to 1

τ

8: Step 4: Compute different monitoring indices
9: compute T 2, Q, and φ using (32), (33), and (34)

10: Step 5: Compute limits of monitoring indices
11: compute Tα

2, Qα, and φα using (19), (21), and (23)
12: Step 6: Fault Detection
13: if T 2 > Tα

2 or Q > Qα or φ > φα then
14: Fault Detected
15: else
16: No Fault Detected
17: end if

2.4.4 Time and Space Complexities of KPCA

In this section, a detailed analysis of the time complexity of the KPCA algorithm is
provided. The time complexity of the KPCA algorithm is primarily influenced by three
major steps:

• Kernel, K, matrix computation

• Kernel matrix centring using

Kc = K − 1nK −K1n + 1nK1n

• Eigenvalues Decomposition

[PF ,ΛF ] = eig(
1

n
Kc)

The calculation of the kernel matrix for a given training data set with n samples has
a time complexity of O(n2) because the size of the kernel matrix is n× n whose elements
are κ(xi, xj), i, j = 1 → n. Since there are n2 entries to compute, this step is O(n2).
The centering of the kernel matrix also requires O(n2). This step involves matrix ma-
nipulations such as subtraction and addition, which are linear to the number of matrix
elements. The eigenvalue decomposition for the kernel matrix is O(n3) due to the nature
of the used algorithms. The common QR iteration (used in MATLAB) primarily involves
core linear algebra operations such as matrix multiplication, which inherently scale as
O(n3), which is the most computationally intensive part of the KPCA algorithm. There-
fore, the overall time complexity of the KPCA algorithm is determined by the dominant
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term, which is the eigenvalue decomposition. Consequently, the overall time complexity
of KPCA is O(n3) [39].

The storage space complexity of the KPCA algorithm is influenced by several key
steps in the algorithm. These steps are:

• Storing the kernel matrix K.

• Intermediate data storage.

• Eigenvalues and eigenvectors storage.

To store the kernel matrix, which is of size n× n, the storage complexity is O(n2).
Similarly, storing the intermediate matrices, such as the centered kernel matrix, also
requires O(n2). For eigenvalue decomposition, the eigenvectors are stored in an n × n
matrix, requiring O(n2). The eigenvalues, although stored in a vector of size n, contribute
a space complexity of O(n), which is negligible compared to O(n2) for the eigenvectors.
Therefore, the overall storage complexity of the KPCA algorithm is dominated by the
space required for the kernel matrix and the eigenvectors. Consequently, the overall
storage complexity of KPCA is O(n2) [19].

2.4.5 Disadvantages of KPCA

KPCA is known to have a good monitoring performance and outperforms PCA in the
case of nonlinear processes. This solution comes with a trade-off, to overcome nonlinear-
ity in the process the monitoring system requires more data and with more data these
drawbacks may be highlighted.

• High execution time because the time complexity of KPCA algorithm is O(n3)
because KPCA needs to solve an eigenvalues problem of an n× n matrix.

• More storage space required because the storage space complexity of KPCA algo-
rithm is O(n2), this complexity is the result of storing a n× n kernel matrix.

• For large data set the KPCA algorithm may face a problem solving appropriately
the eigenvalues problem which can affect the monitoring performance [25].

all the three disadvantages stated above are related to the size of the training data set.
RKPCA is an algorithm designed to overcome these specific disadvantages of KPCA
without losing the ability to monitor nonlinear processes.

2.5 Conclusion

In this section, both KPCA and PCA were introduced and detailed to give a closer
look at how both of them are designed for fault detection purposes. PCA was first intro-
duced but it cannot perform well when data has nonlinear characteristics, KPCA then
comes as a result to deal with this nonlinearity but unfortunately, it also creates new
challenges when data has too many observations.
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3 Proposed RKPCA Algorithms

3.1 Introduction

RKPCA reduces training data before applying the KPCA algorithm to avoid problems
stated in the previous chapter, the reduction method is responsible for keeping most data
information with fewer samples. The effectiveness of the reduction method will be seen in
the monitoring performance. In this chapter, three proposed algorithms are introduced
along some related works and a non-parametric homogeneity test is introduced toward
the end of this chapter.

3.2 Related Work: Similar Approaches

Since the proposed algorithms are based on the RKPCA approach, some existing re-
lated works are presented to see what they utilize to reduce the size of the data set. One
should take in mind that the reduction part must keep most information from the original
data set to overcome the KPCA’s limitations stated previously.

Euclidean distance RKPCA presented in [19] is based on similarity and Euclidean dis-
tance; here the Euclidean distance is used as a similarity measure, which means that the
smaller the distance between two samples, the more similar they are and vice versa. This
approach starts by selecting a threshold distance, and samples with a distance greater
than this threshold are kept in the reduced data which is then used to build the moni-
toring model. After that, change the threshold and repeat to form another reduced data.
The one with the best performance is used to build the final monitoring model. Euclidean
distance RKPCA when used right can lead to decent monitoring performance compared
to conventional KPCA. The limitation of this approach is that outliers or noise in one
variable can greatly increase the Euclidean distance, making a slightly anomalous point
appear very dissimilar to otherwise close clusters due to the amplification of large differ-
ences.

Reduced Rank RKPCA algorithm [40] is based on removing dependencies of variables
in the feature space and retaining only a smaller number of observations. First, a row
is selected from the training data set and the kernel vector is computed. Then select a
second row and do the same as for the first one. Second, add the second kernel vector to
the first one to form a matrix and check if this matrix is a full rank. Third, if this matrix
is full rank, then keep this row in the kernel matrix; otherwise, delete it and move to the
next vector in the training data set. Reduced Rank RKPCA offers significant advantages,
including computational efficiency for online monitoring, a strong capability to handle
nonlinear dynamics, and a wide applicability to various real-world systems, laying a cru-
cial foundation for advanced condition monitoring. However, its primary disadvantages
stem from the need to carefully define the number of observations retained, which leads
to inflexibility once set.

K-means RKPCA Clusters algorithm [41] classifies the data set to a predefined number
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of disjoint clusters, and these clusters are represented by a cluster center for each one of
them. It assigns the inputs to the nearest cluster center based on the mean squared error
between the inputs and the cluster center. This method requires time to find the right
number of cluster centers for the best monitoring performance. K-means RKPCA offers
notable advantages, including enhanced computational efficiency for online monitoring,
and robust capability to handle nonlinear dynamics. However, its primary disadvantages
come from the need to carefully pre-define the number of clusters for K-means, which
directly impacts the quality of the reduced data. This selection is crucial because the
K-means itself can be sensitive to initial centroid placement and may converge to local
optima, meaning that the chosen cluster representatives might not perfectly capture the
underlying data structure.

The PCA-based RKPCA [36] uses PCA to select some uncorrelated observations. PCA
is applied to the transpose of the training data set so that only uncorrelated samples are
kept. PCA-based KPCA offers an intriguing approach to sample reduction, allowing for
the identification of representative samples by capturing the dominant variations across
observations. However, this method faces significant drawbacks. It can be computation-
ally intensive for very large datasets due to the need to compute a very large covariance
matrix, and its interpretation can be less intuitive, as the resulting components describe
relationships between samples rather than features.

Spectral Clustering RKPCA and Random Sampling RKPCA in [42], the Spectral
Clustering RKPCA uses spectral clustering to group data points based on the underlying
structure of the point which is then used to define the number of clusters for the k-means
clusters to form the reduced matrix. This reduction method has high time and storage
complexities and scalability issues for large-sized data. Random Sampling RKPCA se-
lects randomly some samples from the original data set to form the reduced matrix, this
method is easy to use without any complicated steps but it is time-consuming and has a
very large number of reduced matrices to choose from.

Authors in [43] presented an RKPCA algorithm that selectively retains a reduced
number of observations. This method identifies samples whose transformed representation
in the feature space exhibits a high projection value onto one PC rather than others using
a given threshold. This method reduces the computational burden of standard KPCA by
effectively removing less informative data. However, the efficacy of this reduction method
is dependent on the appropriate choice of the number of principal components retained
and the careful adjustment of the threshold, which directly influences the selection of
representative samples.

Feature Vector Selection RKPCA [44] proposes a feature vector selection scheme based
on geometrical considerations from [45] to reduce the computational complexity of KPCA
when dealing with large training datasets. The core idea is to identify a minimal subset of
samples whose mappings in the high-dimensional feature space can linearly express the en-
tire dataset. This approach offers the significant advantage of directly addressing KPCA’s
computational burden by reducing the number of samples processed, thereby making it
more feasible for large-scale applications while aiming to maintain data representative-
ness through its geometric selection principle. However, it comes with the disadvantage
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that the feature vector selection scheme itself can be computationally complex in its se-
lection process, and there’s an inherent risk of information loss if the chosen subset isn’t
perfectly representative, potentially impacting the accuracy of the resulting KPCA model.

3.3 Correlation Dimension RKPCA

3.3.1 Chaos Theory and Fractal Analysis

Chaos theory is a field of study interested in the qualitative behavior of deterministic
nonlinear systems that exhibit unstable, non-periodic dynamics. While often counter-
intuitive, chaos itself refers to the irregular, seemingly random behavior that can emerge
from relatively simple governing equations, a phenomenon observed in various real-world
domains [46, 47]. The butterfly effect, a core principle of chaos theory, states that even
tiny initial changes can result in vastly different long-term outcomes [46]. Fundamentally,
chaotic systems embody a delicate balance of order and unpredictability: they strictly
adhere to underlying rules, yet their extreme sensitivity to starting conditions renders
their long-term evolution practically unpredictable. This illustrates how seemingly ran-
dom and complex behavior can arise from simple deterministic principles [48].
Fractals provide a unique descriptive framework for ”wrinkled forms” that defy conven-
tional Euclidean measures such as length or area, yet are distinctly not formless; they
exist in a geometric ”middle ground” [49]. Wrinkled forms describe shapes that are
rough, jagged, and show the same intricate detail no matter how much zoomed in. The
fundamental properties characterizing fractals are as follows:

• Fractal dimension: This non-integer dimension quantifies the complexity of a signal
or shape and is a defining characteristic of fractals [49, 50]. Unlike integer dimensions
that describe lines (1D) or planes (2D), fractal dimensions are typically represented
by decimal values [46]. It is conceptually defined by the scaling relationship:

bulk ∼ sizedimension (35)

where bulk refers to a measure such as volume, mass, or information content, and
size denotes a given linear distance. The symbol ”∼”, in (35), denotes asymp-
totic proportionality. This means that as the scale s becomes infinitesimally small,
the number of covering elements bulk becomes proportional to size, implying that
the ratio between them approaches a non-zero constant value. Thus, the fractal
dimension can be more formally expressed as:

dimension = lim
size→0

log (bulk)

log (size)
(36)

The use of the limit ensures invariance over smooth coordinate changes and estab-
lishes the dimension as a local quantity [49].

• Self-similarity: It is a key feature of fractals; they look like themselves at different
scales. This can be exact, meaning a zoomed-in part is a perfect copy of the whole
like the Koch snowflake or the Sierpinski gasket, or statistical, where the zoomed-in
part shares the same overall characteristics like roughness or texture, but isn’t an
identical replica like coastlines, clouds, or mountain ranges.
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Figure 6: Example of CD Estimation of a given System.

Among the various methods for quantifying the complexity of fractal objects, such as the
Hausdorff dimension, box-counting dimension, and self-similarity dimension, this thesis
specifically utilizes the Correlation Dimension (CD). The CD provides a quantitative
measure of self-similarity: a larger CD value indicates a higher degree of complexity and
less self-similarity, and vice-versa [50]. The computation of CD relies on the Correlation
Integral CI , defined as:

CI (n, di) =
1

n (n− 1)

∑
i ̸=j

θ (di − ∥Xi −Xj∥) (37)

Here, θ represents the Heaviside function, and d is the radius of similarity. The values of
d correspond to the Euclidean distances between rows (data points) in the original data
set matrix. This equation can be conceptually simplified to:

CI (n, di) =
Number of distances < di∑

d
(38)

Subsequently, a plot of log(CI) versus log(d) is generated. The CD value is then de-
duced from the slope of the linear region within this plot. Figure 6 illustrates such a
graph, with the linear portion, from which the slope (CD value) is computed, highlighted
by red points.

3.3.2 Correlation Dimension RKPCA for FDD

As mentioned before, RKPCA algorithms consist of two major parts which are:

• Reduction part: this part is responsible for reducing the number of observations in
the data set acquired from the monitored system by selecting only relevant obser-
vations using a given method.

31



• Build KPCA model: in this part, a KPCA model is built using the reduced data
set obtained from the first part.

The Correlation Dimension RKPCA was used because CD measures the self-similarity
of the system monitored, if the number of samples matches the CD ceiling value it can be
said that these rows (samples) capture each correlation dimension and this reduced data
might have sufficiently representative samples to analyze the system’s fractal properties.

This algorithm is only used on chaotic systems, chaotic systems have a positive largest
Lyapunov Exponent. The proposed reduction method used in this section is based on CD.
It starts by computing the correlation dimension of the original data set, then omits the
1st row of the original data set and computes the CD of the resulted matrix, if this CD
value is the same as the CD value of the original data set then this row is omitted for good
otherwise this row is kept in the reduced data, when this is done repeat the same process
for the rest of rows in the original data set. In the end, the minimum retained observations
have the same CD value as the original data set has, these observations form the reduced
matrix used to build the KPCA model in the next part. Algorithm 5 illustrates how the
proposed algorithm reduces the training data. The resulting reduced matrix Xr is then
used to build the monitoring model based on algorithms 3 and 4.

Algorithm 5 Correlation Dimension RKPCA reduction part

1: Input: Xo ∈ Rn×m

2: Output: Xr ∈ Rr×m ▷ r < n
3: Step 1: Standardize Xo

4: Normalize data with zero mean and unit variance using (8)
5: Step 2: Plot log(CI) vs log(d) and deduce CD
6: Obtain all Euclidean distances between every row vector d
7: Compute CI using (38)
8: Plot the log(CI) vs log(d) graph
9: Compute CD as the slope of the linear part of the graph

10: Step 3: Check for the right samples
11: while i ≤ n do
12: Remove ith vector from training data set
13: Compute CD of this matrix CDi

14: if CDi = CD then
15: Remove this vector
16: i= i+1
17: else
18: Keep this vector
19: i= i+1
20: end if
21: end while
22: Step 4: Form reduced matrix
23: The resulting matrix is now re-scaled using the inverse of (8) to form Xr

For Algorithm 5, the computational complexity is determined step-by-step. Step 1,
which involves standardizing the n×m input data by calculating means and standard
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deviations for all m variables and then normalizing n samples, has a time complexity of
O(n). Step 2 begins by computing all pairwise euclidean distances among the n sam-
ples. As there are O(n2) pairs, and each distance calculation for m-dimensional vectors
takes O(m) operations, this part is O(n2). Computing the Correlation Integral CI is also
dominated by this factor, making Step 2’s overall complexity O(n2). The most computa-
tionally intensive part is Step 3, which contains a loop running n times. Inside this loop,
the CD of a roughly (n− 1)×m matrix is recomputed. Since each such re-computation
has an O(n2) complexity, the entire loop contributes O(n3). Therefore, considering all
steps, the overall time complexity of algorithm 5 is O(n3).

3.4 Variogram-based RKPCA

3.4.1 Definition

Geo-statistics concerns the correlation between elements in a given time (and, or space)
varying data set [51]. One of the geo-statistics techniques is the variogram, variogram
quantifies spatial correlation and characterizes spatial continuity. The variogram model
and empirical variogram are both parts of the variogram, the variogram model is the
theoretical mathematical function that is fitted to the empirical variogram obtained from
the experimental data set [52]. Characteristics of the variogram are summarized as the
following in [51]:

• lag (h): It is the vector representing separation between two spatial locations.

• Nugget: it is the value of the variogram at h = 0.

• Range (a): The lag at which the variogram reaches the sill.

• Sill (c): It is the total variance of the data set, usually one for normal scores when
the variogram is at the sill or close enough that there is no longer correlation between
samples at that lag.

There exist different types of variogram models and here is some of the most used:

• Nugget: γm (h) =

{
0 if h = 0
c otherwise

.

• Spherical: γm (h) =

{
c
[
1.5
(
h
a

)
− 0.5

(
h
a

)3]
if h ≤ a

c otherwise
.

• Exponential: γm (h) = c
[
1− exp

(
−3h

a

)]
.

• Gaussian: γm (h) = c
[
1− exp

(
−3h2

a2

)]
.

• Power: γm (h) = c.hp, 0 < p < 2.
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Empirical variogram, on the other hand, is a non-parametric estimator of the vari-
ogram of a spatial process [53]. The empirical variogram of the multivariate data set is
then given as in (39) [54].

γj (h) =
1

2N (h)

∑N−h

i=1

(
x̄(i+h)j − x̄ij

)2
i = 1 · · ·N − h, h = 1 · · ·N − 1

N (h) is the number of pairs that are separated by the lag h.

γ (h) =
1

m

∑m

j=1
γj (h) (39)

γj is the univariate empirical variogram for each variable of the process and γ is the mul-
tivariate empirical variogram used for this study.

3.4.2 Variogram-based RKPCA for FDD

The Variogram-based RKPCA is proposed as a technique to eliminate correlated sam-
ples from the training dataset. This method uses the concept of a variogram, which is a
tool in geostatistics that quantifies the spatial correlation between data points. Near the
sill, samples that are separated by a specific lag distance and have a variogram value close
enough to the sill are considered non-correlated samples and kept in the reduced matrix.

Let’s define the Euclidean distance ω as the distance between the empirical variogram
γ (h) and its sill c. The proposed algorithm selects lags, h, for which the distance between
γ (h) and c is less or equal to ω. Then from the selected lags, the corresponding samples
are kept to form the reduced matrix used to build the KPCA model. If the result is not
satisfying then increase the value ω and repeat. Figure 7 illustrates what is the sill and
the distance ω in a variogram plot.

Algorithm 6 is the algorithm used to reduce the original data set using empirical
variogram. This algorithm may produce more than one reduced matrix, to select the
appropriate one a monitoring model is built using one of the resulting Xr, algorithm 3,
and algorithm 4 then the performance of this matrix is checked and a decision to use it
or pass to the next one is made.

The time complexity of algorithm 6, which processes an input matrix Xo of n obser-
vations by m variables, is primarily determined by the variogram computation in Step
2. This step involves an outer loop iterating n times, within which a matrix subtraction
and a subsequent matrix multiplication occur. This matrix multiplication dominates the
inner loop, contributing m2(n− h). Summing this over the n outer iterations results in a
complexity of O(n2). While other steps like data standardization (Step 1) and reduced
matrix formation (Step 4) involve complexities of O(n), these are generally overshadowed
by the variogram calculation. Therefore, the overall time complexity of this algorithm is
O(n2).
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Figure 7: Empirical Variogram of CP Training Data.

Algorithm 6 Variogram-based RKPCA reduction part

1: Input: Xo ∈ Rn×m, ω
2: Output: Xr ∈ Rr×m ▷ r < n & they usually are more than one matrix
3: Step 1: Standardize Xo

4: Normalize data with zero mean and unit variance using (8)
5: Step 2: Compute variogram γ(h)
6: for h = 1 → n− 1 do
7: n(h) = n− h

8: V =
[
X̄(1:n−h)×m − X̄(h+1:n)×m

]T [
X̄(1:n−h)×m − X̄(h+1:n)×m

]
9: γj (h) =

1
2n(h)

V ▷ j = 1 · · · m

10: γ(h) = mean(γj(h))
11: end for
12: Step3: Compute different valuse of ω
13: v is a vector of all Euclidean distances between γ(h) and c
14: Step 4: Form the reduced matrix for each ω
15: for ω = min(v) → max(v) do
16: if |γ(h)− c| ≤ ω then
17: s = min(h) ▷ s is the minimum selected lag

18: Xr =

[
X(1:n−s)×m

X̄(s+1:n)×m

]
19: The resulting matrix is now re-scaled using the inverse of (8)
20: else
21: go for higher value of ω
22: end if
23: end for
24: Step 5: Store all reduced matrices
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Figure 8: Histogram of the 1st PC Score.

3.5 Histogram-based RKPCA

3.5.1 Definition

A histogram is a type of bar graph which displays the value of appearance frequency
of specific data within a given bin, so it helps to visualize data distribution and its
skewness, in other words, it visualizes how the data set is distributed [55]. The x-axis
of the histogram represents equally divided intervals from the input data set known as
bins and the width of the bins is controlled by the number of bins used as shown by the
following equation:

Bw =
MV −mV

NB

(40)

where Bw is the bin width, MV is the maximum value in data set, mV is the minimum
value in data set, and NB is the number of bins. The y-axis can represent different types
of values, such as appearance frequencies, probabilities, and percentages [55].

Figure 8 demonstrates an example of histogram plot, the y-axis represents the appear-
ance frequency of the total values from each bin, the x-axis contains 6 bins with the width
of 1, for this example. As can be seen from this figure the histogram can manifest the
distribution of the data set (univariate data set).
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3.5.2 Histogram-based RKPCA for FDD

The Histogram-based RKPCA is proposed because the histogram highlights the dis-
tribution of the data, and the PCA’s first pincipal components score contains the highest
percentage of the training data variations. Hence, using this algorithm ensures the same
distribution in the reduced matrix as the original data set in the direction of the highest
variations direction. The Histogram-based RKPCA starts by computing the 1st PC score
and plots its histogram with a specified number of bins NB.

Lets define ε as the minimum appearance frequency of all bins in the histogram plot,
νi as the appearance frequency of the ith bin, and βi as in (41).

βi =
⌈νi
ε

⌉
i = 1 · · ·NB (41)

For the ith bin, it selects the number of observations equal to βi such that the same
median of the bin is kept. After this, the proposed algorithm selects the corresponding
rows in the scores matrix and performs the inverse of PCA mapping to obtain the reduced
matrix Xr that has less number of observations than the original data set.

Finally, the obtained matrices are used to build the KPCA model, using algorithms 3
and 4. The selected reduced matrix is the one with the satisfying results. The proposed
reduction method is summarised in algorithm 7.

The complexity is driven primarily by Step 2, which performs PCA. Calculating the
covariance matrix is O(m2) as it is an m×m matrix, and performing eigenvalue decom-
position on the resulting m×m covariance matrix is O(m3). The step of computing the
score matrix is O(m2). These steps combine to give the dominant term. Subsequent
steps, such as histogram creation and median computations (Step 3) and forming the re-
duced matrix (Step 4), have lower complexities relative to these PCA-related operations.
Hence, the total time complexity for Histogram-based RKPCA is O(m3)

3.6 Homogeneity Testing and Divergence Estimation

A homogeneity test is a statistical hypothesis test used to determine whether two or
more independent populations or groups share the same distribution [56]. The homogene-
ity test can be decomposed into the following:

• Purpose: The primary goal is to assess whether the proportions of observations that
fall into each category are consistent between different populations or subgroups [57].

• Null hypothesis H0: This hypothesis states that the distribution of the variable is
identical across all populations being compared, meaning the proportions for each
variable are equal [58].

• Alternative hypothesis Ha: This hypothesis posits that the distributions differ, in-
dicating that at least one population has a distinct distribution for the variable
compared to the others [58].
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Algorithm 7 Histogram-based RKPCA reduction part

1: Input: Xo ∈ Rn×m, NB

2: Output: Xr ∈ Rr×m ▷ r < n & they usually are more than one matrix
3: Step 1: Standardize Xo

4: Normalize data with zero mean and unit variance using (8)
5: Step 2: Compute the 1st PC score vector
6: Compute Covariance matrix as in algorithm 1
7: Compute & sorte eigenvalues and eigenvectors as in algorithm 1
8: Compute the score matrix T as in algorithm 1
9: Pick the 1st column vector from T

10: Step 3: Plot histogram of the obtained vector
11: Specify the number of bins NB

12: Plot histogram with NB as number of bins
13: Pick the minimum appearance frequency ε
14: for i = 1 → NB do
15: Compute the median of the ith bin
16: Compute βi as in (41)
17: Select βi observations from this bin with same median
18: end for
19: Step 4: Form the reduced matrix
20: Select the corresponding rows from the scores matrix T
21: Select the corresponding samples from X̃
22: Rescale this matrix to obtain Xr

23: Step 5: Save all the reduced matrices
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Homogeneous data generally means that the data sets behave similarly in a specific statis-
tical way, such as having the same proportions, variance, or overall distribution shape for
the variables being tested. However, within the scope of this study, homogeneity carries
a more direct implication: because the second dataset is directly deduced or obtained
from the first, demonstrating their homogeneity statistically confirms that both datasets
unequivocally represent the same underlying system. This provides crucial validation for
the consistency and representativeness of the derived data with the original system be-
havior.

The homogeneity test used in this thesis was introduced in [59], it is a hypothesis test
based on divergence estimation. The choice of this test is particularly pertinent because of
the potential variability in the distributional properties of the data sets. It is not always
guaranteed that the original data set follows a multivariate or univariate normal distri-
bution. Traditional parametric tests often assume such normality, which might not be
applicable in all scenarios. Given this limitation, the use of a non-parametric divergence
estimation approach is more suitable. Non-parametric methods do not rely on specific dis-
tributional assumptions and are therefore more flexible in handling data sets that might
not conform to traditional parametric models. This approach ensures a more robust as-
sessment of homogeneity between the two data sets, accommodating potential deviations
from normality, and providing a more reliable evaluation of whether the reduced data set
adequately represents the original one.

Let P denote the distribution of the original data set, and Q denote the distribution of
the reduced data set. Let p and q represent the probability density functions corresponding
to distributions P and Q, respectively. The divergence function f from P to Q is defined
as:

Df (P,Q) =

∫
f

(
p (y)

q (y)

)
dQ (y) = EQ

(
f

(
p (Y )

q (Y )

))
(42)

f is a convex function applied to the ratio r (x) = p(x)
q(x)

, f (1) is the minimal value
of f -divergence if and only if P = Q. The convex function used for this test is the
asymmetric Kullback-Leibler divergence and it is given as:

faKL (x) = x log (x) (43)

This function was selected due to its simplicity and suitability for the study’s needs.
In this particular analysis, it is sufficient to compute the divergence from P to Q, as
calculating the divergence in the reverse direction, from Q to P , is not required. This
choice simplifies the computation and focuses on assessing how well the reduced data set
Q approximates the original data set P without the need for a more complex bidirectional
analysis. The function faKL has the following characteristic:

faKL (1) = 0

The main steps of the divergence estimation are as follows.

• Estimate the ratio r (x) = p(x)
q(x)

by r̂.
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• Estimate the divergence given f and r̂.

The following algorithm 8 explains how these steps are performed.

Algorithm 8 Divergence estimation

Step 1: Compute the kernel density estimation
Estimate p̂ and q̂ using kernel density then set r̂ = p̂

q̂
.

Step 2: Smooth faKL

Smooth the function faKL (r̂ (x)) .q̂ (x) via cubic splines.
Step 3: integrate splines analytically

For the hypothesis test, the null hypothesis is given as H0 : P = Q. At first from the

matrixXT , such thatXT =

[
Xo

Xr

]
, and then from this matrix select n random observations

to form one matrix and use the remaining observations to form another matrix, after that
compute divergence between those obtained matrices using algorithm 8 and repeat these
steps for bt times when this is done there will be the total of bt + 1 divergence estimates.
The null hypothesis is true if the divergence on the original data sets exceeds the empirical
one. the following equation explains how to compute the quantile of bt + 1 estimations.

(1− αt)− quantile (bt + 1)

bt and αt are set by the user αt is the significance level usually it is 5%.

3.7 Conclusion

In this chapter, three proposed algorithms for fault detection were introduced, each
accompanied by a general description of their underlying concepts and their application.
Each algorithm employs a distinct approach for determining how to retain essential in-
formation from the original data set in the reduced data set. The Correlation Dimension
RKPCA algorithm is characterized by its method of consistently generating a single re-
duced matrix, regardless of the data characteristics. In contrast, the other two algorithms
can produce multiple reduced matrices, from which the most effective one is selected
based on performance metrics. A non-parametric homogeneity test is utilised to evaluate
whether the reduced data set and the original data set adequately represent the same
process. This test assesses whether the reduced data maintains the same statistical prop-
erties as the original data, providing a robust measure of the representational consistency
between the two data sets.
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4 Applications, Results and Discussion

4.1 Introduction

This chapter introduces the Tennessee Eastman Process (TEP) and the Cement Plant
(CP) as benchmark examples. These well-established industrial processes serve as reliable
testbeds for evaluating the proposed algorithms, providing a robust basis for assessing
their performance in practical scenarios. Following their application to these two pro-
cesses, a critical comparative analysis is presented. The performance of the proposed
algorithms is systematically evaluated against established methods, focusing on key met-
rics such as overall monitoring effectiveness, execution time, required storage space, and
homogeneity with the original dataset. The results are then discussed in detail.

The used software for this study is MATLAB and the hardware used has the following
characteristics: Intel(R) Core(TM) i5-6200U CPU @ 2.30GHz 2.40 GHz and 8.00 Go of
RAM with Windows 10 64 bits.

4.2 Tennessee Eastman Process

4.2.1 Tennessee Eastman Process Description

TEP developed by Downs and Vogel [60] in 1993, has become a widely used bench-
mark platform for evaluating fault diagnosis and process control algorithms. The TEP
involves eight key components: G and H are the primary products; A, C, D, and E are
reactants; F is a by-product; and B is an inert component. The process is structured
around five main units: a reactor, a condenser, a recycle compressor, a separator, and a
stripper. Figure 9 provides a general diagram of this process, illustrating the flow and
interaction of the components and units within the system.

The reactions that happen inside the reactors are

A (g) + C (g) +D (g) −→ G (l)

A (g) + C (g) + E (g) −→ H (l)

A (g) + E (g) −→ G (l)

3D (g) −→ 2F (l)

g denotes gas and l is for liquide.
The TEP benchmark simulates 21 different faults which are presented in table 2, F

03, F 09, and F 15 faults are notoriously known for their hard detection [42].
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Figure 9: TEP Benchmark Process.

Table 2: Description of Different Faults of the TEP benchmark
Faults Nature of fault Description
F 01 Stepwise A/C feed ration, B composition constant
F 02 Stepwise B composition, A/C ratio constant
F 03 Stepwise D feed temperature
F 04 Stepwise Reactor cooling water inlet temperature
F 05 Stepwise Condenser cooling water inlet temperature
F 06 Stepwise A feed loss
F 07 Stepwise C header pressure loss, reduced availability
F 08 Increase in variability A, B, C feed composition
F 09 Increase in variability D feed temperature
F 10 Increase in variability C feed temperature
F 11 Increase in variability Reactor cooling water inlet temperature
F 12 Increase in variability Condenser cooling water inlet temperature
F 13 Slow driftwise Reactor kinetics
F 14 Sticking valves Reactor cooling water valve
F 15 Sticking valves Condenser cooling water valve
F 16 Not Determined Unknown
F 17 Not Determined Unknown
F 18 Not Determined Unknown
F 19 Not Determined Unknown
F 20 Not Determined Unknown
F 21 Sticking valves The valve was fixed at the steady state position
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4.2.2 Application Using KPCA

Using the ”d00” training dataset from the TEP benchmark, a monitoring model for
fault detection is constructed. This model employs algorithm 3 for the offline part of
model building and algorithm 4 for the online monitoring part. The hyperparameter for
the RBF kernel is chosen empirically for each monitoring index to optimize performance
across all indices. Additionally, the significance level for the upper control limit of the
monitoring indices is set at α = 99%.

Table 3 shows the monitoring results obtained using the conventional KPCA for dif-
ferent faulty scenarios. From this table, it can be noticed that KPCA has successfully
detected the majority of faults with respectable monitoring performances for different
monitoring indices and this was obtained by selecting the appropriate number of PC for
each index, the proper number of PCs for the T 2 index is 51, for the Q index it is 36,
and for the combined index φ it is 42. One can conclude from this that it is important
to choose the appropriate number of retained PCs for the monitoring model. The φ in-
dex monitoring performances outperform the other two indices with the smallest margin
followed by the Q index and then finally the T 2 index. Unfortunately, some faults are
notoriously known for their hard detection like F 03, F09, and F 15 for all monitoring
indices.

Table 3: KPCA Monitoring Results for TEP.
Indices T 2 Q φ
Metrics FAR MDR DTD FAR MDR DTD FAR MDR DTD
F 01 3.75 0.13 1 10 0.13 1 3.13 0.25 1
F 02 1.88 1.13 8 10.63 0.75 0 1.88 1.25 10
F 03 14.38 76.13 3 16.88 75.00 1 21.25 73.25 3
F 04 3.75 0.00 0 10 0.00 0 2.50 17.88 0
F 05 3.75 60.25 0 10 59.38 0 2.50 56.00 0
F 06 0.00 0.00 0 6.25 0.00 0 91.25 0.00 0
F 07 0.00 0.00 0 5.00 0.00 0 5.00 0.00 0
F 08 6.25 0.75 6 12.50 1.00 6 10.00 0.63 0
F 09 31.25 79.13 0 29.38 79.25 0 35.63 74.75 0
F 10 3.75 10.38 7 17.50 20.25 0 5.00 13.13 5
F 11 5.00 17.25 1 14.38 15.88 0 5.63 27.13 5
F 12 16.25 0.25 2 19.38 0.25 2 24.38 0.13 1
F 13 1.88 4.13 7 8.75 3.88 1 1.88 3.75 7
F 14 4.38 0.00 0 13.13 0.00 0 3.13 0.00 0
F 15 0.63 74.13 91 8.13 72.13 3 1.25 73.63 91
F 16 43.75 5.63 0 26.25 22.13 4 53.75 7.75 0
F 17 4.38 3.63 19 16.88 2.38 10 3.13 5.38 21
F 18 3.13 8.13 14 16.88 7.63 15 11.25 6.13 3
F 19 1.25 15.50 1 8.75 41.25 1 2.50 20.63 0
F 20 1.25 22.63 67 5.00 22.50 5 0.00 21.75 5
F 21 11.25 45.63 1 21.88 32.75 0 12.50 53.38 48
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Figure 10: KPCA Monitoring for F 01.
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Figure 11: KPCA Monitoring for F 03.
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Figure 10 shows the monitoring performance using the KPCA algorithm for F 01 for
different monitoring indices as it can be noticed that this fault is successfully detected.
The red line is the UCL limit for different monitoring indices. Figure 14 is the result of
using the KPCA algorithm for the F 03 fault, this fault is hard to detect as seen in the
same figure.

4.2.3 Application Using Correlation Dimension RKPCA

To apply a chaos theory approach, the first step is to assess whether the system in
question is chaotic. This assessment involves calculating the largest Lyapunov Exponent
from the dataset generated by the system. The Lyapunov Exponent quantifies the rate
at which nearby trajectories in the system diverge over time. If the largest Lyapunov
Exponent is positive, it indicates that the system is chaotic, as this positive value means
that nearby trajectories are separated exponentially. This exponential separation of tra-
jectories is a key characteristic of chaotic behavior[61]. For the TEP data set the largest
Lyapunov exponent is equal to 4.31× 10−4 which is a positive value and then the TEP is
considered a chaotic system.

Then the graph of log (CI) vs log (d) is plotted as shown in figure 12, CI is obtained
using (38) and d is the euclidean distances between samples of the data set. The slop of
the red part in figure 12 is equal to 20.95 which means that the correlation dimension
value of the TEP training data set is 21 and the remaining samples from the reduction
part should be also 21 samples.
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Figure 12: Estimation of CD (TEP).

After that algorithm 5 is applied to the training data set to reduce it, and the resulting
matrix has only 21 samples, then use this matrix to build the monitoring model using
algorithm 3. After that, algorithm 4 is used for monitoring the system under faulty
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scenarios. For the combined index, Correlation Dimension RKPCA uses a special formula
to compute this index. φ index is given as

φ = (1− η)T 2 + ηQ (44)

The value selected for η should lead to minimum variance in φ index, it can be calculated
as

η =
var (T 2)

var (T 2) + var (Q)
(45)

var in this equation is the variance of a given data set. For TEP training data set η
is very close to one which means that both Q and φ indices have the same monitoring
performances which can be noticed in table 4.

Table 4: Correlation Dimension RKPCA Monitoring Results for TEP.
Indices T 2 Q φ
Metrics FAR MDR DTD FAR MDR DTD FAR MDR DTD
F 01 0.00 10.13 12 15.63 1.00 1 15.63 1.00 1
F 02 0.00 5.63 43 16.25 1.38 1 16.25 1.38 1
F 03 0.00 100 NA 20.63 66.13 1 20.63 66.13 1
F 04 0.00 100 NA 15.00 71.63 0 15.00 71.63 0
F 05 0.00 92.38 28 15.00 54.88 0 15.00 54.88 0
F 06 0.00 3.00 24 9.38 0.25 1 9.38 0.25 1
F 07 0.00 81.88 6 15.00 0.13 0 15.00 0.13 0
F 08 0.00 50.13 64 17.50 3.75 15 17.50 3.75 15
F 09 0.00 100 NA 35.00 69.50 0 35.00 69.50 0
F 10 0.00 100 NA 12.50 40.50 2 12.50 40.50 2
F 11 0.00 100 NA 25.63 55.50 6 25.63 55.50 6
F 12 0.00 57.88 105 16.88 2.13 0 16.88 2.13 0
F 13 0.00 26.88 90 15.63 2.88 2 15.63 2.88 2
F 14 0.00 84.00 9 25.00 0.38 1 25.00 0.38 1
F 15 0.00 100 NA 11.88 72.13 1 11.88 72.13 1
F 16 0.00 100 NA 41.25 41.25 0 41.25 41.25 0
F 17 0.00 57.63 35 26.88 12.63 9 26.88 12.63 9
F 18 0.00 15.13 108 14.38 8.38 0 14.38 8.38 0
F 19 0.00 100 NA 17.50 67.38 0 17.50 67.38 0
F 20 0.00 100 NA 11.25 47.00 10 11.25 47.00 10
F 21 0.00 100 NA 11.88 39.88 19 11.88 39.88 19

From Table 4, it is evident that the Correlation Dimension RKPCA has struggled
to detect most faults for the T 2 index. This limited performance is attributed to the
small number of PCs selected for this application, which is only 8, in contrast to the
larger number used by the conventional KPCA algorithm. For the Q index, the Corre-
lation Dimension RKPCA shows improved performance compared to the T 2 index but
still does not surpass the conventional KPCA. Notably, this algorithm does outperform
conventional KPCA in detecting certain notoriously difficult faults, such as F03, F05,
F09, and F15. Similarly, for the combined index φ, while the monitoring performance is
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Figure 13: Correlation Dimension RKPCA Monitoring for F 01.

not exceptional, it is better than that of conventional KPCA for challenging faults. The
Correlation Dimension RKPCA has significantly reduced the training dataset to just 21
samples, but this reduction negatively impacts the overall monitoring performance of the
model.

Figure 13 shows the result of using the Correlation dimension RKPCA to monitor the
first fault in the TEP benchmark, the fault has been successfully detected. Unlike the F
01 fault, F 03 is a hard-to-detect fault and the Correlation Dimension RKPCA failed to
properly detect this fault as shown in figure 14.

4.2.4 Application Using Variogram-based RKPCA

The algorithm 6 is used to reduce the number of samples in the training data set using
an empirical variogram. Figure 15 shows the variogram of the training data set, γ (h),
The red line is the sill of the variogram and the green lines, sill ± ω, are the borders used
to select the appropriate lags. For the values of ω that are less than 2.2× 10−6, there are
no selected γ(h) and hence no selected lags; this means that the reduced matrix is empty.
For the value of ω such that 2.2× 10−6 ≤ ω < 5.78× 10−4, the smallest lag, h, selected is
h = 264, this lag results in a reduced matrix of 472 samples from the total of 500. Finally,
for the values of ω for which ω > 5.78× 10−4 the smallest selected lag is h = 108, which
results in a reduced matrix that is the same as the original.

The reduced matrix obtained using algorithm 6 and 2.2× 10−6 ≤ ω < 5.78× 10−4 is
then used to build the monitoring model based on algorithm 3 with the appropriate
number of PCs. Then this monitoring model is used in the online part by algorithm 4.

Table 5 presents the result obtained using the selected reduced matrix. The selected
number of PCs for each monitoring index is 51 for the T 2 index, 120 for the Q index, and
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Figure 14: Correlation Dimension RKPCA Monitoring for F 03.

58 for the combined index φ. The proposed algorithm in this part performs as well as the
KPCA algorithm for the T 2 index based on results obtained from tables 3 and 5. For the
Q index, the proposed algorithm has slightly high FAR values and low MDR values this
shows the trade-off relationship between monitoring metrics if one of them is low the other
gets high. The combined index φ has successfully detected most of the faults. Generally,
the Variogram-based RKPCA performs as anticipated for all monitoring indices unlike
the Correlation Dimension RKPCA but the retain number of samples is quite high.

The variogram-based RKPCA has reduced the training data set by only 5.60% of the
total number of samples because the Tennessee Eastman process data is a well-organized
data set and it is quite challenging to reduce this data by a large amount without sacri-
ficing the monitoring performances.

Figure 16 shows the monitoring performance using the Variogram-based RKPCA al-
gorithm for F 01, in this figure the detection of the fault is clear and successful. Figure
17 shows how unsuccessful the model was in detecting the notorious F 03 fault.

4.2.5 Application Using Histogram-based RKPCA

The histogram-based RKPCA reduction part presented by algorithm 7 produces more
than one reduced matrix and to choose which one is the appropriate a comparison be-
tween their performances is held to pick the right one. Before the comparison a monitoring
model is build using algorithm 3 and then this model is used to monitor different faults
by algorithm 4. Then, equation (6) is used to evaluate the total performance of a given
model for a specified monitoring index.

Table 6 illustrates the performance of different monitoring models based on the cost
function (6). For the T 2 index, the reduced matrix obtained using NB = 16 has the best
monitoring performance, this matrix has 256 samples followed by the one obtained using
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Figure 15: Empirical Variogram of TEP Training Data.

NB = 11. NB = 18 selects a reduced matrix with the best monitoring performance
in terms of Q index. For the combined index φ, again NB = 16 produces the matrix
with the best monitoring performance. If the monitoring model is designed to focus on
only one index, one should select the reduced matrix that corresponds to these optimal
settings. It is important to note that matrices with the same number of retained samples
might share the same minimum appearance frequency, but they are totally different.

In this study, the model is designed to monitor the process using all indices thus only
one matrix is selected to build the model. Equation (7) is a cost function used for this
purpose, it is the mean performance of all monitoring indices, NB = 16 leads to the best
overall performances.

Figure 18 is a histogram of the first principal component score for the original data set
and figure 19 is one of the reduced data sets. Algorithm 7 has kept the same distribution
of the data as it can be noticed from both histograms they are nearly identical with
smaller appearance frequency.
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Figure 16: Variogram-based RKPCA Monitoring for F 01.
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Figure 17: Correlation Dimension RKPCA Monitoring for F 03.
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Table 5: Variogram RKPCA Monitoring Results for TEP.
Indices T 2 Q φ
Metrics FAR MDR DTD FAR MDR DTD FAR MDR DTD
F 01 2.50 0.25 2 18.13 0.00 0 3.75 0.38 3
F 02 1.25 1.25 10 15.63 0.63 4 1.88 1.38 11
F 03 19.38 76.00 3 50 41.13 2 18.75 71.25 3
F 04 3.75 0.00 0 21.88 0.50 0 5.63 9.75 0
F 05 3.75 60.13 0 21.88 30.63 0 5.63 54.50 0
F 06 0.00 0.00 0 15.63 0.00 0 1.25 0.00 3
F 07 0.63 0.00 0 18.13 0.00 0 6.88 0.00 0
F 08 6.88 0.63 0 38.75 0.50 0 10.63 1.00 7
F 09 32.50 77.75 0 55.63 43.13 0 37.50 73.63 0
F 10 4.38 11.50 7 18.75 9.75 4 4.38 19.50 7
F 11 5.63 18.88 5 32.50 9.38 1 10 23.50 5
F 12 18.75 0.25 2 34.38 0.00 0 19.38 0.13 0
F 13 1.88 4.25 7 11.88 1.75 1 2.50 3.50 6
F 14 3.75 0.00 0 30.63 0.00 0 8.75 0..00 0
F 15 1.25 73.00 91 18.13 50.13 0 1.25 71.75 91
F 16 45.63 5.50 0 68.75 5.50 0 53.13 16.50 0
F 17 4.38 3.75 1 43.13 3.00 0 6.25 7.50 0
F 18 3.13 8.38 14 20 3.50 0 3.75 7.50 3
F 19 2.50 18.38 1 25.63 19.38 1 6.88 21.13 1
F 20 1.25 23.75 74 15.63 10.50 5 1.25 50.13 67
F 21 10.63 49.13 13 35.63 29.75 2 8.75 39.88 26

Figure 18: Histogram of the 1st PC Score of Original Data (TEP).
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Table 6: Monitoring Performances of Different Reduced Matrices.
T 2 Q φ

NB ϵ PC Js PC Js PC Js
19 02 48 0.67 38 0.48 41 0.46
18 02 41 0.76 39 0.44 43 0.44
17 02 46 0.67 38 0.54 43 0.44
16 02 46 0.63 37 0.50 41 0.43
15 02 51 0.70 36 0.49 41 0.47
14 04 46 0.88 41 0.50 17 0.56
13 05 42 0.92 15 0.56 21 0.53
11 02 45 0.65 36 0.52 36 0.51
10 03 48 0.69 41 0.48 20 0.50
09 12 20 1.26 13 0.64 13 0.56
08 12 19 1.28 13 0.64 13 0.58
07 21 10 1.49 11 0.65 14 0.67
06 11 29 1.34 14 0.63 13 0.60
05 24 8 1.53 18 0.66 11 0.96

Figure 19: Histogram of the 1st PC Score of Reduced Data (TEP).

NB = 16 selects a reduced matrix of only 256 samples from the 500, table 7 presents
the result obtained by using this reduced matrix to build the monitoring model. This
model has successfully detected most faults, except the notorious ones, for all indices.
Unfortunately, the monitoring model did not detect F 06 due to its value of FAR for the
φ index.

The Histogram-based RKPCA has detected the F 01 fault without any challenges but
it was not as successful in detecting the F 03 fault, figures 20 and 21 shows the monitoring
results of the F 01 and F 03 faults, respectively. Histogram-based RKPCA generally shows
increased FAR values for the Q index compared to KPCA results in table 3, but often
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Figure 20: Histogram-based RKPCA Monitoring for F 01.
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Figure 21: Histogram-based RKPCA Monitoring for F 03.
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Table 7: Histogram-based RKPCA Monitoring Results for TEP.
Indices T 2 Q φ
Metrics FAR MDR DTD FAR MDR DTD FAR MDR DTD
F 01 3.13 0.13 1 21.25 0.00 0 1.88 0.38 3
F 02 3.75 1.25 10 24.38 0.25 0 6.88 0.88 5
F 03 8.75 85.00 6 39.38 66.63 1 13.75 81.88 5
F 04 3.75 0.00 0 23.13 0.00 0 1.25 30.75 0
F 05 3.75 66.13 0 23.13 50.75 0 1.88 61.13 0
F 06 0.00 0.00 0 20.63 0.00 0 88.13 0.00 0
F 07 0.00 0.00 0 17.50 0.00 0 3.13 0.00 0
F 08 2.50 1.25 9 30.00 0.88 2 9.38 0.61 0
F 09 22.50 86.50 2 35.00 61.63 3 28.75 82 0
F 10 3.75 17.75 10 21.25 14.75 0 3.13 18.25 13
F 11 3.75 21.38 5 21.25 18.13 3 5.63 32.38 1
F 12 5.00 0.25 2 25.00 0.50 0 17.50 0.25 2
F 13 1.25 4.25 26 16.25 2.75 1 4.38 4.25 7
F 14 3.75 0.00 0 21.88 0.00 0 1.88 0.13 1
F 15 3.75 78.50 91 28.88 64.50 0 1.25 75.63 0
F 16 26.25 22.13 0 36.88 16.00 0 36.25 16.75 0
F 17 3.75 3.78 1 31.25 1.88 1 2.50 3.38 17
F 18 1.88 9.00 14 29.38 5.38 0 32.50 4.50 0
F 19 0.00 36.50 1 21.88 21.75 1 3.13 33.00 1
F 20 0.63 27.00 67 18.75 17.50 4 0.00 22.50 2
F 21 9.75 48.38 1 29.38 31.75 0 11.25 44.25 5

with improved (lower) MDR and DTD for specific difficult faults like F03, F09, and F15
(for Q) and F15 (for φ). For the T 2 index, table 7 often shows lower FAR values but at
the cost of higher MDR values for difficult faults (F03, F09, F15) compared to table 3,
making it less effective at detecting these specific faults.

4.2.6 Results and Discussion for Tennessee Eastman Process

Performance of monitoring systems built with a single monitoring index was evaluated
by comparing proposed algorithms against conventional KPCA. A cost function Js deter-
mined the best performing method. This comparison encompassed all matrices produced
by the reduction methods, as well as the matrix from the KPCA algorithm. The results
are compared based on tables 3, 4, 5, and 7.

For the T 2 index, The Variogram-based RKPCA algorithm exhibits the highest per-
formance with a monitoring index value of JT 2 = 0.56. This indicates that the Variogram-
based RKPCA method is the most effective at capturing and representing the variations
and structure pertinent to the T 2 index. The conventional KPCA method ranks second
with JT 2 = 0.59. While still demonstrating effective performance, it does not surpass
the Variogram-based approach in terms of capturing the T 2 index variations. Following
closely is the Histogram-based RKPCA with a reduced matrix obtained using NB = 16,
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which achieves JT 2 = 0.63. This suggests that while the Histogram-based method is ef-
fective, it ranks below both the Variogram-based RKPCA and the conventional KPCA
in terms of the T 2 index. The Correlation Dimension RKPCA shows the least favorable
performance with JT 2 = 1.64. This significantly higher value indicates a poor monitoring
performance, reflecting that this method is less capable of effectively capturing the fea-
tures associated with the T 2 index. Therefore, when considering the T 2 index as the basis
for monitoring, the Variogram-based RKPCA algorithm stands out as the most effective
method for enhancing monitoring performance.

For the Q index, the Histogram-based RKPCA method, particularly with a reduced
matrix obtained using NB = 18, achieves the best result with JQ = 0.44. This indicates
that it provides the most effective monitoring performance among the methods tested
concerning the Q index. The Variogram-based RKPCA follows with a Q index value of
JQ = 0.50. Although it shows strong performance, it is slightly less effective than the
Histogram-based RKPCA in capturing the features pertinent to this index. The conven-
tional KPCA method is next with JQ = 0.52, reflecting a moderate level of performance
that is surpassed by both Histogram-based and Variogram-based RKPCA approaches.
The Correlation Dimension RKPCA ranks last with a Q index value of JQ = 0.70, in-
dicating that it performs the least effectively in capturing the relevant features for this
index. Based the Q index, it shows that both Histogram-based RKPCA and Variogram-
based RKPCA enhance the monitoring performance of the KPCA algorithm. In contrast,
the Correlation Dimension RKPCA does not perform as well in this regard.

For the φ index, The Histogram-based RKPCA method, with a reduced matrix ob-
tained using NB = 16, achieves the best monitoring performance with Jφ = 0.43. This
highlights its superior ability to capture the relevant features associated with this index.
The conventional KPCA comes in second with Jφ = 0.44. Although it shows strong per-
formance, it is slightly less effective compared to the Histogram-based RKPCA for this
particular index. The Variogram-based RKPCA is third with a φ index value of Jφ = 0.45,
demonstrating competent performance but trailing behind the Histogram-based KPCA
and conventional KPCA. The Correlation Dimension RKPCA again shows the least favor-
able performance with Jφ = 0.70, indicating poor monitoring performance in comparison
to the other methods. The Variogram-based RKPCA and Histogram-based RKPCA have
enhanced the monitoring performances of the KPCA algorithm when using one index in
the monitoring model.

Now it is the time to conduct a comprehensive comparison of the monitoring model’s
performance based on three different monitoring indices all at once. This comparison
focuses on the value of the cost function J to assess and evaluate the effectiveness of each
approach. To ensure a thorough analysis, we first selected the appropriate reduced ma-
trices from each proposed approach and then compared their performance against several
existing methods to determine if they have indeed enhanced performance.
Table 8 provides a detailed summary of the monitoring performances for each index based
on the cost function defined in (6). This table includes several important metrics, includ-
ing the number of retained samples in the reduced matrices. Notably, the Correlation
Dimension RKPCA approach features the smallest number of samples in the training
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dataset, followed by the PCA-based RKPCA with 44 samples. Conventional PCA comes
next, and then the Histogram-based RKPCA, which impressively reduces the dataset
by approximately 50% of the original number of samples. In contrast, the remaining
RKPCA algorithms only manage to reduce the dataset by less than 6%. This variance in
reduction underscores the need to compare the monitoring performances of these differ-
ent approaches to evaluate their effectiveness. The KPCA and Variogram-based RKPCA
approaches demonstrate the best monitoring performance with a cost function value of
JT 2 = 0.59. This indicates that both methods effectively capture the necessary variations
and provide strong performance based on the T 2 index. The Histogram-based RKPCA
follows with a cost function value of JT 2 = 0.63, slightly trailing behind the top-performing
methods but still performing well. The Euclidean Distance RKPCA and PCA algorithm
exhibit comparable performance, which is less impressive compared to the top approaches.
The Correlation Dimension RKPCA and PCA-based RKPCA bring up the rear with the
lowest performance. From these results, it is evident that the Variogram-based RKPCA
maintains the strong performance of the KPCA algorithm, while the Histogram-based
RKPCA shows slightly reduced effectiveness. Both the Variogram-based and Histogram-
based RKPCA methods achieve the best monitoring performance based on JQ, signifi-
cantly outperforming the KPCA algorithm. These approaches demonstrate considerable
improvements in monitoring performance. Following these, the PCA and Euclidean Dis-
tance RKPCA methods show moderate performance levels. The Correlation Dimension
RKPCA and PCA-based RKPCA again occupy the last positions. The results highlight
that Variogram-based and Histogram-based RKPCA approaches effectively enhance the
KPCA algorithm’s monitoring capabilities based on the Q index, whereas the Correlation
Dimension RKPCA does not perform as well. For the combined index φ, the KPCA,
Euclidean Distance RKPCA, and Histogram-based RKPCA methods achieve the best
monitoring values, reflecting strong overall performance. The Variogram-based RKPCA
and PCA algorithm are positioned immediately following these top methods, indicating
competitive performance.
The overall performance is summarized in Table 8, which calculates the mean of all mon-
itoring results, as given in (7). This table allows users to identify which approach offers a
balanced performance across all indices. In terms of overall performance, the Variogram-
based RKPCA stands out with the best performance at J = 0.51, followed closely by both
KPCA and Histogram-based RKPCA, each with a value of J = 0.52. The Euclidean Dis-
tance RKPCA holds the third spot with a value of J = 0.58, and the PCA algorithm
ranks fourth with a value of J = 0.59. The Correlation Dimension RKPCA has an overall
value of J = 1.01, and the PCA-based RKPCA is the lowest with a value of J = 1.19.
The results indicate that both Variogram-based and Histogram-based RKPCAs do not
only preserve but often enhance the monitoring performance of the KPCA algorithm,
even with a reduced number of samples. On the other hand, the Correlation Dimension
RKPCA, while significantly reducing the number of samples, is only effective for specific
types of faults and generally does not offer improved performance across the board.

After evaluating the monitoring performances of various approaches, the next step is
to assess the homogeneity between the reduced matrices and the original one. To do this,
the number of non-homogeneous variables is checked. This comparison is crucial as it
helps determine how well the reduced matrices represent the original system.
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Table 8: TEP Cost Function J-values for Different Algorithms.
T² Q φ

Method Size PCs J PCs J PCs J
PCA 52 41 0.76 35 0.55 41 0.47
KPCA 500 51 0.59 35 0.52 42 0.44

Euclidean Distance
RKPCA [19]

497 42 0.75 35 0.56 41 0.44

Variogram-based
RKPCA[62]

475 51 0.59 120 0.50 58 0.45

PCA-based
RKPCA[36]

44 18 1.85 31 1.00 19 0.72

Correlation Dimension
RKPCA[63]

21 08 1.64 14 0.70 14 0.70

Histogram-based
RKPCA[64]

256 46 0.63 37 0.50 42 0.43

Table 9 provides a comprehensive overview of the number of non-homogeneous vari-
ables found between the reduced matrices and the original one. The results reveal that the
Euclidean Distance RKPCA, Variogram-based RKPCA, and Histogram-based RKPCA
approaches each have zero non-homogeneous variables. This indicates that these reduced
matrices are perfectly aligned with the original data, maintaining the same system rep-
resentation as the original dataset. In contrast, the Correlation Dimension RKPCA ap-
proach contains one non-homogeneous variable. Although this is a minor discrepancy, it is
noteworthy considering that this approach has significantly reduced the size of the dataset
by nearly 97%. The presence of a single non-homogeneous variable suggests that, despite
the drastic reduction in dataset size, the reduced matrix still closely mirrors the original
data’s characteristics. On the other hand, the PCA-based RKPCA approach shows a
much larger discrepancy, with a total of 32 non-homogeneous variables. This indicates a
substantial deviation from the original dataset, reflecting that the reduced matrix does
not adequately represent the original data. Such a high number of non-homogeneous vari-
ables suggests that the reduced matrix is significantly different from the original dataset,
potentially affecting the effectiveness of any subsequent monitoring performed using this
approach.

The findings in Table 9 are consistent with the results presented in Table 8. The homo-
geneous datasets—those with zero or minimal non-homogeneous variables—demonstrate
strong monitoring performances. Conversely, the dataset with a higher number of non-
homogeneous variables shows poorer monitoring performance. This alignment underscores
the importance of maintaining data homogeneity to ensure effective monitoring and ac-
curate representation of the original system.

The execution time taken to monitor one sample is directly related to the number of
samples in the training data set as well as the required storage space for the monitoring
model, figure 22 shows the relation between the execution time and the number of samples
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Table 9: TEP non-homogeneous variables for different algorithms.
Method Non-Homogeneous variables

Euclidean Distance RKPCA [19] 0
Variogram-based RKPCA [62] 0

PCA-based RKPCA [36]
32 ∼[x1, . . . , x9, x14, x21, · · ·
x29, x34, . . . , x43, x45, . . . x51]

Correlation Dimension RKPCA [63] 1 ∼ [x16]
Histogram-based RKPCA [64] 0

in the data set in terms of the T 2 index, it can be noticed that the required time always
goes up for more samples in the training data set which is further explained by the
following equation:

T 2 →
{
E (n) = 7.591× 10−12n3 − 2.216× 10−9n2 + 8.606× 10−7n+ 2.773× 10−6, 0 ≤ n ≤ 361
E (n) = −2.933× 10−10n3 + 3.934× 10−7n2 − 1.686× 10−4n+ 0.02429, n > 361

This equation is plotted as green and blue lines in figure 22 and the red diamond-
shaped points are the measured values, the same thing goes for the other two monitoring
indices they follow nearly the same behaviour and their fitting equations are given by:

Q →
{
E (n) = 1.234× 10−11n3 − 3.042× 10−9n2 + 8.614× 10−7n+ 1.652× 10−6, 0 ≤ n ≤ 361
E (n) = −4.741× 10−10n3 + 6.337× 10−7n2 − 2.748× 10−4n+ 0.04004, n > 361

φ →
{
E (n) = 1.012× 10−11n3 − 1.797× 10−9n2 + 5.827× 10−7n+ 5.396× 10−6, 0 ≤ n ≤ 361
E (n) = −1.778× 10−10n3 + 2.590× 10−7n2 − 1.175× 10−4n+ 0.01812, n > 361

These equations were derived by measuring the execution time and storage space for
various indices. The execution time data was then fitted with a cubic polynomial, aligning
with an expected O(n3) time complexity. Similarly, the storage space measurements were
fitted with a second-degree polynomial, consistent with an O(n2) storage complexity. The
split in the measurement for the execution time is produced by MATLAB software.

Table 10 contains the measured execution time, it is clear that the lower the number
of samples the lower the execution time is and vice versa, the lowest execution time for
each monitoring index goes to the Correlation Dimension RKPCA and the largest ones
are those of the conventional KPCA. Figure 23 shows the required storage space for the
monitoring model of all indices, the red circles refer to the measured storage space and
the blue line is for the fitting equation which is:

S (n) = 1.436× 10−2n2 + 1.352× 10−1n+ 1.133

from both table 10 and figure 23 it can be concluded that the required storage space of
the monitoring model is directly related to the number of samples in the training data set.
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Figure 22: Execution Time for Different Number of Samples (T 2-index).
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Figure 23: Required Storage Space per Number of Samples.

4.3 Cement Plant Rotary Kiln

4.3.1 Cement Plant Rotary Kiln Description

Cement production is a complex process that starts by mining and then grinding raw
materials including limestone and clay to a fine powder, called raw meal, which is then
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Table 10: TEP execution time and required storage space
T² Q φ

Method Size
Storage

Space (ko)
Execution
Time (ms)

Execution
Time (ms)

Execution
Time (ms)

PCA 52 118 7.50× 10−2 6.83× 10−2 8.43× 10−2

KPCA 500 3822 1.70 1.80 1.90
Euclidean Distance

RKPCA [19]
497 3765 1.70 1.80 1.80

Variogram-based
RKPCA [62]

475 3417 1.50 1.70 1.70

PCA-based
RKPCA [36]

44 41 3.59× 10−2 3.29× 10−2 3.81× 10−2

Correlation Dimension
RKPCA [63]

21 11 2.96× 10−2 2.55× 10−2 2.55× 10−2

Histogram-based
RKPCA [64]

256 1067 0.27 0.31 0.33

heated to a sintering temperature as high as 1450 oC in a cement kiln to broke the chem-
ical bounds of the raw materials and then they are recombined to form new compounds.
The result is called clinker, which is grounded to a fine powder in a cement mill and mixed
with gypsum to create cement.
Ain El Kebira cement plant is located near Setif in the eastern of Algeria. It has a rotary
kiln of 5.4 m shell diameter and 80 m length with 30o incline. The kiln is spun up to
2.14 rpm using two 560 kws asynchronous motors and the producing clinker of density
varying from 1300 to 1450 kg.m−3 under normal conditions. Two natural gas burners
are used, the main one in the discharge end and the other one in the first level of the
preheater tower without any tertiary air conduct. The schematic diagram is presented in
figure 24. A description of the different process variables is reported in the following table.
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Table 11: Variables of the cement plant rotary kiln
Signal Description Unit

x1, x3, x5, x7
Depression of gases in outlets of cyclones

(one, two, three, and four respectively) in tower I.
mbar

x2, x4, x6, x8
Temperature of gases in outlets of cyclones

(one, two, three, and four respectively) in tower I.
◦C

x10
Depression of gas in inlet
of cyclone four tower I.

mbar

x17, x19, x21, x23
Depression of gases in outlets of cyclones

(one, two, three, and four respectively) in tower II.
mbar

x18, x20, x22, x24
Temperature of gases in outlets of cyclones

(one, two, three, and four respectively) in tower II.
◦C

x12, x25
Temperature of the material entering the kiln

from tower I and tower II respectively.
◦C

x9, x15
Power of the motor driving the exhauster fans

of tower I and tower II respectively.
kW

x11, x16
Speed of the exhauster fans

of tower I and tower II respectively.
rpm

x13
Depression of gas in the outlet
of the smoke filter of tower I.

mbar

x14, x26
Temperature of gas in the outlet of the smoke
filters of tower I and tower II respectively.

◦C

x27
The sum of the powers

of the two motors spinning the kiln.
kW

x28 Temperature of excess air from the cooler ◦C
x31 Temperature of the secondary air ◦C

x29, x32, x33
Pressure of air under static grille, repression

of fan I, fan II, and fan III respectively.
mbar

x30, x34
Speed of the cooling fan I and

fan III respectively.
rpm

x35, x37, x39

Pressure of air under the chamber I, II, and III
of the dynamic grille, repression of fan IV, V, and VI

respectively.
mbar

x36, x38, x40 Speed of cooling fan IV, V, and VI respectively. rpm
x41 Speed of the dynamic grille. Strokemin

x42
Command issue of the pressure regulator

for the speeds of the draft fans of cooler filter.
rpm

x43 Flow of fuel (natural gas) to the main burner. m3 h−1

x44
Flow of fuel (natural gas)

to the secondary burner (pre-calcination level).
m3 h−1

Data sets used for this work are:

• training data set contains 768 observation samples collected during normal condition
operation, with a sampling rate of 20sec.
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• Testing data set with 11000 observations. This set was collected from the plant
during healthy operation with a sampling interval of 1sec.

• Real process fault with 2048 observations, where the fault increases gradually after
420 samples.

• 10 simulated sensor faults data sets with each one having 1000 observations.

Table 12 shows the simulated faults, their type, affected variables, fault magnitude, and
samples affected by these faults.

Table 12: Introduced simulated faults
Name Type Affected Variables Fault magnitude Fault Range
F 01 Abrupt 43 2% 550 → 850
F 02 Abrupt 25 4% 310 → 650
F 03 Abrupt 30 3% 250 → 520
F 04 Random 34 0 → 2% 700 → 950
F 05 Random 44 0 → 3% 150 → 400
F 06 Random 08 0 → 4% 450 → 750
F 07 Additive (lin) 22 0 → 4% 610 → 950
F 08 Additive (lin) 16 0 → 2% 050 → 350
F 09 Additive (log) 02 0 → 3% 200 → 500

F 10 Intermittent

12 3% 670 → 700
26 −3% 710 → 730
06 2% 745 → 770
24 −2.5% 780 → 800

62



Figure 24: Schematic diagram of the CP rotary kiln.

4.3.2 Application Using KPCA

The real-world industry data set obtained from the cement plant is used now to test
the proposed approaches to see how they perform in real-world scenarios.

Algorithm 3 is executed using the training data set which has 768 samples and 44
variables to build the monitoring model and algorithm 4 is used for the online monitor-
ing, again a specified number of PCs is selected using CPV for each index to ensure the
best performance possible of the model. For the T 2 index the number of PCs is 34, for
the Q index it is 31, and for the combined index φ it is 12. The T 2 index has the largest
number of PCs because this index is directly related to the principal component subspace.

Table 13 presents the result obtained using the conventional KPCA algorithm for dif-
ferent simulated faults and the real process fault (RPF), the conventional KPCA performs
very well and it has successfully detected all faults with decent monitoring metrics. The
fault, F 07, has high MDR and DTD values because it is a drift-wise type of fault and
these faults are known for their late detection, one should take into account that this is
not the case for all drift-wise faults, the other drift-wise faults, F 08 & F 09, have been
detected instantly. The real process fault is also considered a drift-wise fault, KPCA has
successfully detected this fault with a slightly high FAR value, this FAR value is accept-
able and does not affect the monitoring performance.

Figure 25 show the detection process of the real process fault in the cement plant. it
can be seen that the fault was detected successfully for different monitoring indices.
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Table 13: KPCA Monitoring Results for the Cement Plant.
Indices T 2 Q φ
Metrics FAR MDR DTD FAR MDR DTD FAR MDR DTD
F 01 0.92 0.00 0 0.92 0.00 0 0.17 0.00 0
F 02 1.29 0.00 0 1.04 0.00 0 0.26 0.00 0
F 03 1.14 0.00 0 0.98 0.00 0 0.24 0.00 0
F 04 1.20 3.19 0 0.96 2.79 0 0.24 3.98 0
F 05 1.04 15.54 0 0.72 23.11 0 0.24 18.73 1
F 06 0.92 8.64 0 0.92 7.64 0 0.17 12.62 0
F 07 0.95 14.37 47 0.95 14.66 33 0.17 21.99 57
F 08 0.42 6.64 0 0.25 14.95 0 0.08 7.97 3
F 09 1.17 0.00 0 1.00 0.00 0 0.25 0.00 0
F 10 0.86 0.00 0 0.79 0.00 0 0.14 0.00 0
RPF 27.14 0.54 0 10.71 1.20 1 16.67 0.96 1

4.3.3 Application Using Correlation Dimension RKPCA

To apply the Correlation Dimension RKPCA, it is necessary to check if this system is
a chaotic system or not, this can be done by computing the largest Lyapunov Exponent
of the training data set which is for this system is equal to 0.047 and since it is a positive
value then this system is considered as chaotic and the Correlation Dimension RKPCA
can be applied.

The correlation dimension of the cement plant is 10.98 and its ceiling is 11, by applying
algorithm 5 the reduced matrix obtained should have only 11 samples. Figure 26 illustrates
how the Correlation Dimension is computed using the log (CI) vs log (d) plot, the slope
of the red line shown in the same figure is the value of CD.

The resulting reduced matrix from algorithm 5 is then used to build the monitoring
model using algorithm 3 and then algorithm 4 to monitor the system. For the number of
PCs selected for each index are 6 for T 2, 8 for Q, and 8 for φ. these number of PCs were
selected for the best performance possible of the model. Table 14 contains the monitoring
results obtained using this algorithm. The Correlation Dimension RKPCA has failed to
detect the majority of faults for the T 2 index. For the Q index, the proposed approach in
this part has a good monitoring performance except for the drift-wise type of faults but it
has detected the real process fault better than the conventional KPCA technique which
is good for such a small data set. The combined index, φ, is calculated as mentioned in
4.2.3 where the value of η for this system is 1 so the monitoring performance of φ is the
same as the performance of the Q index.

The Correlation Dimension RKPCA can be implemented as a cyclic script in the mon-
itoring software because it reduces the size of the data by a large amount so that it does
not slow the execution performances of the monitoring main tasks and it can detect some
faults with a successful rate as the RPF fault in the table 14.

Correlation Dimension RKPCA has failed to detect the real process fault for the T 2
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Table 14: Correlation Dimension RKPCA monitoring results
Indices T 2 Q φ
Metrics FAR MDR DTD FAR MDR DTD FAR MDR DTD
F 01 0 100 NA 0.58 4.32 0 0.58 4.32 0
F 02 0 100 NA 0.78 16.13 0 0.78 16.13 0
F 03 0 0 0 0.65 0.00 0 0.65 0.00 0
F 04 0 44.62 0 0.48 3.19 0 0.48 3.19 0
F 05 0 100 NA 0.64 19.52 0 0.64 19.52 0
F 06 0 100 NA 0.67 8.64 0 0.67 8.64 0
F 07 0 100 NA 0.52 100 NA 0.52 100 NA
F 08 0 100 NA 0.58 92.69 7 0.58 92.69 7
F 09 0 100 NA 0.67 100 NA 0.67 100 NA
F 10 0 100 NA 0.57 26.26 0 0.57 26.26 0
RPF 0 100 NA 1.90 1.98 4 1.90 1.98 4

index but it was successful for the other two indices as shown in figure 27.

4.3.4 Application Using Variogram-based RKPCA

The Variogram-based RKPCA is directly applied to the system’s data set without
checking for certain specifications within the data set. Figure 7 is the Variogram of the
cement plant data set, the red line is the sill of the variogram, and the green and black
dashes are c± ω. The selected lags h have variogram values within those two dashes.
For the cement plant data set, algorithm 6 is applied. If the selected values of ω are under
1× 10−4 then there is no lag chosen and hence the reduced matrix is empty. If the values
of ω are in the range of [1.0× 10−4, 6.0× 10−4[ then only one lag is selected which is equal
to 617 and this lag helps to create a reduced matrix with only 302 samples. When the ω
values lies within the range [6.0× 10−4, 1.1× 10−3[, these values leads to set of selected
lags with the smallest one of 495 which then creates a reduced matrix of 546 samples.
For 1.1× 10−3 ≤ ω < 1.4× 10−3, the smallest selected lag is 494 which helps to produce
a reduced matrix of 548 samples. if ω is greater or equal 1.4× 10−3 then the smallest
selected lag is 141 which creates a full size reduced matrix. So, by applying algorithm 6 a
set of reduced matrices is produced and the chosen one is selected due to the monitoring
performances. Equation (6) is used to evaluate the performance of different matrices as
presented in the following table 15. As can be seen the different resulting matrices from
algorithm 6 have different monitoring performance.

Table 15: Monitoring Performance of Different Reduced Matrices Using Variogram
T 2 Q φ

ω hm Size PC JT 2 PC JQ PC Jφ
1× 10−4 ≤ ω < 6× 10−4 617 302 93 0.28 11 0.23 25 0.28
6× 10−4 ≤ ω < 1.1× 10−3 495 546 40 0.18 34 0.20 31 0.17
1.1× 10−3 ≤ ω < 1.4× 10−3 494 548 42 0.18 19 0.22 19 0.21

The minimum selected lag, h, is responsible for choosing the appropriate samples for
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Figure 27: Correlation Dimension RKPCA Monitoring for RPF.

the reduced matrix. For the T 2 index, both matrices with 546 and 548 samples have the
best monitoring performances with value of JT 2 = 0.18 using 40 PC and for the other
two indices the first matrix with 546 samples has the best monitoring performance with
JQ = 0.20 with 34 PC and Jφ = 0.17 with 31 PC, hence it is the one selected for the
monitoring model. Table 16 shows the monitoring metrics for this model.

Table 16: Variogram-based RKPCA Monitoring Performance
Indices T 2 Q φ
Metrics FAR MDR DTD FAR MDR DTD FAR MDR DTD
F 01 0.50 0.00 0 0.75 0.00 0 0.33 0.00 0
F 02 0.69 0.00 0 1.47 0.00 0 0.52 0.00 0
F 03 0.65 0.00 0 1.38 0.00 0 0.49 0.00 0
F 04 0.64 3.19 0 0.48 4.78 0 0.48 2.79 0
F 05 0.56 24.70 1 1.28 25.10 1 0.48 23.90 1
F 06 0.50 7.97 0 1.33 7.97 0 0.33 7.64 0
F 07 0.52 17.01 54 0.43 9.97 33 0.35 13.78 33
F 08 0.25 6.64 0 1.08 14.62 0 0.33 12.96 0
F 09 0.67 0.00 0 1.42 0.00 0 0.30 0.00 0
F 10 0.43 0.00 0 1.07 0.00 0 0.29 0.00 0
RPF 18.10 0.78 0 17.86 1.68 3 7.62 1.50 1

For the T 2 index, the proposed approach has successfully detected all faults including
the real process fault, unfortunately, it has a slightly high MDR value for the fifth and
seventh simulated faults and high DTD value for the seventh fault this high detection
delay value is due to the nature of fault which is drift-wise and hence it affects the missed
alarm rate value. For the Q index, the false alarm rate of all faults is acceptable and does
not affect the performance of the monitoring model, the missed detection rate is gener-
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ally acceptable except for the fifth simulated fault as for the detection delay the seventh
simulated fault has a somewhat high value. The combined index, φ, has a better general
performance than the other two indices, the FAR values are all acceptable, especially for
the real process fault, the MDR values are better than the values of the other two indices
except for the seventh and eighth faults. The DTD values are similar to the ones of the
Q index. In general, the Variogram-based RKPCA has successfully reduced the size of
the training data set and maintained a decent overall monitoring performance which is
the purpose of this study.
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Figure 28: Variogram-based RKPCA Monitoring RPF.

The Variogram-based RKPCA has a good monitoring result for the real process fault
despite some high FAR values, figure 28 shows these performances for different indices.

4.3.5 Application Using Histogram-based RKPCA

Algorithm 7 is used to reduce the number of samples in the training data set collected
from the Cement Plant. Depending on NB, the Histogram-based RKPCA produces a set
of reduced matrices and again the cost function, Js, is used to evaluate the performance
of each one of them. The resulting reduced matrix is related to both ε and NB, for some
reduced data it can have the same minimum appearance frequency but they are not the
same matrices.

Table 17 presents results obtained using Histogram-based RKPCA on the cement plant
data. From this table, it can be seen that a different matrix has outstanding performance
for various indices. For the T 2 index, matrices resulting from NB = {20 & 12} have the
best overall performance regarding this index and it can be noticed that all matrices have
a close number of retained PCs. Matrix obtained using NB = 09 leads the monitoring
performances for the Q index, Unlike the first monitoring index the range of retained
PCs is larger. finally, matrices from NB = {20, 16, 15, & 11} have the best monitoring
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Table 17: Monitoring Performances of Different Reduced Matrices on Cement Plant.
T2 Q φ

NB ϵ PC JT 2 PC JQ PC Jφ
20 02 36 0.17 20 0.20 30 0.18
18 03 40 0.20 25 0.21 25 0.20
16 04 44 0.18 10 0.20 22 0.18
15 04 35 0.18 47 0.17 19 0.18
12 03 37 0.17 27 0.19 25 0.19
11 05 37 0.19 11 0.19 26 0.18
10 06 38 0.18 43 0.18 20 0.19
09 07 35 0.20 30 0.15 28 0.19
08 08 32 0.23 14 0.21 24 0.19
07 09 32 0.23 14 0.21 24 0.19
06 13 31 0.25 29 0.26 22 0.21

performances regarding the φ index and the number of retained PCs is close to each other.
So if the monitoring system is built upon one index then one of these matrices is selected,
but if this system depends on all indices then the matrix with the best all-around perfor-
mance is selected. The comparison is now based on the cost function from (7) which is
the mean of all Js. Matrix is obtained by NB = 15 have the best monitoring performance
based on J with value of 0.18. This matrix is then used to compare its performance with
other algorithms.

Table 18: Histogram-based RKPCA Monitoring Performance for Cement Plant
Indices T 2 Q φ
Metrics FAR MDR DTD FAR MDR DTD FAR MDR DTD
F 01 0.25 0.00 0 1.25 0.00 0 0.67 0.00 0
F 02 0.26 0.00 0 1.38 0.00 0 1.12 0.00 0
F 03 0.24 0.00 0 1.30 0.00 0 1.06 0.00 0
F 04 0.24 3.19 0 1.44 3.98 0 0.88 3.19 0
F 05 0.24 20.72 1 1.28 40.24 1 1.04 17.13 1
F 06 0.25 11.96 0 1.33 12.62 0 0.92 11.30 0
F 07 0.26 21.99 66 1.29 21.41 1 0.69 19.35 56
F 08 0.08 20.60 0 0.83 14.62 6 0.67 13.62 0
F 09 0.25 0.00 0 1.33 0.00 0 1.08 0.00 0
F 10 0.21 0.00 0 1.21 0.00 0 0.79 0.00 0
RPF 6.67 1.02 0 11.19 0.96 0 17.14 0.72 0

From table 18, it can be noticed that the Histogram-based RKPCA has successfully
detected all faults for different monitoring indices. From the same table, the Histogram-
based RKPCA has some difficulty detecting F 05 and F 06 faults which are random
because it has relatively high MDR values for those two faults, also Fault F 07 has both
MDR and DTD values. F 08 has a high MDR value, one should consider that F 07
and F 08 are a stepwise type of faults. For the rest of the faults, the proposed algorithm
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performs as well as anticipated.

Figure 29 shows the histogram of the first PC of the training data set without reduc-
tion and figure 30 shows the histogram of the reduced data set. From these figures, it
can be noticed that both data have the same distribution and the values of the appear-
ance frequency are divided by four which is the same value as the minimum appearance
frequency.

Figure 29: Histogram of the 1st PC Score of Original Data (CP).

Figure 30: Histogram of the 1st PC Score of Original Data (CP).

70



0 200 400 600 800 1000 1200 1400 1600 1800 2000

samples

10
2

10
3

T
²

0 200 400 600 800 1000 1200 1400 1600 1800 2000

samples

10
-2

10
0

Q

0 200 400 600 800 1000 1200 1400 1600 1800 2000

samples

10
0

10
2

Figure 31: Histogram-based RKPCA Monitoring for RPF.

Figure 31 illustrates the monitoring performances of the Histogram-based RKPCA
using different indices to detect the real process fault, this algorithm has successfully
detected this fault without any flop.

4.3.6 Results and Discussion for the Cement Plant

In evaluating the performance of monitoring systems constructed using a single mon-
itoring index, a comparative analysis was conducted between the proposed algorithms
and the conventional KPCA. The cost function, denoted as Js, was utilized to determine
which matrix provided the best performance. This comparison encompasses all matrices
generated by the reduction methods as well as the matrix from the KPCA algorithm. The
results are based on tables 13, 14, 16, and 18
For the T 2 index, the Histogram-based RKPCA approach utilises reduced matrices ob-
tained using NB = 20 or NB = 12, delivers the best performance with a cost function
value of JT 2 = 0.17. This indicates superior monitoring capabilities compared to other
methods. Following closely are the Variogram-based RKPCA matrices, which consist of
546 samples, and the conventional KPCA, both achieving a monitoring performance value
of JT 2 = 0.18. These results are competitive but slightly less effective than the Histogram-
based RKPCA. The Correlation Dimension RKPCA ranks last in this comparison, with a
significantly higher cost function value of JT 2 = 1.67, reflecting much poorer performance.
For the Q index, the Histogram-based RKPCA again outperforms all other methods with
a cost function value of JQ = 0.15, achieved using a reduced matrix obtained by NB = 09.
This represents the best monitoring performance for this index. The conventional KPCA
algorithm follows with a performance value of JQ = 0.17, and the Variogram-based
RKPCA is next with JQ = 0.20. The Correlation Dimension RKPCA is at the bot-
tom with a JQ = 0.60, indicating the least effective performance among the methods
tested.
For the combined index φ, The Variogram-based RKPCA and KPCA methods both
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achieve the best performance with a cost function value of Jφ = 0.17. These methods
provide optimal monitoring results for the φ index. The Histogram-based RKPCA follows
closely with a Jφ = 0.18, showing competitive performance but not quite as strong as the
top methods. The Correlation Dimension RKPCA once again has the poorest perfor-
mance with a Jφ = 0.60, reflecting its consistent under-performance across the indices.
Overall, for monitoring models based on individual indices, both the Variogram-based
RKPCA and Histogram-based RKPCA approaches have improved upon the monitoring
performance of the conventional KPCA algorithm. In contrast, the Correlation Dimension
RKPCA has not achieved the desired results and falls short of expectations in enhancing
monitoring performance.

This section focuses on a comparative analysis of monitoring performance among three
proposed algorithms and several existing methods. The comparison is conducted using
a model that incorporates all indices for monitoring. Additionally, the algorithms are
evaluated based on various other criteria, including the storage space required, the com-
putation time needed, and the homogeneity between the original and reduced datasets.

Table 19 presents the results of different algorithms evaluated across various monitor-
ing indices. The comparison reveals the performance metrics for each algorithm, providing
insights into their effectiveness and efficiency. Based on the T 2 index, The KPCA algo-
rithm, Variogram-based RKPCA, and Histogram-based RKPCA exhibit the lowest values
of JT 2 , indicating the best performance for this index. Among these, the Histogram-based
RKPCA stands out with the smallest size of the reduced matrix, which suggests it offers
superior performance in monitoring compared to the others. Following these top perform-
ers, the Euclidean Distance RKPCA is next, with performance slightly trailing behind.
The k-means RKPCA, Reduced Rank KPCA, and Correlation Dimension RKPCA follow
in sequence, with the Correlation Dimension RKPCA performing the least effectively.

The KPCA algorithm, k-means RKPCA, and Histogram-based RKPCA achieve the
best monitoring performance. Notably, the k-means RKPCA appears to have the most
efficient reduced dataset size for the Q index. The Euclidean Distance RKPCA performs
slightly less effectively. The remaining algorithms are ranked as follows: Variogram-based
RKPCA, Reduced Rank RKPCA, and Correlation Dimension RKPCA, with the latter
showing the least favorable results.

For the φ index, the k-means RKPCA algorithm demonstrates exceptional perfor-
mance, outperforming the conventional KPCA for the first time. This represents a sig-
nificant achievement, highlighting the effectiveness of the k-means RKPCA in handling
combined index data. The KPCA and Variogram-based RKPCA algorithms follow closely,
both showing strong performance. The Histogram-based RKPCA is next in line, offer-
ing solid but slightly less effective monitoring compared to the top methods. The final
three algorithms—Euclidean Distance RKPCA, Reduced Rank RKPCA, and Correlation
Dimension RKPCA—show poor performance. Particularly, the Correlation Dimension
RKPCA has consistently underperformed across all indices. This poor performance is
likely due to the significantly reduced number of observations retained, which impacts its
ability to effectively monitor the data.
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Table 19: CP Cost Function Js values for Different Algorithms.
T² Q φ

Method Size PCs Js PCs Js PCs Js
KPCA 768 39 0.18 31 0.17 30 0.17

Reduced Rank
RKPCA [40]

613 25 0.51 10 0.27 10 0.26

Variogram-based
RKPCA [62]

546 40 0.18 34 0.20 31 0.17

Correlation Dimension
RKPCA [63]

11 4 1.67 8 0.60 8 0.60

Euclidean Distance
RKPCA [19]

131 38 0.35 22 0.18 18 0.19

k-means
RKPCA [41]

131 18 0.44 08 0.17 18 0.11

Histogram-based
RKPCA [64]

198 35 0.18 47 0.17 19 0.18

If a user opts to use a monitoring model that incorporates all three indices simulta-
neously, the overall performance is assessed using the cost function J , which represents
the average of the cost functions for each individual index. The analysis reveals that the
conventional KPCA algorithm achieves the best overall monitoring performance, with
a J value of 0.17. This is closely followed by both the Variogram-based RKPCA and
Histogram-based RKPCA approaches, each attaining a J value of 0.18. In third place,
the k-means RKPCA and Euclidean Distance RKPCA both exhibit a J value of 0.24. The
Reduced Rank RKPCA comes next with a higher J value of 0.35, indicating a decline in
performance compared to the top methods. Finally, the Correlation Dimension RKPCA
has the poorest overall performance, with a J value of 0.96.

Notably, in terms of monitoring performance relative to the size of the training dataset,
the Histogram-based RKPCA stands out as the leader among the methods evaluated.
This suggests that it does not only perform well across the indices but also manages to
effectively handle the dataset size, enhancing its overall monitoring capabilities.

In the homogeneity comparison, the Variogram-based RKPCA reduced dataset ex-
hibits only one non-homogeneous variable, specifically (x15), when compared to the orig-
inal dataset. This suggests that the Variogram-based RKPCA method retains a high
degree of similarity to the original data. The Reduced Rank RKPCA, Euclidean Distance
RKPCA, and Histogram-based RKPCA approaches each have two non-homogeneous vari-
ables, namely x15, x44. This indicates a slightly higher level of deviation from the origi-
nal dataset, but still maintains a relatively good level of homogeneity. In contrast, the
k-means RKPCA approach reveals four non-homogeneous variables, indicating a more
significant divergence from the original dataset compared to the previously mentioned
methods. The Correlation Dimension RKPCA stands out with a notably higher number
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of non-homogeneous variables, totaling seventeen. This large number suggests a substan-
tial discrepancy from the original data, reflecting a significant loss of homogeneity.

Table 20 presents the results of the homogeneity test, underscoring the effectiveness
of the Variogram-based RKPCA and Histogram-based RKPCA in maintaining the ho-
mogeneity of the reduced dataset. Conversely, the Correlation Dimension RKPCA shows
a considerable shortfall in preserving data homogeneity, highlighting its limitations in ef-
fective data reduction.

Table 20: CP non-homogeneous variables for different algorithms.
Method Non-Homogeneous variables

Reduced Rank RKPCA [40] 2 ∼ [x15, x44]
Variogram-based RKPCA [62] 1∼ [x15]

Correlation Dimension RKPCA [63]
17 ∼[x1, x8, x10, x14, x17, x18, x20,

x29, x34, . . . , x41, x44]
Euclidean Distance RKPCA [19] 2 ∼ [x15, x44]

k-means RKPCA [41] 4 ∼ [x1, x10, x15, x44]
Histogram-based RKPCA [64] 2 ∼ [x15, x44]

The RKPCA approach provides a notable solution for enhancing the KPCA algorithm
by reducing both the required storage space and the execution time for one sample dur-
ing the online phase. These improvements are crucial for optimizing the efficiency of the
KPCA model. Table 21 offers detailed information on these two criteria for comparison
purposes. This table highlights how the RKPCA approach impacts the storage require-
ments and processing time, thereby offering insights into its efficiency benefits. To better
understand the relationship between the number of samples and the execution time, the
following equations are provided. These equations illustrate how the execution time scales
with changes in the number of samples, thereby quantifying the impact of the number of
samples on computational performance.

T 2 →
{
E (n) = 7.71× 10−12n3 − 2.454× 10−9n2 + 8.566× 10−7n+ 3.945× 10−6, 0 ≤ n ≤ 361

E (n) = 1.115× 10−12n3 + 3.352× 10−9n2 + 2.193× 10−6n+ 0.0005, n > 361

Q →
{
E (n) = 1.129× 10−11n3 − 3.409× 10−9n2 + 9.4× 10−7n+ 4.291× 10−7, 0 ≤ n ≤ 361
E (n) = 1.617× 10−11n3 − 2.058× 10−8n2 + 1.491× 10−5n+ 0.002537, n > 361

φ →
{
E (n) = 1.375× 10−11n3 − 3.744× 10−9n2 + 9.777× 10−7n+ 3.77× 10−6, 0 ≤ n ≤ 361
E (n) = 2.145× 10−11n3 − 2.981× 10−8n2 + 2.012× 10−5n− 0.003475, n > 361

As observed in the previous subsection, there is a direct relationship between the re-
quired storage space and the number of observations in the training dataset, as well as
the execution time. Table 21 provides insights into this relationship. From the table, it
is evident that the Correlation Dimension RKPCA requires the smallest storage space

74



due to its significantly lower number of observations. This is followed by the Euclidean
Distance RKPCA and k-means RKPCA, which also demonstrate relatively low storage re-
quirements. The Histogram-based RKPCA comes next in terms of required storage space.

In terms of execution time, the ranking of the algorithms aligns with their storage space
requirements. Therefore, the Correlation Dimension RKPCA, with its minimal storage
needs, also has the shortest execution time, followed by the Euclidean Distance RKPCA
and k-means RKPCA. The Histogram-based RKPCA ranks next, with Variogram-based
RKPCA, Reduced Rank RKPCA, and conventional KPCA requiring more storage and
longer execution times.

These results highlight that managing a very large number of samples can pose chal-
lenges for monitoring systems. It is important to note that these performance metrics
are also influenced by the hardware used to implement the monitoring system. Hence,
hardware specifications play a crucial role in determining the overall efficiency of these
algorithms.

Table 21: CP execution time and required storage space
T 2 Q φ

Method Size
Storage

Space (ko)
Execution
Time (ms)

Execution
Time (ms)

Execution
Time (ms)

KPCA 768 8704 3.90 4.20 4.30
Reduced Rank
RKPCA [40]

613 5298 2.40 2.60 2.70

Variogram-based
RKPCA [62]

546 4532 2.00 2.20 2.20

Correlation Dimension
RKPCA [63]

11 4 2.72× 10−2 2.43× 10−2 2.43× 10−2

Euclidean Distance
RKPCA [19]

131 257 0.12 0.12 0.13

k-means
RKPCA [41]

131 259 0.12 0.12 0.13

Histogram-based
RKPCA [64]

198 594 0.21 0.25 0.26

4.4 Conclusion

For the TEP benchmark evaluation, the proposed approaches clearly demonstrated
success in reducing both the required storage space and execution time compared to the
conventional KPCA algorithm. However, regarding monitoring performance, the Correla-
tion Dimension RKPCA did not meet expectations, failing to deliver satisfactory results.
In contrast, the Variogram-based RKPCA exhibited the best monitoring performance
among the proposed methods, though it did not achieve a significant reduction in dataset
size. The Histogram-based RKPCA, however, effectively retained approximately half of
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the original samples while still providing respectable monitoring performance. These
observations highlight the Histogram-based RKPCA as the most effective approach for
TEP, successfully balancing the trade-off between dataset size reduction and strong mon-
itoring performance. When applied to the CP data, the Variogram-based RKPCA and
Histogram-based RKPCA performed as expected, often leading in monitoring perfor-
mance across various scenarios. Both methods consistently demonstrated strong capa-
bilities, maintaining acceptable performance even when not achieving the absolute best
results. Conversely, the Correlation Dimension RKPCA underperformed in nearly all as-
pects of monitoring when compared to the other proposed algorithms. Nevertheless, it
offers a distinct advantage in terms of required storage space and execution time due to
the significantly smaller number of observations it retains, showcasing efficiency in these
specific areas despite its inferior monitoring performance. The comprehensive evaluation
in this chapter confirms that the proposed algorithms performed as anticipated, outper-
forming some existing algorithms in various cases. They effectively optimized execution
time and minimized storage requirements without sacrificing overall performance. Fur-
thermore, with the notable exception of the Correlation Dimension RKPCA, the proposed
methods successfully retained homogeneity with the original data. These findings collec-
tively affirm the significant potential of the proposed methods for robust fault detection.
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General Conclusion

This dissertation introduced three novel RKPCA algorithms to address key limita-
tions of traditional Kernel PCA, particularly those related to the size of the training
dataset. Each algorithm aimed to mitigate these issues while maintaining or even im-
proving monitoring performance. The Histogram-based RKPCA leverages class intervals
for data reduction, robustly preserving the original distribution without prior assump-
tions; this method demonstrates a superior balance between significant data reduction
and impressive monitoring performance. The Variogram-based RKPCA uses spatial con-
tinuity to eliminate correlated samples from the training set, also without requiring data
assumptions; this approach consistently shows robust monitoring performance, making it
optimal when detection accuracy is paramount, even if the degree of data reduction is
less critical. Finally, the Correlation Dimension RKPCA, designed specifically for chaotic
systems, excels at achieving substantial data reduction, making it a highly viable option
for integration into monitoring software as a cyclic script, particularly when storage effi-
ciency and processing speed are paramount.

The proposed algorithms were rigorously tested on the Tennessee Eastman Process
and the Ain El Kebira Cement Plant to comprehensively evaluate their efficacy against
existing methods. The Variogram-based RKPCA and Histogram-based RKPCA success-
fully achieved the study’s core objectives by effectively addressing KPCA’s drawbacks
while maintaining strong performance across various metrics. The Correlation Dimen-
sion RKPCA, however, partially fulfilled these objectives due to its inconsistent moni-
toring performance. Compared to published works, the Variogram-based RKPCA and
Histogram-based RKPCA exhibited good performance for both processes, aligning well
with methods like k-means RKPCA and Euclidean Distance RKPCA. The Correlation
Dimension RKPCA notably falls short in comparison, especially concerning its monitoring
performance. The three proposed algorithms contributed to notably reduced execution
times and lower storage requirements than KPCA.

Despite their individual strengths, these algorithms do come with certain limitations.
The Correlation Dimension method, while excellent for chaotic systems, is only effective
for specific types of faults, and its monitoring performance isn’t consistently stable. Both
the Variogram-based and Histogram-based methods can generate multiple reduced ma-
trices, which might add complexity in certain applications. Furthermore, the Variogram
method’s ability to reduce data isn’t always guaranteed, as its effectiveness depends sig-
nificantly on the minimum lag selected.

Future research aims to build upon this thesis’s contributions in RKPCA for fault
detection. Although the proposed methods have demonstrated significant advances in
computational efficiency and performance, there remains considerable room for further
enhancement in their robustness, broadening their applicability, and addressing specific
challenges, such as the limitations observed with the Correlation Dimension RKPCA.
These future endeavours will focus on refining algorithmic capabilities, exploring new
validation scenarios, and delving into theoretical extensions to further advance the state-
of-the-art in intelligent fault detection systems.
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Appendix A: Mercers’ Theorem

Mercers’ Theorem plays a crucial role in KPCA because the mapping function can be
replaced by a kernel function κ(x, y).

Mercers’ Theorem: κ(x, y) is a continuous, symmetric, and positive semi-definite
kernel function defined on a compact domain ι× ι, there exists a set of orthonormal eigen
function Φi(a) and corresponding non-negative eigenvalues λi such that a kernel function
can be expressed as

κ(x, y) =
∞∑
i=1

λiΦi(x)Φi(y)

where the series converges absolutely and uniformly. So, as long as κ is a valid Mercer
kernel it corresponds to an inner product in some high-dimensional feature space.
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