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ABSTRACT

The present work concerns the Full Wave analysis of open planar Microwave

Integrated Circuits (MIC's) and Monolithic Microwave Integrated Circuits (MMIC's) based

on Absorbing Boundary Conditions (ABC's), using the Method of Lines (MoL). The

structures to be covered are of great interest in this field, such as, the single microstrip, the

edge coupled lines, the broadside-coupled lines, the broadside-edge coupled lines and some

other multi-strip waveguiding structures.

After introducing the two first chapters, about the MoL technique and the ABC operators,

the matching of the Absorbing Boundary operators to the Method of Lines is carried out.

Using the MoL modeling, the lateral equations are considered to satisfy the ABC operator.

Hence, a system of ordinarily differential equations is obtained through the introduction of

some appropriate transformations. Then, the complete characterization of zero thickness and

finite thickness strips microwave structures is conducted for isotropic and anisotropic

structures using both uniform and nonuniform discretization schemes. Finally, a software

package has been implemented using this mathematical development to characterize the

aforementioned structures.
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GENERAL INTRODUCTION

The field of microwaves, which extends over the gigahertz region of the

electromagnetic spectrum corresponding to wavelength of a few decimeters to a few

millimeters, was traditionally used for radars which require high directivity antennas and

adequate reflections from obstacles. Later, the use of microwaves was extended to

communications, in particular with satellites and faraway space probes. In the recent years, a

strong core of application exists for microwave frequencies such as point to point multichanal

links, microwave spectroscopy, mobile communication systems, microwave/millimeter-wave

video distribution systems (MVDS), microwave transceivers for optical fiber transmission,

microwave instrumentation, local area networks, medical and industrial microwave heating,

and other numerous applications.

At microwave frequencies, the basic circuit elements are transmission lines. These are made of

conducting strips deposited upon a dielectric substrate, they are called Microwave Integrated

Circuits (MIC). In the case the substrate is made of semiconductors, in which active devices

are fabricated by diffusion or ion implantation, the resulting structures are then called

Monolithic Microwave Integrated Circuits (MMIC) [1]. The main advantages of using M3C

and MMIC structures are reduced dimensions and weight, large scale fabrication, increased

reliability by reducing the number of connections and precise reproducibility of the integrated

system, modern and small sized structures.

The wide spread use of integration methods, combined with the development in GaAs

technology and miniaturization have led to MIC and MMIC structures whose dimensions are

much smaller than the signal wavelength. When MIC structures have dimensions which are

smaller than the wavelength of the transmitted signal, then they can be satisfactorily analyzed

on the basis of inline voltages and currents, or in short the Quasi Static Analysis. When the

frequency goes higher, and therefore, the wavelength becomes smaller, it becomes necessary to

set up a rigorous and complete electromagnetic field solution based on the Full Wave Analysis

[2].



In parallel with this rapid development, numerical characterizations and modeling of guided-

wave passive components have been a new challenge to electromagnetic field theoreticians.

This is due to the complexity and development in millimeter wave integrated circuits and

monolithic integrated circuits. It is no longer economical, or even feasible, to tune the circuits

once they are fabricated. Therefore, extremely accurate characterization methods are needed to

model the structures. Because most today's MIC and MMIC structures are not amenable to

closed-form analytical expressions, almost all the mathematical techniques capable of

rigorously predicting the basic circuit parameters are either numerical or pseudo-numerical

techniques. These techniques can be qualified by means of a set of criteria such as computing

efficiency, accuracy, ease of use, memory requirement, generality, and reliability.

Since the advent of microwave integrated circuits, a number of methods have been invented

and the classical ones have been refined for these modern structures [3]. Some of the famous

methods used in the analysis of MIC structures are the Finite Difference Method based on

discretizing the structure into nodes, the Finite Element Method where the discretization are

taken over small elements, the Mode Matching Technique and other methods such as the

Conformal Mapping, the Matrix Inversion Method and the Integral Equation Technique are

used. These methods present some deficiency and limitations such as the need of a prior

knowledge of the field, the convergence is not assured, which lead to spurious solutions

occurrence, the long calculation time required, and the large memory needed due to the nature

of the discretization schemes used [3,4],

Another method that can be used is the Method of Lines [5,6]. One of the recent methods

introduced in analyzing MIC and MMIC structures [7,8]. This method is semi-analytical,

where the differential equations to be solved are discretized in all the variables letting only one

in its analytical form. Hence, the solution is given along lines. This aspect leads to less

discretization effort and a lesser number of equations, where precious time and memory

requirements are gained over the previously stated methods. Furthermore, this method does

not suffer from relative convergence or spurious solutions as it is the case in the Mode

Matching Technique due to the Fourier series truncation as well as it does not necessitate the

prior knowledge of the fields to be calculated.

This method has been extensively used in analyzing closed MIC and MMIC structures in both

Quasi-Static [9,10] and Full Wave [11,35]. The former is used in structures supporting TEM

waves operating at low frequency range and the latter is used at higher microwave and
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millimeter wave frequencies, where the used wavelength is of the order of the structure spatial

dimensions. It has been firstly used in two-dimensional wave propagation in waveguides in

1980 [7], then, it has been extended to three dimensional problems in 1984 [12]. After that, it

has been applied to the parallel multi-conductor multi-layer structures and crossing conductors

in both quasi static and full wave analysis, and to some other structures in 1987 [13] and in

1990 [14].

Generally, the analyzed MIC and MMIC structures are assumed to be enclosed within a

metallic shielding. Therefore, the well known Closed Boundary conditions (Dirichlet-

Neumman) are used. This requires not only the specifications of the microstrip and the

characteristics of the dielectric, but one must precisely specify also the box dimensions.

The analysis and data are most often reported for open microstrips [15], with the usual

assumption that both the substrate and the ground plane extend to infinity in the transverse

direction, so that the characteristic impedance and the effective permittivity are not affected by

the radiation effect of the walls. Hence, the larger are the dimensions of the closed structure in

the simulation, the more accurate and realistic data could be achieved. But, increasing the size

of the structure will lead to an increase in the problem simulation. This generates a

disadvantage in both memory and time requirements.

To overcome this problems, and to analyze the actual open structures, one can use the concept

of Absorbing Boundary Conditions (ABC), which are operators derived to simulate the

existence of artificial boundaries that minimize reflections from the edges of the computational

domain (i.e. an artificial box boundaries) [16,17].

Thus, the present work concerns the Full Wave analysis of open planar Microwave Integrated

Circuits and Monolithic Microwave Integrated Circuits structures based on Absorbing

Boundary Conditions (ABC), using the Method of Lines (MoL). The structures to be covered

are of great interest in this field, such as, the single microstrip, the edge coupled lines, the

broadside coupled lines, the broadside-edge coupled lines and some other multi-strip

structures. The material covered in this thesis will be presented as follows:

Chapter one concerns the numerical tool to be used in the analysis of open microwave

structures, which is the Method of Lines. The basic principles and the modeling procedure of

this method is illustrated over a closed microwave structure in both uniform and non-uniform

schemes.
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The absorbing boundary conditions operators and their theory are introduced in chapter two.
They are divided into two major classes. The first class is the mode annihilating operators
which are based on annihilating higher order modes in the far field expansion of the wave

solution. The second class consists of the one-way wave equation operators, which are

differential equations describing wave propagation in a given direction. These two types of
operators are used regarding the numerical method that best suits for their formulation. In
using the Method ofLines, the one way-wave equation is shown to be most convenient.

After having introduced the two previous chapters, the matching of the Absorbing Boundary
Condition operators to the Method ofLines is discussed in chapter three. The one-way wave
equation operator is taken to describe the wave propagating outwards at the walls of an
artificial enclosure of open microstrip structures. Using the Method of Lines modeling, the two
limit equations are taken to satisfy the ABC operators. Hence, asystem of ordinary differential
equations is obtained through the introduction of some appropriate transformations.
Chapter four is devoted to the complete characterization of microwave structures having zero
thickness strips. The field transfer relations between the dielectric layer interfaces are firstly
deduced, and then, the field matching equations are studied for simple and complex structures
where a final characteristic equation is established for each structure, from which the
propagation constant is calculated. Awide set of microwave structures can be characterized
using this development, such as, single microstrip, edge coupled, broadside coupled,
broadside-edge coupled structure, and other multi-layer multi-conductor structures.

In current MMIC's, the metallization thickness cannot be neglected compared with the
conductor width or the slot width. Thus, the consideration ofthe finite metallization thickness

is presented in the last chapter, in which a new set of difference operators are introduced to
describe the field behavior at the level of the intermediate finite metallization regions. In a

similar manner to the zero thickness case, all of the fields transfer equations and fields
matching equations are established. Nevertheless, using these results, the structures described
for the zero thickness case can be efficiently handled.

Finally, ageneral conclusion about this work is presented, and the most important features of
the frequency dependent characteristics of the aformentioned structures are discussed.

General Introduction



Chapter 1

THE METHOD OF LINES

1.1 LNTRODUCTION

Many numerical methods are used in analyzing microwave and millimeter wave

structures such as the Finite Difference Method, the Finite Element Method, and the Mode

Matching Technique. The present work is based on a semi-analytical numerical method, the

Method of Lines.

It is one of the powerful numerical tools used for the analysis of planar and quasi-planar

waveguiding structures. It has been developed by mathematicians in order to solve partial

differential equations [5,6]. In 1980 [7], it has been introduced in the field of microwave and

millimeter-wave engineering by Pregla et al for the calculation of frequency dependent

characteristics of single and multi-dielectric substrates with metallic interfaces. It was then

generalized to discontinuities, interconnections, and finite thickness strips structures for

constant and arbitrary' cross sections in both Full-Wave and Quasi-Static approaches [9-14],

The Method of Lines has certain similarities with some of the existing methods such as the

Mode Matching and the Finite Difference Methods. It has shown some extra features mainly,

saving much computing time and assured optimal convergence, ifthe strip edges are located in

the right position between the discretization lines. Using this method, the planar and quasi-

planar waveguides can be analyzed accurately, and in an easy way, where the problems

encountered with some other methods such as the convergence in the Mode Matching

Technique does not occur [11].

The objective ofthis chapter is to introduce the relatives ofthe method oflines, their use, and

its application for the analysis of microwave and millimeter wave structures. And, that is by

applying the Method of Lines in both uniform and nonuniform discretization on structures

subject to the known Closed Boundary conditions, Dirichlet or Neumann.



1.2 PRINCIPLE OF THE METHOD OF LLNES

The method of lines consists of transforming a second order system of partial differential

equations into a system of second order ordinary differential equations by applying the Finite

Difference approximation to their partial differentials, letting only one variable in its analytical

form. For the analysis ofwaveguides with constant cross section, this procedure has to be done

only with respect to one coordinate direction.

The discretization of the partial differential equation, means that the field is considered on

straight lines that are perpendicular to the interfaces between the different layers. These lines

may be equidistant or nonequidistant over the cross section depending on the considered

discretization procedure. In the case of a single microstrip, and because of symmetry, only a

half of the cross section can be considered.

For instance, in the Quasi-Static analysis, only one line system discretization procedure is

needed to represent the potential function over the whole structure. Whereas, for the Full

Wave approach, which is of interest, a system of two-separate-lines is used to describe both

the electric field ez and the magnetic field hz due to the Closed Boundary conditions that are

immediately fulfilled ifthe lines are in the right positions with respect to the lateral boundaries.

For the Full Wave analysis, and in order to have the Dirichlet condition for example, it is better

to put a line on the lateral boundary and set the corresponding field component to zero. In the

subsequent calculation, it is not necessary to carry on along this field component. Also, the
Neumann condition is easily satisfied by including a boundary between two consecutive lines

and equating the fields components. The shifting two lines system has many other advantages

than those related to the boundary mainly, optimal edge positioning, reduction of the

discretization error, and ease ofquantitative description that will be discussed in the following

sections [11].

1.3 DESCRIPTION OF THE DISCRETIZATION SCHEME

To introduce the method of lines discretization scheme in solving partial differential equation,

the second order differential equation which is the wave equation is taken as an example. Let

us consider the closed boundary structure as shown in Fig. 1.1. The structure is composed of

two dielectric layers within closed boundaries of a rectangular form, and a microstrip

conductor is placed at the interface of the two dielectric layers.

Chapter 1: The Method of Lines



If we consider the full wave analysis of this structure, the wave equation is given by the

following second order partial differential equations

c2y¥e c-V

cx~ c y2 c z

^k2x¥e

c2x¥k c2x¥n fZyh
~lr2Wh

Chapter 1: The Method of Lines

(1.1)

~~k2yh =0
ex" cry" c;"

where :

k2=Erk: ; k0 =coJJTe~ (] 2)

which describe the behavior of the electric and the magnetic fields presented respectively by

the related functions ^ and *¥h within the (x, y) discretization plane of the closed structure.

Using the Method of Lines, which is based on the discretization of all the existing variables in

the differential equation letting only one variable in its analytical form. If we consider the two

dimensional problem as shown in Fig. 1.1, the variable x is being discretized, while the variable

y is let in its analytical form. The related electric and magnetic field functions will be given by

the solutions of the wave equation along the discretization lines. Given x¥v, where v stands for

either the electric or magnetic related function in the form,

vp =vj/oV(V;>,)e(-./^> (1.3)

where, the wave propagation is assumed to be in the r-direction. The discretization of

equ.(1.3) allows the following transformation,

^(x^i^xiy) (L4)

where x, is the position of the line along the discretized axis.

In order to match the boundary conditions, the lateral electric field lines are put on the metallic

enclosure, whereas its value is taken to be zero. On the other hand, the magnetic field lines are

considered at the two adjacent left and right lines of the metallic enclosure with equal

quantities. These lines must be continuous along the layers ofthe structure for the sake of field

matching in the continuity study at the layers interfaces.

To get an expression of these field lines for the structure ofFig. 1.1, the Method of Lines can

be used in either uniform or nonuniform discretization schemes.



1.4 UNIFORM DISCRETIZATION ANALYSIS

Using uniform discretization, the discretized variable, in our case the x variable, is divided into

n- 1 equidistant intervals h. For the electric field lines the position of the lines will be given

according to the following relation:

x = ih 7 = 0,1 « + l.•, x, . . . , I (1.5)

where xn_, is the dimension of the structure, and the positions of the magnetic field lines are

calculated to be in the middle between the electric field lines. See Fig. 1.1.

hzo h zl hzn hzn+1 lW-2

'zr,

£o

-• h «-

•

*

>

6z0 ezi em &2i&\ x

Fig. 1.1 Discretization scheme of a closed microstrip structure

Using equ.(1.3), the Helmholtz relation given by equ.(l.l) reduces to,

4U-^+(*2-*,2)V=°\cx" cy" J
(1.6)

By introducing the notation of equ.(1.4), which describes the discretized fields related

solutions along the discretized lines, and applying the central difference approximation to the

first order derivatives of the field functions at the i'h line of the discretization scheme, we get a

relation for the electric field as:

Chapter 1: The Method of Lines



eV'l ¥',-¥'

ex

1=0,...,n (1.7)

defined at the position of the magnetic field lines between the two electric field lines indexed by

the subscripts (/', i-l). And similarly, for the magnetic field first derivatives approximation, we

get

c^h

ex

\T)h _ \T)h

/'=0,1 «-=-!• , *,..., (1.8)

defined at the position of the electric field lines between the two magnetic field lines indexed by

the subscripts (/', i-l). Where h is the discretization step for both electric and magnetic lines in

the uniform discretization.

For the second order partial differentials, the first order finite difference approximation can be

evaluated using the same idea as before, resulting into the following form:

<~4"i c^e

c-^e

C X"

C X a x

h
/=!,...,W (1.9)

when it is evaluated at the position /' of the electric field line, and

6^' 2\1lhc^

o2xVh C X 0 X

i=\,...,n-\ (1.10)
ex'

when evaluated at the position / of the magnetic field line.

Ifwe proceed in rearranging this last two equations (1.9) and (1.10) by using the above results

of the first order approximation in eqs.(1.7) and (1.8), we end up with a new second-order

finite difference approximation with the following form,

and

o2x¥e\ X--^ ^X-
ox \ h
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o2Vh

c x~
-1 hl '•' ; /=1, ..,/rt-l (1.12)

Now, substituting the last two eqs.(l.ll) and (1.12) into the second order partial differential

equation equ.(1.6), we get a new differential equation expressed in terms of finite difference

approximations for the field functions with respect to the discretized variable x as,

and

^T^- +— ' ~" "'' -(k2-k:)X =0 ; i=\,.,n (1.13)
c y- h"

_^_ +^d ^- +(*2-*;)Y,',=0 ; /=1,...,»+1 (1.14)
c y h~

If we construct the complete system of differential equations for all the discretized lines, we

get for the electric field related function

d2x¥e f , 1 \-^(*.-*;)/--rJF =0 (,,5)

and for the magnetic related function

where

d2x¥" ( \ \-jj-^\(k2-k:)l--IPhj¥h =Q (1.16)

ye = (v:, .y;)

v = (*,*, ,^,)* \'

(1.17)

and the second-order difference operator matrices F and P* are given according to the

boundary conditions at the lateral limits of the structure. Accordingly, in the case of closed

boundary structures, two possible conditions are possible at each lateral edge, either Neumann

or Dirichlet conditions that fulfill the following condition

Chapter 1: The Method of Lines 10



Electric wall: ez = 0 (Dirichlet condition);

Magnetic wall: hz = 0 (Dirichlet condition),

c? h .

on

o e

=0 (Neumann conditions)

- =0 (Neumann conditions)
on

n is the direction of the normal on the corresponding wall

Since the matrix P% is a tridiagonal matrix, then there exists a non-singular matrix T such that

P% can be transformed into a diagonal matrix as

?: = r pv t (1.18)

where X, are the eigen values of P\ and T is the matrix of the corresponding eigen vectors,

and Tx its transpose. Moreover, Tand Tl satisfy the orthogonality relation (J. J-I), where /

is the identity matrix.

Using these transformations, the systems (1.15) and (1.16) of coupled differential equations

can be easily decoupled by premultiplying their both sides by Tx, to obtain

and

d2 f , , 1 "l .
T(T;x¥') +l(k*-k:)I--TtfP'Tt) (Tex¥e) = 0

dy J

^(TX)^(k2 -k;)I-^(T:PkTh)yT^h) =0

or simply, by making a change of variables, and get

where

with

cZ{¥v

cy2
- K: ¥v = 0

(
A

\

K: = ---r-(k~-k:)

\JJV _ T-f\TfV

Chapter 1: The Method of Lines

(1.19)

(1.20)

(1.21)

(1.22)

(1.23)
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which are the transformed electric and magnetic related function vectors.

The general solution of the above second order ordinary canonical form of equ.(1.21) is given

by

W^qcosh(Kvy)^asmh{Ky) (1 24)

from which, the general solution for the i* line is found to be

T =c7;cosh(*„>-)-rC;sinh (*„>•) (1.25)

where Q' are arbitrary constants related to the boundary conditions.

The main disadvantage of the uniform discretization is the fact that the number of lines in

regions with high field concentration is the same as in those with low field concentration. This

problem affects significantly the accuracy of the results in the singularity regions, and

particularly the fields at the edges of the conductor strips. In order to solve this problem, a

nonuniform discretization procedure should be used.

1.5 EDGE POSITIONLNG CONDITIONS

As it has been mentioned previously in section. 1.2, the line positioning is very important for

convergence of the solution, as it is the main parameter in defining the rate of convergence

[18]. In this section a brief overview about the positioning of the discretization lines at the

edges of the strips for both electric and magnetic lines is presented.

In other methods such as the Mode Matching Technique, the solution may converge towards a

wrong value known as the relative convergence if the edge condition of the metallic strips is

violated [19,20]. On the contrary, the convergence using the Method of Lines is always

assured. However, at the vicinity of the strip edges, where field singularities occur, large

discretization errors may arise. To minimize this error, an optimal edge positioning of the

metallic edge relative to the lines given by the edge parameter/? or q must be examined [18].

(See Fig. 1.2.)
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A fc

H^
h

*r

discretization lines : ez hz

Fig. 1.2 Edge positioning

According to references [11,19], It is found that the solution for p and q conditions is

p=q=0.25. This result proves one of the advantages of the two lines shifting system that is

required for fast convergence. The value for the edge parameter found here is only valid for

relatively infinite long edges. In the case of finite edge length, as e.g. for resonator structures,

the edge parameter must be redetermined for each structure.

Finally, if the discretization lines are placed at the correct positions from the edges, the

convergence of the solution is guaranteed with low computation effort. Whereas, if the edge

parameter is not chosen optimally, the solution always converges, but with a bit more of

computational effort. Hence, in the case of uniform discretization, it is recommended that the

first discretization line on the strip is at a distance equal to 0.25/7 from the edge of the strip ( h

is the interval width for the uniform discretization). The same thing holds for the nonuniform

discretization.

Chapter 1: The Method of Lines 13



1.6 NON-UNIFORM DISCRETIZATION ANALYSIS

Due to the singularities in electromagnetic fields and current densities at the edges of the strip

conductors, in the analysis of MIC and MMIC structures, the discretization step should be

small enough to model accurately these singularities. When the uniform discretization is used,

this small discretization step is generalized over the whole structure even in regions where no

singularities are present. This leads to a great need in both time and memory due to the

increase in the total number of lines. To solve this problem, the nonuniform discretization is

proposed. It consists of discretizing the structure using different discretization steps. Hence,

the step is very small at the edge of a conductor strip as compared to regions where no

singularities occur[21], see Fig. 1.3.

The nonuniform modeling procedure is similar to the one described above for the uniform case

Consider the discretization scheme of Fig. 1.3, the intervals between two adjacent electric field

lines are denoted byh and the intervals between two adjacent magnetic field lines by e,.

The first order partial derivatives of the function ¥' are evaluated at the middle of the intervals

h, whereas, the second order partial differentials of the function vFe are evaluated at the

middle of the intervals ev The same thing holds for the x¥h function, i.e. its first order partial

derivatives are evaluated at the middle of the intervals et, whereas its second order partial

differentials are evaluated at the middle of the intervals /?,, as it is shown in Fig. 1.3.

h,

IzO Izl lzn-l hzn-2

Bo

ezo ezi
hzi eza

en, ezn-l x

Fig. 1.3 Non-uniform discretization scheme
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Using eqs.(1.3) and (1.4) for the discretized function representation, the first order partial
differential can be transformed using the first order difference approximation as

e^e ¥',-»{"

c x
/=0 n (1.26)

and

c^h • \p\ .q/*

ex
1=0,...,77-1 (1.27)

where, /?, and <?, are the interval widths for both electric and magnetic lines respectively, see
Fig. 1.3.

For the second order partial differentials, the first order finite difference approximation can be

evaluated, resulting to the following form

and

cVl e^e

c2me\ cx\ ex

ex'

c'Vh

ex'

e x

eVh\

e x

i = \,...,n (1.28)

i=\ 77-1 (1.29)

In the case of non-uniform discretization, we proceed in rearranging eqs(1.26) and (1.27) in

order to get symmetrical operators to facilitate the diagonalization operation. Hence, we write

the previous relations on the following form [21],

h'(. e"¥c
ill

^

ex
\J

for the electric field, and

(e~( cX ^
h

\'/» ex

^(^1:-^) ; &>,...,»

V,
0^-^) ; 7=0,. ,77-1
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for the magnetic field, where h is the equivalent interval in the case of a uniform discretization

procedure.

If we consider a lateral boundary conditions for the structure to be analyzed such as the

Dirichlet condition, we have the following condition on the two lateral boundaries

¥' = V , = 0
J n~ i

Hence, the two first order differential equations of equ.(1.30) for the electric field at these two

lateral electric walls can be expressed as

\h{ eVe\ } [h
h—r~\ \= A—X ; /' = 0 (1.32)

and

where

\ h { ex\j \h0

ihJ.cV'] \h

In the same way, we can apply eqs.(1.30) and (1.31) to the remaining first order differentials at

each line for both electric and magnetic functions. Hence, the result for the set of equations can

be expressed in a matrix form as

h r~'X =rhD^e
(1.34)

h r)x¥: = -r D' *¥h

ve = {*:, ,^;)'
(1.35)

are the electric and magnetic related vector functions.

The matrix operator D, is the first order difference operator and its form is related to the

boundary conditions used at the lateral limits, whereas, the two normalizing operators rh and re

given bv
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r m
h=dmg,

^^^-j

(1.36)

are diagonal matrices.

In the same way, and using the same procedure as above, the second order difference

equations can be expressed as follows

and

e (> e2^^ [hrcV\ eVe
— h —

n V ex' J \ e. v d x , ex

e'^n
i —

^ :Tl^i/» cT; c¥h

,-J

ill

\h, ex ; ex •J

i= 1, ,» (1.37)

/• = 1, ,w+l (1.38)

Similarly, equ.(1.34) and eqs.(1.37-38) can be applied to the whole discretized structure, and

we end up with a system of equations for both electric and magnetic fields related functions

that can be presented in a matrix form as follows

hr;''V'=-r.D'V:
(1.39)

Art -rh D X

where ¥ *xh are the second order finite difference approximation vectors.

A second order difference operators can be found for the second order differentials of

equ.(1.39). Using the following notation for the normalized first order difference operator

Dx=rhD re

and introduces the normalized electric and magnetic related vector functions

<D'-" = r- Veh

0e.H = -! vp.7,
xr e.h xx

Chapter 1: The Method of Lines
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eqs.(1.37) and (138) are rewritten using the above notation as

e,h sf^e.hh-$>eh =Deh® (1.42)

with

d: -DID,

(1.43)

Dt =-DD[

where, the new normalized electric and magnetic related functions 4^ and ¥ are given by

Oe =
47 4/. (1.44)

0h =
¥,

V

4/.

'V5
(1.45)

To solve the Helmholtz equation (1.6) using the non-uniform discretization procedure, the

discretization is considered in only one direction (the x-direction). Using the relation given by

equ.(1.42), its second order differential derivatives will be transformed into a second order

ordinary differential equation as

^\D^__+{k2_k^h=0
dy h*

(1.46)

Note that the operators D'J are real and symmetric. On the other hand, these operators are

tridiagonal, which means, that the electric and magnetic related vector components are coupled

to each other. By an appropriate orthogonal transformation, the system ofequations (146) can

be decoupled by transforming the two operators DeJ into two diagonal matrices of eigen

values defined as

where

•e.h _ j, p.c.h j
A ~ 1e.h Uxx Ie.h

Chapter 1: The Method of Lines
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keh =diag{k'-h) (1.48)

Taking into account the transformations expressed by equ.(1.47), the systems of the coupled

differential equations (146) are transformed into a decoupled system of differential equations

as

d20,h f?eM \

dy2
+

~> i ~> •

h
r + (k~-k:) O'-^O (1.49)

where the transformed electric and magnetic related functions Oe'h are given by

Of* = Tjh<&eh (1.50)

Now, letting

f :e.h \

the system (1.49) will be presented in the following canonical form of a second order

differential equations

d2Q>eh , _ .-^5—*;.„<!>••* =0 (1.52)

where the general solution of the above system (1.52) is given by equ.(1.24).

1.7 NON-UNIFORM DISCRETIZATION ALGORITHM

In order to get a minimum error due to the discretization procedure, the intervals between the

lines have to be small enough in regions where the variations of the function are considerable,

whereas larger intervals will be selected in regions where the function variations are small.

To that purpose, there are two main procedures to establish the nonuniform discretization to

describe the spatial variation of the discretization function, which are the sinusoidal and the

geometrical discretizations. For the first type, the sinusoidal discretization [21,13], the lines are

distributed sinusoidally on the intervals /?, given by the relation
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where

h - x , - x ., .„.
"' ' (1.53)

r2i - Mn 1
V2Mn n)x, = sin (2.54)

with Mn is the total number of lines on the if' strip or slot.

This discretization procedure leads to a maximum number of lines near the strips edges due to

the fields singularity. Hence, for a strip width of wa=xb-xa placed at the interface _>-=0, the field

lines will be having the following coordinates

xh - x xb - xa 2? - Mn i

This distribution applies for the regions situated between the strips as well.

Given the width of the smallest interval found numerically by considering all the strips and the

slots as,

k = h = x_K!^-xXitr^ (1.56)

the number of lines on each strip or slot can be deduced from the relation (1.54) [13] as:

f >

Mn =Int. r sr | (1.57)
. ,( 2A ) ^ '

\ 7T -2sin"' 1- i
V v xb-xjj

where bit designates the integer part.

The intervals /?, between the lines are calculated from equ.(1.55). On the other hand, the

external slots which are bounded by the lateral walls are treated in the same way. To reduce

the influence of the walls, we put them at distances double to that of the real width of these

slots. Consequently, the intervals /7, will have their maximum value near the lateral walls of the

metallic box.

The convergence rate of the method depends on the position of the lines that are located near

the strip/slot edges. At each strip/slot edge, the last line associated to the slot preceding this

strip and the first line on the strip are located respectively at 0.75/7, and 0.25/7,. To take into

account these conditions, and the considerable variations of the field functions near the strip
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edges, the width of the intervals h on the strips are decreased by a reduction factor a [13]

given by:

2A

3 (1.58)
a -

M'

where u=xb-xa.

Using the reduction factor a in calculating the new strip lengths, the intervals between the lines

located at the exterior of the slots are interpolated.

1.8 CONCLUSION

In this Chapter, one of the numerical methods used in the analysis of planar and quasi-planar

waveguide structures has been investigated. The Method of Lines basic principles and

modeling procedure are shown through its application on the known Closed Boundary-

Conditions.

It has shown a lot of features, such as simplicity of handling the analysis of different waveguide

structures, requires less computational time, and less memory space needed due to the analysis

done along lines and not on points, mainly when analyzing the open boundary structures that

will be discussed in the following chapters. Also, the convergence behavior is always assured

when the edge conditions are satisfied.

Ageneral introduction of the use of this method in the Full-Wave analysis of planar microwave

structures is covered, and then, the two types of discretization schemes, i.e. uniform and

nonuniform discretizations, are also presented.
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Chapter 2

THEORY OF ABSORBING BOUNDARY CONDITIONS

2.1 INTRODUCTION

Because of the problem of artificial reflections in the simulation of wave propagation

phenomena, where these reflections are introduced by the limits of the computational domain,

the Absorbing Boundary Conditions operators were derived to minimize artificial reflections

from the edges of the computational domain.

The theory of ABCs was first developed by Lysmer and Kuhlemeyer (1969). Then, many

authors got interest in this field and developed a set of operators, called Absorbing Boundary

Condition (ABC) operators or Radiation Boundary Condition (RBC) operators. Among these

authors who defined a variety of ABCs, Engquist and Majda (1977), Mur (1981), Wagatta

(1983), Lindman (1975), Randall (1988), Bayliss and Turkel (1980), Gunzburger and Turkel

(1982), and Liao (1984) [22].

The idea behind this .ABC's is that, in order to generate solutions that are unique, boundary

conditions have to be imposed on the surface limits of the structure. But, in many applications

the media are of infinite extent, and in this case, imposing boundary conditions on the surface

of the structure may give rise to reflections that are not in the actual physical situations.

Consequently, to simulate an infinite geometry, Absorbing Boundary Conditions are imposed

at the surface limits to diminish these reflections, which reduces memory requirements as the

size of the surface is made smaller.

For all the existing ABC's theories, we can distinguish two basic types of radiation boundary

operators.

1-mode annihilating approximations.

2-one-way wave equation approximation.

Each of these two radiation boundary operators possesses different characteristics and forms.
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2.2 MODE ANNIHILATING OPERATORS

The mode annihilating Absorbing Boundary Condition operator is based on the idea of

annihilating the higher order terms in the far field series expansion, which is the expansion of

the outward propagating solutions of the wave equation, by applying the Sommerfeld radiation

condition at the boundary.

In this section, we start by introducing the first order boundary condition operator by applying

the Sommerfeld radiation condition on the far field series expansion of a time harmonic

solution, and then, we extend the boundary operators to higher order operators in both one

and two dimensional cases.

2.2.1 Far-Field Expansion and the Sommerfeld Radiation Condition

In this part, the first order radiation operator is deduced by applying the Sommerfeld radiation

condition on the far field expansion of the wave equation solutions.

Consider the solutions u(R,9,<f>,t) of the Helmholtz equation given in operator form as

V2u-u„=0 (2-1)

Equ.(2.1) can be rewritten, in the case where the solutions are considered to be a time-

harmonic function, as

V2U + k2U=0 (")

where the solution has an exponential e~J at time dependency.

According to reference [23], the radiating solutions of the wave equation, propagating in

directions which are outward from the origin of a spherical coordinate system, can be

expanded in a general convergent series of the form

In the case where the function u is considered to be time-harmonic equ (2.2), the expansion

relation (2.3) can be extended to the time case [23] as
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u(R,0j) =—L Ri (2.4)

It is found that equ.(2.4) is a convergent expansion for the scalar wave functions that satisfy

the Sommerfeld radiation condition [24], which is given by

\imR(uR+u,) = 0 <=> \imR(uR-jku) = 0 (2.5)
J><->X R^>x

The Sommerfeld radiation condition is an operator, when applied to the far-field expansion of

the time-harmonic function u, gives the following far-field asymptotic result

C

\dR
-Jk u= o{R'2) (2.6)

in the limit i? —» x.

The Sommerfeld radiation condition preserves the terms that are not greater than o(R"2) in the
expansion, whereas, the higher order terms are put equal to zero at the far-field limit. Hence, it
can be considered as the first order Radiation Boundary Condition which describes the field

behavior at the far-field limit. A more exact form of the Sommerfeld radiation condition is

given by [16] as

ff \ou !
lim JJ \j\^~iku\ ds =0OK

(2.7)

where the integral is over spherical shells centered at R-0.

2.2.2 Higher Order Operators

After having defined the first order Boundary Condition operator described by the asymptotic
result ofthe far-field series expansion using the Sommerfeld radiation condition, higher order

operators can be derived using the same series expansion. To achieve that, operators, that
annihilate terms up to any order in the far-field expansion of u, were developed for the

Chapter 2 : Theory ofAbsorbing Boundary Conditions 24



expansion given by equ.(2.3) as asequence of operators B» as given ,n reference [25]. Similar
sequence ofoperators can be developed for time harmonic solutions in two dimensions [26]
The derivation of higher order operators B, starts by multiplying aslightly modified version of
u{R,6, <j> ) of equ.(2.4) by FT and then, splitting the sum as follows

'-° i=n~]

Given the first order operator defined in equ.(2.6) as

c

L = jk
dR J (2.9)

Applying the Z" operator to both sides of equ.(2.8) annihilates the first sum of the expression
and makes the leading order term of the second sum to be o(R-1). As aresult to that, we get a
new operator of the form

L"(R"u) = o(R-"-1) (2.10)

which annihilates the first ,,-terms of the far field expansion of equ.(2.4). The operator in
equ.(2.10) can be developed further to be expressed as asingle operator acting on the function
uonly. Hence, applying the operator given by equ.(2.10) for the first order n=\, we get

Ln{Rnu) =

< d \

\oR
dR

-Jk
J

u+u = o(R-2)

<=>

f ^

J^-Jk +-R) u=o(R-i)

And, the first order operator in the sequence to be

5, =L +
R

Chapter 2: Theory of Absorbing Boundary Conditions

(211)

(2.12)

25



which, when applied to both sides of the expansion of equ.(2.4), annihilates the first term of

the expansion. Similarly, applying the second order operator for n=2, we get

f 3Y 1^
2 — L + -

v RJ
L + —

v RJ
(213)

which, when applied to both sides of the expansion of equ.(2.4), annihilates the first two terms

of the expansion. In general, a recursive relation can be obtained to produce the higher order

operators. For instance, the n& order

Bn = L +
2/2-1

R J
B

n-\
(2.14)

produces an operator which annihilates the first n-terms of the expansion in equ.(2.4).

This sequence of operators, which is given as a single operator acting on the function w, gives

n-\Bnu = o{R~^) (2.15)

for any function u satisfying the expansion in equ.(2.4). This last result presented as a single

operator B„, of order n, has been used as a Boundary Condition operator in simulating wave

behavior, that is.

Bnu = 0 (216)

for the wave function u.

It is apparent that this condition becomes more accurate as the order of the operator increases,

and as a limit n —> x.

Analogously to the procedure described above for the one dimensional wave propagation, a

two dimensional wave propagation operators can be developed. Considering the wave

functions u(r,6,t) in two space dimensions, in the time harmonic case, a similar expansion to

the wave solution presented in (2.3) is presented in reference [27], and the far-field asymptotic

expansion is expressed [28] as

Chapter 2 : Theory of AbsorbingBoundary Conditions 26



w(r,0) =
J(kr-

n kr

/(0)
3C

1=0

(2.17)

Similarly, and following the same procedure as above, a recursive sequence of boundary

operators is defined for this far field expansion as that one described in equ.(2.14) [25],

2r
Bn = L + - B.

n-\ (2.18)

where the initial operators are given by

Bi = L + -

(2.19)

cr

The operator Bn annihilates the first n-terms ofthe expansion and yields to an expression ofthe

order

Bnu = o(r-2n->) (2.20)

Applying the results of eqs.(2.19) and (2.20), the first two operators can be calculated and

expressed as

1
5, = L + -

B2 =

f
D

v 2r

A
( 1^

L + -
V rJ

(2-21)

These two sequences of higher order operators are very useful in field radiation and wave

scattering problems and mainly, in truncating the computational domain for modeling the

outward propagation of waves to infinity.
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2.3 ONE-WAY WAVE EQUATION OPERATORS

The second type of Absorbing Boundary Conditions operators is the one-way wave equation

operator. This type is expressed as a partial differential equation that allows wave propagation

in only a given direction, where the boundary must permit propagating waves to exit [23].

Hence, If we consider the computational domain

shown in Fig. 2.1 limited by the outer boundary

eQ, only numerical wave motion, that is outward

from Q, is permitted. The boundary must permit

outward propagating numerical waves to exit Q

as if the simulation were performed on a

computational domain of infinite extent. A scheme

which passes as one-way wave equation on eQ.

for this purpose is called a Radiation Boundary

Condition or an RBC.

The derivation of these one-way wave equation ABC operators whose purpose is to absorb

numerical waves incident upon the outer boundary, can be deduced either in terms of operator

factoring or dispersion relation.

cQ.

Fig. 2.1 Computational domain

2.3.1 Derivation by Wave Equation Factoring

In this section, the one-way wave equation absorbing boundary conditions operators are

deduced using the wave equation factoring. The idea is to describe the wave fields propagation

behavior at the limits of the computational domain by using an appropriate approximation to

the wave equation.

Consider the following two-dimensional Helmholtz equation in Cartesian coordinates,

"«+^-w« =^w =0 (2.22)

with the partial differential operator L given by

L= D2+ D\ - D] (2.23)

where,
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A1 A2 A2

D>=^^ =W-D'=J7 <2'24)

The wave operator in (2.23) can be written [16] as

Lu=L~L-u = Q> (225)

where the suboperators Lr are defined as,

l7 =Dx±D,yl\-s2 (2 26)

with

s

D

It is shown, according to Majda [16], that at a boundary, say at x=0, the application of the L

operator to the wave function U will exactly absorb the plane waves incident at any angle and

traveling in the negative x-direction. Thus,

L~ U= 0 (2.27)

Applied at x = 0, operates as an exact analytical Absorbing Boundary Condition operator,

which absorbs wave motion from the interior of the spatial domain Q. The same thing goes for

V operator at the positive x-direction.

Actually, the numerical implementation of an RBC is not that exact due to the fact that a small

amount of reflection does develop at the boundary. However, higher order ABC's can be

designed to minimize the reflections over a wide range of incident angles [29]. The RBC that

can be derived uses a two-term Taylor series approximation for the radical as follows

Vl-r =\ +frS-jrs2+ = \-is2 (2.28)

Taking the first two terms of equ.(2.28), leads to the following approximate analytical RBC

which can be numerically implemented at the boundaryx = 0 as
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"rf+iWjy-",, =0 (2.29)

A generalization of (2.26) presented in reference [30] showed that the construction of

numerically useful absorbing boundary conditions reduces to approximation of the radical on

the interval [-1 , 1] by the rational function,

r{s) = —— (2.30)

where/? and q are polynomials of degree m, n and r(s) is said to be of type (m,n). By specifying

r(s) as a general type (2,0) approximation, the radical is approximated by an interpolating

polynomial of the form :

yl\-S2 =p0+p2S2 (2.31)

resulting in the general second-order approximate analytical RBC, as

Uxl-P2Uyy-PoUl,=0 (232)

The choice of p, is determined by the method of interpolation used. Many of the standard

techniques of interpolation such as Chebyshev, least-squares, or Pade approximations are

applied to produce an approximate RBC whose performance is quite good over a wide range

of incident wave angles. As an example, using the general type (2,2) rational function

approximation,

VT^^^ ("3)
q0+q2s

leads to the general third-order approximate analytical Absorbing Boundary Condition

operator, which gives

Wxn +?2MW " A V " A>W«' = ° (2"34)

appropriate selection of the subscript p, and q, coefficients in equ.(2.33) produces various

families of Radiation Boundary Conditions. For example, according to references [29,30] for
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qo=Po=1 ,P2 = -3/4 , q2 = -1/4 gives a Pade (2,2) approximation with resulting RBC function

better than the previous (2,0) for numerical waves impacting the boundary near normal

incidence.

Other types of approximating polynomials tune the RBC to absorb numerical waves incident at

specified angles other than normal, and are considered to be a means to improve wide-angle

performance[29].

2.3.2 Derivation by Dispersion Relation

An alternate procedure for obtaining a one-way wave equations is the derivation by dispersion

relation, instead of wave equation factoring, as it is presented in refernces [29,30]. It is well

known that if the dispersion relation for a linear constant-coefficient partial differential

equation is known, then, the equation itself is specified. Thus, if one can obtain the dispersion

relation for a one-way wave equation then, an RBC appropriate for use on eQ is obtained.

As an example, if a plane wave solution is described by

u(x,y,t) = en - (2.35)

is substituted into equ.(2.22), then, we get

C02=£2+T]2 (2-36)

which is the dispersion relation for the wave equation which permits wave propagation in all

the directions of the (x, y) plane. The wave in equ.(2.35) has a velocity that can be given as

V= vxx +vyy (237)

where

vx =-i =-cos(6 )
(2.38)

9 is being the counter clockwise angle measured from the (-x) axis. By rewriting equ.(2.36) as
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-=±y/\-S2 with S=~ (2.39)
CO CO

The wave motion from the interior of the computational domain Q will be absorbed at the

boundary x = 0, if an equation having the dispersion relation,

£ = CO\\ —S : pseudo-differential equation (242)

is applied at that boundary.

By approximating the radical in equ.(2 39), it is possible to obtain a dispersion relation which

can be identified as a partial differential equation that operates as an approximate analytical

RBC. Once a dispersion relation is obtained, which approximates the exact relation in

equ.(2.42), the same RBC's are also derived. For example, the two term Taylor series

approximation to the radical

leads to

4 =COy/l-S2 (2.43)

£=CO
V 2 co J

which is the dispersion relation of the differential equation given by

Uxt = Utt-lUyy (2-45)

Note that the higher order RBC's can be deduced directly by using the radical approximation.

2.3.3 Reflection Coefficient Analysis

As it has been mentioned in the previous sections, RBCs derived from approximate analytical

one-way wave equations are not exact because of the presence of a small amount of reflection.

The higher the order of the operator is used, the more accurate the results will be in simulation.

Hence, one way to quantify the performance of a given RBC is by defining a reflection

coefficient Rwhich gives the amount ofthe boundary wave reflections when an RBC is applied

<^^CO^C02-W (2-44)
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on that boundary. The amount of reflection is dependent upon the angle of incidence 0, and

so, a good RBC gives a small value of R over a wide range of 6.

dQ.

Fie. 2.2 Reflection scheme

Consider the out-going plane wave in Fig. 2.2, where the wave considered has the form,

j(k t+k xcos(9 )-k y sin(<9 ))
w,„=e (2.46)

The total field at the boundary of the computational domain must satisfy its specific Radiation

Boundary Condition. Postulating the existence of a reflected wave scattered back from the

boundary, the total field at that boundary x=0 is the addition of both the incident and the

reflected waves satisfying the form

— „j(l< t*kxcost.e)-kysm(e)) , r> aj(k t-k xcos(6)-ky sin(6>))
u = e + ReJ (2.47)

where the reflection coefficient R can be determined by substituting the u directly into the

equation for the Radiation Boundary Condition used at x=0 boundary. By substituting into one

of the Radiation Boundary Conditions analytical expressions, for example the second and third

order operators given by,

Ux,-P2U>y-P0Utt=0

Qo^xa +?2*V " PlKy ~ /W« = 0
(2.48)

tyy

the reflection coefficient expressions as a function of incident angles are obtained for the

general second-order and third-order RBCs. They are respectively,

Chapter 2 : Theory of Absorbing Boundary Conditions 33



cos(0)-pn-p,sin2(0)
R = v ' jP0—i-l -±-!- (2.49)

cos(0)+ p0+p2 sin (0)

for the second order RBCs operators and

g0cos(fl) + g2cos(fl)sin(fl)-/70-;72sin(fl)
ti = (2 50)

q0 cos(6>) + q2 cos(0) sin(6>) + p0+P2 sin(0)

for the third order RBCs [29].

Tabulated values for angles of incidence at which the RBC's are designed to exactly absorb

numerical plane waves are generally used. In all the cases, the behavior of reflection coefficient

for higher order RBCs is better than that of a lower order RBCs.

2.4 COMMON ABSORBING BOUNDARY CONDITIONS

The most popular ABCs that have been developed so far are firstly, Engquist-Majda ABC's,

secondly, Lindman ABC's, thirdly, Bayliss-Turkel ABC's, and finally, Liao ABC's. They differ

in the way of implementation, the ease of application to specific class of structures, and the

corresponding numerical method that best suits for the analysis. All the theory of these ABC's

is based on the two distinct basic types of radiation boundary operators previously described.

2.4.1 Engquist-Majda ABC's

Their idea is based on the fact that arbitrary waves can be expanded in terms of a spectrum of

plane waves. Hence, ABCs can be derived primarily for plane waves of arbitrary incidence. If

the ABC is made such that, it is independent of the angle of incidence and wavelength of plane

waves, then, it can be used for an arbitrary wave [16].

2.4.2 Lindman ABC's

The Lindman ABC is just an extension for the Majda's ABC's. While the paraxial

approximation breaks down when the angle of incidence is too large for the previous ABC, a

better approximation is made for the paraxial expression in the Lindman ABC [22].
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2.4.3 Bayliss-Turkel ABC's

In this case the analysis is conducted using the spherical coordinates. It is assumed that the

wave has a form of a series of terms in the vicinity of the box boundary. The field expression is

intuitive, where the far field from a source is expanded in terms of spherical harmonics [25],

2.4.4 Liao ABC's

The plane wave solution to the wave equation in the time domain is given a certain expression,

where the direction of the plane wave makes an angle 9 with the x-axis. The advantage of the

Liao ABC is its ease in implementation, even at the corners of a given structure [22],

2.5 CONCLUSION

The Absorbing or the Radiation Boundary Conditions, ABC's or RBC's, are operators used in

reducing nonphysical reflections from the outer boundary, which normally would permit most

of the scattered energy to exit the computational domain. This nonphysical reflections

contribute to the nonaccuracy of the modeling procedure. They are utilized Also, to truncate

the computational domain in a manner which accurately models the propagation of the

scattered waves to infinity.

In this chapter, the two types of the ABC operators are presented. The first, is the mode

annihilating operator, which is based on annihilating terms in a far-field expansion of the wave

equation solution. Its order is defined by the order of the terms to be annihilated. As the order

increases a more accuracy is achieved. The second type, is the one-way wave equation

operators, which is described by a differential equation that permits wave propagation in only

one direction. It can be deduced by either Helmholtz operator factoring or by the dispersion

relation of linear partial differential equations. Similarly to the first type, the higher the order is

used, the smaller the error is induced.
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Chapter 3

ANALYSIS USING ABSORBING BOUNDARY CONDITION

FOR ISOTROPIC AND ANISOTROPIC MEDIA

3.1 INTRODUCTION

So far, we have introduced the two basic chapters, the Method of Lines and the

Absorbing Boundary Conditions theory. In this chapter, the adaptation procedure of absorbing

boundary condition operators to the method of lines is discussed. The one-way wave equation

operator is used to describe the wave propagation outward the walls of an artificial enclosure

for open microstrip structures. Using the method oflines modeling, the two lateral equations in

the discretized system are taken to satisfy' the ABC operator. Hence, a system of ordinary

differential equations is obtained through the introduction of some appropriate transformations.

The adaptation is considered for two different types of dielectric materials. First, the full wave

analysis is carried out for both electric and magnetic fields for an open isotropic substrate,

then, the procedure is extended to the anisotropic substrate case.

3.2 PROBLEM FORMULATION

Most of the numerical efforts in analyzing MIC and MMIC structures are based on the closed

boundary conditions, the general Dirichlet-Neumann conditions, where the structure is

assumed to be enclosed within a metallic boundaries. The analysis of structures located within

a box requires not only the specifications of the microstrip and the dielectric permittivity, but

one must also precisely indicate where the structure is located with respect to the enclosure

walls, while the box dimensions must also be specified.

The analysis and data are most often reported for open microstrips, with the usual assumption

that both the substrate and the ground plane extend to infinity in the transverse direction. Some

rules are used to indicate how far the sides and the cover should be located for the data to be
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applicable so that the characteristic impedance and the effective permittivity are not affected by

the radiation effect of the walls [15], see Fig.3.1. For example, for alumina (^=9.8), the height

up to the cover should be more than eight times the substrate thickness, and the distance to

walls should be more than five times the conductor thickness for the relations to be valid.

Therefore, the larger the closed structure dimensions in the simulation is, the more accurate

and realistic data could be obtained. But, increasing the size of the structure leads to a

complication of the problem simulation. This generates a disadvantage in both memory and

time requirements. To overcome this problem, and to analyze the actual open structures, one

can use the concept of Absorbing Boundary Conditions (ABC), which are operators derived to

simulate the existence of an artificial boundaries that minimize artificial reflections from the

edges of the computational domain[31,32].
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Er |
4 •

a-Actual structure

Td
4-

metallic box

£o \e ^

Er

n.a

b-Simulated structure

Fig. 3.1 The open structures simulation model

b

d

Hence, our interest is oriented to the full-wave analysis of open microwave and millimeter

wave structures, where the Helmholtz equation is the governing formula of wave propagation.

The idea, in here, is to apply the semi-analytical numerical method, the Method of Lines, to

solve the wave equation given by (3.1) for open microwave planar and quasi-planar structures

subject to Absorbing Boundary Condition operators
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3.3 PRELIMINARIES

The discretization scheme of the open MIC structure is similar to that shown in chapter. 1 for

the closed boundary structure. Artificial boundaries are assumed to exist at the limits of the

computational domain, i.e. the area of the open structure. The left limit is overlapped by the

first electric field line ez0, and the right limit on the en-i electric field line similar to the metallic

boxing discretization, see Fig. 3.2.

hzQ I hzl hzn hzn-1 lW2

£o

:#
ezo

ezi Czn ezn-1

discretization lines : e, h7-

Fig. 3.2 Discretization scheme of an open microstrip structure

Consider the Helmholtz equation which is given by equ.(l. 1) for an isotropic medium as

f -2
c

\ex" ey~ ez~ J
(3.1)

Keeping the assumption that the wave propagation is in the r-direction according to equ.(l .3)

and its discretization according to equ.(1.4), equ.(3.1) reduces to

( ~2 -2 A

^-r+^+(k2-k:) yv =o
\.ox- dy- " J

(3.2)

The permittivity relations as a function of the propagation constants, for both dielectric layer

and structure cases can be given as
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k2 k2
ere=j2- i £r=TT ', £d=£r~£re (33)

Ko "o

where ko is the air propagation constant.

Normalizing equ.(3.2) with respect to the air propagation constant k2, and using the

permittivity relations of equ.(3.3), we get

f ~2 -2 >
4rr +4r+(fr-e„)p/v =0 (3.4)

Vox" ay" )

where the normalized dimensions are obtained to be,

x = k0x ; y = k0y (3.5)

If we let the new differential operators to be equal to

D-x=— ; Dy=— (3.6)
x c3c y cy v '

Using the expressions (3.6), the normalized Helmholtz equation given by equ.(3.4) will result

immediately to

[p\ +D2 +£d)^v =1^=0 (3 7)

where the operator L is defined as,

L= D2+D;+£d (3.8)

The wave equation operator in equ.(3.8), which describes the wave behavior, is defined for

wave propagation in isotropic medium. The aim of the forgoing analysis is to match this

operatorto the MoL technique using the ABCs operator approximations. In a later section, the

propagation in an anisotropic medium will be treated.
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3.4 ISOTROPIC MEDIUM

As shown in the previous chapter, in the analysis of Absorbing Boundary Conditions, the

Operator in equ (3.8) is that mentioned in One-Way wave equation operator factoring Hence,

we can proceed the analysis using the Helmholtz Operator Factoring method. The solutions for

open isotropic dielectric media are considered first, and then, an extension to the anisotropic

case will be performed.

A medium is said to be isotropic if its properties do not vary with the direction of propagation

of an electromagnetic wave at a given point Since both electric and magnetic fields in isotropic

medium are expressed by the same relation described by equ.(3.7), the adaptation procedure of

the method of line to absorbing boundaries is identical for both fields related functions Hence,

considering the Helmholtz equation described by equ.(3.7), and by splitting the operator L into

two different suboperators based on the idea of One-way wave equation operator and the

direction of propagation, and according to equ.(2.25), the expression of the two suboperators

L~ and L~ are defined as follows,

v- - d, ±)jr4Ju7 <'•»>

with

s2=^-D2 (3-10)
e, y

Applying the second order paraxial approximation in equ.(2.28) to the radix of the expression

in equ.(3.9) we get,

VIT7^+p:r <31»

where the term s is within the interval [-1,1].

From the theory of Absorbing Boundaries the suboperators of L are defined to be the

Absorbing Boundary Condition Operators at the two lateral limits depending on the wave

propagation direction Hence,
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L+Xi>e = 0 at right boundary

(3.12)

ZTTe = 0 at left boundary

Developing the two suboperators of equ.(3.9), at the right and the left artificial walls of the

structure, using the paraxial approximation given by equ.(3.11), we end up by the second order

Absorbing Boundary Operator that describes the wave propagation phenomenon at the

boundaries of the computational domain, given by

\

D;±
Pi

ZX +—f.
J

Ve =0 (3.13)

3.4.1 Tangential Fields solutions

3.4.1.1 Electric Field

Applying the Method of Lines discretization procedure in a shifted two lines system on the two

ABC operators at the two lateral boundaries as it is described earlier in the Method of Lines

preliminaries, we get

Die.. ±
J^d 1

P2 K

e.-0+l) gr(;-l)

2/i

Po n
+ — s,e.. = 0'd'-zi

P2

(3.14)

where the plus sign in equ.(3.14) stands to the .ABC operator at the left boundary and the

minus sign to the ABC operator at the right boundary.

Introducing the notation,

h=k0h ; nd =h^£a (3.15)

and substituting it into equ.(3.14), the Helmholtz equation for the two lateral boundaries will

be reduced to,
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^O-t-l) er(i-l)

2p2 J

^P° n
Pi

(3.16)

Discretizing the Helmholtz equation along the whole structure to be analyzed, in a shifted one

line system, this differential equation will be given in its general format as

Die.. +
p — 1e 4- e

+ eden =0 (3.17)

Finally, using eqs.(3.16) and (3.17), we construct the complete system of partial differential

equations for the structure under consideration, that describes the wave behavior along the n-

lines of the discretization scheme presented in Fig. 3.2.

for / = r

2p2

e -e ^.-(2) cr0

v h2 J

D2ye:l + ezo - 2eA + ezi
h

, P° n+ —£dezl =0
Pi

+ £,er] = 0

fe -Je +e ^
for / > 1 : D2e„ +
J > Zl

ybr i = n*

D2e -*±
> :n 2p2

e:(n-\) ez(n+\)

+ ^gr, =0

, P° ft
z>2

D;em +
ez(n-l) ^er(n) + gr(n+l)

+ £\,e„, =0

(3.18)

Concerning the two lateral walls, we eliminate the zero terms, corresponding to the couple of

equations at /'=1 and / = n, by combining the two lateral equations in the system of equ.(3.18)

for both two-line and one-line shifted discretization procedures. Hence, for ;=1 (left boundary),

we solve for the electric field component at the line zero e^ from the first equation in the

system of equ. (3.18) and substituting it into the second equation, we end up with
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zxx.,+(-/r^2-2
r--/« 2p2+(p0-p2)n,2\

2P: +jn„ Jk,+(-*~2) 1 +
V 2p2 +Jnd e-2 +£de:\ =0

(3.19)

the previous expression may be further simplified by introducing the notation,

a = -2
iPi+iPo-Pi)"':

2p2 + jnd

2Pi~ Jnd

2p2+J"d

(3.20)

b = -

Using this notation, equ.(3.19) can be rewritten as:

D2e:l+(-h-2)(2 +a)e:l+(-h-2)(-\-b)e:2+£den =0 (321)

Following the same procedure as presented above, for i = n( right boundary), we solve for the

electric field component at the line em^ from the /7th equation in the system of (3.18) and

substituting it into the second equation, we end up with

^-^+(-^2)(2 +«)^+(-^2)(-l-*)^-.)+^^=° (322)

Replacing the two lateral equations in the system of (3.26) by the two equations in (3.21) and

(3.22), a new system of n second order differential equations is obtained, where each

differential equation corresponds to the solution of the electric field at the appropriate line

index as

'/ =!: D2e:}+(-h-2)(2 +a)e2l+(-h-2)(-\-b)ez2+£de!i=0

1 / > 1 : Die,. +h»
er(;-l) 2er(i) + 2z(l+\)

+ £,e., =0•d^zi
(3.23)

i =n : D]e:n+{-h'-2){2 +a)ezn+{-h-2){-\-b)e2(ri_,)+£de:n =0

Generally, to characterize a system, i.e. defining its relative permittivity, we transform the

system of equ.(3.23) into a matrix notation to reduce the problem of solving n differential
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equations into only one vector field differential equation. Thus, the system of differential

equations (3.23) is presented in a matrix form as

D2-(-h'2)Pe+£dI Ve = 0 (3.24)

where the (n : n) second order difference operator matrix Pc and the electric field column

vector^6 follow immediately as

with

P =

Pn Pn U

-1 2 -1

-1 2 -1

0 Pn Ai

Pn =2 + a

Pn =~l-b
and

\iie —

(3.25)

(3.26)

where e, is the electric field at the /'* line of the discretization scheme.

The system of equ.(3.23) is in its normalized form, hence, a nonnormalized system can be

obtained simply by using the original dimensions. Given that,

(3.27)h = k0h ; nd = h^£d =k0h^£d

and multiplying equ.(3.23) by k2, we get the original system of differential equations
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1= 1 : D2ezl+(-h-2)(2 +a)e:1+(-h-2)(-l-b)ez2+k2£dezl=0

cz(,-\) *-Kz(i) ^e:(/^l)2/ > 1 : Die.. +
h2

+ k0£dez, =0 (3.28)

^/ =/i ; D>a +(-/,-2)(2 +fl)ea +(-^)(-l-i)e:M) +fr0Va =0

Equivalently, the system (3.28) can be written in a matrix form as

D;-(-h-2)Pe +k20£di ve = o (3.29)

By doing some manipulations on equ.(3.29), the system of coupled differential equations can

be written in the form,

.°;-Kifc-<<>\rp = o (3.30)

Equ.(3.30) is a system of a set of coupled difference equations. The solution of such a system

is not possible, unless we transform it into an uncoupled one. In order to get an uncoupled

second-order differential equations system of equ.(3.30), the tridiagonal matrix Pc must be

diagonalized using an appropriate transformation matrix Tc in the case of the electric field

function. The uncoupled system will have the form:

52-*-(*^-s'/). ye = o (3.31)

where the electric field vector and the eigenvalue matrix Xe of the matrix Pz are transformed

into the transformed domain via the matrix Te as,

1 VI/eXlie _ t--1 \jj,

; = r-1 p t
e tee

Equ.(3.31) can be further reduced to a simpler form as,

(3.32)
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d)-K 4^=0
(3.33)

where,

k

klh2
(£r-£re)l (3.34)

V*o

3.4.1.2 Magn etic Field

Equivalent^, the same procedure, as described above for the electric field function ¥', can be

applied to the magnetic field function ¥* that satisfies equ.(3.7). The same operator L, given
in equ.(3.8) in the case of the electric field, is to be factored at the lateral boundaries ofthe
structure for the magnetic field discretization scheme giving rise to the two lateral equations in

the shifted two lines systems,

2 . He*
Dt±

Pi
D- + Ei

Pi

} o"¥h

dx
= 0 (3.35)

Eliminating the zero terms corresponding to equations at '=1 and '="+1 by combining the
operator (3.35) at the boundaries with the lateral equations of one-line shifted system. Thus,
for ''=1, i-e. left boundary, we solve for the magnetic field ho from the Absorbing Boundary
operator and substituting it into the first equation of the one shifted system. The same thing
goes for i=n~l at the right boundary. Finally, we end up by a system of differential equations

that can be represented in a matrix form as

D;-(-h-2)Ph +k2£dl}¥h=0 (3.36)

where the ("+!:"+!) second order difference operator matrix ^h is deduced to be equal to
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Pu =

Pn Pn P\3

-1 2 -1

0

-1 2 -1

0 Pn Pn Pn-

with the subvariables defined as

" Ki '
pu = \ + a

i pu--\-b-a and
\ruh _

K

I Pn=b

-K.y -

(3.37)

(3.38)

where a and bare as defined previously by equ.(3.20). The magnetic field column vector x¥h in

equ.(3.38) is just the representation of the discreet magnetic field elements, where hzi is the

discretized magnetic field at the /'* line.

Following the same procedure used earlier in solving equ.(3.30), the system of equations

(3.36) can be transformed into an uncoupled system of the form,

Dl-K2 ¥" = 0
(3.39)

with.

kz = k2
K

KKhlui-iZr-eJ1 (3.40)

where, the magnetic field vector and the eigen value matrix Xh of the matrix Ph are transformed

into the transformed domain via the matrix Th as,

K = T-1 Ph Th
(3.41)

From the systems described in eqs.(3.29), and (3.36), and using the second order difference

operator matrices Pe andP^ given in eqs.(3.25) and (3.37) successively as described above, one
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can define the first order difference operator matrices, similarly to those defined in the case of

the closed boundary structure. Hence,

, oe.

(3.42)

ox
-> ~DhHz

where the two difference matrices De and Dh are the first order difference matrices for the

electric and magnetic lines discretization scheme. Thus,

\ + a -b 0

-1 1

De = '•

-1 1

0 +b -1-a

(3.43)

is the (n+\ : n) equivalent system difference matrix in the case of the electric field, and

1 -1

1 '•

0

Dh =
. -1

0 1 -1

(3.44)

is the (n : «+l Equivalent system difference matrix in the case of the magnetic field.

The second order difference matrices, for both the electric field system Pe and the magnetic

field system Ph, can be represented as a product of the first order difference operators De and

Dh, as in the case of the closed boundary structure analysis. Thus,

Pe = DhDe (3.45)

which is the product form in the case of the electric field, and

Ph = DeDh (3.46)

in the case of the magnetic field. This implies that Pe is of order (n : n) and A is of order

(n+\ :n+\) due to the dimensions of the two first order difference operatorsDe and Dh-
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The solution of the uncoupled system of differential equations discussed previously for

equ.(3.33) and equ.(3.39) is given by equ.(1.24), which is

Vv = C; cosh(kvy) + C2V sinh(kvy) (3.47)

The transformation matrices Tc and Th can be calculated analytiaclly in the case of uniform

discretization scheme, and are related through the following formula [11]

1

l

djX

i

Th =
i

% =
"o

- t-

(3.48)

Using the above equations, the normalized quasi-diagonal difference matrices (Se,Sh) are

calculated in the following way,

Se = T-lDJe(k0hyl =
0

(3.49)

S„=T;lDJh(k0h)-l = o K

For the characterization of microwave structures, the components needed to be calculated are

mainly, the field components and their derivatives at the two interfaces of the layer in order to

study the continuity, and thus, identifying the set of constants of the discretization lines [11].

Thus, the relation that links the field function to their derivatives can be deduced to give the

following relation,

vv\y2)l

_

= k;
/v «»

L«v yA
-JvLVi)
V\y2).

(3.50)
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with

— ' \ d —

k0 dy

yv=diag(kv:ianh(kvid))

av = diag(kvlsinh(kvld))'

fk "1
Kv = diag* —

\koJ

for any arbitrary layer with thickness dimension d, refer to Fig. 3.3.

Y2

yi

•<$•

(351)

B

Fig. 3.3 Field matching at the layer interfaces

This complete analysis is conducted in the case of isotropic medium, whereas for an

anisotropic one, the magnetic field has the same form, but there is a slight change in the final

expression of the electric field.
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3.4.2 Formulation of the Field Components by the MoL

With the solution of the transformed components E: and Hz, the other field components can

also be determined for each dielectric layer. For this purpose, the equations which relate the z

components to the x and y components that are given by equ.(3.52) and equ.(3.53) are

discretized and transformed using the MoL. To determine the effective dielectric constant, only

the tangential components are necessary to begin with [11]. Thus, knowing the two field

components ez and hz that satisfy the Helmholtz equations, the other field components can be

found using the following relations [33,34]

with

( -2
o

r + k:
1 2.

\o z

o

dxdz

V.ey d'd

dyd:

d
-Jkrl1

jkrj

oy

o

dx

k d d2

{d2 \
i 2

l\l J n
n oy o xoz ez

\dz J k- .k d

~J] ndx
d2

d yd z _
-K-

HVe* "'• ; Vo =
\£0

(3.52)

(3.53)

(3.54)

Manipulating the two equations in such a way to get the x and>- components as a function ofez

and hz components, we end up with a system of equations for the whole structure using the

Method of Lines formulation as

'i0£d
Ex

= J

-J£.h-lDe

e.l
d_

dy

-I
o

dy

^h-lDh .7o#*-

(3.55)
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in the same way, we can deduce the relations for the other two field components in the y

direction as

*0£d
.7o"v

= -j

£„ z-
o

oy

sXlD.

h~lDu

o

I^I-r
oyj

Ez
(3.56)

The above relations (3.55) and (3.56) are expressed in the original domain. To handle the

analysis in the transformed domain, the above systems of equations are transformed via the

appropriate transformation matrices Tc or Th into an equivalent system of the transformed field

components. Hence, by transforming the difference operators De and Dh into the quasi-

diagonal matrices Se and b\, the transformed systems of field components result in,

Ex_
= J

for the x components; and

er d
I

k0 dy

d

k0 dy

1 d

k0 dy

£~$h n^z\

n^y
= -J

*A
d rj0Hz

k0 dy.

for the>' components. With the transformed fields by

E, = ThEx ;

Hx = TeHx ;

Zy = Wy
"y = ThHy

E. = LE.

H2 - TXH,

(3.57)

(3.58)

3.4.3 Formulation of the Fields at a Layer Interfaces

If we consider the two interfaces of a dielectric layer A and B (see Fig. 3.3), one can establish

a system of equations which relates the field components of the two interfaces of this dielectric

layer [11,35]. Hence, by doing some manipulations on equ.(3.57) and using equ.(3.50), we

obtain a system of equations for the tangential field components as
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where,

-w* ~£dYh Yh$e -£d^h «A E^

H* $hYh Ye Sh^h «E -JE*
-j'H.j, -£dah «A ~£dYh Yh$e -E*

u* J -$kah °E 8hYh Ye - - JE.ji

5 =J£ 5
v V re v

aE
= V-e-£A

lYe

(3.59)

(3.60)

and etc, ah, ye and yh are defined above in equ.(3.51). Using the following abreviations in the

system of equations (3.59), we get

and

y^
-£dYh Yh<5,

K/h Ye J

Har = 7o
-JH,zA.B

H.xA.B

-,y2
-£d(*h «A

l Shah aE

• E' ^ A.B

^xA,B

r)E,zA,B.

Equ.(3.59) can be further simplified to give

ZZE

y\ yi

Ji 7iJ

^ A

-E
B-i

(3.61)

(3.62)

(3.63)

The fields in the right and left terms of equ.(3.63) are expressed for both A and B interfaces. In

order to transform the tangential field components from one interface to the other in the case

of layered substrates, the system (3.63) has to be converted in such a way to relate the field

components at one interface plane to the field components at the second interface plane as

Ht\-l*B

V z

Y V l/Z,

where the new block matrices in equ.(3.64) are calculated to be,

(3.64)
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-i

y = yl yx = y^y

^y =y2-y,yi y (3.65)

IZ = -y1

and equivalently, if we inverse the system of equations in (3.64), we obtain the inverse

relationship between the two layer interfaces as

E.
j-i.

H
A -I

V -z

-Y V El.
(3.66)

Till now, this way of analysis using direct electric and magnetic field equations is valid only for

structures based on isotropic homogeneous dielectric layers. Another way of describing the

fields behavior is by introducing the Hertzian potential functions. This is used mainly in

handling other types of substrates such as anisotropic ones.

3.4.4 Hertzian Potential Functions Description

In order to treat the homogeneous isotropic substrates using the Hertzian potential function

description, it is advisable to choose two Hertzian potentials A and B, which possess only one

component in the propagation direction, the z-direction in the present case, so that the

boundary conditions can be easily established (see Fig. 3.2). Within each layer, the fields canbe

written in terms of these potentials [33,34] as,

e = VxVx^-Vx£
jcoe

h = VxA+ VxVx£
Ja>M

where the two Hertzian potential functions are expressed as

A= Ve(x,y)e-Jk':a2

B = xi>h(x,y)e-Jk'2a:

(3.67)

(3.68)

and the associated Helmholtz equations for these two potential functions are those given by

equ. (3.1). The solution of the wave equation is derived directly from the procedure described

in section 3.3.1. It is obvious that in each layer, the electromagnetic field may be expressed in

Chapter3 : Analysis usingABC's for Isotopic and Anisotropic Media 54



terms of the obtained solution as given by equ.(3.47). The electromagnetic field can be carried

out using equ.(3.67) [33-35] as

7

o

k dxd.

d

-J

dy

o-

k oyoz

d

dx

( d2
dz2

0

+ k-

_d_
oy

J o

krj d xd z _

ox

J o2

kn dyd z_

J_
krj

fd__
dz2

+ k2

(3.69)

(3.70)

(371)

Assuming the potential functions defined as harmonic wave type variation along the z-

direction, and discretizing these equations in the same way as done previousely for the

Hertzian potential functions, equ.(3.69-71) becomes

E,

\jl^y

re ,J
h~lD,

d

dy

d

£r dy

h~xD.

-z
d

dy (3.72)

h~xDu

£.J
d

dy]

Vl/''
(3.73)

Chapter 3 : Analysis using ABC's for Isotopic and Anisotropic Media 55



\ k
—

Ez 0 r
0 Irj^l

7o#J = ~J

0 k0£dL
U/'1 (3.74)

This set of equations that describes the fields in the original domain can be expressed in the

transformed domain via the following equations

Ex_

k",.

Ez

h~l8.

d

dy

i
dy

h-l5.

£di

-I-
d

dy

h~lSL

y[^I
d_

dy.

To*'
11/*

\ijh

ka£dIj

To*"

(3.75)

(3.76)

(3.77)

Because the matching equations can not be easily established for the Hertzian potential

functions, in that case, the electromagnetic fields represented by equ.(3.75-77) may be

expressed in terms of the transformed Ez and Hz similar to those of eqs.(3.57) and (3.58). After

handling these equations, the relationship between the two interfaces for a dielectric layer

given by equ.(3.63) remains valid.
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3.5 ANISOTROPIC MEDIUM

In this section the adaptation of the MoL to ABC's is performed for a uniaxial anisotropic

medium. A medium is said to be anisotropic if its properties do vary with the direction of

propagation of an electromagnetic wave at a given point.

If we take the dielectric layer of the microwave structure to be anisotropic, the mathematical

formulation will differ slightly from that of the isotropic dielectric structure due to the

permittivity relation, and hence, the phase propagation constant definition. Dielectrics that are

characterized by a scalar permeability and a diagonal tensor permittivity defined as

M = p0 ; £ = £i

£x 0

£y
0 £.

(3.78)

are known as bi-axial anisotropic dielectrics if all the diagonal elements are different. When

two of the principal dielectric constants are equal, such as the x and>' components, then only a

single optical axis exists, and the medium is said to be uniaxial.

According to references [33,34], for uniaxial anisotropic dielectric medium, the electric and the

magnetic fileds can be derived from two electric and magnetic Hertzian potential functions

having only a direction along the optical axis [35].

3.5.1 Hertzian Potential Functions Calculation

Let the two dielectric constants sx and ez to be equal, and consider an e~;M electric and

magnetic Hertzian wave propagation variation as described previously. Assuming an eJC" time-

harmonic variation, the electromagnetic fields in each homogeneous anisotropic region are

expressed in terms of the two electric and magnetic Hertzian potential functions [36] as

Q.JI=<VJ'(x,y)e-jk-'ay

e(x,y,z) =k2±Oe+V(W-0e)-jcopoVxOh (3 79)

h = jco£0£±V xOe +V(V•Oh) +k2xOh
h

with
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kl =k2£± =(co2£0pQ)£1

£l=£x= £z
(3.80)

where the potential functions Oeh are the solutions for the following scalar wave equations

and

f *id2 £y d2
. 2+- -, 2\ox £± oy

f --
o o

\

+ (kl-k2) Oe =0
J

\

+—+(kl-k:)
\ox o y

0=0
J

(3.81)

(3.82)

defined for each region of the structure. The boundary conditions associated to the electric and

magnetic Hertzian potentials are identical to those of the electric and magnetic fields

respectively [37-40].

3.5.1.1 Magnetic Hertzian Potential Function

Equ.(3.82) which expresses the magnetic field related function is identical to equ.(3.2) for the

isotropic medium. Using the same discretization scheme as presented above, the result of the

magnetic field for the isotropic medium equ.(3.36) is identical to the solution of the magnetic

field related function. Hence, the Absorbing Boundary analysis for the anisotropic structure

leads to the following system

2„h ,D;-(-h-2)Ph+k20£»I 0=0
(3.83)

with

ed =£±~£r (3.84)

Using eqs.(3.84) and (3.20), the elements p* of the second order difference operator Pb are

calculated to be.
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pn = l + ah

' phn=-\-bh-ah

I Pn = b

And the uncoupled system follows directly to be equal to

Dl-kl 0=0

(385)

(3.86)

From which the magnetic field related function solution can be given by equ.(3.47) with

;
j 2 ; 2 / rtt h r\

~ ° ~k2hT~£d ' (3 87)

3.5.1.2 Electric Hertzian Potential Function

To solve for the electric field related function in anisotropic medium, equ.(3.81), which

describes the wave propagation at the limits of the computational domain, has to be factored

using the one-way wave operator principle. This equation is rewritten in an operator form after

applying the normalization procedure as

with

[n2D\ +D\ +£d)& =L'Oe =0

£".=£• - £d y "re

n*=B>-
'•-)

and the factorization ofthe operator L in equ.(3.88) leads to,

with.

(3.88)

(3.89)

(3.90)

(3.91)
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which is identical to the operator of equ.(3.9) in the case of an isotropic medium. Hence,

following the same ABC analysis and discretization procedure described for electric fields in

isotropic media for both lateral limits of the computational domain, the following system of

equations in matrix form results in,

n2D2,-(-h-2)Pe+kydI Oe=0 (392)

where, the elements p& of the second order difference operator Pe are calculated using

eqs.(3.20) and (3.89). Hence, we get

Pll=2 + a'

Pn=-\-b*

The uncoupled system follows directly to be equal to

n2D*-kl{w-e<n Oe=0

by rearranging equ.(3.94), it becomes,

D)-k] Oe=0

(3.93)

(3.94)

(3.95)

From which the electric field related function solution can be given by equ.(3.47) with

k2 ;

Ke n2{klh2 Sd) (3.96)

3.5.2 Field Components Using Potential Functions

After having defined the two Hertzian potential functions in the transformed domain, the

remaining field components are determined from the electric and magnetic Hertzian potentials

as those described for the isotropic layered structures. By using equ.(3.79) [33-35], we have
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i- >•

d2

dxdy

jO)£0£,
o.

k2-

d2

^ i
ox J

dzd y
d

J&Mo

d d-

d_
dz

dxd y

n

I 0

0 I

d
I^Mo

ox

-,2
o

JO)£0£±
dx dzdy

Oe

Oe

0h

0*

(3.97)

(3.98)

(399)

e

The operator -z— is replaced by -jkz since an e Jk,: type variation is assumed. Discretizing
e z

these field components by using the same procedure as the one developed for the isotropic

case, these last equations become

Ex

LVJ
= K

7o^J

k0h~{De
= kr

_d_
dy £reIk0

-Je.heJ -k0h'lDh „
d

0/

.7otf
re n0 "X "

( h~2

0

t A A

= A

- f Ik~l\bre l K0
d_

dy

£1h'iDe

oy}

o

/r2
*„' +

h~lDu

-Je-I
d

re zsoy}

O*

(3.100)

o*
(3.101)

(3.102)

These equations (3.100-102) can be written in the transformed domain as
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Ex_
•7o#,J

SeK
, d
dy

£„I

= k2

-4£Z£J ~6hK'
_d_
dy.

oe

Ev
= k;LVo"y\ 0

W 0iAz-

= JK

Me"i+^
0

£.Ak
-, d

dy

£±Se

0

£j + A,

-i
o

-Je-Ik,
" ° dy.

oe

Oe

(3.103)

(3.104)

(3.105)

3.5.3 Fields Formulation at a Layer Interfaces

Another possible and useful combination of these equations, which are necessary for the field

matching at the interfaces, must be defined for the interfaces A and B as shown in Fig. 3.3.

Substituting ^—<&h by means of equ.(3.50) into eqs.(3.103) and (3.105), these last equations
ey

become

' xA

K se K
'xB

-Ye <*e

-<*e Ye
5 +W*«*o

o

o,

= -ki £re£±
5

- vX $h K
-Yh cch

-<*h Yh\

JE_«
JE*.

= k2£k:
-Ye ae

rcze r,
5 -Hoko^h

O

o

o
A

h

B -Io,

(3.106)

(3.107)

(3.108)
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7o = -kQ£xS 5
Lc^J+ 7cA -4£re k

-Yh av

l~ah Yh

O

Lo;
(3.109)

The electromagnetic fields along the ^'-direction are given for both interfaces by means of

equ.(3.104) as

L^yBA =%<I+I<)

=*o(*„'+4>)

5
.<%.

(3.110)

(3.111)

3.5.4 Fields Expressions Using Tangential Components

Since it is not possible to establish matching equations for the electric and magnetic Hertzian

potentials 0£ and Q?h, it is of interest to replace them by two field components. Thus, Oe and

<t>h can be expressed in terms ofE,, and Ez as

O!

O,
B ->

K2{K+£J
-1 Ye

<*e Ye-
sh

~E^
-E*.

+V^7
JE*

JE*\.

Oj
O

=K2{lh+£j) 1

-

\eJ jE7A
«, JzZ +sIEJ LJE*]

>B ->

(3.112)

(3.113)

Substituting eqs.(3.112) and (3.113) into eqs.(3.106-109), a relation between the tangential

components in both interfaces A and B is obtained as

r 7m a„~\i-
Vo Tr

'la,

_HxB _
=

f
5hk2

+

V* " Lah yh J

/- \-i /- x-irr. a.~\~\\e., 11*
-E&

U*+*„/)"'-*„*_( a.+*„/)" r. «.

«. r.JJljE
-JE>

•iB J

Chapter 3 : Analysis using ABC's for Isotopic and Anisotropic Media

(3.114)

63



-JH,

'['^U rJ(^+*-7) -£-S'^+^ [a. y.\S
7h a, 1

-E* j . (3.115)

££(*•+£A
7. a.

+ k2
la. y, J 'La* r [Ih+eA $.

J

-jEu

jE* J

The electromagnetic fields along ^--direction are finally given by

EyA

EyB j

Y. a,

ae Yt

ExA

—ExB
+ £r.

Ye <*e

<*e Ye

-jEzA

jEzB

"o
HyA

-HyB_
=^7e

7 o"

.0 -/_

ExA

_—ExB_
- Se

7 o"

.0 -I.

-jE^A

~jE-J3_

(3.116)

(3.117)

The relation between the tangential magnetic fields Hx and H: and the tangential electric fields

Ex and E:, is now established, and has the form

Vo

-jHtA

H xA

-jH*

. HxB _

-Y„ 8eYe+Yh$e

Ye^H+^hYh Ye

<x.8h+8hah

8eae+ah8e

a*

-<*H

aeSh+Shah

Seae + ahSe

~Yh 8eYe+YhSe
Ye8h+8hYh Ye

with the following abreviations,

ae=e (Xe+ereiy]ae ; aE=5hah5t-e„at

fe =£A^+£reIy]Ye i YE=SkYH^-enYt
ah = k2h ah(I* +e„ Z)~' ; aH =Se ae5h - en ah

fh =kZYh&*+£reIY] ; YH=SlYtSh-e„Yh
8=JelT

Using the definition according to equ.(3.63), equ.( 3.118) becomes

with,

x,=

lHb
b I2
y% yi J

-Yh S.Y.+YhS.

f.Sh+ShYk YE
; y2 =

-E B J

dtSh+Shdh

8,a,+ah8,

ExA

-JEzA

—ExB

jEzB _

(3.118)

(3.119)

(3.120)

(3.121)
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The representation of equ.(3.120) is identical to equ.(3.63) which was developed for isotropic

layers. We note also that, the matrices >-, and y2 are diagonal or quasi-diagonal matrices

depending on the lateral boundaries.

3.6 CONCLUSION

As a first step in analyzing MIC and MMIC structures, the behavior of fields within an open

medium has to be identified. Hence, in this chapter, the solutions of the wave equation for both

electric field and magnetic field related functions are presented. A brief presentation of the

need to such analysis is firstly presented. Due to the order of the wave equation and the

method of lines discretization procedure, it is found that the convenient ABC operator that

suits for studying open structures is the one-way wave equation operators. This operator is

based on the wave equation factoring for both left and right lateral limits of the computational

domain. Secondly, the adaptation of this absorbing boundary operator to the method of lines at

the limits of an isotropic medium is conducted for both field quantities. Finally, the analysis is

extended to the uniaxial anisotropic case, where the solution of electric and magnetic Hertzian

potential functions is deduced.

After having defined the systems of equations for both electric and magnetic fields in a given

medium, the complete characterization ofopen MIC and MMIC structures is to be given in the

next chapters.
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Chapter 4

FULL WAVE ANALYSIS OF ZERO THICKNESS OPEN STRUCTURES

WITH ISOTROPIC AND ANISOTROPIC SUBSTRATES

4.1 LNTRODUCTION

In most analysis of planar microwave integrated circuits, the width of metallic strips is

taken to be of vanishing thickness, i.e. of zero thickness dimensions. Keeping in mind this

assumption, we will try to develop in this chapter the different mathematical tools and

procedures to completely characterize a variety of planar structures that are subject to open

boundary conditions.

The characterization to be achieved, a more rigorous procedure, similar to that of the closed

boundaries in references [7-11], has to be established in order to get the effective dielectric

constant of the structure. The field transfer relations between the dielectric layer interfaces are

first deduced. Then, the field matching equations are studied for simple and complex structures

where a final characteristic equation is formulated for each structure, and from which, the

propagation constant can be calculated. A wide set of structures can becharacterized using this

development such as, single microstrip, edge coupled, broadside coupled, broadside-edge

coupled structures, and many other multi-layer multi-conductor structures.

4.2 FIELD TRANSFER EQUATION

4.2.1 Field Transfer Equation Between Dielectric Interfaces

In order to transform the tangential field components from one interface plane to another

interface plane of the same layer, for both isotropic and anisotropic, in the case of multi layered

structures, we use equ.(3.64) which relates the field quantities at the two interfaces of each

dielectric layer A and B (See Fig. 3.2) as follows
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Lzzfl

V z

Y V jlZZ,,
(4.1)

Where the block matrices in equ.(4.1) have been defined previously in equ.(3.65) to be equal

to

v =y?$\ = yJ>?
^Y=y2-yyly

z = -y?

and inversely, the system in equ.(4.1) can be swapped as

E_A
H

A->

V -z

-Y V Hj-"fij

Consider the structure of the multi-dielectric layers in Fig. 4.1

y
interface*

n-1

£ro-l

k-iL

Et2

®-
Sri

ground plane

layer*

n

n-1

X

(4.2)

(4.3)

Fig. 4.1 Multi-dielectric layers structure

At the interface zero, corresponding to yO, the ground plane, which is considered to be
metallic, we have a zero electric field E0=0, by applying equ.(4.1) to the first dielectric layer,

we get

Ei

"J

K zJe0
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where £i and H\ are the fields at the upper interface of the first layer. Considering the zero

electric field condition due to the metallic shielding, as a result of this we can write,

HX=YXEX=VXH0=VXZXXEX (4.5)

where the transfer matrix Y,] at the interface 1 (see Fig. 4.1) is expressed by,

Yx=VxZ?=-yx (4.6)

Equivalently, in the case of a magnetic wall at the lower shielding interface instead of the

electric wall, where the magnetic field is equal to zero H0=0, we get,

Hx=YtlEx=YxE0=YxV-xE, (4.7)

where the transfer matrix Yt] is expressed by,

Ytl=YxVx-1 (4.8)

Refering to the multi-layer structure described in Fig. 4.1, if we use the absorbing boundary

conditions operators analysis, as it has been mentioned earlier, then, each dielectric layer in the

structure will have its own transformation matrices, its first and second order difference

operators, and hence, its diagonal and quasi-diagonal matrices. Automatically, any analysis

should normally be in the same domain. Hence, at this level, it is not possible to carry on the

analysis in the transformed domain. The previous layer parameters of each dielectric layer

described by equ.(4 2) are transformed into the original (spatial) domain via its appropriate

transformations Tc and Zh. The analysis is carried out in the original domain by matching the

field parameters at the layers interfaces of the whole structure.

Following the procedure described above for the first layer field transformation equation, one

can transform equ.(4.4) in the original domain to be

H

Vx Zx

7, vx ZZn
(4.9)

where E\ and H\ are the fields at the first layer upper interface in the original domain.

Considering the zero electric field condition, equ.(4.5) will give
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Hx=YtiEx=VxH0=V1Zx-xEx (4.10)

where, the transfer matrix y) is expressed by

y1 =VZ'X = -v (4.11)

For the second layer, in the multi-layer structure of Fig. 4.1, the field transfer equation can be

expressed using the layer parameters as,

^22
#22J

v2 z2

L^2 V2.

E*

H2l.
(4.12)

where El} and Hl} are the transformed fields at the layer interfaces of layer 2. The subscript

i=2 stands for the second layer and .7=1,2 stands for the numbering of the interfaces 1 or 2,

respectively, in the case of the second layer. Transforming equ.(4.12) into the original domain,

the field transfer equations will be given by

lZZ2

V Z"1 ^1

Y V12 v2j .H,
(4.13)

where Et and H1 stand for the electric and magnetic fields at the interfaces 1 and 2.

Developing equ.(4.13) for E2 and H2 and using equ.(4.10), the magnetic field at the second

interface is written as a function of the electric field at the same interface as

h2 = {y2+v2y;w2+z2yXe2 (4.14)

If we introduce the transfer matrix notation for the second layer as

1\-1Yt2=(Y2+V2Y;){V2+Z2Y;) (4.15)

equ.(4.15) will be written as

H2 =Y2E2 (4.16)

In the same way, and following the same procedure, one can define a recursive relation

between the magnetic field and the electric field as the one given by equ.(4.16). If we consider
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the layer k in the multi-layer structure of Fig. 4.1, one can write the field transfer relation for

that layer to be given by

X" ^ zk~
-Hkk- Jk Kl -Hkk-\-

(4.17)

where EtJ and Hl} are the transformed fields at the two layer interfaces of k"1 layer (fields at

interface k and k-\ respectively). Equ.(4.17) is transformed into the original domain as,

~Ek~ ~K zk~ Xi'
L#J k k\ L#*J

(4.18)

where Ek and Hk stand for the electric and magnetic fields at the interfaces k and k-\, see

Fig.4.1. Developing equ.(4.18) for f* and Z/k and using the same relation as that of equ.(4.15)

for the layer k-\, the magnetic field at the interface k is then written as a function of the electric

field at the same interface by using the recurrence relation defined as,

Hk = YtkEk

with

it-i\-i

Y,=(Yk+vkYrM+zjr)

Note that the transfer matrix Ytk can beexpressed as

Y,k =
yn yn

y2i y22.

(4.19)

(4.20)

(4.21)

A similar analysis can be handled if we start from the upper boundary interface of the structure.

In open structures, as given in Fig. 4.1, we simulate the upper open boundary interface by an

infinite distant bound; by taking the thickness of the layer to be infinite. In this case, instead of

using the field transfer equation, we use its inverse described by equ.(4.3) as

L/zJ -Yx K

Z£0
1 -L#0

(4.22)
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Where in this case, the index i=l stands for the first upper layer. Following the same analysis

as the one described for the bottom layer starting condition, we end up with

HX=-YXEX (4.23)

where the field transfer matrix is

YX=VXZX-X (4-24)

However, in the case of a magnetic wall upper boundary condition, this matrix can be written

as

Yx =YXVX-X (4-25)

where the subscript 1 stands for the lower interface of the first layer from the top. The upper

starting condition leads to the same recurrence relation described above in the case of the

bottom starting condition, so

HL=-YtLEL ; for 1=1,2.... (4 26>

where Zis the layer identifier and YtL is the transfer matrix given by the recurrence equation,

YtL=(YL+vLYrwL+zLYtL-xr <427>

4.2.2 Field Transfer Equation at a Metallic Interface

Ifwe consider the multi-layer structure ofFig. 4.2, that is composed oftwo or more dielectric

layers deposited on aground plane. This structure is subject to Absorbing Boundary conditions

for both left and right lateral boundaries, and contains one metallic interface mcomposed of

one or more zero thickness strips.

To study the continuity at the metallic interface m, the analysis has to be conducted in the

original domain, since different transformations are used.
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Fig. 4.2 Multi layer Single metallization Interface structure

For vanishing strips thickness, the continuity study reveals the existence of a current

distribution that introduces a discontinuity in the tangential magnetic field at the interface m.

This discontinuity is expressed in the spatial domain as

h:-h~ = -j (4.28)

where

Jm-mUJ'x,J'z)' (4.29)

are the components of the current density, which introduces the magnetic field discontinuity.

Note here that, only the tangential components of the current density are considered due to the

zero thickness dimensions of the strips. Equ.(4.28) is valid only for zero thickness strips,

whereas for finite thickness strips the analysis will be presented in the next chapter.

For the case where the structure consists of multiple layers as that described in Fig. 4.2, we can

proceed our analysis by developing a recurrence relation similar to that given by equ.(4.20).

Applying equ.(4.19) at the interface m of the multi-layer structure, we get

Hm=YtmEm (4.30)

where Ytm is the transfer matrix for the bottom m layers.
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Using equ.(4.30.), the magnetic field matching equation (4.28) at the strip level can be

expressed in the following way

H:=H-m-jm=YrEm-jn (4.31)

At layer m+\ the field transfer equation between interface m and interface m+\ can be

expressed as

F
•^m+l

lZZ^,

V zY m+1 ^m+1

Y VL-'m+l * m+1

E

H
i- m ->

(4.32)

developing equ.( 4.32) for both electric and magnetic field functions and using the expression

of the electric and magnetic field given by equ.(4.31) at the interface m, we have the

expression magnetic field as a function of the electric field at the interface m+1 as

^.=r^-(ft.-Ly.

where the transfer matrix of the recursive equation is given by

with

Yrx=Y-x(vm+l+zm+xYrrx

ym+l _ y , y y
1 ~ 7m+l ^^m+l-'f

(4.33)

(4.34)

(4.35)

Asimilar analysis can be handled ifwe start from the upper boundary interface ofthe structure,

exactly as the one described for the multi layer dielectric interface structure.
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4.3 FIELD MATCHING RELATIONS

We have proceeded so far to the development of the necessary mathematical formulation to

handle the complete analysis of a given MIC and MMIC open planar structures. Therefore, to

characterize a given structure, a system of equations has to be established and should lead to

the extraction of the structure effective permittivity.

We have defined previously the field transfer equations for both dielectric interface and a

metallization interface. Hence, the matching equations of the fields, e.g. equ.(4.33), can be

accurately elaborated to describe the behavior of microwave structures. As mentioned earlier,

only two field components are needed to be identified in order to characterize the structure. In

our case, as it has been used in the development of the layer parameters, the tangential

components of the electric field E = (E'X,- jE[)' are considered with the tangential

components of the current densities described by equ. (4.29) as

jm=ujJ!x^y <436)

The system which describes the complete structure is based upon a relation that links the

tangential electric field components to the tangential current densities for different structures.

Hence, in the following sections an algebraic relation will be defined for these different

structures.

4.3.1 Multi-Layer Single-Metallization Interface

Consider the multi-layer single-metallization structure presented in Fig. 4.3 bellow. It is

composed of one metallization interface m composed of an arbitrary number of strip

conductors embedded below / and above k dielectric layers.

The two field transfer equations between the dielectric interfaces below and above the

metallization interface given by eqs.(4.19) and (4.26) must be matched to each other. Consider

the metallization interface shown inFig. 4.3, at the upper interface of the substrate layer k and

at the bottom interface of the substrate layer /, the matching equations of the electric fields and

the magnetic fields are given by the following expressions

Ek=E,= Em (4 37)
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Hl-Hk - -J„

where m denotes the metallization interface.

dielectirc

interface #

MI k
Si mi s2 ni2 S3

rr

rrip-j Sp nip Sp+i

ground plane

Fig. 4.3 Multi-layers Single-metallization Interface structure

(4.38)

laver #

Applying the field transfer equations (4.19) and (4.26) at the metallic interface mgiven by

Hk=YtkEk

for the field transfer equation for the bottomk layers. And

Ht = -Y,lE,

(4.39)

(4.40)

for the field transfer equation for the upper / layers.

Using the magnetic field discontinuity equation (4.38) and substituting the magnetic fields by

their corresponding expressions in eqs. (4.19) and (4.26), we get an algebraic relation that

characterizes the structure. This is given by

(Y;+Y,<)Em = Jm (AM)
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The above system of equations connects both the current distribution and the magnetic field.

Thus, to solve this equation, we should consider the form of the metallic interface m. If at the

interface, the number of discretization lines on the slots are less than those on the strips, i.e. the

width of the slots intervals are less than the width of the strips intervals, the system (4.41) will

be used. This is due to the zero elements of the electric field vector Em that will help in the

solution of the system. Whereas, if the slots interval widths are greater than the strips widths,

the inverse of the system above will be used, that is

(Yt+YtirJm=E (4.42)

The above systems (4.41) and (4.42), that characterize the microwave structure, have to be

solved for the tangential electric field and the current density for the identification of the

effective dielectric constant of the structure.

At the metallic interface m, the tangential electric field at the metallization strips and the

current density at the slot regions are equal to zero. Considering the multi-layer single-

metallization structure presented in Fig. 4.3, which is composed of p metallic strips and p-\

slot regions. The tangential electric field on the strips and the current density on the slots are

given by

E=E=0
XI zx

^=^=0
(4.43)

where the subscript /' denotes the strip number and the subscript kdenotes the slot number.

Constructing the electric field components E and the current density J expressions in vector

form at the metallic interface m for p metallic strips, yields

J^ =xM

0 " 0 " Exi\ X"
J xm\ J zm\ 0 0

0

' d zM —
0

• E =' *-xM

Exsl
• F =' ^zM

Ea2

xmp zmp
0 0

0 0 F F

(4.44)
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where the subscript si in E^ and Ez stands for slot identifier and the subscript mi in Jx and Jz

stands for metallization identifier. Using equ.(4.41) or equ.(4.42), depending on the width of

the slot or the strip regions, and substituting the field and current quantities. Assuming the slot

regions width less than the strip regions width, equ.(4.41) can be written as

Where,

.Vh yn

.y2x y22.

>il ^12

.y2i y22 J

EM

l-jEM.

JJxU

• d zM

= (Y,'+Ytk)

(4.45)

(4.46)

Using the above quantities of equ. (4.44), equ.(4.45) will be expressed in the following form

^ii yy.

y2x y22 J

r eb1 0

0 I Jdxm\

Exs2 0

0 J^xmp

^xsp~1
-jEal

=

0

0

0 J zm\

~jEa2 0

0 J zmp

-—jEup-\ _ o J

(4.47)

To solve this system of equations, notice that those columns of the block matrices of yA,

which, when multiplied with the electric vector E corresponding to the null subvectors, give

no contribution and engender extra effort. Hence, it is of interest to not include them in the

calculations in order to save time and memory. Eliminating the zero subvectors in the E vector

and their corresponding columns in the [yA] matrix, we end up with the so called reduced

matrix representation of the form
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and

yn

Xi

' E„x

y[2 ^xsp+\

yrn\ -JEal

.—J^zsp+l.

E„.

y& ^XSp+l

y'il -jEai

-—J^zsp+l.

0

0

JJ.xmp

0

0

zm\

0

J

J. ymp

0

where the subscript r stands for the reduced matrix representation.

It is apparent that this system can be further simplified since the current density vector contains

zero subvectors. Hence, The system (4.48) can be partitioned into two subsystems according

to zero and nonzero subvectors of the right hand side term J. Splitting the system into a

homogeneous subsystem containing all the zero subvectors of the current density vector and a

nonhomogeneous subsystem having the nonzero ones, we get

= [o]

' E„x JJxml

yn y?i' E-XSfH-l J xmp

y^ yiil -JEal

-—jEzsp+\_

d zm\

- Jzmp .

(4.48)

(4.49)

(4.50)

Chapter 4 : Full-Wave Analysis of Zero-Thickness Open Structures 78



where rh stands for the homogeneous reduced matrix system and m for the nonhomogeneous

reduced matrix system.

The homogeneous system (4.49) is an indirect eigenvalue problem, where the elements of the

homogeneous reduced matrix are a function of the effective relative permittivity constant e„.

To solve the indirect eigen value system which has nontrivial solutions only in the case where

the determinant of the homogeneous reduced matrix is zero, the eigen value en must be

varied until the determinant ofthis system matrix vanishes to zero, which is given by

detUO=0 (4.51)

The calculation of the eigen value, which is the effective dielectric constant en, permits the

calculation of the electric field vector using the homogeneous equation (4.66). Hence, the

electric field vector is just the eigen vector corresponding to the eigen value ere. By evaluating

these two previous quantities, the current density vector can be easily obtained using the
nonhomogeneous system (4.50). Moreover, after having organized these vectors in their
original form, all the other electric or magnetic field components are evaluated at the
metallization interface, after which they can be evaluated at all other dielectric interfaces at any

position along each discretization line of the structure.

In this part of analysis, we put the assumption that the slots width is less than the strips width.
However, ifthe slots width is wider than the strips width, a similar analysis can be conducted
following the same procedure, ending by the following homogeneous and nonhomogeneous

system matrices,

and

zrh zrh
'11

rh

L*21

7rh
•22

Jdxmp

d zm\
= [0]

J zmp J

(4.52)
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wrn _m

•21

^12

rn

Z22.

IXi

P.xmp

J
zm\

_ zmp

•xs\

xsp+\

-jEal

-JE.zsp+l _

(4.53)

4.3.2 Multi-Layer Multi-Metallization Interfaces

Consider the general form of a multi-layer multi-metallization structure presented in Fig. 4.4

below. It is composed of an arbitrary number of metallization interfaces m, where each

metallization interface contains an arbitrary number of metallization strips. Between each two

successive metallization interfaces, there is an arbitrary number of dielectric layers N,.

Metallization

Interface s(\fl)
Dielectric

Layer *(DL)

Nm-i

1

IISS ™:^:^:>;£^
i:-:^:':"i:5v?SiSr Nffi

;

m-1

1

'

1

N,

1

—•
Xground plane

Fig. 4.4 Multi-Layer Multi-Metallization structure
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In order to get the field transfer equations for N\ and Nm dielectric layers below and above the

two lateral metallization interfaces ML and ML,, the recursive relations, given by eqs.(4.19)

and (4.26), are used. Hence, at the upper interface of the substrate layer N\ and at the bottom

interface of the substrate layer Nm, the matching equations of the electric and the magnetic

fields are given by the following expressions

and

H? = Yt"]Ex

//"-> =-Y"^Em
m t m

(4.54)

(4.55)

After defining the fields relations at the top and bottom of the first two metallization interfaces,

we move towards the definition of a general relation that relates the tangential electric field

components to the tangential magnetic field components between each two metallization

interfaces MI, and MI,-i . See Fig. 4.5.

dielectirc

interface #

layer #

B:MI: i-l

££:^:^£:i£i£;^ N1+

'

k-\

k

k-\

k-\

k

k-\

'

A: MI: i

1

Ni

Fig. 4.5 Two successive metallization interfaces scheme
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Consider N,-i successive dielectric layers located between two metallization interfaces MI, and

MI,-i. According to eqs.(3.63) or (3.120), the relationship between the tangential field

components for any arbitrary layer k is

H k-\

k k

y\ y\
k k

y\ yhH;l_ •"* J L

Ek
-Ek J

Similarly, we can obtain the same relation for the layer k-1,

Hl-\J

y
*+i

y2
k+\

Ml Ml
iy2 y\ jl

Ek
-Ek+\-l

(4.56)

(4.57)

where the notation (-) and (+) designate, respectively, the bottom and the top sides of the

appropriate layer.

Introducing the continuity relations of the field components at the dielectric interface k, and

using the above two relations (4.56) and (4.57), we obtain a relationship between the field

components of the bottom interface of layer kand those of the top side layer k+\, see Fig. 4.5.

The resulted equation can be described by the following general recurrence relation

where

H~k-i

•HLu

v*+1-Mir

•S2lr

*+i\-i .,*

)ti=y;-y;w+yrry;

y\;l =yl(y\+ykSry?
Ml Ml, .*+l\-l

y'vr-yFW+yn-yi

yk2?r=yh-ykS{yi+ykSrxykS ; * = o,.^l+1

^k-l

-Ek+l-l

(4.58)

(4.59)

where ^i is the number of dielectric layers between two metallic interfaces as shown in Fig.

4.5.

Now, for all dielectric layers between two metallic interfaces, a general relation linking the

tangential field components at these two metallization interfaces can be deduced using the
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recurrence relation (4.58). Hence, for any two interfaces; and /'-/ as indicated

following relation is obtained

ir ":. 4.5, the

Vn

y'21

y\i

y'22J

F'

-F'
B -l

-0)

where the block matrices y' are obtained using the recurrence relation (4.59).

In order to get a general relation between the tangential field components in the s:r_r_re of an

arbitrary number of metallization interfaces, a similar analysis to that describe :: single

metallization interface will be conducted. Hence, considering three arbitrar -jcessive

metallization interfaces /'-l, /', and /'+1, similar relations to equ.(4.60) can be de~ -_ for the

metallization interfaces / and /+1 as

i+\

H\
i+l

H

y\i

iyl2i
Yn

y\2.

.'+1
^11 yn

L^I1 y%.

E\
-Eh-i

Ei

-E
j + l

h -I

-"0

~2)

where the subscripts / and h designate, respectively, the lower and upper sides of -: .:electric

regions. Using the field matching continuity equations described in eqs.(4.37) and i) at the

metallization interface /',

Hh-Hr=j,

pi _ F'+i - F

yields to the following recurrence relation for the /'* arbitrary metallization interface

Z,,£M + KlE,+R]El+l = J, i = 2,....,m-\

where
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L, = y*

K,=yii-y'n

R,=y'n

1+1 (4.65)

Equ.(4.64) can be extended for the lower and upper lateral regions by matching the fields using

eqs.(4.54) and (4.55). Hence, the general recursive relation for the complete structure can be

written as

and

L,E,_l+KlE!+R1EM = Jl i = \,2,....,m

'•1
y2l

0

7 = 2

7 = 1

m

'y'n -jtf 7 = 2 m-\

K=< y'n -y? 7 = m

W--y'n 7 = 1

y'n 7 = 1

*,=< y'S
0

7 = 2

7 = m

m-\

(4.66)

(4.67)

where y" and y] are respectively the field transfer matrices described by eqs.(4.54) and (4,55)

in the case ofmetallic shielding where, E0 =E^x =0. The above relation can be written in a

matrix form as

Kx Rx

L^ K-,

0

0

^2

E, A

E2 h

Em-l J~i
lEm. lJm\

•Zm-1 K-m-\ "m-1

where it can be expressed in a shorter form as

(4.68)
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YE = J (4 69>

The above relation is used, as described previously, in the cases where the total slot regions are

smaller than the strip regions for all the metallization interfaces. WTiereas if the optimal regions

are the strip regions, the system (4.69) will be inverted to become

ZJ = E (470>

where

z=r <47i>

The system (4.70) can be expressed in other forms depending on the optimal regions in each

individual metallization interface. Therefore, if the system contains metallization interfaces that

are optimal for slot regions and some others for strip regions, system (4.70) can be written in a

mixed vector components for both electric field components and current density components

[11].

In a similar manner to the analysis conducted previously in the case of multi-layer single

metallization interface, the systems (4.69) and (4.70), that characterize the microwave

structure, have to be solved for the tangential electric field and the current density.

At the metallic interface /', two conditions still need to be fulfilled. We mean, both the

tangential electric fields at the metallization strips and electric current density at the slot

regions must be put to zero. Considering the multi-layer multi-metallization structure presented

in Fig. 4.4, the tangential electric field E on the strips and the current density d on the slots are

given by

E'=E'=0
* * (4.72)

where the subscripts (ij,k) are

/: the metallization interface

j : components of the vector on the metallic strip

k : components of the vector on the slot
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Constructing the tangential electric fields E„,Ezl and the current densities J3a,d„ at each

metallization interface / using equ.(4.44), and considering equ.(4.68), the electric filed and the

current density vectors for each metallic interface will be given by

E.=

J =

E„

-JEa

'Px
J.,

(4.73)

Following the same procedure as described above in the case of a single metallization interface,

we eliminate the zero subvectors in the electric field £„ corresponding to the field components

at the strip regions, and letting only the electric field at the slot intervals designated by Eti. The

same procedure goes with the current density d{, at the slot regions, ending only with the

nonzero subvectors on the strip conductors J^. Splitting the system (4.68) into two

subsystems, as it is done for eqs.(4.49) and (4.50), homogeneous and non-homogeneous one,

we get

rhK? R[

%
rrhk2 r;rh

rh

m-1
L

for the homogeneous equation and

K? R?

L^ K2 R?

z:
'm-1

0

rh

m-1
K.

rh
L

K.
m-1

0

K-l
rh

K,

C-i

Esl
E

si

X

E,2

E.

= [o] (4.74)

J.ml

J
ml

(4.75)

J,
mm-\

J.

for the nonhomogeneous equation.

The homogeneous system (4.74) is an indirect eigen value problem, similar to the one

described for a single metallization interface. We first solve the indirect eigen value system,

which has an eigen value £n, then, the nonzero subvectors of the electric field vector are
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Fig. 4.6. Effective permittivity £re versus length ra=a/d. (a) ABC (b) CB (c) ABC and CB.
d=lmm; rw=w/d=l; £r =8.875; M=5 lines; f=5GHz;

As it is clearly shown in the figure 4.6c, the value of the effective permittivity at 5Ghz for the

open case is greater than that of the closed one beyond a certain minimum value of a, for our

case it is about 4.5mm. Also, for an error of 0.1% in the effective permittivity, the CB

transverse dimension a is at least two times the ABC transverse dimension. This last result

shows clearly that the size of the problem simulation can be further reduced using the ABC

analysis since the dimension of the computational domain is made smaller, which saves a lot of

time and memory.
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Fig. 4.7 Frequency effect on rapid convergence ABC-CB
d=lmm; rw=w/d=l; rb=b/d=50; £,=8.875

In order to see the effect of frequency on this minimum value of a which gives the same value

for sre for both cases, the computations done for four frequencies 1, 5, 10, and 15GHz are

reported in Fig. 4.7. We can see that the minimum value of a decreases with increasing

frequency. We have also noticed during the simulation a high improvement in the convergence

behavior.

2. Convergence

The convergence behavior is of great importance for the ABC analysis to see its stability,

memory and time requirements. Consequently, this problem has been studied intensively and

the results of the study are shown in Figs. 4.8 to 4.10. The effective permittivity as a function

of the number of discretization lines on the strip using different edge parameters is presented in

Fig. 4.8. The convergence is shown to be assured independently of the position of the first

discretization line on the metallization strip, but with more effort if the edge condition is not

satisfied. We can notice from this graph, that the optimal edge parameter can be deduced to be

slightly greater than 0.25. The error in the effective dielectric constant as a function of the

number Mis presented in Fig. 4.9, which shows that, for the optimal edge positioning <7=0.25,

it becomes less than 0.5% with only two lines on the metallization strip M=2. This is a

consequence of the line shifting discretization scheme which compensates very well the

discretization error. The convergence as a function of the normalized discretization step h'd is
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given in Fig. 4.10, where for an error of about 0.5% in the normalized wavelength parameter

Xg/Xo, the minimum number of discretization lines M=2, in the case of optimal edge

positioning, is included within that error interval. Similar results are obtained for closed

boundaries in references [7,11].

ere

Fig. 4.8 Convergence behavior of ere for various edge parameters
d=lmm; rb=50; ra=10; rw=l; f=5GHz; e, =8.875.

error(sre)

0.02

-0.02

-0.04

-O.06

Fig. 4.9 Relative convergence error for sn
d=lmm; ra=10; rw=l; f=5GHz; z, =8.875
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Fig. 4.10 Convergence behavior of the normalized wavelength XJ Xi
d=lmm ; w=lmm; rb=50; ra=10; rw=l; f=5GHz; e, =8.875

3. Dispersion diagrams

The behavior of the effective permittivity e„ as a function of frequency changes known as the

dispersion diagram, for different substrate permittivities, exhibits the same behavior as

compared to that of a closed boundary case.

f(GHz)

Fig. 4.11 Effective permittivity ere versus frequency
d=lmm; rw=l; ra=10; M=5 lines

200

In connection to this, Fig. 4.12 gives the dispersion curves as a function of the normalized

substrate thickness d/Xo using different normalized strip metallization widths w/d. In Fig.

4.12.(a), the normalized metallization strip width is shown to be proportional to the effective

Chapter 4 : Full-Wave Analysis ofZero-Thickness Open Structures 91



permittivity, whereas in Fig. 4.12.(b) it is inversely proportional to the characteristic

impedance. The results shown in Figs. 4.11 and 4.12 are in total accordance with the existing

graphical data published in reference [45] using the Spectral Domain approach.
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Fig. 4.12 Dispersion diagram versus normalized substrate thickness d/Xo.
(a) Effective permittivity t rc (b) Characteristic impedance Zc

d=lmm; rb=50; ra=7; Ej =9;
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4. Effect of anisotropy

Dielectric anisotropy is another important effect in the analysis of microstrip-based MIC and

MMIC's. It has been considered in our analysis for all the studied structures.

In fact, Fig. 4.13 presents a comparison in the effective permittivity characteristics of

structures based on anisotropic substrates for both open and closed types. The sapphire

substrate, for which e±= 9.4 and e8= 11.6, is taken as an example. It is shown that for different

normalized substrate thickness w/d, the behavior of e^ with respect to frequency changes is

identical for both structures. The variation of the dispersion characteristics by ignoring the

anisotropy when considering an equivalent isotropic substrate of et= 9.4 is given in Fig. 4.14.

The obtained results are verified using the references [35,40] for closed boundary conditions

with different dimensions ra, and they are found to agree very well with the published ones.
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Fig. 4.13 Effective permittivity versus thefrequency for sapphire substrate
d=l mm; ra=12; e±= 9.4 and ee= 11.6
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Fig. 4.14 Dispersion curve for both isotropic and anisotropic substrates
d=l mm;ra=12;er=9.4;eI=[^=9.4and£e= 11.6]
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5. Effect of the upper boundary

The stripUne dispersion characteristics are depicted in Figs. 15 and 16, where the effect of the
upper boundary is Ulustrated as afunction of frequency. It reveals that the dielectric constant is
proportional to the upper normalized dimension b/d. When this ratio exceeds 15, the stripline
exhibits the same behavior as an open upper boundary structure. Acomparison with the closed
boundary case is shown in Fig. 4.16, where the dispersion characteristics are shown to be
significant when decreasing the value of b/d.

ere

f(GHz)

Fig. 4.15 Upper boundary effect on dispersion characteristics
d=l mm; rw=2; ra=ll; £,=9

ere

f(GHz)

Fig. 4.16 Upper bound effect for AB-CB on dispersion curves
d=lmm; rw=2; ra=ll; e, =9
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6. The Suspended microstrip

Fig. 4.17 shows the variation of the effective dielectric constant for the suspended stripUne

structure rb=b/d=2, and the suspended open microstrip line that correspond to b2/d>15 as have

been shown earlier in Fig. 4.15. It is observed that the effective dielectric constant is

proportional to the ratio b2/d.
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Fig. 4.17 Dispersion for suspended microstrip line
d=.6 mm; a=13 mm; rbi=l; w=3 mm; ^ =10.2

7. The edge-coupled microstrip structures

The dominant odd and even modes effective permittivities of an edge-coupled microstrip

structure as a function offrequency are plotted in Figs. 4.18 and 4.19 for multiple ratios a/d. It

may be observed from Fig. 4.18 that the dielectric constant for both modes increases as the

ratio a/d increases. For a/d greater than 20, the dielectric constant remains approximately

unchanged. This results for edge coupled structures are in accordance with the results of

Fig.4.6 for the single microstrip. Moreover, the open structure is compared to the closed

boundary case in Fig. 4.19, where it is shown that for a/d=20 the maximum error in the odd

mode dielectric constant for both structures is of the order of 0.02% and of the order of 0.5%

for the even mode constant.
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Fig. 4.18 Dispersion diagram. Effect oftransverse dimension ra in edge-coupled strips
d=lmm; rw=1.5; rs=1.5; ra=[9 11.5 13.5 20]; rb=19; e,=10.2;
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Fig. 4.19 Dispersion curve. Effect ofCB in edge-coupled strips
d=l mm; rw=1.5; rs=1.5; ra=20; rb=19; e, =10.2;

8. The Suspended edge-coupled lines

On the other hand, the suspended edge-coupled striplines characteristics are presented in
Figs.4.20 and 4.21. Acomparison of ABC to CB analysis is plotted in Fig. 4.20, where it is
shown from this figure, that the effect of metallic walls on the odd mode dielectric constant is
higher than that of the even mode. In addition to this, it is observed from Fig. 4.21 that the
variation of the effective dielectric constant as a function of frequency increases as the ratio

b2/d increases.
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Fig. 4.20 Effective permittivity versus the frequency in edge-coupled strips
d=l mm; w=l mm; s=l mm; a=15 mm; rbi=2; rt>2=l; £r =3.78;
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Fig. 4.21 Effective permittivity versus the frequency in edge-coupled strips
d=lmm, w=lmm; s=lmm; a=15mm; rbi=2; rt>2=[l 50]; ^ =3.78;

9. The Broadside-coupled suspended microstrip line

The variations of the dominant even and odd modes effective dielectric constants of a
broadside-coupled suspended stripUne as afunction of frequency are depicted in Fig. 4.22. It
shows that both modes increase slowly as the frequency increases compared to the edge-

coupled structures, and the odd mode decreases more rapidly than the even mode by changing
the ratio rbi=bi/d.
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Fig. 4.22 Effective permittivity versus the frequency for the broardside-coupled strip
d=6 mm; a=10.6 mm; ra=17.6667; rbt=50; w=6mm; rw=l; e, =9.6

10. The Broadside-Edge coupled suspended stripline

The variation of the effective dielectric constants for a broadside-edge coupled suspended
microstrip line structure as afunction of frequency are plotted in Figs. 4.23 to 4.25. Firstly, the
effective permittivity is given as afunction of frequency for the open type structure, where it is
apparent that the rate of variation in the effective dielectric constant for the four modes is
slow. Secondly, the effect of the upper boundary is introduced through a ground plane at
b2/d=2. FinaUy, in Fig. 4.25, the effective permittivity is shown to be decreasing as the ratio
rb2=b2/d decreases. The plotted results in Figs. 4.17 to 4.25 are compared to the results
existing in reference [46] for closed boundaries analysis, and it has shown a good agreement
within the accuracy of graphical data.
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Fig. 4.23 Effective permittivity versus frequency for broardside^dge coupled strips
d=.6mm; a= 12.2mm; rb,=2; rb2=100; w=lmm; s=lmm; M=5; e, =10.2
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Fig. 4.24 Effective permittivity versus frequency for broardside-edge coupledstrips
d=.6mm; a=12.2mm; rbi=2; rt>2=2; w=lmm; s=lmm; M=5; &r =10.2
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Fig. 4.25 Effective permittivity versus frequency for broardside-edge coupled strips
d=.6mm; a=12.2mm; rb]=2; rr>2=t2 100]; w=lmm; s=lmm; M=5; &, =10.2

11. Fields and currents calculation for different structures

The electric field components and the current distributions, for both single and coupled Une

structures, are presented in Figs. 4.26 to 4.30. Concerning the field components and currents,

the Figs. 4.26 and 4.27 of a single microstrip, show that only the z- component of the electric

Chapter4 : Full-Wave Analysis of Zero-Thickness Open Structures 99



field components that is highly affected by the existence of the metalUc enclosure. In the CB

structures, the z-component of the electric field vanishes to zero at the boundary due to the

imposed Dirichlet-Dirichlet condition, however, for the open boundary case, this component

has a non zero value due to the presence of ABC's. The foregoing figures are compared to

graphical data in references [11,31] for both closed and open structures, where it has shown a

total agreement.

Figs. 4.28 and 4.29 depict the current densities and the electric field components respectively

for both even and odd modes of a two edge-coupled microstrip structure. An elaborated

development can be handled in studying these curves, as an example, the investigation on the

even or odd modes effects on the current density distributions.

As an example of multi-strip structures, the components of the electric field components E(x),

E(y), and E(z) are given for a four edge-coupled microstirp configuration. Each of the Figs.

4.30 to 4.32 plots the related four modes of the corresponding electric field components.
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4.5 CONCLUSION

In this chapter, the full-wave characterization of zero thickness open planar structures is

achieved using the analysis developed in the former one. The characterization is performed

through two steps. In the first step, a field transfer relation is defined between the interfaces of

the same dielectric layer, that can be conducted in either transformed domain or original

domain. In the second step, a more advanced analysis has been adopted in order to establish a

general relation that links all the structure parameters, called the characteristic equation of the

structure. Solving this equation, which is an indirect eigen value problem, leads to the

calculation of the propagation constant. This last equation also, leads to the calculation of all

the structure relatives. Consequently, a large set of structures can be characterized using this

development starting from a single-layer single-microstrip to multi-layers multi-conductors

zero thickness structures.

The results obtained through the simulation of the developed mathematical algorithm including

dispersion, field components, and current densities have shown a total accordance with the

previously published data.

The software developed can handle a variety of waveguiding structures such as, single

microstrip, suspended microstrip, multiple edge coupled lines, multiple broadside coupled

lines, and other complex zero thickness structures. It also considers both isotropic and

anisotropic dielectric substrates.
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Chapter 5

FULL WAVE ANALYSIS OF FINITE THICKNESS OPEN STRUCTURES

WITH ISOTROPIC AND ANISOTROPIC SUBSTRATES

5.1 INTRODUCTION

In the previous chapter, we considered that the structures have strips with zero
thickness or of infinitely thin thickness, which is of practical interest for many structures used
in the field of microwaves. However, in most current MMIC structures, the finite thickness
must be taken into consideration, as it is of the same order of magnitude as the width of the
strip or of the slots between the strips. This is in fact, anatural result of the development of
semiconductors technology.

The analysis of open structures with finite thickness strips is undoubtedly analogous to the
closed boundary structures [47-51]. The distinct difference operators should be firstly
developed, and then the fields transfer and matching equations are established.

5.2 MATHEMATICAL ANALYSIS

Consider the structure shown in Fig. 5.1, which consists of two different layers I and HI.
Between the two layers there is amicrostrip of finite thickness t. Proceeding in the same way
as in the case ofthe closed boundary structure from the interior side, and in the same manner
as for the ABC for the two lateral sides. This results in adiscretized structure similar to that of
the closed case, however the two lateral conditions are substituted by the Absorbing Boundary
Conditions operator instead of the closed boundary condition case.
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Fig. 5.1. Discretization scheme of an open finite thickness microstrip structure

Concerning the two homogeneous layers I and III, the analysis remains the same as it has been

described in chapter 3, but care should be taken about the edge positioning at the finite strip

edges. An electric field discretization line has to be put exactly on the edge of the finite

metallization strip to satisfy the Dirichlet condition (see Fig. 5.1). The field behavior in layers I

and III are fully described by eqs.(3.33) and (3.39) in the case of isotropic medium, and by

eqs.(3.85) and (3.95) in the case of anisoptropic medium.

5.2.1 Difference Operators for Intermediate Regions

Consider the left side of the structure in the intermediate region i-IIi (see Fig. 5.1), the left

lateral boundary is an Open Boundary, where an ABC operator has to be applied, whereas at

the right side, the Dirichlet boundary condition is already satisfied by the presence of the

metallic boundary of the strip. Any analysis conducted through this intermediate region i-IIi to

identify the different operators will end up with a mixed ABC-CB operators or precisely in this

special case ABC-Dirichlet difference operators.

Hence, for the left and right side intermediate subregions i-IIi and i-II2, the mixed boundary

conditions will lead to a mixed systems of matrices that are symmetric in the lateral terms. The

systems of mixed boundary conditions for both left and right intermediate regions can be given

successively by
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/ = ! : D2ezl+(-h-2)(2 +a)ezl+(-h-2)(-l-b)ez2+k^de2l=0

' > 1 : ty„ +
ezd-i) 2e,U) + ez(I+l

+ k0£dezl=0

i = n. : Dle.n +1 > »n,

e.-(«,-l) 2er",
+*0*^1 =0

where «i is the number of lines at the left intermediate region, and

i = \ : D;eA + g.-2~2gn
V h2 J

+ k20£de2l=0

i>\ : D;e* +
ez{,-\) 2e!(l) + ^('+1)

+*0V,.=o

i =n. ^v^ +(-/i"2)(2 +a)eZ7), +(-/2-2)(-l-6)e2(nj_1)+^^zn2 =
y ^

where n2 (5.2) is the number oflines at the right intermediate regions.

These two systems can be written in matrix form as

[D2y-(-h-2)Pei+k20sdI W =0

(5.1)

(5.2)

0

(5.3)

where the subscript / designates the number ofintermediate subregions.

Equ.(5.3) is solved foOowing the same procedure using the Method of Lines as described in
section.3.4, where the tridiagonal matrices P* must be diagonalized using an appropriate

transformation matrix T* in the case ofthe electric field. Equivalently, the procedure described

above for the electric field is valid for the magnetic field analysis, from which we can deduce

the first and second order difference operators for the mixed operators, as it follows in the two

forthcoming subsections
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5.2.1.1 ABC-D1RICHLET Boundary Conditions

By considering the subsystem (5.1) which characterizes the left intermediate subregion, the

second order difference operators for both electric and magnetic field systems are given as

with

and

with

P„ =

Ai Pn u

-1 2 -1

0

-1 2

-1

-1

2

pu=2 + a ; pl2=-l-b

P» =

Pn P\2 Pi3

-1 2 -1

-1 2 -1

-1 1

pu=l +a ; pu=-\-b-a ; pu=b

(5.4)

(5.5)

where the subvariables a and b are those defined in chapter 2 for either isotropic or anisotropic

substrates, from which we can deduce the first order operators as

£>• =

\ + a

-1

0

-1 1

-1

; Dh =

l -l

i

o

-l

l -l

(5.6)
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5.2.1.2 DIRICHLET-ABCBoundary Conditions

Considering the subsystem (5.2), in the same way as above, which characterizes the right

intermediate subregion, the second order difference operators for both electric and magnetic

field systems can be expressed as

with

and

with

P_ =

2 -1 0

-1 2 -1

-1 2 -1

0 Pn Pn

pu=2 +a ; pu=-\-b

1 -1 0

-1 2 -1

p* = '•

-1 2 -1

.0 Pu Pn Pn

pu=\ +a ; pn=-\-b-a ; p}3=b

(5.7)

(5.8)

From which we can deduce the following first order difference operators

Z> =

-1 1

-1

+b

0

; Dh =

1

1-a.

1 -1

1

•• -1 I

1 -ij

(5.9)
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5.2.2 Multi-Strip Configuration

In the case of two or more strips of finite metallizations at the interface, the analysis

concerning the two lateral intermediate regions 11] and II3, (see Fig. 5.2), is similar to the one

of the previous subsection. But, the subregions between the metallizations are considered as

regions under the Dirichlet-Dirichlet boundary conditions, because of the two metallic walls of

the strips. For the corresponding expressions of the difference operators, the complete analysis

has been presented in chapter 1, that is directly applicable to such intermediate subregions. See

Fig. 5.2.

Fig. 5.2. Discretization scheme ofa multi-finite thickness stripstructure

Note that the discretization lines through the whole structure are identical. This is chosen as

such to enable the continuity study to be handled at each interface. Note also that, the

transformations in the three regions (I, n, and III) are distinct.
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5.3 FIELD TRANSFER RELATIONS

Consider the structure shown in Fig. 5.3, it is composed of an arbitrary number of metallization

strips laying between two dielectric layers. Using the analysis based on absorbing boundary

conditions operators as described above, each dielectric layer and subregion in the structure

will have its own transformation matrices, its first and second order difference operators, and

hence, its diagonal and quasi-diagonal matrices. Therefore, the analysis must be carried out in

the original domain by matching the field parameters at the layers interfaces of the whole

structure.
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Fig. 5.3 Discretization scheme of a multi-strip interface

Following the procedure described in section.4.2, for the layer I and layer III, the field transfer

equations are similar to those of eqs.(3.63) and (3.120) for isotropic and anisotropic layers

respectively. Similarly, a field transfer equation can be established for each intermediate region

(Hi) as

m
zB

H xB J m

\y? *"1 -jEzA

\S? y?'\
. jEzB -m

(5.10)

The quantities in the block matrices yx and y2' in equ.(5.10) are defined by equ.(3.61) for

isotropic medium, and by equ.(3.121) for the anisotropic medium. The representation of
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equ.(5.10) is quite different from one intermediate region to another, due to the boundary

conditions and to the number of discretization lines, especially, for X and T which are again

different for those of regions I and III. Using the notation, previously described in equ.(3.62),

the subvectors of the field components at the intermediate regions interfaces are expressed as

H a,Bin = m
~JHzA,B

H xA,B J
Ui

'A,Bin

in the transformed domain.

Usingequ.(5.11), equ.(5.10) can be written in short as

m

y? y?
U? y"'

^ A

^-EBJ

f
^xA,B

~J^zA,B.

Hi

Ui

(5.11)

(5.12)

The relation between the transformed tangential fields components at the upper interface A of

region I, can be written inthe transformed domain as

-JH*

H xA -I

y'» y'a
L.V21 y'nS I-JEzA-i

(5.13)

The block matrices y\} are determined according to the substrate type in eqs.(3.61) and

(3.121). This equation, equ.(5.13), canbe written as

Ha = yl Ea
(5.14)

Analogously, according to equ.(4.23), the following relation holds at the lower interface Bof

the region III in the transformed domain,

jHzB
-HxB J

til
iyS

yS
yS

uxB

-MzB
(5.15)

Where the matrices yfk are given by equ.(3.61) or equ.(3.121). In short, equ.(5.15) can be

written as

^-Mhb =-yr e (5.16)
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5.4 FIELD MATCHING RELATIONS

Since the transformations mentioned before are different, the field matching at the interfaces A

and B has to be done in the spatial domain. Knowing that both the tangential electric and

magnetic field components vanish within a perfect conductor. Applying the fields continuity

conditions at the interface of the intermediate region A in the original domain for the magnetic

field, we get

Hx = Jz

Hz = -Jx
(5.17)

Using the above equalities and substituting them into the field components at the intermediate

regions interface, we get for the interface A

E1

0 0

^xA
77771
Ezi

0

77772
ExA

• E1 =•> ^zA
0

77772

'. '•

; hxa -

And similarly for the interface B

-777piu _
'xB

0 " 0

77771
^xB

77771
EzB

0

hxB

• ym -
•> ^zB ~

0

777/2
EzB

* "

777•• J-I —
xB

r^i r-Ji.n
rrin

HxA
7/771

MzA

Jl ;HL = -J2
J xA

77 772

HiA
77772

MzA

'. :

1

zB

771

xB

2

zB

772

xB

J,

H

J.

H

UI• Um —

-J1
J xB

771

zB

2

xB

772

zB

H

-J

H

(5.18)

(5.19)

In these equations (5.18) and (5.19) the subscripts 1,2,... in the current densities, designate the

1st, 2nd,... conductors and in the field components mark the 1st, 2nd,... intermediate regions.

Transforming equ.(5.14) backto spatial domain and using equ.(5.18) we get
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H
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'xA

E

0

771-jEt,
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(5.20)

This system can be decomposed into two independent subsystems; one system describes the

connection between the field components in the slot regions and the other allows the

calculation of the currents. To achieve this decomposition, we introduce the following

abbreviations,

H'a =

S-jH'f ExA ~jJL
-JH'J E'J A

MxA
• En =' ^A

-JEUJ
; JA =

JL
77772

MxA -JE"«2 JL
\ I ;

(5.21)

together with the reduced transformation matrix recognized by the superscript r, and its

complement recognized by the superscript re,

T[ =
T,

Ir

Ir
T.

T-TC

2I ~
Tl

Ire

T;
Ire

(5.22)

The reduced transformation matrices consist of those rows, which belong to the lines in the

slot. As an example, from the square matrix Th , the non-square reduced matrix Th r and the
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non-square complementary matrix Th n can be obtained by partitioning of the rows. From

equ.(5.20), we get the following equations

h° = t; y[ rrx EnA

Ja= t? y! rrl eua
Analogously, we obtain from equ.(5.16) with the following abbreviations

"." =

r-y/S'i Fu\
^xB jJIb

-JH'J
77772

^xB ]JxB

jrU\

HxB
• En =•> *^B -JE'J

•> J B ~ 71
JzB

77772

MxB ~jEj£
J2

J zB

'. _ * _, • -

the equations

ijU _ rr T>m Tr~l F1
~mb ~ lm y\ Jni ^h

j _ rprc —UI rprc-\ -pU
jb - 1U1 7\ 1U1 ^B

The inverse transformation to the original domain of equ.(5.12) yields

with

H» 1II
yUi
M

yUi
L2 J77

Uf. V2u-i
yUi

-*2
yUi

_ i77-

7"
1hi

rpU

-7/1

Ui

B -1-E

(5.23)

(5.24)

(5.25)

(5.26)

(5.27)

(5.28)

(5.29)

Where T£ and TJ7 are the specific transformation matrices for each intermediate region i.
In order to achieve a combination ofthe equations ofall slot regions If to only one equation,

the vectors H* and E^ must be divided in parts with xand z components and arranged in the

same order as the components in the vectors ofeqs.(5.21) and (5.25).
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To this end, block matrices are constructed from the sub-matrices of yx ' and y2' according

to the following form with the subscript k= \,2.

y"n=^g{yinn}

y"22 =diag{y^2)

yH.n =quasidias{yZ2}

y",2i =quasidiag{yk!2i]

(5.30)

These four matrices are now combined to only one block matrix for k- 1,2 as

yi} =
y?.n yln

L^2i yUk,22 J
(5.31)

Now, we form block matrices from the individual transformations matrices according to

7S=diag[T£) =

and

*?=«««*(#) =

rpU

1h2

rpU
1e2

(5.32)

hp.

(5.33)

rpU
epj

where the subscript p, designates the total number ofslots (see Fig. 5.3).

Using the two blocks ofeqs.(5.32) and (5.33), we get a single super block matrix defined as

Tn=dia^jS Je) =
rpU
1H

rpU
2E -1

(5.34)
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On the other hand, the complete equation can be written for the field components in the slot

regions of the interface A and B in the following form

r^'i ~TJu \7» J™1 ~T1u
-l

Eu^A

k'J Tu\ U" rJ _ Tu\ -EuL ^B

(5.35)

Substituting eqs.(5.23) and (5.26) into the left hand side of equ.(5.35), the indirect eigen value

problem results,

i77 " V Y/1 \Tn -1

l- Ti77 J
yU

Li2 v\
-

Tlu J

\t;
-

'r \t; -1^
' Eu ~^A

Tni\ y777 jr
J -EuL ^B J

that can be simplified to

[nej]
EunA

-Eu• ^B

= 0

= 0 (5.36)

(5.37)

The homogeneous system (5.37) is an indirect eigen value problem, similar to the one

described in the previous chapter for the zero thickness case, from which the propagation

constant can be determined. The nonzero subvectors of the electric field vector EA and EB are

then calculated to be the eigen vector corresponding to the eigen value en. After that, the

current density vectors JA and JB are obtained using eqs.(5.24) and (5.27). Organizing these

vectors in their original form and introducing all the zero subvectors for both electric field and

current density, all the electric or magnetic field components can be evaluated at each

metallization interface /', after which they can be evaluated at all other dielectric interfaces at

any position along each discretization line of the structure.

Note that, it is possible to develop a homogeneous system ofequations (indirect eigen value

system) similar to equ.(5.37) for the current densities on the metallizations, in the case of

smaller strip widths rather than slot regions.
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5.5 RESULTS AND DISCUSSION

In this part, using the developed mathematical procedure discussed earlier for the finite

thickness case, some simulation examples are presented for the finite thickness open structures.

The software developed for this purpose covers a large class of structures, of which single

strip, coupled strips, edge-coupled strips, broadside coupled strips, and other multistrip

structures.

1. Convergence behavior

Firstly, the convergence behavior is treated as a function ofthe number of discretization lines

on the strip of finite thickness t. Fig. 5.4 shows the convergence behavior of a single finite

thickness strip for an open structure. The effective dielectric constant is computed as a

function of the number of discretization lines M on the strip for different normalized substrate

thickness dAo. Fig. 5.5 presents the variations in the dielectric constant as a function of the

normalized discretization interval h/a. In Fig. 5.6, the rate ofconvergence is given in a form of

an error ejs^, where e„o is the extrapolated solution for the effective dielectric constant at

h=0. It shows that the higher the value ofthe normalized substrate thickness d/X is, the faster is

the convergence behavior. This presented results are in accordance with the published ones in

references [11,48] for closed boundaries using the Method of Lines.
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Fig. 5.4 Effective permittivity versus number of lines Mon strip
d=lmm; rb=9; ra=16; rw=3; rt=0.1; £,=9.7
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Fig. 5.6 Convergence error for different normalized substrate thickness d/X
d=lmm; rb=9; ra=16; rw=3; rr=0.1; £,=9.7

2. Dispersion characteristics as a function of strip thickness t

The dispersion curves of a finite thickness microstrip line is shown in Fig. 5.7, in which the
dielectric constant is given as a function ofthe metallization strip thickness t for different strip
normalized widths w/d. It is found that increasing the strip thickness t leads to a decrease in the

effective dielectric constant, which is in turn, is inversely related to the strip width wand to the

normalized substrate thickness d/X as it is clearly indicated in Fig. 5.8.
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Fig. 5.7 Effective permittivity versus strip thickness rt=t/d
d=lmm; rb=9; ra=16; £,=9.7; f=5GHz.
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Fig. 5.8 Effective permittivity versus rt
d=lmm; rb=9; ra=16; rw=l; e,=9.7

In Fig. 5.9, the effective dielectric constant is considered for both ABC and CB analysis. The
difference is apparent in the low frequency range, where the value of the effective dielectric

constant is shown to be a bit greater using ABC's. Dispersion curves are also given for
different normalized metallization strip widths w/d in Fig. 5.10, where an increase in this last
parameter leads to an increase in the effective dielectric constant.
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Fig. 5.9 Dispersion for both ABC and CB
d=lmm; rb=9; ra=16; rw=l; rt=0.1; £,=9.7
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Fig. 5.10 Dispersion curves. Microstrip width effect
d=lmm; rb=9; ra=16; rt=0.1; tAv=0.3 andt/w=0.1; £,=9.7

3. The suspended and the suspended inverted microstrip line

The variations in the dispersion characteristics of a suspended microstrip line structure are

shown in Fig. 5.11, where it is observed that the effective dielectric constant is inversely

related to the finite metallization thickness t. On the other hand, the dispersion diagram of a

suspended inverted microstrip line is presented in Fig. 5.12, where the same behavior observed

in Fig. 5.11 holds.
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Fig. 5.11 Dispersion curves for a suspended microstrip line
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Fig. 5.12 Dispersion diagram for a suspended inverted microstrip line
d=.6mm; a=13mm; rbi=l; rb7=100; w=3mm; M=10; £,=8.875

4. The edge-coupled microstrip lines

The odd, even, and higher order modes effective permittivities ofan edge-coupled microstrip

lines are plotted in Figs. 5.13 and 5.14 for two different metallization strip widths rt=0.01 and

rt=0.1 respectively. The dispersion effect ofthis structure is characterized by the existence of

higher order modes at relatively low frequencies, mainly, with increasing metallization

thickness t. A comparison between the dominant modes for the two distinct metallization

thickness rt=0.1 and rt=0.01 is given in Fig. 5.15. It is observed from this last figure that, with

increasing metallization thickness t, the effective dielectric constant decreases. It is also

apparent that the decrease rate for the odd mode is greater than the decrease rate of the even

mode.
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Fig. 5.13 Dispersion characteristics for an edge-coupled microstrip lines
d=lmm; rw=l; rs=1.5; ra=13.5; rb=50; rt=0.01; £,=9.7;

ere

Fig. 5.14 Dispersion characteristics for an edge-coupled microstrip lines
d=lmm; rw=l; rs=1.5; ra=13.5; rb=50; rt=0.1; £,=9.7;

ere

Fig. 5.15 Effectof metallization thickness t for an edge-coupled microstrip lines
d=lmm; rw=l; rs=1.5; ra=13.5; rb=50; e,=9.7
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5. The suspended edge-coupled microstrip

The dispersion diagrams of the suspended edge-coupled microstrip lines is presented in Figs.

5.16 to 5.18. The two dominant even and odd modes for the effective permittivity of Fig. 5.16,

show an inverse dependence to the dimension b of the introduced air layer as compared to the

results of Fig.5.15. The effect of closed boundaries, which is presented in Fig. 5.17, is shown

to affect highly the odd mode rather than the even mode. In Fig. 5.18, the upper ground plane

effect is introduced for the edge-coupled stripline configuration, where the ratio b2/d is found

to be proportional to both the even and the odd modes effective dielectric constants.

ere
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Fig. 5.16 Dispersion for suspended edge-coupled microstrips
d=lmm; rw=3; rs=1.5; ra=17.5; rb=0.5; rt=0.01; £,=10.2
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Fig. 5.17 Dispersion diagram for ABC and CB suspended edge-coupled strips
d=lmm; rw=3; rs=1.5; ra=17.5; rb=0.5; rt=0.01; £,=10.2
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Fig. 5.18 Effect ofupper bound on effective permittivity edge-coupled strips
d=lmm; rw=3; rs=1.5; ra=17.5; rbi=0.5; rt=0.01; e,= 10.2;

6. The broadside and the broadside-edge coupled suspended strip lines

Two more examples of interest are given in Figs. 4.19 and 4.20. The first one depicts the
variation of the dominant odd and even modes effective dielectric constants of a broadside-

coupled suspended striplines for rb2=l, and rb2=100 which simulates the open structure. The
latter, shown in Fig. 5.20, reveals the variations of the four modes effective permittivity
constants of a broadside-edge coupled suspended microstrip structure as a function of
frequency for both open and stripline configuration with rb2=2. From these two figures, it is
observed that, as the ratio b2/d increases the effective dielectric constant increases. The
variation in the effective dielectric constant for both cases is also observed to be very small. A

similar behavior has been already encountered during the analysis ofthe zero thickness case.
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Fig. 5.20 Dispersion diagram for broardside-edge coupled strips structures
d=.6mm; a= 12.2mm; rbi=2; rt=0.01; w=lmm; s=lmm; M=5; £,=10.2
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5.6 CONCLUSION

In this chapter, the Method of Lines has been extended to the full-wave characterization of

finite thickness metallizations open MIC and MMIC structures. Due to the nature of the

discretization scheme of this method, a new set of difference operators are introduced to

describe the field behavior in the slot regions at the level of the metallizations thickness. This

new mixed difference operators are the result of the existence of both absorbing boundary and

closed boundary conditions. Using this development, a large class of structures can be

efficiently handled.

On the other hand, we have developed a software package that can handle the characterization

of a variety of finite thickness metallizations structures such as, single microstrip, suspended

microstrip, edge-coupled lines, broadside-coupled lines, and other complex finite thickness

structures with both isotropic and anisotropic dielectric substrates.

The results obtained through the simulation of the developed mathematical algorithm have

shown their efficiency and a total accordance compared with the published data in the literature

has been observed
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GENERAL CONCLUSION

The work presented in this thesis is the reflection of an extensive study of open planar

and quasr-planar MIC and MMIC structures using the Absorbing Boundary Conditions. The

Method of Lines is used as a numerical tool, which has shown a very good efficiency in

calculations and ease in handling through both analysis and software realization.

The development of the necessary mathematical tools and transformations is firstly carried out

for the Full-Wave characterization of both zero-thickness and finite-thickness metallization

strips open structures. The study done is exhaustive and general, it involves various kinds of

MIC and MMIC structures, starting form a single metallization with a single dielectric

substrate to multiple metallization interfaces with multiple dielectric substrate structures. Both

isotropic and anisotropic dielectric layers are considered with both uniform and nonuniform

discretization schemes.

Secondly, we have developed the needed algorithms for the implementation of a software

package for simulating the forgoing theory. The software we have developed is based on the

MATLAB programming, which is found to be very convenient in handling such indirect eigen

value problems. It handles a complete characterization of the studied structures, of which, the

effective dielectric constant, the electric and magnetic fields, the current elements, and the

characteristic impedance that can be easily computed for both isotropic and anisotropic

substrate with zero and finite thickness strips.

A wide class of structures such as,

• Microstrip line structures

• Suspended microstrip structures

• Suspended inverted microstrip structures

• Multi-conductors edge-coupled structures

• Broadside-coupled structures

• Broadside-edge coupled structures

and some others of their combinations can be completely characterized. The software is

designed to be adaptable to other complex structures.
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The results obtained are in accordance with the results previously published in papers and

references using other methods of analysis. Some of the results are compared with those

obtained using Closed Boundaries, because of the lack of data for open type structures for

both zero thickness and finite thickness metallization.

Through the present work, using the Absorbing Boundary conditions, the Method of Lines has

been extended to the analysis of open planar and quasi-planar waveguiding structures, where

the computational domain can be further reduced. This leads to a reduced number of

discretization lines, and so, it saves great time and memory requirements. One disadvantage

using the Absorbing Boundary development is sensed for the case of multi-layered structures,

due to the nature of the conducted analysis concerning the field matching between different

dielectric interfaces, which has to be done in the original domain.
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