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 ملخص

 .جماعي للأقطاب  وضعقد يكون تحقيقه باستعمال بتعديل الحالات وتصميم المعوض متعددة المتغيرات، تصميم الأنظمة في 

 لتكن .و الصلابةيسمح استجابة زمنية جيدة من حيث الأداء  جماعي للأقطابالوضع ال فان  لقطبالمعتادوضع ال بخلاف

  : التاليةييرمعاال للقاء التعدد استعمل اهذ. ليس وحيد ةماعي جلأقطاب أقطاب، إنشاءة مرغوبة من عمجمو

 .صغيرةتعديل الحالات  المصفوفة ل ربحطويلة •

 .وض في حالة تصميم معمع درجة أدنى مناسب وضمع •

 .خصائص الاستجابة الزمنية جيدة •

 .جيّدة  بصلابةمنظاوينتج  •

  .تحالا سةدرا عدد آبير من ووضّحت بعطيت قد أتصميم المعوضلبتعديل الحالات وتصميم  ل المستعملةرقطال

 وضمع ،ربحمصفوفة  ،(POS, Tr, Ts, SSV) الزمنية ستجابةالا  خصائص،رسمت قد الأنظمة لهذه  لدالة عتبةالاستجابة

 الاستقرار صلابة باحس لقياساتثلاثة ب زوّدت آماو . حسبتمكلّ نظاط لرشرقم  و  الحساسيةدالة ،مناسب مع درجة أدنى

  .ة مميّزة قيملكل

  . سابقاةذآرالميير معاالالأفضل المتوافق مع   الشكلقاءنتلا  قرنت بعد ذلك الذآرأنفة ئجا النت

  .دراسة مقارنة، نظريّا من المستخلصة ،تا الاستنتاجلتبرير أنجزت راساتد

  

Abstract 

 In multivariable systems, state feedback design and compensator design may be achieved using 

block-pole placement. Unlike the usual pole placement, block pole placement allows a better 

tuning of time response performance and robustness. Given a set of desired poles, the 

construction of block poles is not unique. This nonuniqueness is used to meet the following 

criteria:  

 

i. Small feedback gain matrix using state feedback design,  

ii. A proper compensator with minimal degree using compensator design  

iii.  The best time response characterisation  

iv. And yielding system with good robustness. 

 

The methods for designing state feedback controllers and compensators are given and 

illustrated by a large number of case studies. The step response of these systems are plotted, the 

time response characteristics (POS, Tr, Ts, SSV), gain matrix, proper with minimal degree of a 

compensator, the sensitivity function and the condition number of each system are computed. 

Three measures are provided to compute the robust stability of all eigenvalues. The above 

results are then compared to select the best form meeting the required criteria mentioned 

previously. 
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Résumé:  

Dans les systèmes multivariables, le concept de retour d’état et le concept de compensateur 

peuvent être réalisé en utilisant le placement de block-pôle. Contrairement au placement de 

pole, le placement de block-pôle permet  une meilleure performance de temps de réponse et une  

meilleure robustesse du système. Considérant un ensemble de pôles désirés, la construction de 

block-pôles n’est pas  unique. Cette variété est utilisée pour satisfaire les critères suivants:  

 

i. Une norme minimale de la  matrice de gain de retour, en utilisant le concept de retour 

d’état 

ii. Un  compensateur propre avec un degré  minimal, en utilisant le concept de 

compensateur.  

iii.  Les meilleures caractéristiques de temps de réponse 

iv.  et rend le système plus robuste.  

 

Les méthodes pour concevoir les commandes en retour d’état et compensateurs sont donnés et 

illustrés par un grand nombre d’études de cas. Les réponses en échelon unitaire à ces systèmes 

sont tracées, les caractéristiques de temps de réponse  (POS, Tr, Ts, SSV), la matrice de gain, 

compensateur propre avec degré minimal,  la fonction de sensibilité et le  conditionnement de 

chaque système sont calculés. Trois mesures sont fournies pour calculer la robustesse en 

stabilité de toutes les valeurs propres. Les résultats ci-dessus sont alors comparés pour 

sélectionner la meilleure forme qui satisfait les critères mentionnés précédemment. 

Des recherches sont développées pour justifier théoriquement les conclusions tirées de l’étude 

comparative. 
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Introduction 
 

 

 

 

 

      State feedback is one of the most popular and well known technique for altering the 

transient response of systems. This technique is usually used to assign the eigenvalues of the 

closed-loop system to desired locations under the assumption of complete controllability. 

      In the case of transfer function the use of the compensator is in order to satisfy specified 

requirements for steady state error, transient response or closed-loop pole locations. 

The design of compensators for block poles placement is based on solving a matrix 

Diophantine equation. The proposed method in our work allows the computation of proper 

and minimal degree compensators; the proposed algorithms are based on the search for 

linearly dependent rows in the Sylvester matrix. 

      A large- scale MIMO system, described by a state space equation is often decomposed 

into small subsystems, for which analysis and design can be easily performed, so the dynamic 

properties of the MIMO system depend on the block-poles of its characteristic matrix 

polynomial. These block poles are no more than the solvents of the closed-loop denominator 

matrix polynomial of the considered MIMO system. 

      The solvents play an important role in the spectral decomposition of λ-matrices. The 

relationship between the solvents and latent roots of matrix polynomial will be presented in 

chapter three. 

In multivariable systems a transfer function matrix is given either by  

                         )()()( 1 sDsNsH RRR
−=  

or  

                        )()()( 1 sNsDsH LLL
−=  

where  
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)(sH R and )(sH L are the right and left matrix fraction description, respectively. 

The nonsingular denominator matrix of the right (left) matrix fraction description is called the 

characteristic matrix polynomial and characterizes the properties of the multivariable control 

system.  

The closed-loop right characteristic λ-matrix is given by ∑
=

=
l

i

i
iR sRsD

1
)( such that the 

systems is decomposed into l subsystems, the closed-loop poles are the roots of 

[ ] 0)(det =sDR , from the pole assignment point of view, )(sDR or its matrix coefficients 

liRi ,...,2,1, = are nonunique for a required set of closed-loop poles and associated 

eigenvectors. This leads to the conclusion that different feedback gains may result from the 

same set of closed-loop poles but different sets of associated eigenvectors. 

      This nonuniqueness of the gain matrix offers freedom that permit not only to place the 

closed-loop system eigenvalues but also to satisfy the closed-loop system robustness to 

parameter variations which is mainly handled by minimizing the closed-loop system 

condition number [31]. 

 

      The robustness of the closed-loop system is one of the most important concerns of control 

system designers. Variations in system parameters due to component aging might result in 

system performance deterioration and even in system internal stability concerns. Eigenvalue 

locations can also be affected by external disturbances and, hence, those disturbances should 

be considered when designing feedback systems.  

      In single-input single output, the transfer function size is measured by its magnitude, for 

multi-input multi-output case we deal with transfer function matrices, i.e., matrices whose 

elements are transfer functions. There are a variety of methods for measuring the size of such 

matrices; one measure that has gained acceptance is the singular value of a matrix. In our 

work the singular values are developed in the study of the robustness of the closed-loop 

systems. 



 x

      The sensitivity of the eigenvalues and the robustness of the closed-loop system both in 

state space and transfer function are presented in chapter five. 

 

Problem Statement: 

 

The choice of the closed-loop block poles in the case of Compensator Design 

 

The design of unity feedback compensators leads to the so-called Diophantine equation [6]. 

The use of block poles constructed from a desired set of closed-loop poles offers the 

advantage of assigning a characteristic matrix polynomial rather than a scalar one. The 

desired characteristic matrix polynomial is first constructed from a set of block poles selected 

among a class of similar matrices, and then the compensator is synthesized by solving the 

Diophantine equation. The forms of the block poles used in our work are the diagonal, the 

controller and the observer forms.  

       Given a set of desired closed-loop poles{ }nddd λλλ ...21 , a set of l block poles 

are constructed each in the form of: 

• An mm×  diagonal form matrix 

• An mm×  controller canonical form matrix 

• An mm×  observer canonical form matrix 

Forcing these block poles to be matrix roots of the matrix polynomial )(sD f will determine 

the desired closed-loop matrix polynomial described by 

                             fl
l

f
l

f DsDIssD +++= − ....)( 1
1  

The modified recursive algorithm [31] is used to compute the row index of the given proper 

rational transfer matrix )(sH . The recursive [86] or row searching [6] algorithm is used to 

solve the compensator equation. 

Robustness is assessed, in each case, using the infinity norm, the singular value of the closed-

loop transfer matrix and the condition number of the closed-loop transfer matrix. 

Time response is assessed by plotting the step response and comparing the time response 

characteristics. 

 A comparison study is conducted to determine, in light of the above criteria, the best choice 

of the form of the block poles. 
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The choice of the closed-loop block poles in the case of State feedback design 

       The state equation describing linear time-invariant multivariable systems may be 

transformed via a similarity transformation to block controller form [69]. If the number of 

inputs m divides exactly the number of states n, a state feedback controller may then be 

designed by assigning block poles to the resulting characteristic matrix polynomial [86]. In 

the case where m does not divide n, a two stage procedure may be used: a block pole 

placement followed by usual pole placement [48]. 

      The characteristic matrix polynomial of the closed-loop system is forced to equal a 

desired matrix polynomial which may be constructed from a set of desired mm× block poles 

.These block poles are to be selected from the class of similar matrices having as eigenvalues 

a set of desired closed-loop poles. Three forms are selected (diagonal, controller and observer 

form) and compared as to their effects on robustness, time response and feedback gain 

magnitude. 

       Stability robustness is assessed, in each case, using the robustness measures 

21, MM and 3M proposed by Tsui [77]. Performance robustness is measured by subjecting the 

closed-loop system to small random perturbations, then computing the relative change on 

each closed-loop eigenvalue. 

Time response is assessed by plotting the step response and comparing the time response 

characteristics. 

A comparison study is conducted to determine, in light of the above criteria and the state 

feedback gain magnitude, the best choice of the form of the block poles. 

 

The organization of the thesis 

 

      The thesis is divided into seven chapters;  

 

 Chapter one constitutes a brief review of state space representation and different block 

canonical forms used in multi-input multi-output systems. 

 

Chapter two represents a general review on matrix polynomials theory with some material on 

solvents since they constitute the basic tools for the present work. 

 



 xii

The block pole placement using state feedback is presented in chapter three whereas 

compensator design using block pole placement is developed in chapter four.  

 

To maintain stability and performance of the closed-loop system, robust stability, robust 

performance and the sensitivity of the eigenvalues are presented in chapter five. 

 

Investigations are attempted to justify theoretically the conclusions drawn from the 

comparison developed in chapter six. 

 

Extensive testing on a large set of case studies is conducted in chapter seven for illustrative 

purposes to choose the best block pole form among different forms proposed. 

 

Finally, we provide the general conclusion of this thesis and suggest topics for further 

research. 
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State Space Variable and Canonical 

Forms 

 

 

 

 

 

1.1 Introduction:  

      The analysis and synthesis of complex physical or engineering systems always start by 

building up models which realistically describe their behavior. The reason is that once a 

physical phenomenon has been adequately modeled so as to be a faithful representation of 

reality, all further analysis can be done on the model and experimentation on the process is no 

longer required. Because of different analytical methods used, we may often set up different 

mathematical equations to describe the same system.  

      The transfer function that describes only the terminal property of a system may be called 

the external or input-output description of the system. 

The set of differential equations that describe the internal as well as terminal behavior may be 

called internal or state-variable description of the system [49]. 

      In this chapter an overview of state space representation and different block canonical 

forms, which are very useful in the design of state feedback, is given. 

 

1.2 The State-Variable Description: 

      The state space description of the system provides a complete picture of the system 

structure showing how all of the internal variables ),...,2,1()( nitxi = interact with one 

another, how the inputs ),...,2,1()( mktuk = affect the system states )(txi , and how the 

outputs ),...,2,1()( pjty j = are obtained from various combinations of the state-variables 

)(txi and the inputs )(tuk . 

Chapter 1 
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      A linear state model is formed by a set of first order linear differential equations with 

constant coefficient (1.1.a) and a set of linear equations (1.1.b). 

⎪⎩

⎪
⎨
⎧

+=
+=

)()()(
)()()(

.

tDutCxty
tButAxtx                                                                  

).1.1(
).1.1(

b
a

 

where  

      [ ]Tn txtxtx )(,...,)()( 1=   is the system state vector. 

                nitxi ,...,2,1),( = are the system state variables. 

       [ ]Tm tututu )(,...,)()( 1=  is the system input. 

      [ ]Tp tytyty )(,...,)()( 1=  is the system output. 

  ( “T  “ stands for transpose). 

and the system matrices ),,,( DCBA are real, constant and with dimensions npmnnn ××× ,,  

and mp×  , respectively. 

In the above model, equation (1.1.a) is called the dynamic equation which describes the 

dynamic part of the system and how the initial system state )0(x and system input )(tu  will 

determine the system state )(tx . Hence matrix A is called the dynamic matrix of the system. 

Equation (1.1.b) describes how the system state )(tx and system input )(tu  will instantly 

determine system output )(ty . This is the output part of the system and is static (memoryless) 

as compared with the dynamic part of the system. 

      From the definition of (1.1), parameters m and p represent the number of system inputs 

and outputs, respectively. If  1>p  and if 1>m  , then we call the corresponding system 

multi-input multi-output system.[77] 

 

Definition 1.1: [6]    

      The state of a system at time t0 is the amount of information at 0t  that, together with 

),[ 0 ∞tu  determines uniquely the behaviour of the system for all 0tt ≥ . 

 

      System analysis generally consists of two parts: quantitative and qualitative. In the 

quantitative study, it is dealt with the search for the exact response of the system to certain 

input and initial conditions. In qualitative study, the general properties of a system are seeked. 
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The following section introduces two main qualitative properties of linear dynamical 

equations: controllability and observability [6]. 

 

1.3 Controllability and observability of Linear Systems 

      Controllability and observability have an important role in both theoretical and practical 

aspects of modern control, before the control system designer can apply a particular design 

method to a system, it is necessary to establish to what extent the available inputs influence 

the system behavior, and to what extent the available outputs indicate the system behavior. 

The extent to which the input influences the system is defined as the controllability of the 

system and the extent to which the output monitors the system behavior is defined as the 

observability of the system [49]. 

 

1.3.1 Controllability of Linear Time Invariant System  

 

       1.3.1.1 Controllability Matrix 

Definition 1.2: [37] 

      For the system given by (1.1), if there exists an input ],0[ tu which transfers the initial state 

0)0( xx =  to the zero state 0)( 1 =tx  in a finite time 1t , the state 0x  is said to be controllable. If 

all initial states are controllable the system is said to be completely controllable. 

The solution of (1.1) is:  

                           ∫ −+=
t

tAAt dBuexetx
0

)(
0 )()( τττ                                                     (1.2)                     

If the system is controllable, .,.ei  there exists an input to make 0)( 11 == xtx at a finite time  

1tt = , then after premultiplying by  1Ate−  yields: 

                                 ∫ −=
1

0
0 )(

t
A dBuex τττ                                                                    (1.3) 

 Therefore any controllable state satisfies (1.3), and for a completely controllable system, 

every state nRx ∈0 satisfies 1t (>0) and ]1,0[ tu . 

It is found that complete controllability of a system depends on matrix A  and B and is 

independent of the output matrixC . 
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 Theorem 1.1 : [6] 

      The n dimensional linear time invariant state equation in (1.1) is controllable if and only if 

any of the following equivalent conditions is satisfied: 

i. All rows of Be At− are linearly independent on ),0[ ∞ over the field of complex 

numbers 

ii. dteBBetw tTAT
t

At −−∫=
1

0
1),0(      is nonsingular for any 01 >t . 

iii. The nmn×  controllability matrix [ ]BABAABB n 12 ,..., −=Φ  has 

rank n . 

 

Proof: see Chen [6]. 

 

1.3.2 Observability of Linear Time Invariant System 

Dual to controllability, observability studies the possibility of estimating the state from the  

output. If a dynamical equation is observable all the modes of the equation are observed from 

the output. 

 

Definition 1.3: [37] 

      When using the input of the system (1.1) measured from time zero to time 1t , if the initial 

state 0)0( xx = is uniquely determined, x0 is said to be observable, when the input is assumed 

to be completely known. When all states are observable, the system is said to be completely 

observable. 

 The output of the system (1.1) is given by: 

                    ∫ ++= −
t

tAAt tDudBuCexCety
0

)(
0 )()()( τττ                                                (1.4) 

 

1.3.2.1 Observability Matrix: 

Theorem 1.2: [6]  

      The n dimensional linear time invariant dynamical equation in (1.1) is observable if and 

only if any of the following equivalent conditions are satisfied: 
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i. All columns of AtCe are linearly independent on ),0[ ∞ over the field of complex 

numbers. 

ii. ∫=
1

0
1),0(

t
AtTtA dtCeCetw

T
    is nonsingular for any 01 >t  

iii. The nnp×  observability matrix 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=Φ

−1

.

.

.
²

nCA

CA
CA
C

o   has rank n . 

 

Proof: see Chen [6]. 

 

1.4 Diagonalization in Linear Time-Invariant system 

 

     The Diagonalization is more general method for converting the state equation by means of 

a linear similarity transformation. Since the state variables are not unique, the intention is to 

transform the state vector x  to a new vector x~  by means of a constant, square, nonsingular 

transformation matrix T so that  

                                                   xTx ~=  

Since T is a constant matrix, the differentiation of this equation yields                       

                                                    
.. ~xTx =  

Substituting these values into the state equation BuAxx +=
.

 produces  

                                               BuxATxT += ~~.  

Premultiplying by 1−T  gives     

                                           BuTxATTx 11
. ~~ −− +=  

The corresponding output equation is  

                                               DuxCTy += ~  

The matrix T  is called the modal matrix when it is selected so that ATT 1−  is diagonal, .,.ei  
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⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=Λ=−

n

ATT

λ

λ
λ

0
.

.
.

0
2

1

1                                        (1.5) 

 

1.5  Block Companion Form for MIMO System [68] 

       1.5.1  Block Controllable Form 

Consider the n -dimensional linear time-invariant, multivariable dynamical equation 

           
⎩
⎨
⎧

+=
+=

)()()(
)()()(

tDutCxty
tButAxtx&

                                                                                          (1.6)  

where DCBA ,,, are constant matrices of dimensions npmnnn ××× ,,  and mp×  real 

constant matrices, respectively. 

 

Definition 1.4: [68]  

The system is block controllable of index l  if the matrix  

                 ]...[ 1BAABBw l
c

−=  has full rank. 

The system (1.6) can be transformed into block controller form if the following conditions are 

satisfied 

i. The number l
m
n
= must be an integer. 

ii. The system is controllable of index l . 

 

 Let [ ]BAABBw l
c

1... −=  ; the system is controllable if rank nwc =)( . 

Then we make a change of coordinates 

                               xTx CC =                                                                                        (1.7) 

where              

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

−

−

1
1

2
1

1
1

.

.

.

l
c

l
c

c
c

c

AT
AT

AT
T

T                                                                                        (1.8) 

and  
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              [ ] [ ] 11
1 ......00

−−= BAABBIT l
mmmc                            (1.9) 

In the new coordinates system, we have 

       
⎪⎩

⎪
⎨
⎧

=
+=

)()(
)()()

txCty
tuBtxAtx

CC

CCCC&                                                                                   (1.10) 

where    1−= CCC ATTA   , BTB CC =  and 1−= CC CTC   

or  

                       

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−−

=

− 11 ...
...00

......

......
0...00
0...0

AAA
I

I

A

ll
mmm

mmm
mmm

c  , 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

m

m

m

C

I

B

.

.

.
0
0

                                 

and  

                            [ ]11 ... CCCC llc −= . 

m0 and mI are mm×  null and identity matrices, respectively. iA  and iC ),...,2,1( li =  are 

block elements. 

 

1.5.2 Block Observable Form 

Consider the n -dimensional linear time-invariant, multivariable dynamical equation 

described in (1.6) 

 

Definition 1.5: [68] 

    The system is block observable of index q  if the matrix  

 

                              

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

−1
.
.
.

q

o

CA

CA
C

w  has full rank. 

The system (1.6) can be transformed into block observable form if the following conditions 

are satisfied 
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iii. The number q
p
n
= must be an integer. 

iv. The system is observable of index q  

 Let 

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

−1
.
.
.

q

o

CA

CA
C

w  ; the system is observable if rank nwo =)( . 

Then we make a change of coordinates 

                  xTxxTx oooo
1−=⇔=                                                                          (1.11) 

 where 

             [ ]1
1

1
2

11 ... o
q

oooo TATAATTT −=                                                      (1.12) 

and  

                

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

−

−
p

p

p

q

o

ICA

CA
C

T

.

.

.
0
0

.

.

.

1

1

1  

 

In the new coordinates system, we have 

 

                     
⎪⎩

⎪
⎨
⎧

=
+=

)()(
)()()(

txCty
tuBtxAtx

oo

oooo&  

 

where    

                     ooo ATTA 1−=    

                      BTB oo
1−=  

 and   

                     oO CTC =   
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or 

               

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
−

−
−

=

1

2
..00

0..00
......
......

0..0
0..00

AI
A

AI
A

A

ppp

ppp

qppp

qppp

o  , 

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

q

o

B

B
B

B
.
.
.
2
1

    

and  

                      [ ]pppo IC ...00= . 

p0  and pI are mm×  null and identity matrices, respectively. iA  and ),...,2,1( qiBi =  are 

block elements. 

 

1.5.3  Block Diagonal Canonical Form 

      Once we have the block controllable canonical forms, we can transform it into block 

diagonal form using the following similarity transformation 

                     RRc xVx =  

where 
R

V is a Vandermonde matrix which will be described in the next chapter. 

Let { }lRRR ,...,, 21  a complete set of right solvents, and 

                   ( ) ( )lmlm

RRR

RRR
RRR
III

V

l
l

ll

l

l

R ×××

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

−−− 11
2

1
1

22
2

2
1

21

...
......
......

...

...

...

                                          (1.13) 

The transformation changes the coordinates systems as follows: 

                    cRRRRc xVxxVx 1−=⇔=                                                                          ( 1.14) 

Differentiating both sides of the above equation produces 

                      cRR xVx && 1−=                                                                                                  (1.15) 

 

and replacing (1.14) in (1.15) yields  

                       )(1 uBxAVx cccRR += −&  

              uBVxVAVx cRRRcRR )()( 11 −− +=&                                                                      (1.16) 
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and 

                         RRccc xVCxCy )(==                                                                         (1.17) 

Hence, the new coordinates system matrices are: 

                       

RcR

cRR

RcRR

VCC
BVB

VAVA

=
=

=
−

−

1

1

                                                                                     (1.18) 

The system may be written in block form as: 

 

                 
[ ]xCCCy

u

B

B
B

x

R

R
R

x

l

llm

m

...

.

.

.

0
.

.
.

0

21

2

1

2

1

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

+

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=&

                                                            (1.19) 

As it can be seen, this is a block decoupled system. Thus it can be decomposed into l  

independent subsystems. 

 



Chapter 2                                                                 Elements of Matrix Polynomial Theory                          
 

 11

 
 

 

Elements of Matrix Polynomial  

Theory 
 

 

 

  
2.1 Introduction 
      In linear time-invariant single-input single-output system, the transfer function is a ratio of 

two scalar polynomials. The system modeling of physical, linear, time-invariant multi-input 

multi-output control system, results in high degree coupled differential equations, or an n-th 

degree m -th order differential equation in the form: 

 

         )()()(...)()( )(
1

)1(
1

)( tUtXAtXAtXAtX n
n

n
nn =++++ −
−                         (2.1.a) 

 

Where 1)(, ×× ℜ∈ℜ∈ mimm
i XA  represents the i -th derivate of the vector )(tX , and 

1)( ×ℜ∈ mtU being the input vector. 

The output 1)( ×ℜ∈ pty  is generally given by a differential equation in the form, 

 

        )()(...)()()( )1(
1

)2(
2

)1(
1 tXCtXCtXCtXCty nn

nn ++++= −
−−                   (2.1.b) 

 

Where mp
iC ×ℜ∈ . 

The Laplace transformation of (2.1.a) and (2.1.b) with zero initial conditions results in   

   

              )()(...)()( 1
1 sUsXAsXsAsXs n

nn =+++ −                                                (2.2) 

and  

              )(...)()()( 2
2

1
1 sXCsXsCsXsCsY n

nn +++= −−                                           (2.3) 

Chapter 2 
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which yields, 

   )(]...][...[)( 11
1

2
2

1
1 sUAsAsICsCsCsY n

nn
mn

nn −−−− ++++++=                 (2.4) 

where mI stands for the mm×  identity matrix. 

Equation (2.4) can be written as,  

 

                    )()()()( 1 sUsDsNsY RR
−=                                                                          (2.5) 

 

which yields  the mp×  transfer function matrix, 

 

                        )()()( 1 sDsNsH RR
−=                                                                 (2.6) 

 

Where )(sDR and )(sN R are mm×  and mp×  matrix polynomials also called λ-matrices, the 

complex variable λ is often used in stead of s , defined by:  

 

                       
)8.2(...)(

)7.2(...)(
2

2
1

1

1
1

n
nn

R

n
nn

mR

CsCsCsN

AsAsIsD

+++=

+++=
−−

−

 

 

The equation (2.6) is the right coprime matrix fraction description (RMFD), or the polynomial 

matrix description [34] of MIMO system shown in (2.1). 

The matrix polynomial )(sDR in (2.6) is a right denominator matrix [34, 42] 

      An alternative factorization of )(sH  is the left matrix fraction description (LMFD) 

defined by, 

                      )()()( 1 sNsDsH LL
−=                                                                  (2.9) 

 

where )(sDL is a pp× left denominator matrix polynomial and )(sN L is mp×  left 

numerator matrix polynomial. 

 

      The MFD’s can be regarded as extensions of the classical single-input single-output 

(SISO) transfer functions to the multivariable case with coprime numerator and denominator 
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polynomials. Several methods are available for obtaining MFD’s, to mention Wolivich [83], 

Patel [53]. 

      In this section, we attempt to present some of important results obtained in the theory of 

matrix polynomials. A more emphasis will be given to the latent structure of these matrix 

polynomials, which consists mainly of the latent roots and latent vectors as well as solvents. 

 

      The algebraic theory of matrix polynomials has been investigated by Dennis et al. [14] 

Gohberg et al. [24,25, 26]. Spectral factors of a lambda matrix and right (left) solvents, for a 

right (left) characteristic matrix polynomial have been defined. The different transformations 

between right (left) solvents and spectral factors are mainly proposed by Shieh and Tsay [67] 

 

Definition 2.1: The following mm×  matrix: 

 

           

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

)(...)()(
......

)(...)()(
)(...)()(

)(

21

22221

11211

λλλ

λλλ
λλλ

λ

mmmm

m

m

aaa

aaa
aaa

A                                                  (2.10) 

is called a λ-matrix of order m , where )(λija  are scalar polynomials over the field of 

complex numbers. 

 

Definition 2.2: The matrix polynomial )(λA is called: 

i. Monic if 0A is the identity matrix. 

ii. Comonic if nA is the identity matrix. 

iii. Regular if 0))(det( ≠λA . 

iv. Nonsingular if ))(det( λA  is not identically zero. 

v. Unimodular if ))(det( λA is nonzero constant. 

 

 Other definitions for regularity and nonsingularity may be encountered in matrix polynomials 

literature. For example [43] defines a regular λ-matrix as one whose determinant is not 

identically zero and nonsingular  λ-matrix as one whose determinant is a nonzero constant, 

thus making statement (iv) and (v) of definition 2.2 equivalent. Note that, if 0A  is 

nonsingular, one can always multiply by 1
0
−A  to get a monic matrix polynomial. 
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2.2 Latent Structure of Matrix Polynomials 

Definition 2.1: [66]  

The complex number 0λ  is called a latent root of )(λA  if it is a solution of the scalar 

polynomial equation ( ) 0)(det =λA . 

The nontrivial vector v , solution of 0)( 0 =vA λ  is called a primary right latent vector 

associated with 0λ . Similarly the nontrivial vector p , solution of 0)( 0 =λApT  is called a 

primary left latent vector associated with .0λ  

 

      From the definition we can see that the latent problem of a matrix polynomial is a 

generalization of the concept of eigenproblem for square matrices. Indeed, we can consider 

the classical eigenvalues/vector problem as finding the latent root/vector of a linear matrix 

polynomial AI −λ . 

      We can also define the spectrum of a matrix polynomial )(λA as being the set of all its 

latent roots (notation )(λσ ). It is essentially the same definition as the one of the spectrum of 

a square matrix. 

 

2.3 Structure and Existence of Solvents of Matrix Polynomials 

In this section we are going to see the existence of solvents and how they are important in the 

study of matrix polynomials. 

Let X  be  mm×  complex matrix, the two matrix polynomials, defined by  

           ll
ll

R AXAXAXAXA ++++= −
−

1
1

10 ...)(                                                            (2.11) 

and  

            ll
ll

L AXAAXAXXA ++++= −
−

11
1

0 ...)(                                                             (2.12) 

are referred to as the right and the left matrix polynomials associated with the λ-matrix 

)(λA respectively. 
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Definition 2.3:  A right solvent R  of )(λA is defined by 

                mll
ll

R ARARARARA 0...)( 1
1

10 =++++= −
−                                           (2.13) 

and the left solvent L  of )(λA is defined by 

              mll
ll

L ALAALALLA 0...)( 11
1

0 =++++= −
−                                                (2.14) 

where m0 is an mm×  null matrix, and LR,  are mm×  complex matrices. 

     The relationship between latent roots, latent vectors, and the solvents can be stated as 

follows [67] 

Theorem 2.1 : If )(λA  has n linearly independent right latent vectors nppp ,...,2,1 (left latent 

vectors nqqq ,...,, 21 ) corresponding to latent roots nλλλ ,...,, 21 ,then )( 11 QQPP ΛΛ −−  is a 

right (left) solvent, where )]...[(]...[ 2121
T

nn qqqQpppP ==  and 

),...,,( 21 ndiag λλλ=Λ . 

Proof: see [40] 

From the above, we can determine the relationship between a right solvent and the 

corresponding left solvent. 

Theorem 2.2 :If )(λA  has n latent roots nλλλ ,...,, 21 , and the corresponding right latent 

vectors nppp ,...,, 21  has as well as the left latent vectors nqqq ,...,, 21 are both linearly 

independent, then the associated right solvent R and left solvent L are related by  

                                   1−=WLWR  

where T
nn qqQandppPPQW ),...,(),...,(, 11 ===  

“T “ stands for transpose 

proof: the proof follows from theorem 2.1 
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Theorem 2.3 :[28] given l
ll AAAA +++= − ...)( 1

10 λλλ   then , 

• The remainder of the division of )(λA on the right by binomial RI −λ  is 

)(RAR where, 

                          ll
ll

R ARARARARA ++++= −
−

1
1

10 ...)(                                    (2.15) 

• The remainder of the division of )(λA on the left by the binomial LI −λ is 

)(LAL where, 

                  ll
ll

L ALAALALLA ++++= −
−

11
1

0 ...)(                                                  (2.16) 

The theorem above can be used to prove the following corollary. 

Corollary 2.1: A matrix R (resp. L) is a right (resp. left) solvent of )(λA  if and only if 

).( LIrespRI −− λλ divides exactly )(λA on the right (resp.left). 

  Proof: see Hariche [28] 

Theorem 2.4: The generalized right (left) eigenvectors of a right (left) solvent are generalized 

latent vectors of )(λA . 

Proof : see Hariche [28]  

2.4 Block Companion Form  

      In analogy with scalar polynomials a useful tool for the analysis of matrix polynomials is 

the block companion form matrix. 

Given a matrix−λ  

                      l
ll AAIA +++= − ...)( 1

1λλλ                                                                  (2.17) 

where mxm
i CA ∈  and C∈λ , the associated lower block companion form is, 
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⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−−−

=

−− 121 ...
...000

.......
0...00
0...00

AAAA
I

I
I

A

lll

mmmm

mmmm

mmmm

L                                                   (2.18) 

and the associated right block companion form is, 

                

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
−

−
−
−

= −

−

1

2

2

1

...00
0...00

.......
0...0
0...0
0...00

AI
A

AI
AI
A

A

mmm

mmm

lmmm

lmmm

lmmm

R                                                          (2.19) 

Note that LA  is the block transpose of RA . 

It will be useful to know the form of the eigenvectors of the lower and right block companion 

matrices. The results are a direct generalization of the scalar case [40]. 

If iλ is a latent root of )(λA and ip  and iq  are the corresponding right and left latent vectors 

respectively, then iλ  is an eigenvalues of LA and of RA defined in (2.18) and (2.19),  

We have the following result, 

• 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
i

l
i

ii

i

p

p
p

1

.

.

.

λ

λ

  is the right eigenvector of LA                                               (2.20.a) 

• 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡ −

i

i

l
i

q
q

q

)1(

1

.

.

.

    is the left eigenvector of LA                                                      (2.20.b) 
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• 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡ −

i

i

l
i

p
p

p

)1(

1

.

.

.

   is the right eigenvector of RA                                                      (2.20.c) 

• 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
i

l
i

ii

i

q

q
q

1

.

.

.

λ

λ

     is the left eigenvector of RA                                                 (2.20.d) 

where  

        12)1(1 ...
)( −−− +++≡

−
l
i

l
i

l
i

i

i ppp
pA

λλ
λλ

λ
                                                        (2.21) 

and  

       12)1(1 ...
)( −−− +++≡

−
l
i

l
i

l
i

i

i qqq
qA

λλ
λλ

λ
                                                              (2.22) 

2.5 Block Vandermonde Matrix 

       The block Vandermonde matrix is of fundamental importance in the theory of matrix 

polynomials. 

        Given a set of mm×  matrices { }kRRR ,...,, 21 which are a complete set of right 

solvents of a matrix polynomial )(λA , the following kmkm×  matrix  

      

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

−−− 11
2

1
1

21
21

...
......

...

...

),...,,(

k
k

kk

k

mmm

k

RRR

RRR
III

RRRV                                                 (2.23) 
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is called the right block Vandermonde matrix of order k , and the block transpose of left 

block Vandermonde matrix of order k  is a kmkm×  matrix defined by 

      

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

−

−

−

1

1
22

1
11

21

...
......

...

...

),...,,(

k
kkm

k
m

k
m

k
T

LLI

LLI
LLI

LLLV                                                        (2.24) 

where { }kLLL ,....,, 21 represents  a set of mm×  left solvents of a matrix polynomial )(λA . 

The companion matrices LA  and RA defined in (2.18) and (2.19), can respectively block 

diagonalized via the right and left block Vandermonde matrices and since the 

Vandermonde matrices are nonsingular [14], we can write  

[ ] ),...,,()],...,,([),...,,( 2121
1

21 kkRk RRRdiagRRRVARRRV =−                            (2.25)  

and  

     ),...,,()],...,,([)],...,,([ 21
1

2121 kkLk LLLdiagLLLVALLLV =−                                  (2.26) 

 

2.6 Complete Set of Solvents  

Several methods have been developed for solving complete set of solvents and spectral 

factors, without prior knowledge of the latent roots and latent vectors of a matrix polynomial, 

we mention for instance, Shieh et al. [66] have derived a generalized Newton’s method. 

Dahimene in [11] proposed a generalization of the Quotient-Difference algorithm for the 

computation of spectral factors of a matrix polynomial. Tsai et al.[91] have obtained several 

algorithms for solving the complete set of solvents and spectral factors of a matrix 

polynomial. In this section we shall see that a complete set of solvents can be constructed 

using the latent roots and the latent vectors of )(λA . 

Definition 2.4 [66]: Given )(λA , the set of mm×   matrices { }lRRR ,...,, 21 is called a complete 

set of solvents if the following conditions are met: 

i.    =∩ )()( ji RR σσ  Ø for ji ≠  
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ii. ( )U
l

i
i AR

1
)()(

=
= λσσ  

iii. 0),...,,(det 21 ≠lRRRV  

where )( iRσ  is the spectrum of iR and ( ))(λσ A is the spectrum of )(λA  

      Note that in the definition 2.4 the latent roots of )(λA are not required to be distinct, and 

the concept of complete set has been defined only for the case of distinct latent roots. 

The conditions for the existence and uniqueness of the complete set of solvents have been 

investigated by Lancaster [42], Dennis et al.  [14] and Gohberg et al. [24]  

The more general condition can be stated as follows [67] 

Theorem 2.5: If the elementary divisors of )(λA  are linear, then )(λA has a complete set of 

right and left solvents. 

2.7 Complete Spectral Factorization 

Definition 2.5: In the spectral factorization )()()( 21 λλλ AAA = in which )(1 λA  and 

)(2 λA are called spectral divisors of )(λA . 

Definition 2.6: If a monic λ -matrix can be decomposed into the product of first-degree linear 

λ -matrices, 

                 ))...()(()( 11 QIQIQIA ll −−−= − λλλλ                                                     (2.27) 

then the mm×  matrices lQQQ ,...,, 21 , are called the spectral factors of )(λA and the equation 

(2.27) is called a complete factorization of )(λA . 

 Note that 1Q is a right solvent of )(λA , whereas lQ is a left solvent of )(λA ; other spectral 

factors are not, in general, right or left solvents of )(λA . 

 The relationship between solvents and spectral factors are explored by Shieh and Tsay in 

[67], and various transformations have been developed.  
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Block-Pole Placement Using State  

Feedback 
 

 

 

 

      One of the most popular and well known techniques used to assign the eigenvalues of the 

closed-loop system to desired locations is state feedback. In the case of multivariable systems, 

the feedback gain matrix permitting the assignment of the desired set of poles is not unique. 

Pole assignment techniques to modify the dynamic response of linear systems are among the 

most studied problems in modern control theory.  

       The fundamental result on pole placement by state feedback in linear time-invariant 

controllable systems was presented in the 1960s by Wonham [84] who states that the closed-

loop eigenvalues of any controllable system may be arbitrarily assigned by state feedback 

control. Davison in 1970 generalized Wonham’s result and showed that if the number of 

output variables l  is less than the order of the system n , then it is always possible, by a 

constant feedback gain matrix, to assign l  poles of the closed-loop system matrix [64]. Song 

and Ishida developed a method to assign the poles of the system, only one output and only 

one input in system was used to create the feedback controller [72]. Many different aspects of 

pole placement via feedback have been studied [1, 50]. 

       One of the most important characteristics of desired performance is stability which can be 

achieved by locating the system poles (eigenvalues) in the left half of the s-plane [6, 34]. 

      The pole placement discussed above uses the controllable canonical form [6, 34, 13]. 

However, a large scale multivariable control system described by state equations can be 

decomposed into small subsystems with lower order state equations, Shieh et al. in [69] 

showed that this decomposition can be achieved via the assignment of the block poles of the 

closed-loop system state feedback 

 

3.1 Pole Placement for MIMO Systems Using State Feedback     

Chapter 3 
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Consider the n -dimensional linear time –invariant, multivariable dynamical equation 

                       
⎪⎩

⎪
⎨
⎧

+=
+=

)()()(
)()()(

tDutCxty
tButAxtx&                                                                              (3.1) 

 where DCBA ,,, are, respectively, nn× , pqnqpn ××× ,, constant matrices. In state 

feedback, the input )(tu in (3.1) is replaced by  

                        )()()( tKxtrtu +=                                                                                   (3.2) 

 where )(tr stands for a reference input vector and K is a np×  real constant matrix, called 

the feedback gain matrix, and equation (3.1)becomes  

                      
⎪⎩

⎪
⎨
⎧

+−=
+−=

)()()()(
)()()()(
tDrtxEKCty
tBrtxBKAtx&                                                                      (3.3) 

 

In the following, we shall show that if the dynamical (3.1) is controllable, then the 

eigenvalues of )( BKA − can be arbitrarily assigned by a proper choice of K . This will be 

established by using three different methods. 

 

Method I: [6] 

In this method we change the multivariable problem into a single-variable problem and then 

apply the SISO method. 

A matrix A  is called cyclic if its characteristic polynomial is equal to its minimal polynomial, 

i.e., if and only if the Jordan canonical form of A  has one Jordan block associated with each 

distinct eigenvalue. The term of cyclicity arises from the property that if A  is cyclic, then 

there exists a vector b such that  ),( bA  is controllable. 

Theorem 3.1: If ),( BA  is controllable, then for almost any np×  real constant matrix K , all 

the eigenvalues of )( BKA− are distinct and consequently )( BKA−  is cyclic.  

 

Proof: see [6] 

 

Theorem 3.2: If the dynamical equation in (3.1) is controllable, by a linear state feedback of 

the form (3.2), where K is a np×  real constant matrix, the eigenvalues of  )( BKA−  can be 

arbitrarily assigned provided complex conjugate eigenvalues appear in pairs. 
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Proof: see [6] 

 

Method II (Controller-Form Method): [6, 34] 

 In this method, the first step will be to transform the given controllable pair ),( BA into the 

controllable form, that is, we search the columns of the controllability matrix from left to right 

until we find n linearly independent vectors, which we then rearrange in the form 

 

           { }m
kk bAbbAAbb m 1

21
1

11 ...... 1 −−                                      (3.4) 

then by suitable recombination of these vectors we can find a new basis 

 

         { }
mmkmkc eeeeeT ......... 121111 1

=                                     (3.5)        

with respect to which the pair ),( BA is in controller form, .,.ei  

 

                        BTBATTA ccccc == − ,1                                                                             (3.6) 

where cA and cB have the forms 

           

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

m

c

mmmm

m
m

c

B

B
B

B

AAA

AAA
AAA

A

.

.

.,

...
......
......
......

...

...
2
1

21

22221
11211

                                                        (3.7)  

and cC is in general form. The block matrices ijii AA ,  and iB are such that:  

iiA is of dimension ijii Akk ,× is of the dimension ji kk × ,and iB is of dimension mki × , 

where ∑
=

=
m

i
i nk

1
 and they have the following forms : 

 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

xx

Band

xxxx

A

xxxx

A iijii

..100
0...000
0...000
.......
.......
.......
0...000

..
0..000
......
......
......
0..000
0..000

,

..
1..000
......
......
......
0..100
0..010

  (3.8) 

where the first 1−i  columns of iB are zero and x is nontrivial element. 
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Under the transformation  

                                  )()( txTtx cc =                                                                                     (3.9) 

The state equation (3.1) becomes  

                 )()()()(
.

trBtxKBAtx cccccc +−=                                                                (3.10) 

where { }cc BA ,  are as in (3.7) and  

                             ccTKK =                                                                                                (3.11) 

 

The first step in pole shifting algorithm will be to perform elementary column operations on 

cB to zero out the entries marked x in the { }...,)(,)(, 321211
ththth kkkkkk +++ rows of 

cB . This can be done by elementary transformations because of the appropriately located 1s 

in these rows. Let us choose the nonsingular matrix D  to represent these elementary 

transformations; i.e., we choose D  such that  

 

     [ ]{ }
c

i
T

c
Eb

mikdiagblockDB
=

=×= ,...,1,1,1...00                                    (3.12) 

Let us also define  

      cccc KDKKDK ~,~ 1 == −                                                                                           (3.13) 

so that we shall have  

    

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

===

mnm

n

n

cccccc

kk

kk
kk

KEbKDBKB

~...~ .....
.....
.....

~...

~...~

~~

1

221

111

                                                             (3.14) 

It then follows that we can make   

{ }
⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧
+

=− ∑
=

 Ain   asjust  rowsother   theand                           

k,...,kk,k  rowsin  elementsarbitrary h matrix wit a~

c

m

1i
i211

ccc KEbA   (3.15) 

then we compute the required K . 
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      That is, by a suitable choice of input transformation D and feedback gain matrix K we 

can arrange for a controllable pair ),( BA  to have an arbitrary thn degree characteristic 

polynomial. We may choose K  so that )( ccc KBA −  has blocks of companion form on the 

diagonal with the orders mkkk ,...,, 21  respectively, or only one block companion form with 

order n . 

 

Algorithm 

 

Consider a multivariable system given by equation (3.1) 

 

1. Transform the given system into controllable form. 

2. Compute cK~ such that ccc KEbA ~−  has a set of desired eigenvalues. 

3. Compute cc KDK ~=  where D is such that DEbB cc = . 

4. Compute K  from cK , such that ccTKK = . 

 

 

Method III: [6] 

      In this method the feedback gain matrix is computed without transforming A  into a 

controllable form. It will be achieved by solving a Lyapunov equation. 

 

Algorithm 

 

Consider a controllable ),( BA , where A and B are, respectively, nn×  and pn×  constant 

matrices. Find a K  so that )( BKA−  has a set of desired eigenvalues. 

1. Choose an arbitrary nn×  matrix F which has no eigenvalues in common with those 

of A . 

2. Choose an arbitrary nn×  matrix K such that { }KF ,  is observable. 

3. Solve the unique T  in Lyapunov equation KBTFAT −=− . 
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4. If T is nonsingular, then we have 1−= TKK  , and  )( BKA −  has the same eigenvalues 

as those of F . If T is singular, choose a different F or a different K  and repeat the 

process. 

 

3.2 Block-Pole Placement for MIMO Systems Using State Feedback 

      In this section, block pole placement in MIMO system is introduced; it is based on Shieh 

et al. results which concern mainly the class of MIMO systems for which the number of 

inputs m divides exactly the order of the state equation n : it is based on a similarity 

transformation that converts the state equation into a block controllable companion form [68].  

In the case where the number of inputs does not divide exactly the order of the state equation 

[48], design can be achieved through a new similarity transformation that converts the state 

equation of the given multivariable system into a block-decoupled form. 

 

      To introduce the block poles of a matrix fraction description (MFD) which are the 

solvents of a characteristic λ -matrix, we define the characteristic λ -matrix of an MIMO 

system as follows: 

3.2.1 Characteristic λ -matrices of MIMO Systems 

Consider a linear time-invariant system described by a state equation in general coordinates: 

              
⎪⎩

⎪
⎨
⎧

=
+=

)()(
)()()(

tCxty
tButAxtx&                                                                                  (3.16) 

where ,,,,, nxmnxnmpn BAuyx ℜ∈ℜ∈ℜ∈ℜ∈ℜ∈ and pxnC ℜ∈ . 

The system (3.16) is block controllable of index l if the matrix  

i. [ ]BABAABB l 1...² −=Φ  has full rank  

ii. mnl /=  is an integer 

 

Theorem 3.3: The multivariable control system described in (3.16) can be transformed into a 

block controller form if two conditions are satisfied: 

i. mnl /=  is an integer. 

ii. The system is block controllable of index l . 

 

If both conditions are satisfied, then the change of coordinates  
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                  )()( txTtx cc =                                                                                          (3.17) 

where: 

                    

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

−1
1

1
1
1

.

.

.
²

l
c

c
c
c

c

AT

AT
AT

T

T                                                                                       (3.18) 

and  

            [ ] [ ] 11
1 ......00

−−= BAABBIT l
mmmc                                        (3.19) 

transforms the system into the following block controller form 

          
⎪⎩

⎪
⎨
⎧

=
+=

)()(
)()()(

.

txCty
tuBtxAtx

cc
cccc                                                                               (3.20.a) 

where  

 

       
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−−−

==

−−

−

121

1

...

...000
.......

0...00
0...00

AAAA
I

I
I

ATTA

lll
mmmm

mmmm
mmmm

ccc                                            (3.20.b) 

       [ ]Tmmmcc IBTB ...00==                                                                         (3.20.c) 

       [ ]11
1 ... CCCCTC llcc −
− ==                                                                       (3.20.d) 

 

where m
pxm

i
mxm

i
n

C IliCAx ,,...,2,1,,, =ℜ∈ℜ∈ℜ∈ and m0  are m x m identity and null 

matrices respectively, and the superscript T (3.20.c) denotes the transpose. 

 

Proof: see Shieh et  al.[68] 

 

      The characteristic polynomial in SISO system is directly obtained from the nonzero 

elements in the last row of the system matrix, when transformed into the controllable 

canonical form, and the characteristic polynomial is a scalar polynomial. For multivariable 

control systems, the characteristic polynomial is a matrix polynomial. The right matrix 

fraction description (RMFD) of the system can be formulated directly from (3.20) as: 
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)()()( 1 λλλ −= RR DNH                                                                                (3.21) 

 

where the matrix )(λRD is the  right denominator given by 

 

         ll
ll

mR AAAID ++++= −
− λλλλ 1
1

1 ...)(                                                               (3.22) 

 

and the right numerator )(λRN  is given by  

 

           ll
ll

R CCCCN ++++= −
−− λλλλ 1

2
2

1
1 ...)(                                                         (3.23)  

 

Note that the matrix coefficients of )(λRD and )(λRN  can be directly obtained from those 

nontrivial block entries of the block controllable canonical form in (3.20.b) and (3.20.d). 

 

)(λRD is referred to as the right characteristic −λ matrix of the system (3.16). In fact, 

)(λRD can be directly determined as 

        

           BAITEAIED nc
l

cn
Tl

R
1

1
1

1
1 )()()()()( −−− −=−= λλλ                                        (3.24) 

 

where 

                 [ ] rmm
mmm

Tl IE ×ℜ∈= 0...0)( 1                                                       (3.25) 

 

Examining CT of (3.17) we have the following new result: 

 

           ),(),( 1 BAPBAPT CCC
−=                                                                                 (3.26.a) 

          [ ]BAABBBAP l 1...),( −=                                                                  (3.26.b) 

         [ ]C
l
CCCCCC BABABBAP 1...),( −=                                                       (3.26.c) 

 

Substituting (3.26.a) into (3.24) yields the right characteristic λ -matrix of the system in 

(3.16),  
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            BAIBAPED n
Tl

lR
111 ))(,()()( −−− −= λλ                                                            (3.27.a) 

            [ ] rmm
mmmm

Tl
l IE ×ℜ∈= 0...00)(                                                     (3.27.b) 

 

From the definition of the characteristic λ -matrix, we can introduce the block poles of an 

MFD from the solvents of  a λ -matrix. 

 

3.2.2  Block Decomposition of MIMO Systems 

Given an l -th degree m -th order monic λ -matrix 

   

             ll
ll

mR AAAID ++++= −
− λλλλ 1
1

1 ...)(                                                           (3.28.a) 

 

The associated left matrix polynomial is given by  

 

             ll
ll

RL AXAAXXD ++++= −
−

11
1 ...)(λ                                                            (3.28.b) 

 

where mmCX ×∈ . If there is an mm
i CL ×∈ such that   miRL LD 0)( =  then iL is referred to as a 

left solvent of )(λRD . 

If there exist a set of left solvents { liLi ,...,1, = } such that U
l
i Ri DL1 ))(()(
=

= λσσ ,then 

)(λRD has a complete set of left solvents [67]. 

When )(λRD  has a complete set of left solvents, the RMFD of (3.21) has a block partial 

fraction expansion as follows. 

Lemma 3.1: [68]  Let { }liLi ,...,1, = be a complete set of left solvents of )(λRD , then  

                 ∑
=

−− −==
l

i
imiRR LIHDNH

1

11 )()()()( λλλλ                                              (3.29.a) 

where 

                     ∑
=

− ==
l

j

jl
iji liLZCH

1
,...,1,                                                               (3.29.b) 

and liCZ mm
i ,...,1, =∈ × can be determined from the following matrix equation: 
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   [ ] [ ] ),...,,(0...00... 2121 l
B

mmmml LLLVIZZZ −=                    (3.29.c) 

 

),...,,( 21 l
B LLLV − is the inverse of the block transpose of the left block Vandermonde matrix 

[66] and is defined in (2.23) . 

 

Lemma 3.1 indicates that the system of (3.16) is decomposed into l parallel subsystems whose 

RMFD can be expressed as 1)( −− imi LIH λ . The solvents liLi ,...,1, = in (3.29) are called the 

right block poles of the RMFD in (3.21) and iH are the associated block residues of the block 

partial fraction of the RMFD.  

If an open-loop system does not have a complete set of right block poles, then it cannot be 

decomposed into (3.29) 

 

In [66] the transformation of a given system into the observable block companion form is 

obtained and is stated in the following theorem: 

   

Theorem 3.4: The linear time-invariant system described by the state equation (3.16), can be 

transformed into the observable block companion form, 

 

               )(
)()(

)()(
00

0000 t
txCty

uBtxAtx
⎪⎩

⎪
⎨
⎧

=
+=&                                                                                    (3.30) 

where  

          

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
−

−
−

==

−

−

pppq

pppq

ppp

ppp

A
IA

IA
IA

ATTA

0..00
..00

......
0..0
0..0

0

)1(0

02

01

1
000                                                 (3.31.a) 

           [ ]TT
q

T
q

TT BBBBB 0)1(002010 ... −=                                                           (3.31.b) 

            [ ]ppppIC 0...000 =                                                                      (3.31.c) 

 

by the similarity transformation, 

                       )()( 00 txTtx =                                                                                             (3.32.a) 
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where  

             ],,...,,[ 0
1

00
1

00
1

0
2

0
1

0
1

0
TTTqTq CPCAPCPACPAT −−−−−−=                                           (3.32.b) 

             [ ]TTTqTq CCACACAP )(...)()( 21
0

−−=                                             (3.32.c) 

if and only if : 

 

i. pnq /= is an integer. 

ii. The matrix 0P  in (3.32.c) has full rank. 

 

Where qiBAx mp
i

pp
i

n ,...,1,,, 000 =ℜ∈ℜ∈ℜ∈ ××  and pI and p0  are pp×  identity and 

null matrices respectively. 

 Proof: see [66] 

 

The LMFD of the system (3.16) can be directly formulated from the block observable form 

(3.31) as follows, 

                )()()( 1 λλλ LL NDH −=                                                                                   (3.33) 

where the left denominator and numerator matrices are respectively given by  

 

            qq
qq

pL AAAID 0)1(0
1

01 ...)( ++++= −
− λλλλ                                                   (3.34) 

            qq
qq

L BBBBN 0)1(0
2

02
1

01 ...)( +++= −
−− λλλλ                                                  (3.35) 

 

)(λLD is called the left characteristic matrix polynomial of the system(3.16). 

The left characteristic matrix polynomial )(λLD of the block observable system is given by  

 

                )()()( 0
11 q

qnL ETAICD −− −= λλ                                                                       (3.36) 

 

where [ ] pqpT
pppp

q
q IE ×ℜ∈= 0...00)(  and 0T is nonsingular matrix defined in 

(3.32.b) 

 When )(λLD has a complete set of right solvents{ }qiRi ,...,1,ˆ = , the LMFD in (3.33) has a 

block partial fraction expansion as follows, 
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         ∑
=

−− −==
q

i
iipLL HRINDH

1

11 ˆ)ˆ()()()( λλλλ                                                       (3.37.a) 

where  

          ∑
=

− ==
q

j
ji

jq
ii qiBZRH

1
0 ,...,1,ˆˆˆ                                                                      (3.37.b) 

 

and qiCZ pp
i ,...,1,ˆ =∈ × ,can be determined from the following matrix equation: 

 

       [ ] [ ]Tpppq
TT

q
TT IRRRVZZZ ...00)ˆ,...,ˆ,ˆ(ˆ...ˆˆ 21

1
21

−=             (3.37.c) 

)ˆ,...,ˆ,ˆ( 21
1

qRRRV −  is the inverse of the block Vandermonde matrix shown in (2.23). 

Similar to the decomposition shown in (3.29), equations (3.37) indicate that the system (3.16) 

is decomposed into q parallel subsystems whose LMFD can be expressed as iip HRI ˆ)ˆ( 1−−λ . 

The right solvents qiRi ,...,1,ˆ =  in (3.37.a) are called the left block poles of the LMFD in 

(3.33), and iĤ are the associated block residues of the block partial fraction expansion of the 

LMFD, the left solvents qiLi ,...,1,ˆ =  of )(λlD  are simply called block poles of the LMFD. 

 

3.3  Block-Pole Placement by State Feedback 

 

The block pole placement technique, using state feedback, in multivariable control systems is 

formulated as follows:  Given a MIMO system described by the state equation (3.16), with 

lmn = , and a desired matrix polynomial  )(λfD  find an nm×  gain matrix K such that under 

the state feedback operation 

                          )()()( tKxtrtu −=                                                                                  (3.38) 

the matrix )( BKA − in the new state equation 

                       )()()()(
.

tBrtxBKAtx +−=                                                                         (3.39) 

has the desired characteristic matrix polynomial ,  

 

     ll
lll

f DDDDID +++++= −
−− λλλλλ 1

2
2

1
1 ...)(                                               (3.40) 
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Note that the matrix polynomial )(λfD has to be constructed from a desired complete set of 

closed-loop block poles. 

  

3.3.1   Block Pole Placement for a Class of MIMO Systems  

 

      The pole placement by state feedback is an effective method for the design of closed-loop 

control systems. In MIMO systems, the block controllable canonical form of (3.20) is 

especially suitable for the closed-loop block pole placement. 

      For the class of MIMO systems for which the number of inputs divides exactly the order 

of the state equation, i.e., lmn = , the computation of the state feedback gain matrix, 

achieving the desired block poles, consists of finding the matrix CK  such that the closed-loop 

state equation matrix CCC KBA −  has the desired right characteristic matrix polynomial 

)(λfD in (3.40). 

 

Let the state feedback control law be  

                      )()()( txKtrtu ccc −=                                                              (3.41) 

where m
c tr ℜ∈)( is the reference input. 

                  [ ] lmm
cclclc KKKK ×

− ℜ∈= 11 ...                                                 (3.42) 

and  

                                      liK mm
c ,...,1, =ℜ∈ ×   

then the closed-loop state equation of (3.26) become  

                
⎪⎩

⎪
⎨
⎧

=
+=

)()(
)()(ˆ)(

txCty
trBtxAtx

cc

ccccc&                                                           (3.43.a) 

where the closed-loop system matrix CÂ is given by  

           

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−−−

=−=

−− 121
ˆ...ˆˆˆ

......
.......

0...00
0...00

ˆ

AAAA
I

I
I

KBAA

lll

m

mmmm
mmmm

cccc                            (3.43.b) 

and  
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                                         liKAA iii ,...,1,ˆ =+=    

   hence  

                  iii AAK −= ˆ                                                                        (3.43.c) 

From (3.43), we have the closed-loop right characteristic λ -matrix  

                    ∑
=

− ==
l

i
m

l
iR IAAD

0
0

1 ˆ;ˆ)(ˆ λλ                                                              (3.43.d) 

which is equivalent to the desired characteristic matrix polynomial  in (3.40). 

 

3.3.2  Block-Pole Placement for General MIMO Systems 

 

      In the previous section, the block pole placement requires that the MIMO system is block 

controllable of index l  i.e., the controllability indices of the system are all equal to l  and 

lmn = .When the dimension n of the system matrix described (3.16) is not equal to lm , where 

l  is an integer and m is the number of inputs, the proposed method cannot be directly applied. 

According to Shieh [69] a set of nondominant stable eigenvalues can be added at the diagonal 

entries of the system matrix A  in (3.16) to enlarge the dimension of A from n to n̂  such that 

lmn =ˆ .  As a result, the proposed method can be applied to obtain the block decomposition of 

the modified MIMO system. 

      In order to avoid enlarging the dimension of the system matrix A , Loubar [48] proposed a 

similarity transformation that will decompose the system in (3.16) into two subsystems of 

dimension lmn =ˆ  and k  respectively such that knn += ˆ  and mk < . In this case, he proposed 

a two stage design procedure that will achieve the desired block pole placement for the 

system of dimension n̂ , and a pole placement for the remaining k  eigenvalues through state 

feedback. 

 

3.3.2.1  The Block-Decoupled Form 

      Consider a MIMO system described by (3.16) where mn /  is not an integer. Since m does 

not divide exactly n , we can write: 

    klmn +=     with   mk <  

The desired block-decoupled form is chosen as, 
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⎪⎩

⎪
⎨
⎧

=
+=

)()(
)()()(

txCty
tuBtxAtx

cc
cccc&                                                                                  (3.44) 

where the matrices CA  and CB can be written in the following form: 

 

            ⎥
⎦

⎤
⎢
⎣

⎡
=

p
A

A
lmk

klmC
C

,

,1

0
0

                                                                                      (3.45.a) 

             ⎥
⎦

⎤
⎢
⎣

⎡
=

2

1

C

C
C B

B
B                                                                                                   (3.45.b) 

             [ ]21 CCC CCC =                                                                                          (3.45.c) 

where lmkklm ,, 0,0  are lm  x k  and k  x lm  null matrices respectively, and  

 

          
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−−−

=

−− 121

1

...

...000
.......

0...00
0...00

AAAA
I

I
I

A

lll
mmmm

mmmm
mmmm

c                                                        (3.45.d) 

 

           ),...,,( 21 kPPPdiagP =                                                                                      (3.45.e) 

           [ ]TmkmmmC BIB ...00=                                                                 (3.45.f) 

and mkB  is an km×  matrix. 

 

The desirable similarity transformation which transforms the coordinates x in (3.16) into Cx  

in (3.44) is defined as  

                 xTx CC =                                                                                                  (3.46.a) 

where  

                   

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

+1

2
1

.

.

.

cl
cl

c
c

c

T
T

T
T

T                                                                                         (3.46.b) 

with, Tcl are nm×  matrices for li ,...,2,1=  and Tcl+1 is a nk ×  matrix. 
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Hence we obtain, 

                            1−= CCC ATTA                                                                            (3.47.a) 

                            BTB CC =                                                                                  (3.47.b) 

                             1−= CC CTC                                                                                (3.47.c) 

 

Theorem 3.5 : [48]  

Given a linear time-invariant multivariable system described by the state equation: 

               
⎪⎩

⎪
⎨
⎧

=
+=

)()(
)()()(

.

tCxty
tButAxtx                                                                              (3.48) 

where klmnandCBAuyx npmnnnmpn +=ℜ∈ℜ∈ℜ∈ℜ∈ℜ∈ℜ∈ ××× ,,,,, . 

The system described by (3.48) can be transformed by the similarity transformation xTx CC = , 

into the following state space equations: 

                   
⎪⎩

⎪
⎨
⎧

=
+=

)()(
)()()(

.

txCty
tuBtxAtx

cc
cccc                                                                         (3.49) 

with  

        

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−−

==

−

−

P
AAA

I

I

ATTA

kmkmkm

mkll

mkmmm

mkmmm

mkmmm

CCC

0...00
0...
0...00

.......
00...00
00...0

11

1                                       (3.50.a) 

        ),...,,( 21 kpppdiagP =                                                                                    (3.50.b) 

        [ ]TmkmmmCC BIBTB ...00==                                                       (3.50.c) 

where mkB is an km×  matrix satisfying 

               BTB cl
T
mk 1+=                                                                                               (3.50.d) 

with 1+clT being a nk ×  matrix given in (3.65), if and only if the nn× matrix  

               [ ]k
l VVVBAABB ......~

21
1−=Φ                                    (3.51)  

is nonsingular, with iV  being a right eigenvector of A  corresponding to the eigenvalues ip  

for .,...,2,1 ki =  
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In this case the similarity transformation CT  exists and it is given by: 

             

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

+

−

1

1
1

1

1

1

.

.

.
²

cl

l
C

C

C

C

C

T
AT

AT
AT

T

T                                                                                                  (3.52) 

with  

[ ] [ ]k
l

mkmmmC VVVBAABBIT ......0...00 21
1

1
−=   (3.53) 

and 

         [ ]TT
k

TT
cl TTTT ...211 =+                                                                               (3.54) 

 

where iT  is a left eigenvector of A  corresponding to the eigenvalues ip  for .,...,2,1 ki =  

 

Proof: see [48] 

 

Similar to the previous results, a second block- decoupled form can also be obtained; this will 

be summarized in the following theorem. 

 

Theorem 3.6 :[48] 

   The linear time-invariant multivariable system described by the state equation (3.48) can be 

transformed by the similarity transformation xTx CC = , into the following state space 

equations: 

                  
⎪⎩

⎪
⎨
⎧

=
+=

)()(
)()()(

.

txCty
tuBtxAtx

cc
cccc                                                                     (3.55) 

with  
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⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡
−−−−

==

−

−

mmmmmk

mmmmmk

mmmmmk

llmk

kmkmkmkm

CCC

I

I
I

AAAA
P

ATTA

0...000
........

00...00
00...00

...0
00...00

121

1                        (3.56.a) 

           ),...,,( 21 kpppdiagP =                                                                                   (3.56.b) 

          [ ]TmmmmkCC IBBTB 0...0==                                                      (3.56.c) 

where mkB is an km×  matrix satisfying 

          BTB cl
T
mk 1+=                                                                                                    (3.56.d) 

with 1+clT being a nk ×  matrix given in (3.60), if and only if the nn× matrix  

           [ ]BABBAVVV l
k ......~ 1

21
−=Φ                                       (3.57)  

is nonsingular, with iV  being a right eigenvector of A  corresponding to the eigenvalues ip  

for .,...,2,1 ki =  

In this case the similarity transformation CT  exists and it is given by: 

       

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

−

−
+

1

1

2
1

1
1

1

.

.

.

C

C

l
C

l
C

cl

C

T
AT

AT
AT

T

T                                                                                               (3.58) 

with  

               [ ] 1
1

~00...0 −Φ= mmmmkC IT                                                   (3.59) 

and 

            [ ]TT
k

TT
cl TTTT ...211 =+                                                                      (3.60) 

where iT  is a left eigenvector of A  corresponding to the eigenvalues ip  for .,...,2,1 ki =  

 

Proof: see [48] 
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3.3.2.2  Find State Feedback Gain Matrix 

 

Theorem 3.7:  Given a linear time-invariant multivariable system described by the state 

equation: 

                       
⎪⎩

⎪
⎨
⎧

=
+=

)()(
)()()(

.

tCxty
tButAxtx                                                                           (3.61) 

where klmnandCBAuyx npmnnnmpn +=ℜ∈ℜ∈ℜ∈ℜ∈ℜ∈ℜ∈ ××× ,,,,, , with mk < . 

And given a desired complete set of l  block poles: { }lLLL ,...,, 21  and k  poles:{ }kppp ,...,, 21 . 

If the system described by (3.61) can be transformed by the similarity 

transformation xTx CC = , into the block-decoupled form, 

               ⎥
⎦

⎤
⎢
⎣

⎡
= P

A
A

lmk

klmc
c

,

,1
0

0
         and  ⎥

⎦

⎤
⎢
⎣

⎡
=

2

1

C

C
C B

B
B  

where, lmkklm ,, 0,0 are lmkandklm ××  null matrices respectively, and the matrices 

211 ,,, CCC BandBPA are given in (3.45). 

Then the state feedback gain matrix that achieves the desired set of block poles and poles for 

the closed-loop system is given by  

 

               [ ]221 CCCC KLKKK +=                                                                  (3.62) 

 

where 1CK  is the feedback gain matrix which places the block poles of 111( CCC KBA − ) at the 

desired left solvents{ }lLLL ,...,, 21 , and L  is a solution of the following Lyapunov equation : 

 

                12111 )( CCCCC KBPLKBAL =−−                                                            (3.63)  

 

and 2CK  is the feedback gain matrix which places the remaining k  poles of 

212 )( CCC KLBBP +−  at the k  desired locations. 

 

Algorithm 

Let  

n : Order of the state equation 
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m : Number of inputs 

kl,  are integers satisfying klmn +=  with mk < . 

 

Step1 : Input the system matrices CBA ,,  and the complete set of l  left solvents{ }lLLL ,...,, 21       

             or right solvents { }lRRR ,...,, 21 , and the set of k  poles to be assigned. 

Step2 : Form the desired matrix polynomial )(λfD , 

                      ll
lll

f DDDDID +++++= −
−− λλλλλ 1

2
2

1
1 ...)(  

              from the given set of desired solvents using either: 

                    [ ] [ ] 1
2111 ...... −

− −= R
l
l

ll
ll VRRRDDD                        (3.64.a) 

               if the matrices lRRR ,...,, 21 form a complete set of right solvents,  

              or,  

                                     

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−

l
l

l

l

B
L

l

l

L

L
L

V

D

D
D

.

.

.

.

.

.
2

1

1

1

                                                               (3.64.b) 

               if the matrices lLLL ,...,, 21  form a complete set of left solvents. 

              RV  and B
LV  are the right and the block transpose of the left block Vandermonde       

               matrices respectively. 

 

Step3 : Compute k eigenvalues of A , respectively kppp ,...,, 21 , and find their corresponding  

              left iT and right iV  eigenvectors( for ),....,2,1 ki = . 

Step4 : Check that the matrix  

                    [ ]k
l VVVBAABB ......~

21
1−=Φ                              (3.65) 

           is nonsingular, if not the system cannot be transformed into the block-decoupled form;   

           hence, select a new set of k eigenvalues and go back to step3. 

Step5: Compute the similarity transformation xTx CC =  shown in (3.69) and transform the  

             system into the following block-decoupled form ( block controllable form if 0=k ) 
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                           ⎥
⎦

⎤
⎢
⎣

⎡
= P

A
A

lmk
klmc

c
,

,1
0

0
         and  ⎥

⎦

⎤
⎢
⎣

⎡
=

2

1

C

C
C B

B
B  

Step6 : Compute a state feedback gain matrix 1CK that places the block poles of    

              111( CCC KBA − ) at the desired l  block poles using  

                                  [ ]111 ... KKKK llC −=                                                 (3.66)  

              where iii ADK −=  for li ,...,2,1=  and ),...,2,1( liAi =  are mm×  matrices obtained  

               from 1CA  in the block controllable form in (3.45.a). 

Step7 : Compute a lmk × matrix L satisfying the Lyapunov equation : 

 

                               12111 )( CCCCC KBPLKBAL =−−                                                (3.67) 

 

 Step8 : Compute a feedback gain matrix 2CK  that places the k poles of 212 )( CCC KLBBP +−   

               at the k  remaining desired locations. 

Step9 : Compute the state feedback gain matrix using  

 

                                  [ ]221 CCCC KLKKK +=                                                       (3.68) 

 

               and compute the state feedback gain matrix in original coordinates using  

               

                             CCTKK =                                                                                     (3.69) 
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Compensator Design Using Block-Pole 

 Placement  
 

 
 
 
 
 
4.1 Introduction  

      The problem of block-poles placement using state feedback is studied in the chapter 3. In 

this chapter, we consider the problem of assigning the closed-loop block-poles of linear time-

invariant multivariable system to achieve a compensator design.  

There are many possible feedback configurations: Output feedback, Input-output feedback 

and Unity feedback, this chapter is based on the last one. 

      Let us consider the feedback configurations stated above. The design problem is to find a 

proper compensator that achieves the desired set of poles or block poles for the closed-loop 

system such that the degree of the compensator is as small as possible. 

      The main step in the design of compensators, using arbitrary block pole placement for the 

closed-loop system, is the solution of the compensator equation (Diophantine equation). The 

solution whose rows have the minimal possible degree is proposed. 

 

      The matrix fraction description provides a natural generalization of the scalar rational 

function, though in multivariable case we have to distinguish between right and left 

descriptions, some definitions and results concerning matrix fraction description of MIMO 

systems needed later in this chapter are reviewed in the following section. 

 

4.2 Matrix Fraction Descriptions 

 

Theorem 4.1: Let )(1 sH and )(2 sH be, respectively pq× and qp× rational function 

matrices (not necessary proper), then we have     

                  [ ] [ ])())((det)())((det 2112 sHsHIsHsHI qP +=+  

 

Chapter 4 
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Theorem 4.2: If ( )[ ] 0)()(det 21 ≠+ sHsHI q , then 

                           [ ] [ ] )()()()()()()( 1
1

21
1

121 sHsHsHIsHsHsIsH qp
−− +=+  

 

Proof: see Chen [6] 

 

Theorem 4.3: Let )(1 sH and )(2 sH be, respectively pq× and qp× rational function 

matrices. Then the closed-loop transfer matrix          

 

                        [ ] 1
121 )()()()()( −+= sHsHsIsHsH p   

 

is proper if and only if )()( 12 ∞∞+ HHI p is nonsingular. 

 

Proof: see Chen [6] 

 

Definition 4.1:   Consider a proper rational matrix )(sH factored as          

 

                )()()()()( 11 sNsDsDsNsH LLRR
−− == . 

 

 It is assumed that )(sDR and )(sN R are right coprime and )(sDL and )(sN L are left coprime, 

then the characteristic polynomial of )(sH is defined as  

                   )(det sDR  or )(det sDL   

 and the degree of )(sH is defined as  

                )(detdeg)(detdeg)(deg sDsDsH LR ==  

where deg det stands for the degree of the determinant. 

 

Lemma 4.1: )(sN and )(sD will be right coprime if and only if they have no common latent 

vectors and associated latent roots. 

 

 Proof: see Kailath [34] 
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Let ik be the degree of the i-th column of )(sD : if ∑
=

=
p

i
iksD

1
)(detdeg , we say that )(sD is 

column reduced. If ∑
=

=
p

i
iksD

1
')(detdeg where ik '  is the degree of the i-th row of )(sD , 

)(sD is said to be  row reduced. 

In general, we can write  

 

                        )()()( sLsSDsD hc +=  

where  

                { }pisdiagsS ki ,...,1,)( ==  

                =hcD the highest-column-degree coefficient matrix, or the  

                       leading (column)coefficient of )(sD  

                  =)(sL denotes the remaining terms and is a polynomial matrix with column  

                             degrees strictly less than those of )(sD . 

Then  

                +
∑

=
ki

hc SsDsD ))((det)(det terms of lower degree in s 

 

and therefore it follows that a nonsingular polynomial matrix is column reduced if and only if 

its leading (column)  coefficient matrix is nonsingular. 

 

The following Lemma gives the properness of )()( 1 sDsN −  when )(sD is column reduced. 

Lemma 4.2: If )(sD is column-reduced, then )()()( 1 sDsNsH −= is strictly proper (proper) if 

and only if each column of )(sN has degree less than (less than or equal to) the degree of the 

corresponding column of )(sD . 

Proof: see [34] 

 

4.3 Pole Placement for MIMO Systems Using Design of Compensator  

     

4.3.1 Single-input or Single-output  
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      In this section we discuss the design of compensators to achieve pole placement for 

single-input multi-output and multi-input single-output systems. The general case (MIMO 

system) is postponed to the next section. 

 

Consider the unity feedback system shown in figure (4.1) where the plant is described by the  

1×q  proper rational matrix )(sH : 

 

         )()(

)(
.
.
.

)(
)(

)(
1

)('
)('

.

.

.
)('
)('
)('
)(N'

)( 1

2

1

2

2
1

1

sDsN

sN

sN
sN

sD

sD
sN

sD
sN
sD
s

sH

q

q

q

−=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=                                                 (4.1) 

where )(sD the least common denominator of all elements of )(sH .  

 

+ 
  - 

u y 
  C(s) 

 
          H(s) r 

Compensator Plant 

Figure 4.1.a: Single-input  Multi-output 

Figure 4.1.b: Multi-input  Single-output 

+ 
  - 

Compensator Plant 
u

Y   C(s)  
          H(s) 

r 
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We assume  

                        
n

n

n
n

n

sNsNsNNsN

DsDsDsDDsD

++++=

≠++++=

...²)(

0...²)(

210

210                                     (4.2) 

 

where iD are constant and iN are 1×q constant vectors.  

The problem is to find a compensator with a proper transfer matrix of degree m so that  mn +  

number of poles of the feedback system in figure (4.1.a) can be arbitrarily assigned. 

Furthermore, the degree m  of the compensator is required to be as small as possible. 

The closed- loop transfer function matrix of the feedback system of figure (4.1.a) is given by  

  

            [ ] )()()(1)()( 1 sCsHsCsHsH cl
−+=                                                                (4.3) 

 

Let us write the compensator )(sC  as  

 

           [ ] )()()(...)()(
)(

1)( 1
21 sNsDsNsNsN

sD
sC CCCqCC

C

−==                    (4.4) 

with  

                       
m

CmCCC

m
CmCCC

sNsNNsN

sDsDDsD

+++=

+++=

...)(

...)(

21

10                                                           (4.5) 

 

where ciD  are scalars and ciN are q×1 constant vectors. The substitution of (4.1) and (4.4) 

into (4.5) yields  

                 
[ ]

[ ] )()()()()()(

)()()()()()(1)()()(
1

11111

sNsNsNsNsDsD

sNsDsDsNsNsDsDsNsH

CCC

CCCCcl
−

−−−−−

+=

+=
              (4.6) 

 

because )(sN and )(sNC are 1×q and q×1 vectors, )()( sNsNC is a 11×  matrix and 

)()( sNsN C is a qq× matrix. Hence )(sH cl is a qq× rational matrix. Define 

 

                     )()()()()( sNsNsDsDsD CCf +=                                                              (4.7) 
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Hence the problem of pole placement reduces to solve equation (4.7) which is called the 

Diophantine equation (or the Compensator equation). 

 

Theorem 4.4: Consider the feedback system shown in figure (4.1.a) with the plant described 

by a 1×q strictly proper (proper) rational matrix )()()( 1 sDsNsH −=  with nsD =)(deg . 

Then for )(sD f of degree mn + , there exists a q×1 proper (strictly proper) compensator 

)()()( 1 sNsDsC CC
−= with msDC =)(deg  so that the feedback system has qq× transfer 

function matrix )()()( 1 sNsDsN Cf
−  if and only if )(sD and )(sN are right coprime and 

)(1 vmvm ≥−≥ , where v is the row index of )(sH . 

 

Proof: see Chen [6] 

 

Dual to theorem 4.4, we have the following theorem for the feedback system shown in figure 

(4.1.b). 

 Theorem 4.5: Consider the feedback system shown in figure (4.1.b) with the plant described 

by a strictly proper (proper) p×1  rational matrix )()()( 1 sNsDsH −= with nsD =)(deg . Then 

for any )(sD f of degree mn + , there exists a 1×p  proper (strictly proper) compensator 

)()()( 1 sDsNsC CC
−=  with msDC =)(deg  so that the feedback system has 11×  transfer 

function )()()( sNsDsN Cf if and only if )(sD and )(sN are left coprime and 

)(1 μμ ≥−≥ mm where μ  is column index of )(sH  

 

Proof: see Chen [6] 

 

The polynomial equation arising in this theorem is of the form 

                  )()()()()( sNsNsDsDsD Ccf +=                                                         (4.8) 

 

4.3.2 Multi-input Multi-output  

 

In this section, the design technique developed in the previous section will be extended to 

general proper rational matrices. We extend it first to a special class of rational matrices, 

called cyclic rational matrices, and then to the general case. 
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4.3.2.1 Pole Placement for Cyclic Rational Matrices 

 

Consider a pq× proper rational matrix )(sH . 

Let )(sΨ and )(sΔ be the least common denominator of all elements of )(sH and the 

characteristic polynomial of )(sH , respectively. In general, we have )()()( shss Ψ=Δ for 

some polynomial )(sh . If kss )()( Ψ=Δ  for some constant k , then )(sH is called a cyclic 

rational matrix. For cyclic rational matrices, the characteristic polynomial is equal to the 

minimal polynomial.  

 

Theorem 4.6: Consider a pq× cyclic rational matrix )(sH . Then for almost all 1×p and 

q×1 real constant vectors 1t and 2t , we have  

 

                     [ ] [ ] [ ])()()( 21 sHttsHsH Δ=Δ=Δ                                                   (4.9) 

 

Where (.)Δ denotes the characteristic polynomial of a rational matrix. 

 

Proof: see Chen [6] 

 

Using theorem 4.6, we can extend the design procedure in theorems 4.4 and 4.5 to cyclic 

rational matrices. 

 

Theorem 4.7: Consider the feedback system shown in figure (4.2) with the plant described by 

a pq× cyclic strictly proper (proper) rational matrix )(sH of degree n . The compensator is 

assumed to have a qp× proper (strictly proper) rational matrix )(sC of degree m . If 

[ ]),min()1,1min( vmvm μμ ≥−−≥ , then all mn + poles of the unity feedback system can 

be arbitrarily assigned, where μ and v are, respectively, the column index and the row index 

of )(sH . 

 

 

 

 



Chapter 4                                            Compensator Design Using Block-Pole Placement  
 

 

 49

 

 
 

 

 

 

Since )(sH is cyclic, there exists a 1×p constant vector 1t such that [ ] [ ]1)()( tsHsH Δ=Δ . 

Let us write the 1×q rational matrix 1)( tsH  as  

                          )()()( 1
1 sDsNtsH −=  

then theorem 4.4 implies the existence of a q×1  proper rational matrix 

)()()(' 1 sNsDsC CC
−= with 1)('deg −≥= vmsC if )(sH is strictly proper, such that mn +  

poles of  

                   )()()()()( sNsNsDsDsD CCf +=                                                     (4.10) 

 

can be arbitrarily assigned. It is shown [6] that the pq× compensator defined by 

)()()(')( 1
1

1 sNtsDsCtsC CC
−==  can achieve arbitrarily pole placement. 

The closed-loop transfer function is given by  

 

                   )()()()( 1 sNsDsNsH Cfcl
−=                                                              (4.11) 

Fig 4.2: design of compensators for plant with cyclic proper rational matrices. 

y   + 
    - 

r 
C’(s) t1 H(s) 

(a) 

y   + 
    - 

r 
t2 C’(s) H(s) 

(b) 

C(s) 
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where )(sD and )(sDC are 11× polynomial matrices. 

 

4.3.2.2 Pole Placement for General Rational Matrices 

      We can now discuss the design of compensators for general proper rational matrices. The 

procedure consists of two steps: First change a noncyclic rational matrix into a cyclic one and 

then apply Theorem 4.7. 

 

Theorem 4.8: consider a pq× proper (strictly proper) rational matrix )(sH . Then for almost 

every qp×  constant matrix K , the pq× rational matrix  

 

                          [ ] [ ] 11 )()()()()( −− +=+=′ sKHIsHsHKsHIsH  

 

is proper(strictly proper) and cyclic. 

 

Proof: see [6] 

 

With this theorem, the design of a compensator to achieve arbitrarily pole placement for 

general )(sH consists of two steps: We first introduce a constant gain output feedback K to 

make [ ] )()()( 1 sHKsHIsH −+=′ cyclic. We then apply Theorem 4.7 to design a 

compensator )(sC . Hence all the poles of the feedback system in figure (4.3) can be arbitrarily 

assigned. 

 
 

y 
 + 
  - 

 + 
   - 

r C(s) H(s) 

K 

H’(s) 

Figure 4.3 :Unity feedback system for noncyclic rational matrices 
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4.4 Block-Pole Placement for MIMO Systems 

      In this section, we study the design of compensator to achieve arbitrary block- poles for 

the closed-loop system; this is equivalent to the assignment of an entire denominator matrix  

polynomial. 

 

4.4.1 Unity Feedback Systems 

Consider the unity feedback system in figure (4.4). The plant is described by a pq× proper 

rational matrix.      

                                               )()()( 1 sDsNsH −=                                                              (4.12) 

 
The compensator to be designed is required to have a qp× proper rational matrix. 

 

                                      )()()( 1 sNsDsC CC
−=                                                                   (4.13) 

 

The closed-loop transfer matrix is given by  

 

                                    [ ] )()()()()( 1 sCsHsCsHIsH qcl
−+=                                             (4.14) 

 

Using a theorem 4.1 we obtain,  

 

                                   [ ] )()()()()( 1 sCsHsCIsHsH pcl
−+=                                             (4.15)  

 

Replacing (4.12) and (4.13) in (4.15) yields 

 

C(s) 

y + 
 - 

r 
)(sN  )(sNC  )(1 sDC

−  )(1 sD −  

H(s) 

Figure 4.4: Unity feedback for multivariable system 
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      [ ] )()()()()()()()()( 11111 sNsDsDsNsNsDIsDsNsH CCCCcl
−−−−− +=              (4.16) 

 

which can be written as 

 

                [ ] )()()()()()()(
1

sNsNsNsDsDsNsH CCCcl
−

+=                                         (4.17) 

 

Define the matrix polynomial, 

                    )()()()()( sNsNsDsDsD CCf +=                                                               (4.18) 

Then we have    

 

                    )()()()( 1 sNsDsNsH Cfcl
−=                                                                          (4.19) 

 

Hence the design problem becomes: Given )(sD and )(sN  and an arbitrary )(sD f , find 

)(sDC and )(sNC to satisfy the compensator equation (4.18). 

From (4.19) we note that the roots of )(sD f are the poles of the closed-loop transfer 

matrix )(sHcl , and the solvents of )(sD f are block-poles of )(sHcl . 

 

4.4.2  Input-Output Feedback Systems using Design of Compensator 

 

 Consider the input-output feedback system shown in figure (4.5). The plant is described by a 

pq× proper rational matrix )()()( 1 sDsNsH −= . The compensators are denoted by the  

pp×  proper rational matrix )()()( 1
0 sLsDsC C

−=  and qp×  rational matrix 

)()()( 1
1 sNsDsC CC

−= . The closed-loop transfer matrix can be computed as 

                   [ ] )()()()()()()()()( 1 sDsNsNsDsLsDsDsNsH CCCcl
−++=                        (4.20) 

 

or                )()()()( 1 sDsDsNsH Cfcl
−=                                                                             (4.21) 

where )(sD f is defined as 

                )()()()()()()( sNsNsDsLsDsDsD CCf ++=                                                   (4.22) 
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If we let  

                         )()()()( sDsDsDsE Cf −=                                                                   (4.23) 

then (4.22) can be written as  

 

                        )()()()()( sNsNsDsLsE C−=                                                               (4.24) 

which is the compensator equation. 

 

Note that before solving the compensator equation (4.24), the denominator matrix )(sDC of 

the compensators )(0 sC and )(1 sC should be chosen in order to compute )(sE in (4.23). 

 

4.4.3  Output Feedback Systems 

Consider the feedback system in figure (4.6). Using the previous results, it can be readily 

shown that the closed-loop transfer matrix can be written as 

                   )())()()()()(()( 1 sDsNsNsDsDsNsH CCCcl
−+=                                           (4.25) 

or, 

                   )()()()( 1 sDsDsNsH Cfcl
−=                                                                              (4.26)  

defining again )(sD f as 

 

                      )()()()()( sNsNsDsDsD CCf +=                                                                (4.27) 

 

w y r     + 
        - 

)(0 sC  )(1 sC  

)(sH  

Figure 4.5: Input-Output Feedback 

+
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it follows that the solvents of )(sD f are the block poles of the closed-loop transfer matrix. 

Note that the main step in the design of compensators is the solution of the compensator 

equation (Diophantine equation). 

 
4.5 Solution of the Diophantine Equation 

The compensator design, to achieve arbitrary block pole placement for the feedback 

configurations described previously, requires the solution of the compensator equation: 

                      

                       )()()()()( sNsNsDsDsD CCf +=                                                            (4.28) 

for a given plant rational transfer matrix )()()( 1 sDsNsH −= and a desired matrix polynomial 

)(sD f . 

and  

                        )()()()()( sNsNsDsDsD ccf +=  

for a given multivariable system described by a LMFD )()()( 1 sNsDsH −= where  

)(),( sDsD c and )(sD f are qq× polynomial matrices, while )(sN and )(sNc are 

pq× and qp× polynomial matrices, respectively. The desired compensator will be described 

by the qp× RMFD, 

                                   )()()( 1 sDsNsC cc
−=  

The following theorem gives the condition for the existence of the solution of  (4.28). 

Theorem 4.9: Consider a pq× proper rational matrix with the fraction )()()( 1 sDsNsH −= . 

Let piki ,...,2,1, = , be the column degrees of )(sD , and let v be the row index of )(sH . If 

1−≥ vm , then for any )(sD f with column degrees pikm i ,...,2,1, =+ or less, there exist 

)(sDC and )(sNC of row degree m or less to meet  

r         + 
           - 

y 
H(s) 

C(s) 

Figure 4.6 : Output Feedback 
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                                    )()()()()( sNsNsDsDsD CCf +=                                  

if and only if )(sD and )(sN are right coprime and )(sD is column reduced. 

 

Proof: see Chen [6] 

 

 

      Various numerical algorithms, for solving the Diophantine equation, have been developed 

and different approaches have been attempted [88, 40, 20, 63, 19, 85, 41]. 

 

It has been shown in [6, 34] that the coprimeness of )(sD and )(sN ensures the existence of 

the solution to the Diophantine equation for an arbitrary )(sD f . 

The method proposed in this section is developed from the results obtained by Chen [6] and 

Lai [41]. The idea is basically to transform the given matrices into a set of linear algebraic 

equations, which leads to the construction of a Sylvester matrix (or a generalized resultant 

matrix of { })(),( sDsN ). The solution is obtained by applying searching algorithms for 

linearly dependent rows of the obtained matrix. 

 

The compensator equation defined in (4.28) can be written [41] as  

             [ ] 0
)(

)(
)(

)()( =
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

− sD
sN
sD

IsNsD

f

CC                                                               (4.29) 

Let us write  

∑
=

=
h

i

i
i sDsD

0

)(    ;   i
m

i
cic sDsD ∑

=
=

0
)( ; ∑

=

=
h

i

i
i sNsN

0

)(   ; ∑
=

=
m

i

i
cic sNsN

0

)( ;  

 

                i
l

i
ff sDsD ∑

=

=
0

)(                                                                                            (4.30) 

as a set of linear algebraic equations 

 

The substitution of (4.30) in (4.28) yields 

 

[ ] 0ˆ...221100 =mcmcmcccccc sNDNDNDIND                       (4.31) 
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where  

   

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−−−

=

NNN
DDD

NNN
DDD

NNN
DDD

DDDD
NNN
DDD

S

h

h

h

h

h

flfhff

h

h

m

...0...00

...0...00
...
...
...
0..0...00
0..0...00
0...0...0
0...0...0
0..0....
0...00...
0...00...

.ˆ

10

10

10

10

10

10

10

10

10

           (4.32) 

 

The matrix mŜ has 1+m block rows; the first block contains )2( qp + rows and pq +  rows in 

the i-th block, where 12 +≤≤ mi . 

For the solution of the compensator equation we need to search for the linearly dependent 

rows of mŜ in order from top to bottom using either row-searching [6] or recursive [86] 

algorithm. 

Let D-row denote the rows formed from the rows of iD ’s and let α
μD -row denote the th−α   

D -row in the th−μ block of (4.32). 

 

Definition 4.2: [41]  

      A dependent row, say α
μD -row, is called a primary dependent row of mŜ  if all the α

μ~D -

rows are independent rows in mŜ  for μμ ~< . 

 

The general form of the solution of a compensator )()()( 1 sNsDsC cc
−= , instead of  

           [ ]cmcmcccccc NDNDNDIND ...221100                     (4.33) 

will be  

          [ ]cmcmcccccc NDNDNDCND ''...'''''' 221100               (4.34) 

with 

⎪
⎭

⎪
⎬

⎫
1st block 

⎭
⎬
⎫

(m+1)th block 
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                        i
m

i
cic sDsD ∑

=
=

0
')('                                ∑

=

=
m

i

i
cic sNsN

0

')('  

 

Theorem 4.10: [41] Consider a given )(sD , )(sN  and )(sD f in (4.28). Then there exists a 

solution if and only if C in (4.34) is a real constant matrix with 0)det( ≠C . 

 

The solution of  (4.31) will be given by the product , 

[ ]cmcmcccccc NDNDNDCNDC ''...'''''' 221100
1−                    (4.35) 

 

                                
)(')(

)(')(
1

1

sNCsN

sDCsD

cc

cc
−

−

=

=
 

                                )()()( 1 sNsDsC cc
−=  

 

the obtained compensator will have the minimal degree which is one of the requirement stated 

previously. 

 

In the determination of the solution of the compensator equation (4.28), the main step is to 

search for the first linearly dependent rows of mŜ . 

 

Lemma 4.3: [6]  If  )()()( 1 sDsNsH −= is proper, all D -rows in mŜ , are linearly independent 

of their previous rows. 

Some N-rows in each block, however, may be linearly dependent on their previous rows.  

 

Let ir be the number of linearly dependent N-rows in the thi )1( +  block of mŜ , then because 

of the structure of mŜ we have qrrr m ≤≤≤≤ ...10 .let v be the least integer such that qrv = . 

In this case, we call v the row index of H(s). 

In the case where the number of inputs is less or equal to the number of outputs, it is sufficient 

to find the row index of H(s) in order to solve (4.31) with   m=v. 

 The following algorithm is a modified version of the recursive algorithm used for finding the 

row index of the given H(s).  
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4.5.1 Modified Recursive Algorithm for Finding the Row Index 

      Consider the matrix mŜ in (4.32) but without the −fiD rows, say mS , and consider a 

pq× proper rational matrix )()()( 1 sDsNsH −= . In order to improve the recursive algorithm 

we will make use of the following properties of mS : 

i. The linearly dependent rows appear only in N-rows 

ii. The addition of the block row to mS results in the addition of zeros to the right of the 

previous block row. 

   

According to the definition of the row index, if the number of linearly dependent N-rows in 

the thj )1( +  is equal to q (number of outputs), then the row index of H(s) is equal to j. 

 

Let : 

 iS : generalized resultant matrix with )1( +i block rows 

 iP : projection matrix corresponding to the last row of iS  

 jr : number of linearly dependent N-rows in the thj )1( + block row of iS  

 v: the row index of H(s) 

 

Step1: Initialize 0=i and  

   

                                         ⎥
⎦

⎤
⎢
⎣

⎡
=

h

h

NNN
DDD

S
...
...

10

10
0  

 

Step2: Use the recursive algorithm to compute ri   

              while  ri  q≠  do 

Step3: Update  

 

                                      
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−=+

rowsN
rowsD

S
S

i

i

0
0

0

1  

Step4: Update  



Chapter 4                                            Compensator Design Using Block-Pole Placement  
 

 

 59

                                     ⎥
⎦

⎤
⎢
⎣

⎡
=+

m

i
i I

P
P

0
0

1  

Step5: Update 1+= ii  then back to step1 

Step6: Finally iv = . 

 

4.5.2 Algorithms for Finding the Solution of the Compensator Equation  

 

      For the computation of a minimal degree proper compensator that achieves a desired set 

of block poles for the closed-loop unity feedback systems two algorithms are proposed, and to 

ensure the existence of q primary dependent rows on vŜ in the case where the number of 

inputs is less or equal the number of outputs, both algorithms require the computation of the 

row index of )(sH . 

 

4.5.2.1 Row -Searching Algorithm 

Let: 

     v: the row index of )(sH  

     p: number of inputs 

     q: number of outputs 

 Step1: Input iD  and iN  for hi ,....2,1=  

            Input fiD    for li ,...2,1= . 

Step2: Use the modified recursive algorithm to find the row index v of )(sH  

step3: Form 

        

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−−−

=

h

h

h

h

h

h

flfhff

h

h

v

NNN
DDD

NNN
DDD

NNN
DDD

DDDD
NNN
DDD

S

...0...00

...0...00
...
...
...
0..0...00
0..0...00
0...0...0
0...0...0
0..0....
0...00...
0...00...

.ˆ

10

10

10

10

10

10

10

10

10

           (4.36) 
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and apply the row – searching algorithm to VŜ to obtain the primary dependent rows. 

 

Step4: Select the first q primary dependent rows among the primary dependent rows of VŜ ,      

            then form  

              [ ]CmCmCCCCCC NDNDNDCND ''...'''''' 221100        

(4.37) 

            Using the coefficients of the linear combinations of the chosen primary dependent  

            rows from their previous linearly independent rows in VŜ . 

 

Step5: If the test matrix C is singular then back to step 4 

Step6: If C is nonsingular then compute  

                                          
)(')(

)(')(
1

1

sNCsN

sDCsD

CC

CC
−

−

=

=
 

step7: If )()()( 1 sNsDsC cc
−= is not a proper compensator the back to step 4. 

           If the closed loop transfer function matrix is not proper then back to step 4. 

 

Remark: Once the row-searching algorithm is applied to Sylvester matrix mŜ  for searching 

for the linearly dependent row, the result is a matrix, say mŜ , given by  

                          mmmnn SSKSKKKK ˆˆˆ... 1221 ==−−  

 

where qmpqn +++= )1)((   

The rows of mŜ corresponding to the nonzero rows of mŜ  are linearly independent of their 

previous rows. If a row in mŜ is a zero row, then the corresponding row in mŜ is linearly 

dependent of its previous rows, and the corresponding row vector in K will give the 

coefficients of the linear combination. 

 

4.5.2.2 Recursive Algorithm 

Using the same notations as the previous algorithm 
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Step1: Input iD  and iN  for hi ,....2,1=  

            Input fiD    for li ,...2,1= . 

Step2:  Use the modified recursive algorithm to find the row index v of )(sH  

Step3: Form VŜ as in (4.36), then apply the recursive algorithm to VŜ to obtain 

           the primary dependent rows. 

Step4: Select the first q primary dependent rows among the primary dependent rows of VŜ . 

           Then solve the corresponding equation of the form, BXA = , to obtain the coefficients   

           of the combination in the form (4.37). 

Step5: If the test matrix C in (4.37) is singular then back to step4. 

Step6: If C in (4.37) is nonsingular then compute 

                                      
)(')(

)(')(
1

1

sNCsN

sDCsD

cc

cc
−

−

=

=
 

Step7: If )()()( 1 sNsDsC cc
−=  is not a proper compensator then back to step 4 

           If the closed –loop transfer function matrix is not proper the back to step 4. 

 

In the case of the multivariable systems described in LMFD, the previous algorithms can be 

applied for the compensator equation given by  

                                  )()()()()( sNsNsDsDsD TTTT
cf

T
C

+=  

where T stands for the matrix transpose. 

 
 



Chapter 5                                                                               Sensitivity and Robust systems 
 

 

 62

 

 

Sensitivity and Robust systems 
 

 
 
 
 
 
      Sensitivity considerations are important in the design of control systems. Since all 

physical elements have properties that change with environment and age, we cannot always 

consider the parameters of a control system to be completely stationary over the entire 

operating life of the system. In general, a good control system should be insensitive to 

parameter variations but sensitive to the input commands ones [39]. 

      High system performance and low sensitivity are two required properties of control 

systems. Low sensitivity is defined with respect to the system’s mathematical model 

uncertainty and terminal disturbance called robustness [77]. Unfortunately, high performance 

and robustness are usually contradictory to each other; higher performance systems usually 

have higher sensitivity and worse robustness properties. Yet both high performance and high 

robustness are the key properties required by practical control systems. 

      One of the primary objectives of feedback control or compensator design is to ensure that 

the system response remains well behaved even under parameter uncertainty and the most 

important characteristic of desired performance is stability. 

      There is considerable literature available on robustness analysis of linear systems with 

parameter perturbation. A method for stability-robustness analysis based on a quadratic 

Lyapunov function that varies linearly with uncertain parameters is derived in [44].  

      In control systems the poles dominate the transient response as well as the system stability 

and so many studies [eg. 6] have addressed pole assignment design. Another important 

control strategy is the robust stabilisation problem, i.e., the ability to maintain system stability 

under plant uncertainties. Cruz et al. [9] have discussed the robust stabilization of linear 

feedback systems with time varying nonlinear perturbations in terms of the roles of singular 

values. However their results are valid only when the plant and the compensator design are 

stable. Other work [16, 7] uses the spectral norm to formulate an upper bound on the largest 

singular value of the closed-loop transfer matrix to guarantee robust stability of a 

multivariable control system under parameter variation. Allowable perturbations are discussed 

Chapter 5 
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in [87, 90] for maintaining stability of uncertain systems. These results are concerned only 

with stability robustness; they do not deal with robustness of system performance. Robustness 

results which do address the performance problem are found in references [29, 30] and a 

design criterion has been developed to simultaneously consider the performance and the 

stability robustness of a multivariable feedback system in reference [78]. 

 

5.1 Low Eigenvalue Sensitivity 

      Eigenvalues sensitivity problems have been addressed by many researchers. The selection 

of the closed-loop eigenvalues is always a tough problem for control engineers, uncertainties 

are inevitable and always exist in the system models, the eigenvalues would only be assigned 

within certain specified regions rather that the exact locations. Thus the problem eigenvalues 

assignment robustness is to decide whether the eigenvalues, both perturbed or not, can be 

placed in some specified regions [33]. Pole assignment with minimal eigenvalue sensitivities, 

given in [61] and T.R.Crossley [8], relate changes in the eigenvalues to changes in the 

elements of matrix A. In 1990 Chang derived a criterion for the selection of closed-loop 

eigenvalues such that the resulting closed-loop system has low sensitivity to the variation of 

feedback gain [4]. In the case of more than one input 1>m , many authors [62, 15, 36] have 

investigated ways made available  by degrees of freedom to achieve low sensitivity of the 

closed-loop eigenvalues to perturbation in BA, and K  (where mnnn BA ×× ℜ∈ℜ∈ ,  and 

nmK ×ℜ∈ is feedback gain matrix). Different algorithms are proposed in [74] for the robust 

pole assignment problem, these algorithms are based on the fact that the sensitivity of the 

eigenvalues of a nondefective1 matrix to perturbations in its entries is directly related to the 

condition number of the associated eigenvector matrix. 

 

      In situations when an ill-conditioned system is considered, some of the eigenvalues may 

be very sensitive. The results may then yield large variations for only small uncertainties in 

the data. The condition of an eigenvalue λ is derived [27] using the right eigenvector 

V of A corresponding to eigenvalue λ and corresponding left eigenvector T of TA , i.e.,  

 

                         TT TATVAV λλ == ,   
 

                                                 
1 Nondefective: a matrix nnM ×ℜ∈ be a non-definite matrix if its Jordan matrix is diagonal [71] 
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   with 1== TV  and the subscript  T denotes the transpose. 
 

Let us examine how the eigenvalue is affected when a matrix A is perturbed. 

Consider the eigenvalues )(ελ and eigenvectors )(εV  of )( FA ε+  as functions of ε  

 

                            )()()()( εελεε VVFA =+                                                                       (5.1) 

By differentiating (5.1) with respect to ε  and setting 0=ε , we obtain  

 

                             )0()0()0( VVFVVA &&& λλ +=+                                                                  (5.2) 

Applying TT  to both sides of (5.2) and solving for )0(λ&  gives 

                          
VT
FVT

T

T
=)0(λ&                                                                                           (5.3) 

The absolute value of the factor 
VT T

1  is known as the condition of the eigenvalue λ  [3]. 

If perturbations on the order ε  are made to A , then an eigenvalue λ may be perturbed by an 

amount proportional to the condition value, thus if the condition value is large, the eigenvalue 

λ is regarded as being ill-conditioned and will have a large sensitivity to changes in A . 

Additional analytical formulas for eigenvalues perturbation theory are derived in [22]. 

  

5.2 Low Eigenvalue Sensitivity Using Eigenstructure Assignment 

 

      In order to achieve low eigenvalue sensitivity of closed loop system using eigenstructure 

assignment, a measure of eigenvalue sensitivity is defined in terms of the closed-loop 

eigenvectors. By noting the freedom in eigenvector selection, beyond eigenvalues assignment, 

in multi-input controllable state feedback systems, many algorithms have been proposed to 

select eigenvectors to improve system robustness. S. Srinathkumar [73] developed design 

procedures to select both eigenvalues and eigenvectors to improve system robustness. 

Three problems of eigenstructure assignment [left, right and simultaneous left and right 

eigenstructure assignment] in multivariable linear systems via output feedback have been 

proposed by G.R Duan [17], complete parametric expressions for both the closed-loop 

eigenvector matrices and the output feedback gain matrix are established in terms of some 

parameters vectors representing the design degrees of freedom which are used to minimize the 
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condition number of the closed-loop eigenvector matrix  for the purpose of obtaining a 

solution which gives minimum closed-loop eigenvalues sensitivities. 

 

Liu and Patton [47] introduced some performance functions which measure sensitivity of the 

closed- loop matrix and robustness performance of the closed-loop systems. 

 

5.2.1 Individual Eigenvalue Sensitivity 

 

      A measure of individual eigenvalue sensitivities which is particularly well known is found 

by computing a certain function of the closed-loop right and left eigenvectors [55]. 

 The sensitivity of the i-th eigenvalue of a closed-loop matrix A to perturbations in some or all 

of its elements is given by the expression [82]: 

                                

2

22),(
i

T
i

ii
i

RL

LR
LR =η  

where iR and iL are the right and left eigenvectors of the closed-loop matrix A , respectively, 

and TRL −= , 1),( ≤LRiη  for ni ,...,2,1=  

Thus, a proper measure μ of individual sensitivities of the closed-loop matrix is given by 

Patton, Liu and Chen [56] and [18]    

 

                                          { } nii ,...,2,1,max == ημ  

The following quantity is a sensitivity measure of the eigenvalue of the closed-loop matrix A: 

                                             
n
2μ

μ =′    

where n is the dimension of  the matrix A[18]. 

 

If perturbations of order )(εο occur in the elements of the matrix closed-loop A , the 

eigenvalues of the perturbed matrix will satisfy [82] 

 

                                         )(~ εηολλ iii n+=  

where n is the dimension of the closed-loop matrix A. It is clear that the small eigenvalue 

sensitivity ),( LRiη will produce relatively small changes in eigenvalue positions if the 
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elements of A are perturbed. An eigenvalue is said to be perfectly conditioned if iη is equal to 

unity since it gives the smallest change in the eigenvalue position [55]. 

 

5.2.2 Overall Eigenvalue Sensitivity 

 

      An overall measure of eigenvalue sensitivity can be derived in terms of the closed-loop 

right (or left) eigenvectors only [55] 

The overall eigenvalue sensitivity of the closed-loop matrix A is defined as [82] 

                                   
2

1
2)( −= RRRη  

where R is the right eigenvector matrix of the closed-loop matrix A. 

Patton, Liu and Patel [57] define the whole sensitivity function of the closed-loop matrix A as  

                                   22 LR=η  

Suppose that the right eigenvector matrix R is unitary, i.e., IRRT = . Then 1)( =Rη . This 

indicates that if R is a unitary matrix then the corresponding eigenvalues are perfectly 

conditioned and hence minimally sensitive to perturbations or parameter variations.   

 

5.3 System Sensitivity and Robustness using State Feedback 

  

5.3.1  Condition Number 

 

Definition 5.1: [77]  

      Condition number of a computational problem: 

Let A be data and )(Af be the result of a computational problem. Let AΔ be the variation of 

data A and fΔ be the corresponding variation of result )(Af due to AΔ such that  

 

                                            fAfAAf Δ+=Δ+ )()(  

Then the condition number )( fχ of the computational problem )(Af is defined by the 

following inequality: 

                                      AAfff /)(/ Δ≤Δ χ                                                           (5.4) 
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Therefore, )( fχ  is the relative sensitivity of problem f with respect to the relative variation 

of data A . A small )( fχ  implies low sensitivity of problem f , which is then called a well-

conditioned problem. On the other hand, a large )( fχ implies high sensitivity of the problem 

f, which is then called an ill-conditioned problem [82]. 

 

       Matrix eigenvalue sensitivity analysis [82], reveals that the condition number of the 

matrix A defined by  

                                         ∞≤=≤ −
2

1
2)(1 AAAχ  

 represents eigensystem robustness, where 2A is the Euclidean norm of the matrix. Thus, a 

system tends to be sensitive to parameter perturbation if )(Aχ is large.  

 

      It is well known that minimizing the closed-loop eigenvector matrix condition number 

)(Aχ results in minimizing an upper bound on the closed-loop eigenvalue deviation due to 

system parameter variations [35, 32] as 

                                               EV )(χδλ ≤  

 where δλ  is the eigenvalue deviation from its nominal value, E is a perturbation matrix and 

)(Vχ is the condition number defined [31] as: 

      

                                            
FFF VVV 1)( −=χ  

With F refers to the Frobinious norm. 

 

A minimization of the condition number 1)( =VFχ  is obtained when the eigenvectors are 

orthonormal which indicates that one can either minimize the system condition number or 

adjust the closed-loop eigenvectors to become as orthogonal as possible. 

 

5.3.2 Robust Performance 

 

      Robust performance is defined as the low sensitivity of a system performance with respect 

to system model uncertainty and terminal disturbance. 

Any real square matrix A can have the eigenstructure decomposition [77] as  
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TT

VVA

Λ=

Λ=
−

−

1

1
                                                                                         (5.5) 

where                   Λ=VAV   

and                        

                              TTA Λ=   

where V and T are right and left eigenvector matrix of matrix A, respectively, and 

{ }ndiag ΛΛΛ=Λ ,...,, 21 is  a Jordan form matrix , whose diagonal matrix blocks 

nii ,...,2,1, =Λ  are called Jordan blocks.  

From (5.5)    

                             Λ=− AVV 1  

Therefore, if A becomes AA Δ+ , then  

                   ΔΛ+Λ=+Λ=Δ+ −− AVVVAAV 11 )(                                                          (5.6) 

Using the inequality used in the definition 5.1 we will have  

                   AVAVV Δ=Δ≤ΔΛ − )(1 χ                                                            (5.7.a) 

Inequality (5.7.a) indicates that the condition number )(Vχ of eigenvector matrix V can 

decide the magnitude of ΔΛ . 

  

     Based on (5.6), a result using )(Vχ to indicate the variation of eigenvalues was derived in 

Wilkinson [82]: 

                     { } { } AViii Δ≤Δ=− )(min'min χλλλ                                                         (5.7.b) 

Where nii ,...,2,1, =λ and i'λ are an eigenvalue of matrices A  and )( AA Δ+ , respectively, 

Because the left-hand side of (5.7.b) takes the minimum of the difference iλΔ between the 

eigenvalues of A and )( AA Δ+ , the upper bound on the right-hand side of (5.7.b) does not 

apply to other iλΔ ’s. 

 

      From (5.7), it is reasonable to use the condition number of eigenvector matrix V of the 

matrix A, )(Vχ , to measure the sensitivity of all eigenvalues (Λ ) of matrix ).(, ΛsA  

In other words, we define  

                                   1)()( −==Λ VVVs χ                                                                    (5.8) 
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Even though )(Λs is not an accurate measure of the variation (sensitivity) of each individual 

eigenvalues. The advantage of this measure is that it is valid for large AΔ  [82]. 

      In order to obtain a more accurate measure of the sensitivity of individual eigenvalues, 

first order perturbation analysis is applied and the following result is obtained under the 

assumption of small AΔ  [82]. 

 

Theorem 5.1: [55]  

      Let ii v,λ and it  be the i-th eigenvalue, right and left eigenvectors of matrix A, 

respectively ( ),...,2,1 ni = . Let ii λλ Δ+ be the i-th eigenvalue of matrix ),...,2,1(, niAA =Δ+ . 

Then for small enough AΔ , 

                         AsAvt iiii Δ=Δ≤Δ )(λλ          ni ,...,2,1=                            (5.9) 

Proof: see [55] 

 

This theorem shows clearly that the sensitivity of an eigenvalue is determined by its 

corresponding left and right eigenvectors. 

 

Relative Change  

To study how the eigenvalues are affected by small random perturbations matrix AΔ , the 

relative change cR  is computed as: 

                             
i

i

i

ii
cR

λ
λ

λ
λλ Δ

=
−

=
'

        ni ,...,2,1=  

 

5.3.3   Robust Stability 

 

      Stability is the foremost system property. Therefore the sensitivity of this property, called 

robust stability, with respect to system model uncertainty is also critically important. 

Consequently, a generally accurate numerical measure of this sensitivity is also essential to 

guide robust stability analysis and design. 
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5.3.4   Existing Methods 

      Various robustness measures have been investigated in [81], providing upper bounds on 

perturbations for maintaining the stability of the perturbed system. 

 

Consider the following linear state space model: 

                   Nominal system: Axx =&                                                                            (5.10) 

                  Perturbed system: xEAx )( +=&                                                                  (5.11) 

Where A is nn× stable matrix and E is the perturbation matrix. 

 

For perturbed system (5.11) Lyapunov based method of deriving robustness bound measure 

has been considered as well established by Patel and Toda [54] 

The perturbed system (5.11) is stable if  

 

                                    1)(
)(

μ
σ
σ

=<
P
Q

x

xE

M

m
&

                                                                       (5.12)                      

             or 1)( μσ <Em                                            

where Q is some symmetric positive-definite matrix and P is the symmetric positive-definite 

matrix that satisfies the Lyapunov equation 

                                     QPAPA 2' −=+  

(.)Mσ and (.)mσ are the maximum and the minimum singular values of the matrix (.). μ is 

the robustness measure and . is the Euclidean norm, 'A is transpose of A . 

The bound defined in (5.12) is maximum. 

It is shown in [54] that the perturbed system is stable if     

                       2)(
1 μ

σ
=<

Pn
E

M
ij                                                                         (5.13) 

where P is the solution of the Lyapunov equation  

             

                                   IPAPA 2' −=+  

 

    In [80] Wang and Lin studied the robust eigenvalue assignment for systems with 

parameters perturbation via matrix measures. Their analysis is based on some essential 

properties of the induced norms and matrix measures to compute some robustness bounds. 
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Definitions of norm, induced norm and matrix measures and detailed properties can be found 

in [80, 79]. 

For a specific norm on nC , in general, it is not always easy to obtain the explicit expression 

of the induced norm as well as the matrix measure. However, corresponding to norms 

1• , 2• and ∞•  the induced norms and matrix measures have explicit expressions as shown 

in the following table: 

P  Norm on nC  Induced norm on   nnC ×  Matrix measure on nnC ×  

1 j
j

xmax  
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
∑

i
ij

j
amax  

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+∑

≠ ji
ijjj

j
aaRemax  

2  ∑
i

ix2  ⎟
⎠
⎞⎜

⎝
⎛ )(max AATλ  

2
)(max AAT +λ

 

∞  i
i

xmax  

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
∑

j
ij

i
amax  

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+∑

≠ij
ijii

i
aaRemax  

Where nCx∈ and nnCA ×∈ . 

 

Piou and Sobel [59] extend the matrix measure results of Wang and Lin [80] to compute the 

robustness bounds. 

Consider the linear time-invariant multivariable system described by 

                  
)()(

)()()(
tCxty

tButAxtx
=

+=&
                                                                             (5.14) 

where BA, and C are real constant matrices. 

Suppose that the system is subject to uncertainties in the entries of BA, described by dA and 

dB , respectively, where 

               
)()(

)()()()()(
tCxty

tudBBtxdAAtx
=

+++=&
                                                         (5.15) 

Further, suppose that bounds are available on the absolute values of the elements of dA and 

dB , that is  

           
mjnibdb

njniada

ijij

ijij

,...,2,1,,...,2,1,)(

,...,2,1,,...,2,1,)(

max

max

==≤

==≤
                                                        (5.16) 
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define +dA and +dB as the matrices obtained by replacing the entries of dA and dB  by their 

absolute values. Also, define maxA and maxB as the matrices with entries max)( ija and max)( ijb  

then  

                               
max

max

:

:

BdBdB

AdAdA

≤

≤
+

+

                                                                           (5.17) 

and where ""≤ is applied element by element to matrices and nnA ×
+ℜ∈max and mnB ×

+ℜ∈max  

where +ℜ is the set of non-negative numbers. 

 

Consider the control law described by 

                                             )()( tKxtu −=  

  then                                  )()()( txBKAtx −=&                                                                  (5.18) 

and the uncertain closed-loop system is given by  

 

                       dBKdAtxBKAtx ++−= )()()(&                                                        (5.19) 

 

Let )(Mipμ be the matrix measure defined by [80] 

                        ∞<≤
−+

=
→

p
MI

M ip
ip 1;

1
lim)(

0 ε

ε
μ

ε
                                                  (5.20) 

 

Theorem 5.2: [59] 

      Suppose that closed-loop system described by (5.19) has its eigenvalues in the R region of 

figure 5.1. Further, suppose that the matrix BKA − in (5.19) is non-defective. The 

eigenvalues of the closed-loop system with uncertainty described by equation (5.20) will be in 

R region for all uncertainty described by (5.17) if  

 

                                          [ ] 1,max 21 <ρρ μμ                                                                  (5.21) 

where  

[ ] [ ]llipllipll

ip
pl jBKIaABKIaAa

KBA
θμθμθ

μ
μ

sin)(cos)(cos
)( maxmax

++−−−−−

−
=

+

              (5.22) 
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where        
0,:2

,0:1

222

111

===
===

al
aal

θθ
θ

 

 

 
 

 

5.3.5 Proposed Method 

 

      The most basic criterion of system stability is that every matrix eigenvalue has a negative 

real part. Hence the sensitivity of these eigenvalues with respect to system model uncertainty 

should be the most direct and critical factor in measuring the sensitivity of system stability 

(robust stability). 

      Let us compare the Routh-Hurwitz criterion of system stability, where the system 

characteristic polynomial must be first computed. The sensitivity of this step of computation 

can be as high as the direct computation of the eigenvalues (see Wilkinson [82]). The Routh-

Hurwitz criterion requires additional determination based on the characteristic polynomial 

coefficients and on the basic stability criterion. This indirectness will reduce the accuracy of 

both the stability determination and the measure of robust stability. 

Compared to the above stability measure of classical control theory, the sensitivity of 

eigenvalues (poles) is used to measure robust stability which has the ability to accommodate 

pole assignment and thus to guarantee performance. 

s-plane 

-   - 2/sjω  

-    2/sjω  

la  

lθ  
 
       R region 

Figure 5.1 : S-plane performance region 
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      There are three robust stability measures using the sensitivity of system poles. In [77] they 

are called 21, MM and 3M . We will analyse and compare the general accuracy of these three 

measures. 

Let us introduce these three measures. 

 

5.3.5.1  The Robust Stability Measure M1  [15] 

      Consider the multivariable linear closed-loop system which is given by 

                                  )()( tQxtx =&                                                                                      (5.23) 

 where QBKAQ ,−= is an nn× real matrix . 

Assume that under variation in the parameters of Q , the system model is now given by  

                          )()()( txEQtx +=&                                                                               (5.24) 

where E is an nn× real matrix which represents the model uncertainty. 

The robustness problem will be the following. Let the system given by (5.23) be stable, 

namely, the eigenvalues of Q are located in the open LHP, then the system is robust if under 

variations in the parameters of Q , the eigenvalues of the system given by (5.24)are still in the 

open LHP. 

      If one of the eigenvalues of EQ + , say pλ , np ,....,2,1= , is located on the imaginary axis, 

namely, pp jωλ ±= , then the matrix [ ])( EQIj p +−ω  is singular, namely, 

                           [ ] 0)( =+− EQIj pm ωσ                                                                     (5.25) 

 

where for a matrix A, mσ  [A] denotes the smallest singular value of a matrix A. 

Since Q is nonsingular and since [ ] [ ]AA mm −= σσ , then the condition 

 

                     [ ] [ ] 0≥∀>− ωσωσ EIjQ Mm                                                          (5.26) 

 

is sufficient for the system given by (5.24) to be robust, and increasing [ ]IjQm ωσ −  will 

enable one to cope with larger uncertainties in the sense of (5.26), let  

 

                                     [ ]IjQM m ωσ
ω

−=
∞<≤0

1 min                                                            (5.27) 
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denote the robustness measure, namely, the largest perturbation’s spectral norm for which 

stability is guaranteed in the sense of (5.26). 

 

Theorem 5.3: [35] 

      The stability robustness measure 1M is given by  

                                 [ ]IjQM m ωσ
ω

−=
∞<≤0

1 min  

where BKAQ −=  and I denotes the nn× unit matrix. 

 

5.3.5.2  The Robust Stability Measure M2  [45] 

      Consider the linear time-invariant multivariable system 

 

                           )()()( tButAxtx +=&                                                                          (5.28) 

with 1×ℜ∈ nx , the state vector and 1×ℜ∈ mu the input vector , nm ≤≤1 . We assume that 

),( BA is completely controllable, B has full rank, and we denote by K the state feedback gain 

matrix 

                                 )()( tKxtu −=                                                                               (5.29) 

so that the closed-loop system is  

 

                              )()()( txBKAtx −=&                                                                       (5.30) 

We introduce the set { }nL λλλ ,...,, 21=  of desired closed-loop characteristic values, where 

the system is assumed stable i.e. { } nii ,...,2,1,0Re =<λ  

We shall order the characteristic values according to their real parts as follows: 

 

                 { } { } { } { } 0Re...ReRe....Re 011 <−===<≤≤ +−− λλλλλ nlnln                      (5.31) 

 

indicating that the last l , nl ≤≤1 characteristic values have identical real parts. Note that 0λ is 

that minimal distance, in the complex plane, between the set L and the imaginary axis, i.e., 

 

                                  { } 0
1

Remin λλ =
≤≤

k
nk

                                                                          (5.32) 
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Since ),( BA is completely controllable, there exist one or more matrices K , which achieve a 

closed-loop pole location at L . 

 

Given a stable closed-loop system (5.23) and perturbed system (5.24) 

 

Definition 5.2: [45] 

      Stability robustness measure: we denote by ),,,( KLBAρ the stability robustness measure 

of the quadruple ),,,( KLBA  

                                 { }ααρ
α

<=
>

2
0

sup),,,( EKLBA  

where . is the 2-norm. 

 

Now we define the maximal stability robustness 

Corollary 5.1: [45]  

      Taking the supremum of both sides of (5.27) yields 

             ( )[ ]
⎭
⎬
⎫

⎩
⎨
⎧ −= IjQLBA m

K
m ωσρ

ω
minsup),,(                                     

 

The following theorem states an upper bound for mρ . 

Theorem 5.4: [45] 

      The maximal stability robustness measure mρ of the triple ),,( LBA , satisfies the 

following upper bound: 

                                     0),,( λρ ≤LBAm                                                                          (5.33) 

 

Proof: see Lewkowicz [45]. 

 

It is shown that the robustness margins are given by the eigenvalues closest to the imaginary 

axis [5]. 

The approach in [35] considers the robust stability as a part of the robustness of all 

eigenvalues, J.Kaustky [35] states that Q is a normal matrix if and only if, it has a nonsingular 

eigenvector’s matrix V, so that the following relations hold: 

                        { } 1)(,...,, 21
1 ==− VdiagQVV n χλλλ  
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where )(/)()( VVV mM σσχ = is the condition number of the matrix V. A few algorithms for 

minimizing )(Vχ for a given ),,( LBA are presented in [35].  The smallest )(Vχ is, the more 

reluctant are the characteristic values of nnCM ×∈ to move as a result of a perturbation [45].  

 

From [2], for nnCEM ×∈,  and nk ≤≤1 , we have  

                                                  2)()()( EVEMM kk χλλ ≤++  

where V is the eigenvector’s matrix of M. 

 

It is known [35] that the stability robustness measure 

                                               
)(

),,,( 0
V

KLBA
χ
λ

ρ ≥                                                            (5.34) 

hence, minimization of )(Vχ is a desired property . 

 

       An upper bound for stability robustness measure is based on the characteristic values of 

the system [45], and the maximal stability robustness as it shown in the theorem 5.4 is equal 

to the smallest distance between a set L and the imaginary axis. 

       Using (5.34) and the theorem 5.4 then, the stability robustness measure 2M  is given by 

)(
0

2 V
M

χ
λ

= for which )(Vχ is minimized. 

 

5.3.5.3  The Robust Stability Measure M3  

M3 is developed in the early 90’s [76, 75] and is given by  

 

                            { })Re()(min 1
1

3 ii
ni

sM λλ −

≤≤
=                                                                (5.35) 

        

Let us analyze these three measures in the following. 

Consider the multivariable linear time-invariant closed-loop system which is given by  

     

                                       
)(

)()()(
tQx

txBKAtx
=

−=&
                                                                     (5.36) 
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      Assuming all its eigenvalues { }nλλλ ,...,, 21 are stable { } ),..,2,1,0(Re nii =<λ and are 

already assigned for guaranteed performance. The three stability robustness measures are  

 

                    

{ }
{ } { } { }( )

{ })Re()(min

Re...Re,Re)(

)(min

1

13

1
1

2

11

iini

nn

m

sM

sM

IjQM

λλ

λλλ

ωσ
ω

−

≤≤

−

∞≤≤

=

≤≤Λ=

−=

                             (5.37) 

where      )(Λs is defined in (5.8) 

 

Because mσ indicates the smallest possible norm of matrix variation norm for a matrix to 

become singular, see the following the theorem  

 

 Theorem 5.5: [77]  

      If the singular values computed from a given matrix AA Δ+  are 

)(0...21 nrn =>≥≥≥ σσσ  ( r is the rank of matrix A, n is the rank of the matrix 

( AA Δ+ ) then the necessary condition  for the rank of the original matrix A to be less than n                   

(or nσ of 0=A ) is nsA ≥Δ ,and the necessary condition for the rank of A to be less than 

r (or rσ of )0=A is ).,...,2,1( nrsA r =≥Δ   

Proof: see [77] 

 

1M equals the smallest possible matrix variation norm for the matrix Q to have an unstable 

and pure imaginary eigenvalue ωj . 

In the measure 2M , the term { }nλRe is the shortest distance between the unstable region and 

eigenvalues iλ . Thus, 2M equals this distance divided by the sensitivity of all the eigenvalue 

matrix Λ . The lower the sensitivity )(Λs , the greatest 2M . In other words, 2M may be 

considered as the likelihood margin for nλ to become unstable. 

There exist several general and numerical algorithms which can compute state feedback gain 

matrix K such that the value of 1)( −Λs or 2M is maximized, with arbitrarily assigned 

eigenvalues in matrix Q [35]. However, 2M  seems to be less accurate in measuring the 

likelihood margin for nλ to become unstable, because )(Λs is not an accurate measure of the 

sensitivity of nλ . 
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In the definition of the measure 3M , the likelihood margins for every eigenvalue to become 

unstable are considered. The likelihood margin for each iλ equals { }iλRe divided by its 

corresponding sensitivity nis i ,...,2,1),( =λ . 

1M and 2M  consider only the likelihood margin for nλ to become unstable, while the 

instability of any eigenvalue can cause system instability , the )(Λs of 2M  is generally not an 

accurate measure of individual eigenvalues sensitivity and is not as accurate as the sensitivity 

)( is λ of iλ itself in measuring the sensitivity of iλ  for i∀ (including i = n). Hence, 3M is 

more accurate than 1M and 2M  , and reflects the instability likelihood of all eigenvalues. 

                  nistvVVs iii ,...,2,1,1)()( 1 =≥=>=Λ − λ                                   (5.38) 

 

                  { } { }nn MsM λλ ReRe)( 3
1

2 ≤≤Λ= −                                                          (5.39) 

 From (5.38) and (5.39), if the overall eigenvalue sensitivity )(Λs is at the lower possible 

value (=1), then all three measures 3,2,1, =iM i  will reach their common highest possible 

value { }nλRe . A lower )(Λs does not necessary imply a higher 1M  or 3M  [35] which 

implies that 1M  and 3M have higher accuracy than 2M . 

 

5.4  System Sensitivity and Robustness using Compensator Design 

 

      In most practical situations, the given mathematical model (either state space or transfer 

function) of the plant system is inaccurate because the parameters of practical physical system 

are difficult to measure accurately. So there is a difference between the actual plant and its 

mathematical model )(sH .This difference is called model uncertainty and is defined as 

)(sHΔ . Therefore, it is essential that the control systems have low sensitivity to )(sHΔ . 

Let )(sHclΔ be the uncertainty of the overall control system )(sHcl , which is the closed-loop 

transfer function, caused by the plant uncertainty )(sHΔ . In single variable system, we use 

relative plant system model uncertainty )(/)( sHsHΔ and relative closed-loop transfer 

function uncertainty )(/)( sHsH clclΔ to measure the overall control system sensitivity versus 

plant system model uncertainty. 
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Definition 5.2: [77] 

      The sensitivity of a control system )(sHcl to )(sHΔ is defined as  

                       ( )
)(/)(

)(/)(
)(

sHsH
sHsH

sHs clcl
Hcl Δ

Δ
=  

for small enough )(sHΔ and )(sHclΔ  

                        ( )
)()(
)()(

)(
sHsH
sHsH

sHs
cl

cl
Hcl ∂

∂
≈  

MIMO systems have transfer function matrices instead of scalar transfer functions. There are 

different ways to measure the size or magnitude of a matrix, the singular value of the matrix 

can be used to measure the size of a matrix. In [10] J.B.Cruz showed that, in multivariable 

systems, there exists a matrix S which is defined as sensitivity matrix. And given by  

                                   [ ] 1)()( −+= sCsHIS  

The sensitivity function S is a very good indicator of closed-loop performance, both for SISO 

and MIMO systems [70]. 

 Considering the unity feedback for multivariable system shown in figure 4.4, the sensitivity 

transfer function and the complementary transfer function can be represented as  

 

                                  [ ] 1)()()( −+= sCsHIsS  

 and  

                                 [ ] 1)()()()()( −+= sCsHIsCsHsT  

These transfer functions are function of s, where )( ωjs = , and the singular values of these 

matrices are functions of frequency. Therefore, the singular value plays an important role in 

the frequency domain analysis of multivariable systems [51]. 

The performance of a feedback system indicates that the system performance can be 

expressed in terms of the performance specifications of the sensitivity function and 

complementary functions.  

 

 

5.4.1  Condition Number [70] 

We define the condition number of a matrix as the ratio between the maximum and minimum 

singular values, 

                                )(/)()( HHH mM σσχ =  
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A matrix with a large condition number is said to be ill-conditioned. If the condition number 

is large then this may indicate control problem [70]: 

1. A large condition number may be caused by a small value of )(Hmσ , which is 

generally undesirable (on the other hand, a large value of )(HMσ need not necessary 

be a problem). 

2. A large condition number does imply that the system is sensitive to unstructured input 

uncertainty, but this kind of uncertainty often does not occur in practice. We therefore 

cannot generally conclude that a plant with a large condition number is sensitive to 

uncertainty. 

 

5.4.2 Robust Stability 

 

Theorem 5.5: [70, 58, 12] 

      Assume that the system )(sM  is stable and that the perturbations )(sΔ are stable. Then 

ΔM -system in figure 5.1is stable for all perturbations Δ satisfying 1≤Δ ∞ if and only if  

                             ( ) 11)( <⇔∀< ∞MjMM ωωσ                                              (5.40) 

 

Condition (5.41) may be rewritten as  

                                 Robust stability ( ) ( ) Δ∀∀<Δ⇔ ,,1)()( ωωσωσ jjM MM                   

 

 

 

 

 

 

 

 

 

 

5.4.3 Robust Performance 

 

Δ

M 

Figure 5.2 : ΔM -structure for robust stability 
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Robust performance means that the performance objective is satisfied for all possible plant in 

the uncertainty set. 

It says [20] that a robust performance problem is equivalent to a robust stability with 

augmented uncertainty fΔ as shown in figure 5.3  

 
 

 

 
  

fΔ  

Δ  

M 

Figure 5.3 : Robust performance versus robust stability  
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 ù 

Proposed Approach 
 

   

 

 

 

The contribution of this thesis is concerned with the choice of the closed-loop block poles in 

multivariable systems. Given a multivariable system described by a state space equations or a 

transfer function, we want to find the appropriate forms for the closed-loop block poles to be 

assigned. Among the criteria used to select these forms, we have: 

 

i. Time response characteristics. 

ii. Robustness. 

iii. Magnitude of feedback gains. 

 

6.1 Time Domain Specifications [39] 

 

The transient portion of the time response is the part which goes to zero (for stable systems) as 

time becomes large. Nevertheless, the transient response of a control system is necessarily 

important, since both the amplitude and time duration of the transient response must be kept 

within prescribed limits. 

Performance criteria commonly used for the characterization of linear control systems in the 

time domain are defined as follows: 

i. Maximum overshoot: Let y(t) be the unit-step response. Let ymax denotes the maximum 

value of )(ty , and ssy  be the steady-state of )(ty , and ssyy ≥max . 

     The maximum overshoot of )(ty  is defined as  

                                    Maximum overshoot = ssyy −max   

 

            The maximum overshoot is often represented as a percentage of the final value of the  

            step response, that is,  

Chapter 6 
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                                    Percent maximum overshoot =  %100
y

overshoot  maximum

ss
×  

           a system with large overshoot is usually undesirable 

ii. Delay time td: is defined as the time required for the step response to reach 50 percent of 

its final value. 

iii. Rise time rT : is defined as the time required for the step response to reach 10 to 90 

percent of its final value. 

iv. Settling time Ts: is defined as the time required for the step response to decrease and 

stay within a specified percentage (2% or 5%) of its final value or it is the smallest 

value sT  such that: 

                           sss yyty 02.0)( ≤− or ssy05.0  for all sTt ≥  

 

The four quantities just defined give a direct measure of the transient characteristics of a 

control system in terms of the unit-step response. The rise time and settling time are measures 

of the speed of the response, whereas the overshoot, steady state are related to the quality of the 

response. 

The unit step response is a measure for SISO systems, for this we have adapted its 

characteristics to MIMO systems.   

Maximum overshoot is the highest deviation from steady state value (which is not single in the 

case of MIMO systems). 

 

6.2 Proposed Procedure 

Given a multivariable system described by the following state equation 

                        
⎩
⎨
⎧

=
+=

)()(
)()()(

tCxty
tButAxtx&

 

where CBA ,, are, respectively, nn× , nqmn ×× , constant matrices. The feedback control law is 

)()( tKxtu −= . The given system can be converted into block controller form if it is block 

controllable of index l  where mnl /=  is an integer. The block controller form is as follows 

                   
⎪⎩

⎪
⎨
⎧

=
+=

)()(
)()()(

.

txCty
tuBtxAtx

cc

cccc                                                                             

where  
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Using State feedback we will have                                                           
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Where [ ]clccc KKKK ...21=  and liKci ,...,2,1, = are mm× matrices 

Since )( ccc KBA − is in block companion form, its characteristic matrix polynomial equation is 

given by:    

                     )(...)()( 1
1

1 cl
l

cl
l

m KAsKAsIs +++++=Δ −  

The desired matrix polynomial constructed from desired solvents is  

                      dl
l

d
l

md DsDsIs +++=Δ − ...)( 1
1  

 where liDi ,...,2,1, = are an mm× matrices. 

By forcing )()( ss dΔ=Δ , then the matrices clcc KKK ,...,, 21 are given by idici ADK −=  

for li ,...,2,1= . 

 

Given a set of right solvents { }iR of )(sdΔ which satisfy  

                mdfl
l
id

l
imid DRDRIR 0...)( 1

1 =+++=Δ −  for li ,...,2,1=  

The coefficients of the desired matrix polynomial are given by  



Chapter 6                                                                                                      Proposed Approach 

 86
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RRRDDD    (6.1) 

For a set of left solvents { }iL of )(sdΔ satisfies: 

                         mdld
l
imiid DDLILL 0....)( 1 =+++=Δ  

The coefficients of the desired matrix polynomial are as follows 

                    

⎥
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⎥
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⎦
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⎢
⎢
⎢
⎢
⎢
⎢

⎣
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⎥
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D

D
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.

.
.
.

2

1

1

)1(
                                                                                (6.2) 

where B
LV is the block transpose of the left block Vandermonde matrix. 

The block Vandermonde matrix is not necessary nonsingular for any choice of lRRR ,..,, 21 , a 

necessary but not sufficient condition is that a set { }iR  for li ,...,2,1= form a complete set of 

solvents. 

 

From the same given set of desired eigenvalues, different structures of solvents can be 

constructed; the well known forms are the following: 

 

6.2.1 Diagonal Form 

Given a set of n distinct eigenvalues{ }nλλλ ..21 , the construction of the solvents in 

diagonal form is as follows: 

                

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

n

iR

λ

λ
λ

..00
.....
.....
0..0
0..0

2

1

                                                                            (6.3.a) 

 

6.2.2 Jordan Form 

If some eigenvalues are repeated, say 1λ with multiplicity μ then the constructed solvents has 

the form is  
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                                            (6.3.b) 

 

6.2.3 Solvents Constructed through Modal Matrices           

In the case where some eigenvalues are complex conjugate pairs, i.e., ωσλ ji +=  and 

ωσλ ji −=+1 , the block poles are given as: 

                                 

⎥
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6.2.4 Companion Form 

The characteristic equation constructed from a given set of n eigenvalues is  

                               n
nn

n

i
i aa +++=−=Δ −

=
∏ ...)()( 1

1
1

λλλλλ  

Two different structures of solvents can be constructed 

 

6.2.4.1 Controllable Companion Form 

 

                     

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

−−−−

=

−− 121 ..
1..000
......
......
0..100
0..010

aaaa

R

nnn

i      

or                                                                                                                                         (6.3.c) 
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6.2.4.2 Observable Canonical Form 
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or                                                                                                                                        (6.3.d) 
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In the case of compensator design using block pole placement the proposed approach is as 

follows: 

 

Consider the unity feedback system in figure (6.1). The plant is described by a pq× proper 

rational matrix.        

                                             )()()( 1 sDsNsH −=                                    

 

We want to find the compensator )()()( 1 sNsDsC CC
−= which is a qp× proper rational matrix 

that achieves the desired block poles in the desired positions so that the closed- loop system 

meets the different criteria stated before.  

 

Given the coefficients matrices of the plant of )(sN and )(sD , 

                    11 ...)( DsDsDsD n
n

n +++= −  

and  

Figure 6.1: Unity feedback for multivariable system 

y )(sC  )(sH  + 
 - 

r 
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                         1
1

1 ...)( NsNsNsN n
n

n
n +++= −

−  

Find )(sC  such that the closed-loop system is given by  

                        )()()()( 1 sNsDsNsH Cfcl
−=  

or  

                      )())()()()()(()( 1 sNsNsNsDsDsNsH CCCcl
−+=  

yields 

                      )()()()()( sNsNsDsDsD CCf +=  

so that  

                     1
1

)1( ...)( f
n

nf
n

fnf DsDsDsD +++= −
−  

Forcing )()( ssD df Δ= which is the desired matrix polynomial constructed from desired 

solvents that is difi DD =  for ni ,...2,1=  

The coefficients diD are constructed as in (6.1) (6.2) and the solvents by the matrices described 

in (6.3). 

The coefficients of )(sDc are found by solving the Diophantine equation using either recursive 

or row searching algorithm, i.e., find the primary linearly dependent rows in Sylvester matrix. 

 

To assess the stability robustness of the closed-loop system using state feedback, the three 

following measures are proposed by Tsui [77] using the sensitivity of the eigenvalues 

say 21, MM and 3M ,  

  where       
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

−=
∞<≤

)(min
0

1 IjAM m ωσ
ω

 

1M is the smallest possible matrix variation norm for the dynamic matrix to have an unstable 
and pure imaginary eigenvalues 
 
                  { }nsM λRe)( 1

2
−Λ= ,           { } { }1Re...Re( λλ ≤≤n ) 

 
The term { }nλRe  is the shortest distance between the unstable region and the eigenvalues iλ , 

2M equals this distance divided by the sensitivity of all eigenvalues matrix Λ or may be 
considered as the likelihood margin for nλ to become unstable 

                   { }{ }ii
ni

sM λλ Re)(min 1
1

3
−

≤≤
=  

 
3M is defined as the likelihood margins for every eigenvalues to become unstable 
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For the robust performance, the closed-loop system is subjected to small random perturbation 

then the relative change of the eigenvalues is computed. 

 

For each form used in different block poles, the step response of the closed-loop system is 

plotted and the time response characteristics (Maximum overshoot, settling time, rise time and 

steady state value) are computed. The robustness of the closed-loop system as well as the norm 

of the state feedback gain matrix, the results are then compared to select the form of the 

solvents so that the closed-loop system meet the required criteria (good robustness, small 

transient response, and small feedback gain matrix). 

 

6.3 Effect of Eigenstructure on Time Response 

In this section it is shown that the feedback gain matrix K determines the eigenvectors as well 

as the eigenvalues of the closed-loop plant matrix BKA − and both these quantities determine 

the time response. 

For the system represented by the closed-loop state equation 

                                        QxxBKAx =−= )(&                                                                      (6.4) 

the eigenvalue spectrum )(Qσ is the set of roots of the characteristic equation which is formed 

from 

                                  0....))( 0
1

1 =+++=−=Δ −
− aaQI n

n
n λλλλ                                    (6.5) 

When all the eigenvalues of Q are distinct, the modal matrix T can be determined such that 

                                          Λ=− QTT 1                                                                                (6.6) 

The matrix Λ is a diagonal matrix in which the eigenvalues appear in the diagonal. The 

eigenvectors iv are the columns of T and satisfy the equation  

                                           [ ] 0=− ii vQIλ                                                                            (6.7) 

The rows of 1−T are the row vectors T
iw , which are called the reciprocal or left eigenvectors 

and satisfy the equation 

                                           [ ] 0=−QIw i
T
i λ                                                                          (6.8) 

Thus 
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                 [ ]
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Since ITT =−1 , the sets of eigenvectors iv and reciprocal eigenvectors T
iw are orthogonal, i.e., 

                                     
⎩
⎨
⎧

≠
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=
jifor
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vw i
T
i 0

1
                                                            (6.10) 

Solving for Q in equation (6.6) yields 1−Λ= TTQ , which can be substituted into the solution of 

the state equation 

                         ∫ −+=
t

QQt dtBuexetx
0

)()0()( τττ                                                           (6.11) 

Thus it is apparent that the state transition matrix Qte can be expressed in terms of the 

eigenvectors and reciprocal eigenvectors. Using the series representation of Qte yields 
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                                             (6.12) 

In the case of distinct eigenvalues the matrix teΛ has the diagonal form 
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                                                   (6.13) 

In case where the eigenvalues kλλλ ,...,, 21 are repeated with multiplicity 

kμμμ ,...,, 21 respectively, 
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Where 
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Therefore from (6.13) the state transition matrix can be written as  

                                    ∑
=

=
n

i

T
i

t
i

Qt weve i

1

λ                                                                           (6.14) 

The output equation, when the dimension of the input u is m, is given by  

              ∑ ∑∑ ∫
= = =

−+=
k

i

m

j

n

i

t

jj
T
ii

T
i

t
i dtuebwCvxweCvty ii

1 1 1 0
)()0()( τττλλ                                (6.15) 

The transient response of the system is therefore a linear combination of n functions of the 

form 

                            niev t
i i ,...,2,1, =λ                                                                           (6.16) 

which describe the dynamical modes of the system. From equation (6.15), the entire 

eigenstructure determines the time response of the system: i.e., the eigenvalues iλ , the 

associated eigenvectors iv  and the left eigenvectors iw  all contribute to time response. The 

terms )0(, xwvc T
ii

T
k and i

T
i bw are scalars and determine the magnitude of the modal 

responses tieλ . The ability to select iv and T
iw provides the potential for adjusting the 

magnitude of each mode which appear in each of the outputs.  

For a matrix A, in companion form, the eigenvector associated with iλ  has the following form: 

                      [ ] ni
Tn

iii ,...,2,1,..1 12 =−λλλ  
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if a matrix A is in diagonal form its eigenvector is of the form 

                            [ ]0..010..0     

From the structure of the eigenvectors, the norm of the eigenvectors associated with the matrix 

of companion form is larger than that of diagonal form, Hence the magnitude of the dynamical 

mode tieλ decreases in diagonal form than is in companion form. However, as shown later, it 

yields less overshoot and less settling time which gives rise to better time response. 

  

6.4 The Effect of the Eigenvalues and the Associated Eigenvectors on the Feedback Gain 
Matrix 
 
Given a closed-loop matrix )( BKA − , the purpose in applying state feedback is to assign both 

closed-loop eigenvalue spectrum 

                            { }nBKA λλλσ ,...,,)( 21=−  

 and an associated set of eigenvectors 

                               { }nvvvBKAv ,..,,)( 21=−  

which are selected to achieve the desired time response characteristics. 

The closed-loop eigenvalues and eigenvectors are related by the equation 

                                    iii vvBKA λ=− )(                                                                          (6.17) 

This equation can be put in the form 

                      [ ] nifor
q
v

BIA
i

i
i ,...,10 ==⎥

⎦

⎤
⎢
⎣

⎡
− λ                                                          (6.18) 

Where iv is the eigenvector and  

                                            ii Kvq =                                                                                     (6.19) 

In order to satisfy equation (6.18), the vector [ ]T
i

T
i qv  must lie in the kernel or null space of 

the matrix  

                          [ ] niforBIAS ii ,...,2,1)( =−= λλ                    

The notation ker )( iS λ is used to define the null space which contains all the vectors [ ]T
i

T
i qv  

for which equation (6.18) is satisfied.  

Equation (6.19) can be used to form the matrix equality 
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=
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hence  

             [ ] [ ] 11
2121 ...... −− == QVvvvqqqK nn                             (6.21) 

If the eigenvalues of )( BKA − are specified and the associated eigenvectors are selected to 

satisfy equation (6.18), then equation (6.21) specifies the required state feedback matrix K . 

The selected eigenvectors must be linearly independent so that the inverse matrix 1−V  in 

equation (6.21) exists. 

 

6.5 Sensitivity of Eigenstructure [46] 

 

If λ is an eigenvalue of a matrix A and its associated right and left eigenvectors are V and T 

respectively, it is shown that  

                                          2' Tελλ ≤−  

where 'λ is an eigenvalue of a slightly perturbed matrix )( EA + with 2E=ε , the Euclidean 

norm of E.  We notice that the sensitivity of λ is determined by the norm of the corresponding 

left eigenvector. Hence, 2T is a condition number for the eigenvalueλ .  

And we have   

                                
λλ

ε
−

≤−
k

VV
min

' 2           

where 'V is an eigenvector of )( EA + and kλ an eigenvalue of A other than λ . 

It is clear from above that the left eigenvector T  play an important role in the sensitivity of the 

eigenvalueλ . 

 In multivariable system, both closed-loop eigenvalues and eigenvectors are assigned.  Given a 

perturbed closed-loop matrix as ABKA Δ+− )( , the idea is the select the norms of the left 

eigenvectors of the corresponding closed-loop eigenvalues to minimize the effect of the 

perturbation AΔ  of A. 

Given a closed-loop matrix 

                               
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−−−

=−

− 11 ...
.....

......
..00

0..00

DDD
I

I
I

BKA

ll
m

mmm
mmmm

 

Its matrix characteristic polynomial is l
ll

m DDI +++=Δ − ...)( 1
1λλλ  

The left eigenvector of BKA − is defined as 
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The norm of the left eigenvector is given by 
 

       Hence                

⎥
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⎥
⎥
⎥
⎥
⎥
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We have a latent vector is a subvector of the left eigenvector and the norm of the left 
eigenvector depends on the norm of the latent vector.  
 We have jjjj QQL Λ= −1 where [ ]Tmjjj qqQ ...1= for lj ,...,2,1=  ; hence the latent vector 
are related to the left solvent so the norm of the left eigenvector depends on the norm of the 
solvent. 
The minimal norm of the left eigenvectors is given by the minimal norm of the solvent which is 
no more than the solvent in diagonal form.  
 

6.6 The Effect of the Block Pole on the Magnitude of the State Feedback Gain Matrix 

 

Given a multivariable system BuAxx +=& with the characteristic equation 

                     0
1

1 ...)( AsAIss l
l

l +++=Δ −
−  
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It is desired to find the state feedback gain matrix so that the block controllable matrix 

)( ccc KBA − has the following desired characteristic equation  

                   0
1

1 ...)( DsDIss l
l

l
d +++=Δ −

−   

or     

                )(...)()( 00
1

)1(1 c
l

cll
l

d KAsKAIss +++++=Δ −
−−   

where  

            icii KAD +=  

or  

              iiic ADK −=  

and we have  

             iiiiic ADADK +≤−=  

 

Our purpose is to find the norm of the state feedback gain matrix as small as possible, since 

iA  cannot be selected, we seek to get iD  minimum. 

Let { }iR be a set of right solvent of the desired matrix polynomial )(sdΔ , we can write: 

                                    ))(()( id RIsQs −=Δ λ  

where  

                                 
IQ

QQsQssQ l
ll

=
+++= −

−−

0

11
2

0
1 ...)(  

hence  

                     0
1

1 ...))(()( DsDIsRIsQs l
l

l
iid +++=−=Δ −

−λ  

 

To get iD  minimum, iR  must be selected so that iR is minimized. 

 

Using the fact that the norm of the solvents in companion form is larger than the norm of the 

solvents in diagonal form, the solvents iR  must be selected in diagonal form to have the norm 

of the desired closed-loop block poles iD  minimum, hence the norm of the state feedback gain 

matrix is minimum since we have iiic ADK +≤ . 
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6.7 Conclusion  

i. From the above discussions, we notice that the choice of the form of the closed-loop 

block pole minimizes the norm of the state feedback gain matrix and is given, as it is 

shown later, by a block pole in diagonal form.  

ii. We notice that both eigenvalues and corresponding left and right eigenvectors can be 

selected to provide better time response. 

iii. The magnitude of the dynamical mode tieλ decreases in diagonal form which leads to 

less settling time and smaller percent overshoot.  

iv. Left eigenvector T  play an important role in the sensitivity of the eigenvalueλ . 
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Simulation Results 
 

 

 

 

 

      A large number of case studies are presented to test the proposed approach described in 

chapter 6 using the software package MATLAB.  

      For multivariable state feedback, both cases mn / is an integer and mn / is not an integer 

are considered. 

      The placement of block poles in multivariable system using either state feedback or 

compensator design requires the construction of a matrix polynomial from a given a set right 

or left solvents. The different right and left solvents are constructed using different canonical 

forms: controllable, observable and diagonal canonical forms. 

       Let )(sD f represent the desired monic matrix polynomial, 

                             fl
l

f
l

f DsDIssD +++= − ....)( 1
1  

then the complete set of right solvents iR  and left solvents iL satisfy, respectively, the 

following matrix polynomial 

                      liDRDRDR mflilf
l
if

l
i ,...,2,1,0.... )1(

1
1 ==++++ −

−  

 and  

                      liDDLDLL mfllfif
l
i

l
i ,...,2,1,0... )1(1

1 ==++++ −
−  

 

hence, the coefficient matrices of the desired matrix polynomial can be obtained by using 

either: 

                [ ] [ ] 1
211)1( ...... −

− −= R
l
l

ll
flffl VRRRDDD  

 

 

 

Chapter 7 
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or                  

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−

l
l

l

l

B
L

f

lf

fl

L

L
L

V

D

D
D

.

.

.

.

.

.
2

1

1

)1(

 

where RV and B
LV are the right Vandermonde and the block transpose of the left  

Vandermonde matrices, respectively, given in (2.23) and (2.24) mentioned in chapter 2. 

 

      To ensure the stability and the performance robustness of the block poles to be assigned 

the proposed methods given in chapter 5 are used. 

 

7.1 The Case of the Block Pole Placement using State Feedback 

 

Case Study 1:  

Consider the following open-loop system with 2-inputs and 2-outputs and the system is of 

order 4 given by the following matrices: 

                 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−
−
−−

=
0100
01.2321.03227
00123.0575.083.16
0174.0985.0501.0

A , 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−−
−=

00
12401620

19.278.132
007.0109.0

B   

                                  
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

1000
0100
0010
0001

C  

 

Hence, lmn =×== 224 , i.e., l is an integer, it follows that we can assign two block poles of 

dimension 22× .  

We want to design a state feedback controller such that the closed-loop system A-BK has the 

following set of desired eigenvalues: i8897.143333.13,54,53 ±−−− .  

Since rank [ ] 4==Φ ABBrankc , i.e., the controllability matrix has full rank, the pair 

),( BA is block controllable. Therefore the pair ),( BA can be converted into multivariable 

block controllable companion form ),( cc BA . 

 

The pair ),( cc BA and cC are as follows: 
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31

1

10*

0.0000    0.0000    1.2400-   1.6200- 
1.2400-   1.6200-   0.0000-      0       
0.0272    0.1328-    0.1357    0.0845 
0.0000    0.0001    0.2426-   0.1511-

10
01
00
00

,

2.9402-   2.1174-   530.4239- 330.3420- 
0.6516    0.2358-   77.2688-  48.1221-  

1              0                0              0         
0              1                0              0         

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

==

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
==

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

==

−

−

cc

cc

ccc

CTCand

BTB

ATTA

 

 

  where cT is the required similarity transformation.  

The characteristic matrix polynomial of this block companion form is determined by the last 

42× block row  

                      ⎥
⎦

⎤
⎢
⎣

⎡
=Δ

2.9402-   2.1174-   530.4239- 330.3420- 
0.6516    0.2358-   77.2688-    48.1221-  

c  

The state feedback gain cK is to be selected so that: 

                           ccc KBA − = DA  , 

where DA  is a desired closed-loop matrix whose eigenvalues are the set of desired  

eigenvalues. 

 

  7.1.1 State feedback Using Block Poles in Diagonal Form. 

The desired block poles are constructed in diagonal form as  

                      ⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
=

54-    0  
0     53-

,
13.3333-  14.8897- 

14.8897    13.3333-
21 RR  

The corresponding 22× desired right denominator matrix polynomial of degree 2 is: 

                                 21
2)( fff DsDIssD ++=   

where 

                                [ ] [ ] 12
2

2
112

−−= Rff VRRDD  

i.e.,        

                            [ ] ⎥
⎦

⎤
⎢
⎣

⎡
=

67.2125   15.2197   713.4733  806.6448 
14.5678-  66.4541   786.6613-  713.0690

12 ff DD  
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Then we can have cK which given by  

                              ⎥
⎦

⎤
⎢
⎣

⎡
=

64.2723   13.1023   183.0494  476.3029
13.9162-  66.2183   863.9301- 664.9468

cK  

Computing the state feedback gain matrix, that places the block poles of the closed-loop 

system to the desired locations, in original coordinates, yields 

                             ⎥
⎦

⎤
⎢
⎣

⎡
=

0.4274-   0.0426-   0.4220    1.6660  
1.4191-   0.0004    0.4952-   10.5375

K
 

The norm of feedback gain matrix is: 10.77732 =K  

The closed loop matrix using solvents in diagonal form will be: 

 

                   410*

0         0.0001              0         0         
0.2829-   0.0054-   0.0279-   1.5910    

0.0177-   0.0001    0.0078-   0.1371    
0.0000    0.0000    0.0001-   0.0002-  

)(

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=− diagonalBKA  

 

The following table summarizes the time response for this choice: 

 

 

Inputs 

 

Transient  

steady state 

specifications 

Maximum 

overshoot 

( pM ) 

Percent 

overshoot 

( POS ) 

Settling 

time 

( sT ) 

Rise time 

( rT ) 

Steady 

State 

Value 

( SSV ) 

1y  0.0835 8.5826% 0.361s 0.149s 0.0769 

2y  0.128 197.6744% 0.308s 0.000185s -0.043 

3y  5.45 / 0.376s 0s 0 

 

 

1U  

4y  -0.722 430.8824% 0.385s 0.0104s -0.136 

1y  -0.282 10.5882% 0.277s 0.0504s -0.255 

2y  0.184 28.6713% 0.39s 0.00315s 0.143 

3y  1.29 / 0.34s 0s 0 

 

 

2U  

4y  -2.03 7.26% 0.289s 0.0599s -1.89 
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Step Response
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Figure1: Time response for diagonal form

Figure2: Response to initial condition x0= [1;1;1;1] 
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The response to initial condition of the closed-loop matrix for diagonal form is summarized in 

the following table  

Transient  

steady state 

specifications 

Maximum 

overshoot 

( pM ) 

Percent 

overshoot 

( POS ) 

Settling 

time 

( sT ) 

Steady State Value 

( SSV ) 

1y  1.2262 5.7069% 0.316s 0.00362 

2y  15.1100 12.7612% 0.324s 0.00268 

3y  165.5000 49.0991% 0.299s 0.000222 

4y  6.2250 5.8673% 0.382s 0.00207 

 

7.1.1.a Robust Stability 

For the study of the robustness of the system, three measures stated in the chapter 5 are 

computed. 

Let us compute the right and the left eigenvector of the closed-loop matrix 

 

                

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

  0.0185-         0.0188    0.0371i + 0.0333-  0.0371i - 0.0333-  
   0.9996          0.9964-             0.9966             0.9966              
  0.0199-        0.0827-    0.0463i + 0.0449   0.0463i - 0.0449   

  0.0036-        0.0018   0.0065i + 0.0026-  0.0065i - 0.0026-  

V  

its norm is 1.9968 2 =V  

The norms of 4,3,2,1, =ivi are equal to 1 

The norm of the left eigenvector is 532.4127 2 =T  

The norm of 4,3,2,1, =iti   

254.348621 =t , 254.348622 =t , 382.0304 23 =t , 93.8477 24 =t  

The sensitivity of all the eigenvalues is  

    3
22 10*1.0631)( ==Λ TVs   its inverse is given by      -41 10*9.4063)( =Λ −s  

The sensitivity of every eigenvalue is computed as follows: 

    4,3,2,1,)( 22 == itvs iiiλ  

yields 
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8477.93)54(

382.0304 )53(

3486.254)8897.143333.13(

3486.254)8897.143333.13(

24244

23233

22222

21211

==−=

==−=

==−−=

==+−=

tvs

tvs

tvis

tvis

λ

λ

λ

λ

 

Finally we compute the stability robustness measures 

Computing { })(min
0

1 IjAM ωσ
ω

−=
∞≤≤

   we have 0.09861 =M  

Computing { }nsM λRe)( 1
2

−Λ= , { } { }1Re...Re( λλ ≤≤n ) we have 0.01252 =M  

Finally for { }{ }ii
ni

sM λλ Re)(min 1
1

3
−

≤≤
=     we have                

            

0.5754 2)54(

0.1387 5)53(

0.05248897.143333.13)8897.143333.13(

0.05248897.143333.13)8897.143333.13(

1
4

1
3

1
2

1
1

=−×−=

=−×−=

=−−×−−=

=+−×+−=

−

−

−

−

λ

λ

λ

λ

s

s

iis

iis

 

hence 0.5754 3 =M  

 

7.1.1.b Robust Performance 

The following perturbation is generated randomly using MATLAB   

                          

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=Δ

0.0747    0.0604    0.0010    0.0894    
0.0015    0.0199    0.0813    0.0410    
0.0199    0.0203    0.0353    0.0917    
0.0272    0.0139    0.0058    0.0935   

A  

With 0.1933=ΔA  

The new closed-loop matrix, after perturbation, is: 

                   

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=Δ+−

0.0747        1.0604          .001 0        0.0894 
2828.8-   54.1787-   278.4754-      15910 

176.8103-    1.2465      77.7715-       137.1 
0.1849      0.1882        0.9282-    1.5678-

)( diagonalABKA  

with eigenvalues: -12.3260 +15.6215i, -12.3260 -15.6215i, -54.7737, -54.0176 . 

 

 

 

The relative change of the eigenvalues of the closed-loop matrix due to the perturbation is 
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i

ii
ir λ

λλ '−
=  where iλ is the eigenvalue of the closed-loop matrix and i'λ the eigenvalue of 

the perturbed closed-loop matrix. This leads 

     0.06231 =r , 0.06232 =r , 0.0335 3 =r , -4
4 10*3.2615=r . 

 

7.1.2  State Feedback Using Block Poles in Controllable Form 

 

 The desired block poles are constructed in controller form as 

                  ⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
=

0              1    
2862-       107-

,
26.6666-  399.4801- 
1.0000              0        

21 RR  

hence 

                    [ ] 3
12 10*

0.0266    0.0009-   0.3996    0.0117-   
0.0062    0.1070    0.0838    2.8590     

⎥
⎦

⎤
⎢
⎣

⎡
=ff DD  

         

cK is  given by  

                       310*
0.0237    0.0030-   0.1309-   0.3420- 

0.0068    0.1068    0.0065    2.8109    
 ⎥

⎦

⎤
⎢
⎣

⎡
=cK  

 

The required feedback gain matrix in the original coordinate systems is 

                      ⎥
⎦

⎤
⎢
⎣

⎡
=

0.3073    0.0147-   0.2011    0.9190-
3.3109-   0.0179-   0.5718-   16.5763

K  

The norm of feedback gain matrix is: 16.94112 =K  

 

The closed loop matrix using solvents in controller form will be as follows: 

 

410*

0         0.0001           0            0         
0.4983-   0.0049-   0.0677-   2.2487    
0.0448-   0.0002-   0.0082-   0.2243    

0.0000    0.0000    0.0001-   0.0002-   

)(

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=− lecontrollabBKA  
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The following table summarizes the time response obtained for this choice: 

 

 

Inputs 

Transient  

steady state 

specifications 

 

pM  

 

POS  

 

sT  

 

rT  

 

SSV  

1y  -0.0557 0.798% 0.101s 0.0326s 0.0553 

2y  0 0% 0.128s 0.133s 0.0309 

3y  0.0201 / 0.129s 0.171s 0 

 

 

1U  

4y  -0.581 0.335% 0.105s 0.0317s -0.579 

1y  -0.63 5.86% 0.301s 0.0704s -0.596 

2y  0.917 175% 0.359s 0.00594s 0.333 

3y  -27.5 / 0.359s 0.0274s 0 

 

 

2U  

4y  -3.15 5.71% 0.301s 0.071s -2.98 
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Figure3: Time response for controller form 
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Response to Initial Condition x0= [1;1;1;1] using Controller Form 

Transient  

steady state 

specifications 

Maximum overshoot 

( pM ) 

Percent 

overshoot 

( POS ) 

Settling time 

( sT ) 

Steady State Value 

( SSV ) 

1y  1.1577 9.2170% 0.349s 0.00263 

2y  13.1 0% 0.187s 0.006 

3y  144.7000 50.2596% 0.43s -0.255 

4y  4.2400 12.4668% 0.351s 0.013 
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7.1.2.a Robust Stability 

The right eigenvector of the closed-loop is given by  

               

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

 0.0372i + 0.0333-     0.0372i - 0.0333-      0.0188-     0.0184   
          0.9984                   0.9984                0.9963      0.9963-  

0.0012i + 0.0227-    0.0012i - 0.0227-       0.0842      0.0841-  
0.0076i + 0.0065-    0.0076i - 0.0065-      0.0018-       0.0018  

V  

 

its norm is 1.99642 =V  

the norms of 4,3,2,1, =ivi are equal to 1 

Figure4: Response to initial condition x0= [1;1;1;1] 
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The norm of the left eigenvector is 4
2 10*3.7068=T  

The norm of 4,3,2,1, =iti  with it are columns of the left eigenvector T  

, 4
21 10*2.6218=t , 4

22 10*2.6204 =t , 123.731623 =t , 123.731624 =t  

The sensitivity of all the eigenvalues is     4
22 10*7.4001)( ==Λ TVs  

its inverse is given by: -51 10*1.3513)( =Λ −s  

The sensitivity of every eigenvalue is as follows: 

    4,3,2,1,)( 22 == itvs iiiλ  

yields  

                   

4
24244

4
23233

22222

21211

10*2.6218)54(

10*2.6204)53(

123.7316 )8897.143333.13(

123.7316 )8897.143333.13(

==−=

==−=

==−−=

==+−=

tvs

tvs

tvis

tvis

λ

λ

λ

λ

 

Now we can compute the stability robustness measures 

          0.1848 1 =M  

           -4
2 10*1.8018=M  

we have:                

                

0.0021 54)2(

0.002053)5(

0.1078 8897.143333.13)8897.143333.13(

0.1078 8897.143333.13)8897.143333.13(

1
4

1
3

1
2

1
1

=−×−=

=−×−=

=−−×−−=

=+−×+−=

−

−

−

−

λ

λ

λ

λ

s

s

iis

iis

 

hence 0.0020 3 =M    

 

7.1.2.b Robust Performance 

 

The closed-loop matrix after perturbation is given by: 

 

      

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=Δ+−

0.0747         1.0604        0.001       0.0894    
4982.5-    49.3707-   676.5500-   22487    

448.0220-     1.9493-   81.9393-   2243.2    
0.3859        0.1900       0.9183-   2.2079-  

)( lecontrollabABKA  
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with eigenvalues: -59.1879, -47.8118,  -13.2218 +15.6415i,  -13.2218 -15.6415i 

 

The relative change of the eigenvalues of the closed-loop matrix due to the perturbation is 

i

ii
ir λ

λλ '−
=  where iλ is the eigenvalue of the closed-loop matrix and i'λ the eigenvalue of 

the perturbed closed-loop matrix. This leads 

                  0.09611 =r , 0.09792 =r , 0.03803 =r  , 0.03804 =r . 

 

7.1.3 State Feedback Using Block Poles in Observable Form 

The desired block poles constructed in observer form as: 

 

                     ⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
=

0         2862- 
1           107-  

,
26.6666-      1 
399.4801-     0 

21 RR  

this gives 

               [ ] 3
12 10*

0.1069    0.0008    2.8612    0.0803-
0.0021    0.0267    0.0803    0.3973 

⎥
⎦

⎤
⎢
⎣

⎡
=ff DD  

cK is  given by  

               310*
0.1040    0.0013-   2.3308    0.4106-
0.0028    0.0265    0.0030    0.3492  

 ⎥
⎦

⎤
⎢
⎣

⎡
=cK  

 

The required feedback gain matrix in original coordinate systems is 

                ⎥
⎦

⎤
⎢
⎣

⎡
=

2.1967    0.0664-   0.8029    20.3864-
0.4097-   0.0052-   0.1345-   2.0066  

K  

The norm of feedback gain matrix is: 20.6216 2 =K  

The closed loop matrix using solvents in observer form is given by: 

            

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=−

0             1                    0                        0         
2060.1      92.8198-    778.0471    10*2.5255- 

114.1392-     1.1280    40.2698-            837.6180 
0.0293      0.1750        0.9760-              0.5770-

)( 4observableBKA  

The time response is shown in the following figure: 
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The following table summarizes the time response obtained for the observer form: 

 

 

Inputs 

 

Transient  

steady state 

specifications 

Maximum 

overshoot 

( pM ) 

Percent 

overshoot 

( POS ) 

Settling 

time 

( sT ) 

Rise time 

( rT ) 

Steady 

State 

Value 

( SSV ) 

1y  -0.418 5.76% 0.304s 0.0727s -0.395 

2y  0.417 88.6878% 0.355s 0.197s 0.221 

3y  2.29 / 0.359s 0s 0 

 

 

1U  

4y  -4.38 5.88% 0.302s 0.0711s -4.14 

1y  -0.0753 2.14% 0.117s 0.028s -0.0737 

2y  0.238 477% 0.325s 0.000848s 0.0412 

3y  0.45 / 0.184s 0s 0 

 

 

2U  

4y  -0.347 9.5% 0.248s 0.0245s -0.317 

 

Figure5: Time response for observer form 
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Response to Initial Condition x0= [1;1;1;1] in Observer Form 
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Time response for the initial condition in case of observer form: 

Transient  

steady state 

specifications 

Maximum 

overshoot 

( pM ) 

Percent overshoot 

( POS ) 

Settling time 

( sT ) 

Steady State 

Value 

( SSV ) 

1y  1.2 20% 0.312s -0.00129 

2y  8.6590 4.4511% 0.364s 0.0209 

3y  -89 33.0827% 0.238s 0.251 

4y  -2.7760 14.5846% 0.367s -0.0134 

 

7.1.3.a  Robust stability 

The right eigenvector of the closed-loop is given by  

                        

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

0.0371i + 0.0332-   0.0371i - 0.0332-       0.0189       0.0185 
          0.9955                0.9955            0.9997-     0.9997- 
0.0047i - 0.0808      0.0047i + 0.0808      0.0174       0.0174 
0.0035i + 0.0034-    0.0035i - 0.0034-      0.0037       0.0036 

V  

its norm is 1.9968 2 =V  

Figure 6: Response to initial condition x0= [1;1;1;1] 
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the norms of 4,3,2,1, =ivi are equal to 1 

The norm of the left eigenvector is 4
2 10*4.0851=T  

The norm of 4,3,2,1, =iti  with it are columns of the left eigenvector T  

4
21 10*2.8893=t , 4

22 10*2.8893 =t , 141.3501 23 =t , 141.350124 =t . 

The sensitivity of all the eigenvalues is  

    4
22 10*8.1572  )( ==Λ TVs  its inverse is given by: -51 10*1.2259 )( =Λ −s  

The sensitivity of every eigenvalue is as follows: 

    4,3,2,1,)( 22 == itvs iiiλ  

yields  

                  

4
24244

4
23233

22222

21211

10*2.8893)54(

10*2.8878   )53(

141.3501)8897.143333.13(

141.3501)8897.143333.13(

==−=

==−=

==−−=

==+−=

tvs

tvs

tvis

tvis

λ

λ

λ

λ

 

Now we can compute the stability robustness measures 

            0.16581 =M  

           -4
2 10*1.6346 =M  

we have     

                

0.0019  54)54(

0.0018  53)53(

0.0943  8897.143333.13)8897.143333.13(

0.0943  8897.143333.13)8897.143333.13(

1
4

1
3

1
2

1
1

=−×−=

=−×−=

=−−×−−=

=+−×+−=

−

−

−

−

λ

λ

λ

λ

s

s

iis

iis

 

hence 0.0018  3 =M    

7.1.3.b  Robust performance 

The closed-loop matrix after perturbation is as follows: 

        

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=Δ+−

0.0747       1.0604       0.001         0.0894   
2060.1      92.7999-   778.1284    2.5255- 

114.1193-    1.1483    40.2345-   837.7097 
0.0565      0.1889      0.9702-      0.4835-

)( observableABKA  

its eigenvalues are: -53.3944 +14.2210i,  -53.3944 -14.2210i,  -13.3272 +14.7359i,  

                                 -13.3272 -14.7359i      
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The relative change of the eigenvalues of the closed-loop matrix due to the perturbation is 

i

ii
ir λ

λλ '−
=  where iλ is the eigenvalue of the closed-loop matrix and i'λ the eigenvalue of 

the perturbed closed-loop matrix. This leads 

                      0.2636  1 =r , 0.26842 =r , 0.0077   3 =r , 0.0077 4 =r . 

 

7.1.4  Comparison of the results 

Now we gather the results in the following tables to facilitate the comparison  

 7.1.4.1  Time response: 
 Diagonal Form Controller Form Observer Form 

y1_ MP 0.0835 -0.0557 -0.418 

y1_ POS 8.5826% 0.798% 5.76% 

y1_Ts 0.361s 0.101s 0.304s 

y1_Tr 0.149s 0.0326s 0.0727s 

y1-SSV 0.0769 0.0553 -0.395 

y2_ MP 0.128 0 0.419 

y2_ POS 197.6744% 0% 88.6878% 

y2_Ts 0.308s 0.128s 0.355s 

y2_Tr 0.000185s 0.133s 0.197s 

y2-SSV 0.043 0.0309 0.221 

y3_MP 5.45 0.0201 2.29 

y3_POS / / / 

y3_Ts 0.376s 0.129s 0.359s 

y3_Tr 0s 0.171s 0s 

y3_SSV 0 0 0 

y4_MP -0.722 -0.581 -4.38 

y4_POS 430.8824% 0.335% 5.88% 

y4_Ts 0.385s 0.105s 0.302s 

y4_Tr 0.0104s 0.0317s 0.0711s 

U1 

y4_SSV -136 -0.579 -4.14 

y1_ MP -0.282 -0.63 -0.0753 

y1_ POS 10.5882% 5.86% 2.14% 

y1_Ts 0.277s 0.301s 0.117s 

y1_Tr 0.0504s 0.0704s 0.028s 

y1-SSV -0.255 -0.596 -0.0737 

y2_ MP 0.184 0.917 0.238 

y2_ POS 28.6713% 175% 477% 

y2_Ts 0.39s 0.359s 0.325s 

y2_Tr 0.00315s 0.00594s 0.000848s 

U2 

y2-SSV 0.143 0.333 0.0412 
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y3_MP 1.29 -27.5 0.45 

y3_POS / / / 

y3_Ts 0.34s 0.359s 0.184s 

y3_Tr 0s 0.0274s 0s 

y3_SSV 0 0 0 

y4_MP -2.03 -3.15 -0.347 

y4_POS 7.26% 5.71% 9.5% 

y4_Ts 0.289s 0.301s 0.248s 

y4_Tr 0.0599s 0.071s 0.0245s 

y4_SSV -1.89 -2.98 -0.317 

 

7.1.4.2  Robust Stability: 
Stability Measures Diagonal Form Controllable Form Observable Form 

M1 M1 0.0986 0.1848 0.1658 
M2 M2 0.0125 1.8018*10 -4 1.6346*10 – 4 

M31 0.0524 0.0021 0.0019 
M32 0.0524 0.0020 0.0018 
M33 0.1387 0.1078 0.0943 
M34 0.5754 0.1078 0.0943 

M3 

M3 0.0524 0.0020 0.0018 
 

7.1.4.3  Robust Performance 
 BKA−  ABKA Δ+− )(  Relative Change 

 

 

Diagonal Form 

-13.3333 +14.8897i 

-13.3333 -14.8897i 

-53.0000 

-54.0000 

-12.3242 +15.6225i 

 -12.3242 -15.6225i 

 -54.7785           

 -54.0163 

0.0624    0.0624 

0.0336 

 3.0275*10-4 

 

 

Controllable Form 

-54.0000           

 -53.0000           

 -13.3333 +14.8897i 

 -13.3333 -14.8897i 

-59.1879           

 -47.8118           

 -13.2218 +15.6415i 

 -13.2218 -15.6415i 

0.0961 

0.0979 

0.0380 

0.0380 

 

 

Observable Form 

-54.0000           

 -53.0000           

 -13.3333 +14.8897i 

 -13.3333 -14.8897i 

-53.3944 +14.2210i 

 -53.3944 -14.2210i 

 -13.3272 +14.7359i 

 -13.3272 -14.7359i 

0.2636 

0.2684 

0.0077 

0.0077 

Finally we can make the comparison between different forms as follows: 
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In this case study and following the tables given before we can say that the block pole in 

controller form yields smaller percent overshoot and smaller settling time. The smallest 

relative change and smallest norm of the feedback gain matrix are given by the block pole in 

diagonal form. The block form giving the likelihood margin for the dominant eigenvalue and 

for every eigenvalues of the closed-loop matrix to become unstable is the diagonal form. 

 

Case Study 2  

Consider the following 2-input, 5-output system of order 5 given by its matrices 

 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
−
−=

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
−

−
−

−

=

10000
01000
00100
00010
00001

0128.00063.0
2060.01004.0
1496.00838.0
00638.0
00

,

1625.01636.000023.00
8550.12570.46320.20355.00
05470.11490.35950.10
009807.01320.23060.1
0000628.01094.0

C

BA

 

Hence 2.,.1225 =+=+×== leiklmn and 1=k  

It follows that we can assign two block poles of dimension 22× and one remaining pole. 

So we can transform a given system into the block- decoupled form; we need to compute 

arbitrary eigenvalues of matrix A with their corresponding left and right eigenvectors. 

The eigenvalues of A are: -5.9822,-2.8408,-0.8953,-0.0143, -0.0773. This leads to 

9822.5' −=λ with the corresponding right eigenvector 'V  and left eigenvector 'T given by 

 

       

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

0.0235-   
0.8350    
0.5326-   

0.1362    
0.0015-  

'V  and [ ]0.2026-   0.6357    0.6874-   0.2801    0.0623-'=T   

We form the matrix Φ~ as follows 

                            [ ]'~ VABB=Φ   
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Since Φ~ is nonsingular, the given system can be transformed into the following block- 

decoupled form 

 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

== −

5.9822-             0            0             0            0          
0        3.1428-      0.1869    0.2999-   0.0472    
0        2.6039-     0.6849-   0.3917-   0.0523    
0              1               0               0            0         
0              0               1               0            0         

1
ccc ATTA and -5.9822=P  

 

                   

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

==

0.0255-   0.0228 
1             0       
0             1       
0             0       
0             0       

BTB cc  

and  

                 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

0.0250-   0.0134-   0.0069    0.0521-   0.0193    
0.8884    0.1833-   0.0801    0.0436-   0.0175    
0.5666-   0.1641-   0.0967    0.0249-   0.0128    

0.1449    0.0037    0.0605    0.0003    0.0067    
0.0015-   0.0000    0.0000    0.0002    0.0038    

cC  

Hence the wanted structure is given which is as follows: 

       ⎥
⎦

⎤
⎢
⎣

⎡
=

P
A

A
lmk

klmc
c

,

,1
0

0
  and ⎥

⎦

⎤
⎢
⎣

⎡
=

2

1

c

c
c B

B
B  

 

 Let construct the desired block poles with a following desired eigenvalues:  

     5.0,2.0 −−  , i±−1 , 1−  

 

7.2.1 State Feedback using Block Poles in the Diagonal Form  

The desired block poles constructed in diagonal form 

                     ⎥
⎦

⎤
⎢
⎣

⎡
=

0.5-     0    
0      0.2- 

1R       ⎥
⎦

⎤
⎢
⎣

⎡
=

1-    1-
1     1-

2R  

The corresponding 22× desired right denominator matrix polynomial of degree 2 is  

 

                            21²)( fff DsDIssD ++=  
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where      

                          [ ] [ ] 12
2

2
112

−−= Rff VRRDD  

this gives 

               [ ] ⎥
⎦

⎤
⎢
⎣

⎡
=

1.2857     0.8929    0.3929     0.1786
1.1714-   1.4143    0.5857-   0.2429

12 ff DD   

The remaining closed-loop pole is to be assigned at 1− . 

Now we compute 42× state feedback gain matrix 1cK that places the block poles of 

)( 111 ccc KBA − at 1fD and 2fD . 

                            ⎥
⎦

⎤
⎢
⎣

⎡
=

1.8571-   1.0797     0.0930     0.2258
3.7753-   0.7294    0.9774-   0.2952

1cK  

Then we compute the 41× matrix L by solving the Lyapunov equation 

                               12111 )( ccccc KBPLKBAL =−−  

This yields 

                           [ ]0.0065-   0.0036-   0.0042-   0.0002-=L   

Next we compute a 12× state feedback gain matrix 2cK that places the eigenvalue of 

212 )( ccc KLBBP +− at the desired closed-loop pole 1− . 

                                  ⎥
⎦

⎤
⎢
⎣

⎡
=

155.8956  
0        

2cK  

Using    [ ]221 cccc KLKKK +=  

Its yields 

              ⎥
⎦

⎤
⎢
⎣

⎡
=

155.8956    2.8627-   0.5168    0.5606-   0.1982 
0         3.7753-   0.7294    0.9774-   0.2952 

cK  

Using ccTKK = , where cT is the similarity transformation, the required state feedback gain 

matrix in the original coordinate system is given by 

             ⎥
⎦

⎤
⎢
⎣

⎡
=

31.4029-  106.9219   98.8280-  28.4686   4.0307
4.9741     10.1741   10.8008   19.2565-   3.0044

K  

The norm of the state feedback gain matrix is given by 151.76392 =K  

  The closed loop matrix using solvents in diagonal form will be as follows: 
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⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=−

0.5958-     1.4681     1.3330-   0.4880    0.0327  
5.1134-   16.7474   18.8110-  7.8334    0.5287  
5.1147-   16.6899   18.8388-  7.4676    0.3512  
0.3173-   0.6491-   0.2916    0.9034-   1.1143  

0              0          0           0.0628    0.1094-

)( diagonalBKA  

The following table summarizes the time response for this choice: 
 

Inputs 

Transient steady 

state 

specifications 

 

pM  

 

POS  

 

sT  

 

rT  

 

SSV  

1y  -0.0269 - 0.7435% 21.9s 5.96s - 0.0269 

2y  - 0.0736 56.9% 19.5s 1.77s - 0.0469 

3y  0.202 677% 14.7s 0.0937s 0.0261 

4y  0.257 230% 10.4s 0.244s 0.078 

 

 

 

1U  

5y  0.151 44.3% 23s 1.3s 0.104 

1y  0.0685 0.1460% 21.4s 
5.3s 

0.0685 

2y  0.181 51.3% 20.4s 1.13s 0.119 

3y  - 0.223 - 621% 16.9s 4.36s 0.0428 

4y  - 0.313 3.1x103% 10.6s 0.0188s - 0.00981 

 

 

2U  

5y  - 0.172 332% 25.8s 0.541s - 0.0398 

 

Step Response
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pl
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Figure 7: Time response for diagonal form 
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Response to Initial Condition x0 =[1;1;1;1;1] in Diagonal Form 

 

Transient 

steady state 

specifications 

 

pM  

 

POS  

 

sT  

 

SSV  

1y  1 0% 22.2s 0.00345 

2y  1.831 83.10% 20.7s -0.00476 

3y  0.0235 13.2340% 16.7s -0.00554 

4y  31.2 0% 15.6s 0.000848 

5y  2.06 0% 23.9s 0.0158 
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7.2.1.a  Robust Stability 

For the study of the stability robustness of the system, let us compute the right and the left 

eigenvector of the closed-loop matrix 

Figure 8: Response to initial condition x0= [1;1;1;1;1] 
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⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

  0.3483     0.3491-       0.3467      0.3466          0.0025i - 0.3459       0.0025i + 0.3459   
   0.2744-    0.2723       0.2764-    0.2769-       0.0008i - 0.2729-     0.0008i + 0.2729-  
   0.1848      0.1876-     0.1806      0.1797            0.0056i - 0.1846      0.0056i + 0.1846  
   0.4050      0.4133-      0.3984      0.3920            0.0350i - 0.4313      0.0350i + 0.4313  

   0.6493-     0.6459      0.6534-    0.6553-                   0.6434-                      0.6434-  
  0.4284      0.4251-      0.4303     0.4333          0.0126i + 0.4127        0.0126i - 0.4127 

V  

its norm is 1.8692  2 =V  

the norms of 5,4,3,2,1, =ivi are equal to 1 

The norm of the left eigenvector is 44.7178 2 =T  

The norm of 5,4,3,2,1, =iti   

26.5911 21 =t , 26.591122 =t , 7.3349  23 =t , 20.4448 24 =t , 17.2025 25 =t . 

The sensitivity of all the eigenvalues is  

    83.5864)( 22 ==Λ TVs   its inverse is given by      0.0120)( 1 =Λ −s  

The sensitivity of every eigenvalue is computed as follows: 

    5,4,3,2,1,)( 22 == itvs iiiλ  

yields  

                   

2025.17)2.0(

4448.20)5.0(

3349.7)1(

5911.26)1(

5911.26)1(

25255

24244

23233

22222

21211

==−=

==−=

==−=

==−−=

==+−=

tvs

tvs

tvs

tvis

tvis

λ

λ

λ

λ

λ

 

Now we can compute the stability robustness measures 

Computing { })(min
0

1 IjAM ωσ
ω

−=
∞≤≤

   we have 0.06111 =M  

Computing { }nsM λRe)( 1
2

−Λ= , { } { }1Re...Re( λλ ≤≤n ) we have 0.0024 2 =M  

Finally for { }{ }ii
ni

sM λλ Re)(min 1
1

3
−

≤≤
=     we have  
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0.02732.0)2.0(

0.02455.0)5.0(

0.0581 1)1(

0.03761)1(

0.03761)1(

1
5

1
4

1
3

1
2

1
1

=−×−=

=−×−=

=−×−=

=+−×−−=

=+−×+−=

−

−

−

−

−

λ

λ

λ

λ

λ

s

s

s

iis

iis

 

hence 0.02453 =M  

 

7.2.1.b  Robust Performance 

The following perturbation is generated randomly using MATLAB is:  

 

                          

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=Δ

0.0916    0.0432    0.0571    0.0360    0.0823    
0.0945    0.0740    0.0049    0.0059    0.0567    
0.0084    0.0751    0.0597    0.0962    0.0140    
0.0803    0.0962    0.0262    0.0999    0.0365    

0.0634    0.0701    0.0549    0.0674    0.0665   

A  

with 0.3004 =ΔA  

The new closed-loop matrix after perturbation is: 

 

        

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=Δ+−

0.0709-   0.2068    0.0571    0.0383    0.0823    
1.9495    4.1830-   2.6369    0.0414    0.0567    

0.0084    1.6221    3.0893-   1.6912    0.0140    
0.0803    0.0962    1.0069    2.0321-   1.3425    
0.0634    0.0701    0.0549    0.1302    0.0429-   

)( diagonalABKA  

its eigenvalues are:  -1.4375 + 1.5326i, -1.4375 - 1.5326i, 0.3693,-0.0529, -0.7496   

 

Computing the relative change of the eigenvalues of the closed-loop matrix due to the 

perturbation is 
i

ii
ir λ

λλ '−
=  where iλ is the eigenvalue of the closed-loop matrix and i'λ the 

eigenvalue of the perturbed closed-loop matrix. 

This leads:  0.4874 1 =r , 0.48742 =r , 2.8465    3 =r , 0.89424 =r , 0.2504 5 =r . 
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7.2.2 State Feedback using Block Poles in the Controllable Form  

The desired block poles constructed in controller form 

                   ⎥
⎦

⎤
⎢
⎣

⎡
=

0.7-   0.1- 
1        0    

1R       ⎥
⎦

⎤
⎢
⎣

⎡
=

0      1  
2-    2-

2R  

The corresponding 22× desired right denominator matrix polynomial of degree 2 is  

                               21²)( fff DsDIssD ++=  

where    

                                [ ] [ ] 12
2

2
112

−−= Rff VRRDD  

this gives 

                      [ ] ⎥
⎦

⎤
⎢
⎣

⎡
=

0.7526    0.6211-   0.7579    0.0053 
1.6316    1.9474    0.1053-   0.2632

12 ff DD   

The remaining closed-loop pole is to be assigned at 1− . 

 

The computation of 42× state feedback gain matrix 1cK that places the block poles of 

)( 111 ccc KBA − at 1fD and 2fD . 

 

                          ⎥
⎦

⎤
⎢
⎣

⎡
=

2.3902-   0.4342-   0.4580    0.0525 
0.9723-   1.2624    0.4970-   0.3155 

1cK  

 

Computing the 41× matrix L by solving the Lyapunov equation 

                              12111 )( ccccc KBPLKBAL =−−  

This yields 

                [ ]0.0104    0.0079    0.0027-   0.0013=L   

 

A 12× state feedback gain matrix 2cK to place the eigenvalue of 212 )( ccc KLBBP +− at the 

desired closed-loop pole 1− . 

                                ⎥
⎦

⎤
⎢
⎣

⎡
=

0         
162.0316-

2cK  

Using    [ ]221 cccc KLKKK +=  

This yields 
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                    ⎥
⎦

⎤
⎢
⎣

⎡
=

0          2.3902-    0.4342-    0.4580    0.0525 
162.0316-   2.6588-   0.0250-   0.0646-   0.0988 

cK  

 

The required state feedback gain matrix in the original coordinate system is given by 

                     ⎥
⎦

⎤
⎢
⎣

⎡
=

18.3953-    8.0414     6.4780    26.1520-  93.9378 
23.8164   94.8833-  118.7618   67.3316-  58.0567

K  

The norm of the feedback gain matrix is 183.11182 =K  

 

  The closed loop matrix using solvents in controller form will be as follows: 

            

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=−

0.5480-    0.8643    0.6653-    0.0917    0.8366  
4.3256-   6.9258    7.9572-   1.4083    13.5223 
4.7478-   10.7012   12.1321-  3.3250    9.1879  
1.5195-   6.0536    6.5963-   2.1638    2.3980- 

0               0           0         0.0628     0.1094- 

)( lecontrollabBKA  

 

The time response for this choice is summarized in the following table: 

 

   Inputs 

Transient 

steady state 

specifications 

 

pM  

 

  POS  

 

    sT  

 

    rT  

 

   SSV  

1y  0.0868 0.1153% 23.2s 6.55s       0.0867 

2y  0.19 25.8278% 22.2s 0.876s 0.151 

3y  0.329 11.9048% 20.6s 3.59s 0.294 

4y  0.403 0.2488% 14s 4.66s 0.402 

 

 

     

      1U  

5y  0.448 0.2237% 25s 8.46s 0.447 

1y  -0.0331 - 0.3012% 22.5s 5.7s - 0.0332 

2y  - 0.0729 26.1246% 21.5s 0.674s - 0.0578 

3y  - 0.176 20.5479% 18.5s 0.409s - 0.146 

4y  -0.212 - 0.4695% 12.2s 0.513s - 0.213 

 

 

      2U  

5y  -0.239 - 0.8299% 22.5s 5.34s - 0.241 
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Step Response
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Response to Initial Condition in Controller Form 
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Figure 9: Time response for controller form 

Figure10: Response to initial condition x0= [1;1;1;1;1] 
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Transient 

steady state 

specifications 

 

pM  

 

POS  

 

sT  

 

SSV  

1y  1. 0% 25.1s 0.00596 

2y  1.54 35.1299% 19.4s -0.00884 

3y  9.11 5.2909% 17.1s -0.0125 

4y  10.8 0% 11.4s 0.00362 

5y  5.66 0% 24.5s 0.0446 

 

7.2.2.a  Robust Stability 

 Computation of the right and the left eigenvector of the closed-loop matrix  

                

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

+
+

+
+

=

  0.4233-    0.1553-    0.9367-      0.1109i - 0.0217     0.1109i  0.0217   
  0.5233      0.6322     0.0737-   0.0457i  0.6684-     0.0457i - 0.6684-  
  0.6942      0.7266      0.2599             0.7026-                    0.7026-        
  0.2519       0.2190       0.1831    0.0824i - 0.1947-    0.0824i  0.1947-  
 0.0405 -     0.0154-     0.1269-   0.0042i - 0.0090      0.0042i  0.0090   

V  

its norm is 1.9946   2 =V  

the norms of 5,4,3,2,1, =ivi are equal to 1 

The norm of the left eigenvector is 122.7915 2 =T  

The norm of 5,4,3,2,1, =iti   

37.3812 21 =t , 37.381222 =t , 19.1699  23 =t , 104.6121 24 =t , 61.647 25 =t . 

The sensitivity of all the eigenvalues is  

                    244.9139)( 22 ==Λ TVs  

its inverse is given by      0.0041)( 1 =Λ −s  

The sensitivity of every eigenvalue is computed as follows: 

                  5,4,3,2,1,)( 22 == itvs iiiλ  

yields  
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61.6470)2.0(

104.6121)5.0(

19.1699)1(

37.3812)1(

37.3812)1(

25255

24244

23233

22222

21211

==−=

==−=

==−=

==−−=

==+−=

tvs

tvs

tvs

tvis

tvis

λ

λ

λ

λ

λ

 

Now we can compute the stability robustness measures 

                 0.03901 =M  

                -4
2 108.1661 ×=M  

We have          

               

0.01042.0)2.0(

0.00815.0)5.0(

0.00961)1(

0.0268 1)1(

0.0268 1)1(

1
5

1
4

1
3

1
2

1
1

=−×−=

=−×−=

=−×−=

=+−×−−=

=+−×+−=

−

−

−

−

−

λ

λ

λ

λ

λ

s

s

s

iis

iis

 

hence 0.00813 =M  

 

7.2.2.b  Robust Performance 

The new closed-loop matrix after perturbation is: 

 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=Δ+−

0.4564-   0.9075     0.6082-   0.1277    0.9189  
4.2311-   6.9998     7.9523-   1.4142    13.5790 
4.7394-   10.7763   12.0724-  3.4212      9.2019 

1.4392-   6.1498     6.5701-   2.2637    2.3615-
0.0634    0.0701     0.0549    0.1302     0.0429-

)( lecontrollabABKA  

its eigenvalues are: -1.6749 + 1.6971i,  -1.6749 - 1.6971i, 1.0336, -0.4961 + 0.2808i 

                                  -0.4961 - 0.2808i 

 

The relative change of the eigenvalues the closed-loop matrix due to the perturbation is given 

by: 

               0.6861 1 =r , 0.68612 =r , 6.1679    3 =r , 0.57694 =r , 0.5616 5 =r . 
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7.2.3  State Feedback using Block Poles in the Observable Form  

The desired block poles constructed in observer form 

                              ⎥
⎦

⎤
⎢
⎣

⎡
=

0.7-   1  
0.1-    0 

  1R       ⎥
⎦

⎤
⎢
⎣

⎡
=

0     2-
1     2-

2R  

This yields 

                             [ ] ⎥
⎦

⎤
⎢
⎣

⎡
=

0.2053    2.0421     0.0421-   0.4947
0.9632-   2.4947    0.4947-   1.0632

12 ff DD   

The remaining closed-loop pole is to be assigned at 1− . 

The computation of 42× state feedback gain matrix 1cK that places the block poles of 

)( 111 ccc KBA − at 1fD and 2fD . 

                         ⎥
⎦

⎤
⎢
⎣

⎡
=

2.9375-   2.2290    0.3420-   0.5420 
3.5671-   1.8098    0.8865-   1.1155 

1cK  

Computing 41× matrix L by solving the Lyapunov equation 

                        12111 )( ccccc KBPLKBAL =−−  

This yields 

                          [ ]0.0000-   0.0048-   0.0015-   0.0011=L   

A 12× state feedback gain matrix 2cK to place the eigenvalue of 212 )( ccc KLBBP +− at the 

desired closed-loop pole 1− . 

                               ⎥
⎦

⎤
⎢
⎣

⎡
=

194.9810
0     

2cK  

Using    [ ]221 cccc KLKKK +=  

This yields 

                       ⎥
⎦

⎤
⎢
⎣

⎡
=

194.9810   2.9461-   1.2918    0.6389-   0.7532 
0         3.5671-   1.8098    0.8865-   1.1155 

cK  

The required state feedback gain matrix in the original coordinate system is given by 

                    ⎥
⎦

⎤
⎢
⎣

⎡
=

37.3606-  131.0557  124.3284-   50.6889   115.7060  
5.0825      8.2826    12.0040    0.9360-     189.4934  

K  

The norm of the feedback gain matrix is 255.82132 =K  

  The closed loop matrix using solvents in observer form will be as follows: 
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⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=−

0.6728-    1.7889       1.6670-   0.6570    0.2872    
6.3516-    21.9089   24.1848-  10.5714   4.8103   
6.0151-    20.4589   22.7545-    9.2565    1.4301   
0.3243-    0.5284-    0.2148    2.0723-   10.7837- 

0                0             0         0.0628    0.1094-  

)( observableBKA  

The time response for the observer choice is summarized in the following table as follows: 

 

    Inputs 

Transient 

steady state 

specifications 

 

pM  

 

  POS  

 

    sT  

 

    rT  

 

   SSV  

1y  -0.0381 - 0.5222% 21.7s 5.61s - 0.0383 

2y  - 0.103 54.1916% 20s 1.47s - 0.0668 

3y  0.491 18.6% 13.5s 0.856s 0.414 

4y  0.764 0.1311% 11.8s 1.23s 0.763 

 

 

 

1U  

5y  0.927 0.1075% 20.5s 4.43s 0.93 

1y  0.0632 0.1585% 21.6s 5.41s 0.0631 

2y  0.163 48.6% 20.6s 1.16s 0.11 

3y  - 0.676 11.7355% 13.8s 0.942s - 0.605 

4y  -1.11 - 0.8929% 12.3s 1.35s - 1.12 

 

 

2U  

5y  -1.36 0.7299% 20.9s 4.69s - 1.37 
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 Figure11: Time response for observer form 
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Response to Initial Condition in Observer Form 
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Transient 

steady state 

specifications 

 

pM  

 

POS  

 

sT  

 

SSV  

1y  1 0% 21.1s 0.00275 

2y  4.66 366% 11.1s -0.0039 

3y  11.1 1010% 8.42s 0.00545 

4y  12.3 1130% 11.2s -0.00743 

5y  6.2 520% 20.9s -0.0524 

 

7.2.3.a  Robust Stability 

 Computation of the right and the left eigenvector of the closed-loop matrix  

Figure12: Response to initial condition x0= [1;1;1;1;1] 
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⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

+

+
+

+

=

0.2305     0.5350    0.9802-   0.1181i  0.0549-   0.1181i - 0.0549-  
0.6553-   0.5599-   0.1408-              0.7173                  0.7173         

 0.4416-   0.6278-    0.1065    0.0867i - 0.6349     0.0867i  0.6349   
 0.5664     0.0775    0.0741-  0.1957i - 0.1400-   0.1957i  0.1400-  

0.0399-   0.0125-    0.0514   0.0012i  0.0112     0.0012i - 0.0112   

V  

With 1.8964   2 =V  

The norms of 5,4,3,2,1, =ivi are equal to 1 

The norm of the left eigenvector is 63.5080 2 =T  

The norm of 5,4,3,2,1, =iti   

35.6008 21 =t , 35.6008 22 =t , 23.4548  23 =t , 49.5561 24 =t , 23.1346 25 =t . 

The sensitivity of all the eigenvalues is  

    120.4346)( 22 ==Λ TVs  its inverse is given by      0.0083)( 1 =Λ −s  

The sensitivity of every eigenvalue is computed as follows: 

         5,4,3,2,1,)( 22 == itvs iiiλ  

yields  

                 

23.1346)2.0(

49.5561)5.0(

23.4548)1(

35.6008)1(

35.6008)1(

25255

24244

23233

22222

21211

==−=

==−=

==−=

==−−=

==+−=

tvs

tvs

tvs

tvis

tvis

λ

λ

λ

λ

λ

 

Now we can compute the stability robustness measures 

                 0.02911 =M  

                0.0017 2 =M  

We have           

                   

0.00852.0)2.0(

0.0101 5.0)5.0(

0.0432 1)1(

0.0281 1)1(

0.0281 1)1(

1
5

1
4

1
3

1
2

1
1

=−×−=

=−×−=

=−×−=

=+−×−−=

=+−×+−=

−

−

−

−

−

λ

λ

λ

λ

λ

s

s

s

iis

iis

 

hence   0.00853 =M . 
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7.2.3.b  Robust Performance 

The new closed-loop matrix after perturbation is: 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=Δ+−

0.5812-   1.8321    1.6099-   0.6930      0.3695     
6.2571-   21.9829   24.1799-  10.5773   4.8670    
6.0067-   20.5340   22.6948-  9.3527     1.4441    
0.2440-   0.4322-   0.2410    1.9724-   10.7472-  

0.0634    0.0701    0.0549    0.1302      0.0429-  

)( observableABKA  

with eigenvalues: -0.2914 + 1.7174i,  -0.2914 - 1.7174i,  -2.0117 ,  -0.8401,  0.1262. 

The relative change of the eigenvalues the closed-loop matrix due to the perturbation is given 

by. 

            0.7130 1 =r , 0.71302 =r , 9.0584    3 =r , 0.6803 4 =r , 1.1262  5 =r . 

 

7.2.4  Comparison of Results  

 

7.2.4.1 Time Response: 
 Diagonal Form Controllable Form Observable Form 

y1_ MP -0.0269 0.0868 -0.0381 

y1_ POS - 0.7435% - 0.1153% - 0.5222% 

y1_Ts 21.9s 23.2s 21.7s 

y1_Tr 5.96s               6.55s 5.61s 

y1-SSV - 0.0269 0.0867 - 0.0383 

y2_ MP - 0.0736 0.19 - 0.103 

y2_ POS 56.9% 25.8278% 54.1916% 

y2_Ts 19.5s 22.2s 20s 

y2_Tr 1.77s 0.876s 1.47s 

y2-SSV - 0.0469 0.151 - 0.0668 

y3_MP 0.202 0.329 0.491 

y3_POS 677% 11.9048% 18.6% 

y3_Ts 14.7s 20.6s 13.5s 

y3_Tr 0.0937s 3.59s 0.856s 

y3_SSV 0.0261 0.294 0.414 

y4_MP 0.257 0.403 0.764 

y4_POS 230% 0.2488% 0.1311% 

y4_Ts 10.4s 14s 11.8s 

y4_Tr 0.244s 4.66s 1.23s 

y4_SSV 0.078 0.402 0.763 

y5_MP 0.151 0.448 0.927 

U1 

y5_POS 44.3% 0.2237% 0.1075% 
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y5_Ts 23s 25s 20.5s 

y5_Tr 1.3s 8.46s 4.43s 

y5_SSV 0.104 0.447 0.93 

y1_ MP 0.0685 -0.0331 0.0632 

y1_ POS 0.1460% - 0.3012% 0.1585% 

y1_Ts 21.4s 22.5s 21.6s 

y1_Tr 5.3s 5.7s 5.41s 

y1-SSV 0.0685 - 0.0332 0.0631 

y2_ MP 0.181 - 0.0729 0.163 

y2_ POS 51.3% 26.1246% 48.6% 

y2_Ts 20.4s 21.5s 20.6s 

y2_Tr 1.13s 0.674s 1.16s 

y2-SSV 0.119 - 0.0578 0.11 

y3_MP - 0.223 - 0.176 - 0.676 

y3_POS - 621% 20.5479% 11.7355% 

y3_Ts 16.9s 18.5s 13.8s 

y3_Tr 4.36s 0.409s 0.942s 

y3_SSV 0.0428 - 0.146 - 0.605 

y4_MP - 0.313 -0.212 -1.11 

y4_POS 3.1x103% - 0.4695% - 0.8929% 

y4_Ts 10.6s 12.2s 12.3s 

y4_Tr 0.0188s 0.513s 1.35s 

y4_SSV - 0.00981 - 0.213 - 1.12 

y5_MP - 0.172 -0.239 -1.36 

y5_POS 332% - 0.8299% 0.7299% 

y5_Ts 25.8s 22.5s 20.9s 

y5_Tr 0.541s 5.34s 4.69s 

U2 

y5_SSV - 0.0398 - 0.241 - 1.37 

 

7.2.4.2 Robust Stability 

 
  Diagonal Form Controllable Form Observable Form 

M1 M1 0.0611 0.0390 0.0291 

M2 M2 0.0024 8.1661x10-4 0.0017 

M13 0.0376 0.0268 0.0281 

M23 0.0376 0.0268 0.0281 

M33 0.0245 0.0096 0.0432 

M34 0.0581 0.0081 0.0101 

M35 0.0273 0.0104 0.0085 

M3 

M3 0.0245 0.0081 0.0085 

 



Chapter 7                                                                                              Simulation Results 
 

 133

 7.2.4.3  Robust Performance  

 

 BKA −  ABKA Δ+− )(  Relative Change 

 

 

Diagonal Form 

-1.0000 + 1.0000i 

-1.0000 - 1.0000i 

-0.2000 

-0.5000 

-1.0000 

-1.4376 + 1.5329i 

  -1.4376 - 1.5329i 

   0.3693          

  -0.0529          

  -0.7496    

0.4874 

0.4874 

2.8465 

0.8943 

0.2504 

 

 

Controllable Form 

-1.0000 + 1.0000i 

  -1.0000 - 1.0000i 

  -0.2000          

  -1.0000          

  -0.5000          

-1.6749 + 1.6971i 

  -1.6749 - 1.6971i 

   1.0336          

  -0.4961 + 0.2808i 

  -0.4961 - 0.2808i 

0.6861 

0.6861 

6.1679 

0.5769 

0.5616 

 

 

 

Observable Form 

-1.0000 + 1.0000i 

  -1.0000 - 1.0000i 

  -0.2000          

  -0.5000          

  -1.0000 

-0.2914 + 1.7174i 

  -0.2914 - 1.7174i 

  -2.0117          

  -0.8401          

   0.1262       

0.7130 

0.7130 

9.0584 

0.6803 

1.1262 

 

      In this example and following the tables given above the form of the block poles in 

controller form yield smaller percent overshoot. The smallest relative change and smallest 

norm of the feedback gain matrix are given by the block poles in diagonal form. The block 

form giving the likelihood margin for the dominant eigenvalue and for every eigenvalues of 

the closed-loop matrix to become unstable is the diagonal form. 

 

7.3 The Case of Compensator Design using Block Poles Placement  

 

    Case Study 3 

Consider the unity feedback shown in figure 4.4 in the chapter 4, the plant is described by the 

following 2 -input strictly proper rational matrix 

         
1

2

2
1

540
054

57.03.0
12.035

)()()(
−

−

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

++
++

⎥
⎦

⎤
⎢
⎣

⎡
−−−
+−

==
ss

ss
ss

ss
sDsNsH  
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where )(sD and )(sN are assumed to be right coprime polynomial matrices. 

The coefficient matrices are  

                   ⎥
⎦

⎤
⎢
⎣

⎡
=

50
05

0D ,   ⎥
⎦

⎤
⎢
⎣

⎡
=

40
04

1D     ,      ⎥
⎦

⎤
⎢
⎣

⎡
=

10
01

2D  

                  ⎥
⎦

⎤
⎢
⎣

⎡
−−

−
=

57.0
13

0N   ,    ⎥
⎦

⎤
⎢
⎣

⎡
−

=
13.0
2.05

1N  ,   ⎥
⎦

⎤
⎢
⎣

⎡
=

00
00

2N  

This yields 

                     ⎥
⎦

⎤
⎢
⎣

⎡
+⎥

⎦

⎤
⎢
⎣

⎡
+⎥

⎦

⎤
⎢
⎣

⎡
=

50
05

40
04

10
01

)( 2 sssD  

and  

                      ⎥
⎦

⎤
⎢
⎣

⎡
−−

−
+⎥

⎦

⎤
⎢
⎣

⎡
−

=
57.0

13
13.0
2.05

)( ssN  

 

7.3.1  Block Poles Constructed  in Diagonal Form 

We need to find the minimal degree compensator )()()( 1 sNsDsC cc
−=  that achieves the 

following closed-loop right block poles in diagonal form 

            ⎥
⎦

⎤
⎢
⎣

⎡
−

−
=⎥

⎦

⎤
⎢
⎣

⎡
−−

−
=⎥

⎦

⎤
⎢
⎣

⎡
−

−
=

5.00
02.0

,
11

11
,

50
04

321 RRR  

The desired matrix polynomial corresponding to the desired set of right solvents is  

 

                         01
2

2
3

3)( fffff DsDsDsDsD +++=  

where  ⎥
⎦

⎤
⎢
⎣

⎡
=

1     0
0     1

3fD ,  ⎥
⎦

⎤
⎢
⎣

⎡
=

6.2039    1.1872
0.9162-   5.4961

2fD ,    ⎥
⎦

⎤
⎢
⎣

⎡
=

6.3715    4.9860 
5.0391-   6.2436

1fD and       

                                ⎥
⎦

⎤
⎢
⎣

⎡
=

1.7598    0.9497
2.2905-   1.0369

0fD  

 

To obtain the row index v of )(sH  the modified recursive algorithm is applied to the 

Sylvester’ matrix to get 2=v  which means that 3 is the number of block rows of 2Ŝ  

sufficient to solve the compensator equation )()()()()( sNsNsDsDsD CCf += ,given in 

chapter 4. 
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Applying the row searching algorithm to 2Ŝ , we obtain the following linearly dependent 

rows: 9,10,13, therefore, the primary dependent rows are 9,10. 

This yields: 

  0ˆ
00
00

00101105.16332.01105.16332.04750.16416.00276.26711.0
00014288.01366.44288.01366.47910.24901.09349.46797.0

2 =
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−−
−−−−

S  

where C given by 

                  ⎥
⎦

⎤
⎢
⎣

⎡
=

1.1105    0.6332-
0.4288-   4.1366

C is nonsingular 

The computation of  the minimal degree compensator yields: 

⎥
⎦

⎤
⎢
⎣

⎡
+
−+

=
218.17418.0

067.12412.0
)(

s
s

sDc  and ⎥
⎦

⎤
⎢
⎣

⎡
++
−+

=
093.1957.06858.01465.0
5708.00992.01896.02569.0

)(
ss
ss

sNc  

Finally the minimal degree 22× compensator is given by 

                               )()()( 1 sNsDsC cc
−=  

The closed-loop system is given by  

       )()()()( 1 sNsDsNsH cfcl
−=   where )()()()()( sNsNsDsDsD ccf +=  

The closed-loop transfer function is proper since )(∞H is equal to 0. 

 

Time response of the closed-loop transfer function for this choice is summarized in the 

following table: 

Inputs Transient 

steady state 

specifications 

 

pM  

 

POS  

 

sT  

 

rT  

 

SSV  

1y  <-1.3 - 7.6923% 21.3s 5.95s - 1.3  

1U  
2y  <-0.997 - 0.1003% 14.4s 2.32s - 0.997 

1y  <-0.574 - 0.1742% 21.9s 7.91s - 0.574  

2U  
2y  <-2.2 - 4.5455% 10.2s 1.82s - 2.2 
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To assess the robustness of the closed-loop transfer function, we compute first the sensitivity 

function given by [ ] 1)()( −+= sCsHIS  

The smallest and the largest singular values of the closed-loop transfer function are computed 

as : 

•     ( ) 0.0015i + 0.4435)( =sH clmσ  

•      ( ) 2.2961i + 0 )( =sH clMσ  

The condition number of the closed-loop transfer function is given by        

                      5.1774i + 0.0178))(( =sHK cl  

The infinity norm of the closed-loop transfer function is computed as: 2.6695)( =∞sHcl  

and the infinity norm of the sensitivity function is 3.6649=∞S  

 

7.3.2  Block Poles Constructed in Controllable Form 

We need to find the minimal degree compensator )()()( 1 sNsDsC cc
−=  that achieves the 

following closed-loop right block poles in controller form 

                       ⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
=

0.7-  0.1-
1       0   

,
0       1  
2-    2-

,
9-    20-

1       0  
321 RRR  

The desired matrix polynomial corresponding to the desired set of right solvents is  

 

Figure 13: Time response for diagonal form
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                         ⎥
⎦

⎤
⎢
⎣

⎡ −
+⎥

⎦

⎤
⎢
⎣

⎡ −
+⎥

⎦

⎤
⎢
⎣

⎡ −
+⎥

⎦

⎤
⎢
⎣

⎡
=

62
20

6.199.8
22

7.98.6
12

10
01

)( 23 ssssD f  

 

To obtain the row index v of )(sH  the modified recursive algorithm is applied to the 

Sylvester’ matrix, we obtain 2=v   means that 3 block rows of 2Ŝ  are sufficient to solve the 

compensator equation )()()()()( sNsNsDsDsD CCf += . 

Applying the row searching algorithm to 2Ŝ , we obtain the following linearly dependent 

rows: 9, 10, 13, the primary dependent rows are 9, 10. 

Then the corresponding coefficient of linear combinations: 

  0ˆ
00
00

00103936.27156.73936.27156.79727.48468.09282.41456.1
00019876.13484.99876.13484.90668.33423.21810.21810.0

2 =
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−
−−−−−−

S  

where C is given by 

                            ⎥
⎦

⎤
⎢
⎣

⎡
=

2.3936      7.7156 
1.9876-   9.3484-

C  

Since C is nonsingular, the solution is given by  

 

⎥
⎦

⎤
⎢
⎣

⎡
0   0    0    0   1.3277       1.0958   1   0    1    0    3.2416      1.4424      4.1531    1.7193
0    0   0    0   0.2823-   0.3400-   0   1    0    1    0.3612-   0.5572-   0.6497-   0.3849

  

 

The computation of  the minimal degree compensator yields: 

   ⎥
⎦

⎤
⎢
⎣

⎡
+

−−
=

153.4719.1
6497.03849.0

)(
s

s
sDc   and ⎥

⎦

⎤
⎢
⎣

⎡
+

−−
=

153.4719.1
6497.03849.0

)(
s

s
sDc  

 

Finally the minimal degree 22× compensator is given by 

                             )()()( 1 sNsDsC cc
−=  

The closed-loop system is given by  

       )()()()( 1 sNsDsNsH cfcl
−=  where )()()()()( sNsNsDsDsD ccf +=  

 

To check the properness of the closed-loop feedback we compute the following matrix 

         )()( ∞∞+ HCI  must be nonsingular 

In our case 0)( =∞H , hence )(sHcl  is proper transfer matrix. 
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The following table summarizes the time response of the closed-loop transfer function for this 

choice: 

 

Inputs 

Transient 

steady state 

specifications 

 

pM  

 

POS  

 

sT  

 

rT  

 

SSV  

1y  1.04 67.4% 23.2s 1.86s 0.623  

1U  
2y  - 1.33 1.21% 5.27s 1.4s - 1.31 

1y  <-3.06 - 0.3268% 24.3s 8.96s - 3.06  

2U  
2y  - 1.81 8.91% 16.4s 1.25s - 1.66 
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To assess the robustness of the closed-loop transfer function, we compute first the sensitivity 

function given by [ ] 1)()( −+= sCsHIS  

:    The smallest and the largest singular values of the closed-loop transfer function are  given 

by  

•       0.4433i + 0))(( =sHclσ  

•      0.0264i + 2.3112))(( =sHclσ  

The condition number of the closed-loop transfer function is given by        

                      5.2139i - 0.0596 ))(( =sHK cl  

Figure 14: Time response for controller form 
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The infinity norm of the closed-loop transfer function is computed as: 3.4785)( =∞sHcl  

and the infinity norm of the sensitivity function is 4.2149=∞S  

 

7.3.3  Block Poles Constructed in Observable Form 

We need to find the minimal degree compensator )()()( 1 sNsDsC cc
−=  that achieves the 

following closed-loop right block poles in observer form 

                              ⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
=

0.7-   1
0.1-   0

,
0     2-
1     2-

,
9-    1
20-   0

321 RRR  

The desired matrix polynomial corresponding to the desired set of right solvents is  

                         01
2

2
3

3)( fffff DsDsDsDsD +++=  

where  ⎥
⎦

⎤
⎢
⎣

⎡
=

1     0
0     1

3fD ,  ⎥
⎦

⎤
⎢
⎣

⎡
=

3.4669    1.5997
1.9386    8.2331

2fD ,    ⎥
⎦

⎤
⎢
⎣

⎡
=

1.0534     6.0517 
5.4261-   21.3047

1fD and       

                                      ⎥
⎦

⎤
⎢
⎣

⎡
=

0.0815    1.1433 
2.9612-   7.5364

0fD  

 

To obtain the row index v of )(sH we apply the modified recursive algorithm to the 

Sylvester’ matrix and we get 2=v  which means that 3 is the number of block rows of 2Ŝ  

sufficient to solve the compensator equation  

Applying the row searching algorithm to 2Ŝ , we obtain the following linearly dependent 

rows: 9,10,13, therefore, the primary dependent rows are 9,10. 

This yields 

  0ˆ
0000105408.17600.05408.17600.07738.10180.02949.10524.1
0000011406.65959.01406.65959.0_2837.49913.36289.43011.2

2 =⎥
⎦

⎤
⎢
⎣

⎡
−−

−−−
S  

where C given by 

        ⎥
⎦

⎤
⎢
⎣

⎡
=

1.5408-   0.7600 
6.1406    0.5959-

C  is nonsingular. 

 

The computation of  the minimal degree compensator yields: 

   ⎥
⎦

⎤
⎢
⎣

⎡
−

+
=

7326.06338.0
2185.067.2

)(
s

s
sDc   and ⎥

⎦

⎤
⎢
⎣

⎡
−+
++

=
5865.01589.0812.02027.0
145.1638.167.1411.0

)(
ss
ss

sNc  

Finally the minimal degree 22× compensator is given by 
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                       )()()( 1 sNsDsC cc
−=  

The closed-loop system is given by  

       )()()()( 1 sNsDsNsH cfcl
−=  where )()()()()( sNsNsDsDsD ccf +=  

The closed-loop transfer function is proper since )(∞H is equal to 0 

 

Time response of the closed-loop transfer function for this choice is summarized in the 

following table: 

 

Inputs 

Transient 

steady state 

specifications 

 

pM  

 

POS  

 

sT  

 

rT  

 

SSV  

1y  <-0.853 - 0.1172% 21.1s 6.6s - 0.853  

1U  
2y  <-5.71 - 0.1751% 21.6s 5.16s - 5.71 

1y  - 1.08 441.0% 21.4s 0.806s - 0.2  

2U  
2y  >7.45 0.1342% 19.1s 3.63s 7.45 
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The smallest and the largest singular values of the closed-loop transfer function: 

•     0.4440i + 0))(( =sHclσ  

Figure 15: Time response for observer form
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•     2.3126i + 0.0270))(( =sHclσ  

The condition number of the closed-loop transfer function is given by        

                      0.0609i - 5.2091 ))(( =sHK cl  

The infinity norm of the closed-loop transfer function is computed as: 9.3912)( =∞sHcl  

and the infinity norm of the sensitivity function is 8.6814=∞S  

 

7.3.4 Comparison of the Results 

 

7.3.4.1  Time Response: 

    Diagonal Form Controllable Form Observable Form 

y1_MP <-1.3 1.04 <-0.853 

y1_POS - 7.6923% 67.4% - 0.1172% 

y1_Ts 21.3s 23.2s 21.1s 

y1_Tr 11.1s 0.875s 11s 

y1_SSV - 1.3 0.623 - 0.853 

y2_MP <-0.997 - 1.33 <-5.71 

y2_POS - 0.1003% 1.21% - 0.1751% 

y2_Ts 14.4s 5.27s 21.6s 

y2_Tr 6.64s 2.79s 12s 

U1 

y2_SSV - 0.997 - 1.31 - 5.71 

y1_MP <-0.574 <-3.06 - 1.08 

y1_POS - 0.1742% - 0.3268% 441.0% 

y1_Ts 21.9s 24.3s 21.4s 

y1_Tr 11.3s 11.7s 0.1s 

y1_SSV - 0.574 - 3.06 - 0.2 

y2_MP <-2.2 - 1.81 >7.45 

y2_POS - 4.5455% 8.91% 0.1342% 

y2_Ts 10.2s 16.4s 19.1s 

y2_Tr 4.91s 2.09s 9.76s 

U2 

y2_SSV -2.2 - 1.66 7.45 
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 7.3.4.2  Robust Transfer Function 

 Diagonal Form Controllable Form Observable Form 

the norm of sensitivity function 

S  3.4759 4.9436 7.7616 

the norm of complementary 

sensitivity function T  2.4790 5.0184 6.9796 

the norm of closed loop 

function clH  2.4790 5.0184 6.9796 

the largest singular value of 

the closed loop function 2.3089+0.0259i 0+2.3085i 0+2.2902i 

the smallest singular value of 

the closed loop function 0.4435+0.00151i 0.4432 0.0015+0.4436i 

the condition  number of the 

closed loop function 5.2065+0.0406i 0+5.2082i 5.1624+0.0170i 

 

In this example the form of the block pole in the diagonal form yields smaller percent 

overshoot as well as smaller sensitivity function norm and smaller norm of the closed-loop 

function. The smallest rise time is given in block pole using controller form. 

 

7.4  Comment and Analysis 

 

      Large case studies are implemented with block pole placement using both state feedback 

and compensator design to compare the different solvents forms (diagonal, controllable and 

observable form). The norm of the feedback gain matrix, the sensitivity of the eigenvalues, 

condition number of the closed-loop transfer function and others are computed so that the 

system meet a set of criteria: 

 

i. Better time response characteristics. 

ii. Smaller feedback gain norm. 

iii. Good robustness. 

 

. The step response of the closed-loop system is plotted and its characteristics (settling time, 

percent overshoot, rise time, steady state value) are computed.  
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Comparison the results in the case of the block poles using state feedback  

Case Studies 

The form of 

the  block 

which 

gives the 

smallest 

gain matrix 

norm 

the form of 

the block 

which gives 

the smallest 

left 

eigenvector 

norm of 

every 

eigenvalues 

the form of the 

block which 

gives the 

smallest left 

eigenvector 

norm of all 

eigenvalues 

the  form of 

the block 

which gives 

the shortest 

settling time 

The form of 

the  block 

which gives 

the smallest 

percent 

overshoot 

The form of 

the  block 

which gives 

the smallest 

peak 

       

Case study 1 controllable diagonal observable / controllable observable 

Case study 2 observable controllable observable diagonal diagonal diag/con 

Case study 3 diagonal diagonal diagonal diagonal diagonal diagonal 

Case study 4 diagonal diagonal diagonal diag/con/obs observable diagonal 

Case study 5 diagonal diagonal diagonal controllable controllable observable 

Case study 6 diagonal diagonal diagonal diagonal controllable diagonal 

Case study 7 diagonal diagonal diagonal diagonal observable controllable 

Case study 8 diagonal diagonal diagonal diagonal diagonal controllable 

Case study 9 diagonal diagonal diagonal diagonal diagonal diag/con 

Case study 10 diagonal diagonal diagonal diagonal diag/con diagonal 

Case study 11 diagonal diagonal diagonal diagonal diag/con/obs diagonal 

Case study 12 diagonal diagonal diagonal diag/obs controllable diagonal 

Case study 13 diagonal diagonal diagonal diag/obs diagonal diagonal 

Case study 14 diagonal diagonal diagonal diagonal con/obs controllable 

Case study 15 diagonal diagonal diagonal diagonal observable diag/obs 

Case study 16 observable observable observable observable controllable observable 

Case study 17 diagonal diagonal diagonal diagonal controllable diag/con 

Case study 18 diagonal diagonal diagonal observable controllable observable 

Case study 19 controllable controllable controllable con/obs observable observable 

Case study 20 diagonal diagonal diagonal diagonal controllable diagonal 

Case study 21 observable observable diagonal diagonal controllable observable 

Case study 22 controllable controllable controllable controllable observable controllable 

Case study 23 controllable controllable controllable diagonal observable controllable 

Case study 24 observable diagonal controllable diagonal diag/con diagonal 

Case study 25 diagonal diagonal diagonal diagonal controllable diag/con 

Case study 26 diagonal diagonal diagonal controllable diagonal diag/con 

Case study 27 observable diagonal diagonal / observable observable 

Case study 28 observable observable observable con/obs diag/con/obs diag/con/obs

Case study 29 controllable observable observable diag/obs controllable controllable 

Case study 30 diagonal controllable controllable diagonal observable diagonal 

Case study 31 controllable diagonal diagonal controllable diag/con/obs controllable 

 



Chapter 7                                                                                              Simulation Results 
 

 144

 

Case studies 

the block 

which has 

the smallest 

sensitivity of 

all 

eigenvalues 

the block 

which gives 

the smallest 

sensitivity of 

each 

eigenvalues 

the block 

which gives 

the smallest 

possible 

matrix 

variation 

norm for the 

closed loop 

matrix to 

have an 

unstable and 

pure 

imaginary 

eigenvalues 

the block 

which gives 

the smallest 

likelihood 

margin for 

eigenvalue 

which is 

close to the 

imaginary 

axis to be 

unstable 

the block 

which gives 

the smallest 

likelihood 

margin for 

every 

eigenvalues 

to become 

unstable 

The form of 

the block 

pole which 

gives the 

smallest 

Relative 

Change 

       

Case study 1 diagonal observable diagonal observable observable controllable 

Case study 2 observable controllable controllable observable observable diagonal 

Case study 3 diagonal diagonal diagonal diagonal diagonal diagonal 

Case study 4 diagonal diagonal diagonal diagonal diagonal diagonal 

Case study 5 diagonal diagonal controllable diagonal diagonal controllable 

Case study 6 diagonal diagonal diagonal diagonal diagonal obs/diag 

Case study 7 diagonal diagonal diagonal diagonal diagonal diagonal 

Case study 8 diagonal diagonal controllable diagonal diagonal diagonal 

Case study 9 diagonal diagonal diagonal diagonal diagonal diagonal 

Case study 10 diagonal diagonal diagonal diagonal diagonal diagonal 

Case study 11 diagonal diagonal diagonal diagonal diagonal controllable 

Case study 12 diagonal diagonal diagonal diagonal diagonal diagonal 

Case study 13 diagonal diagonal diagonal diagonal diagonal diagonal 

Case study 14 diagonal diagonal diagonal diagonal diagonal diagonal 

Case study 15 diagonal diagonal controllable diagonal diagonal controllable 

Case study 16 observable observable observable observable observable observable 

Case study 17 diagonal diagonal diagonal diagonal diagonal controllable 

Case study 18 diagonal diagonal diagonal diagonal observable diagonal 

Case study 19 controllable controllable controllable controllable controllable controllable 

Case study 20 diagonal diagonal diagonal diagonal diagonal diagonal 

Case study 21 diagonal observable observable diagonal observable observable 

Case study 22 controllable controllable controllable controllable controllable controllable 

Case study 23 controllable controllable controllable controllable controllable diagonal 

Case study 24 controllable diagonal observable controllable diagonal observable 

Case study 25 diagonal diagonal diagonal diagonal diagonal observable 

Case study 26 diagonal diagonal diagonal diagonal diagonal observable 

Case study 27 diagonal diagonal diagonal diagonal diagonal observable 

Case study 28 observable controllable observable observable observable obs/con 
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Case study 29 observable controllable observable observable controllable controllable 

Case study 30 diagonal diagonal diagonal diagonal diagonal Diagonal 

Case study 31 diagonal diagonal controllable diagonal diagonal con/diag 

 

Comparison in the case of the block poles using compensator design  
 

Case studies 

the block 

which gives 

the shortest 

settling time 

the block 

which gives 

the smallest 

percent 

overshoot 

the block 

which gives 

the smallest 

peak 

the block 

which gives 

the smallest 

norm of the 

closed loop 

function 

the block 

which gives 

the smallest 

condition 

number 

the block 

which gives 

the smallest 

norm of 

sensitivity 

function 

the block 

which gives 

the smallest 

singular 

value  larger 

Case study A diagonal obs/con diagonal diagonal diagonal Diagonal diagonal 

Case study B observable diag/con controllable controllable diagonal Controllable controllable 

Case study C diag/con observable diagonal diagonal diagonal Controllable diagonal 

Case study D controllable controllable controllable controllable observable Controllable observable 

Case study E observable diagonal diagonal diagonal Controllable Diagonal diagonal 

Case study F observable obs/con diag/con diagonal controllable Diagonal Observable 

Case study G diagonal observable obs/diag observable diagonal Observable Controllable 

Case study H diagonal obs/diag diagonal diagonal diagonal Diagonal Diagonal 

Case study I controllable controllable diagonal observable diagonal Observable Diagonal 

Case study J diagonal diagonal observable observable controllable Diagonal Controllable 

Case study K observable diagonal diagonal diagonal diagonal Observable Observable 

Case study L observable controllable diagonal diagonal controllable / Observable 

Case study M con/obs observable diag/con controllable controllable Controllable Controllable 

 

Now we are in a position to analyze and comment the results:  

 

i. The diagonal form for the block poles yields the smallest norm feedback gain matrix. 

 

ii. The diagonal form for block poles yields smallest norm left eigenvectors, hence a 

better robustness (lower eigenvalue sensitivity).  

 

iii. The diagonal form yields shorter settling time 

 

iv. On the other hand, controller forms for block poles yield smaller percentage overshoot 

 

v. The diagonal form yields smaller sensitivity of all eigenvalues (all eigenvalues are 

insensitive to uncertainty model or parameters variation). 



Chapter 7                                                                                              Simulation Results 
 

 146

 

vi. The diagonal form yields smaller sensitivity of every eigenvalues (every eigenvalues 

has low sensitivity). 

 

vii. The block pole using diagonal form yields smaller matrix variation norm for the 

closed loop matrix to have an unstable and pure imaginary eigenvalues. 

 

viii. The diagonal form for block poles yields smaller likelihood margin for eigenvalues 

which are close to the imaginary axis to be unstable. 

 

ix. The block poles in diagonal form yields smaller likelihood margin for every 

eigenvalues to become unstable. 

 

As concluding remark;  using the block poles in diagonal form to assign the desired 

eigenvalues makes the system robustly stable; since the three robust stability measures are 

maximized and  all eigenvalues has the smallest likelihood margin to become unstable this 

means that the eigenvalues stay stable under model uncertainty or parameter variations. 

The block poles assigned using diagonal form yields smaller feedback gain matrix which 

is crucial for the system and the diagonal form improves the quickness of the system 

transient response. 

 

Compensator design case  

 

 The proposed method using the design of compensators for block pole placement allows the 

computation of the proper and minimal degree compensator. 

With same set of poles we construct different block poles using different forms (diagonal, 

controllable and observable). To choose the best block pole we studied their effect on the 

degree of the compensator and time transient response and the robustness of the closed loop 

system. 

After comparison, we will have: 

 

i. The block pole in observer form yields shorter settling time.  

ii. The block pole in controller form yields smallest percent overshoot. 

iii. The block pole in diagonal form yields smaller higher peak. 



Chapter 7                                                                                              Simulation Results 
 

 147

iv. The block pole in diagonal form yields smaller norm of closed loop transfer function. 

v. The block pole in diagonal form yields smaller condition number. 

vi. The block pole in diagonal form yields larger smallest singular value. 

vii. The block pole in diagonal form yields smaller norm of the sensitivity function 
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         General Conclusion  
 

 

 

 

 

In multivariable system, state feedback design and compensator design may be achieved using 

block pole assignment. The construction of these block poles is not unique for a given set of 

desired poles. This nonuniqueness is used in our work by constructing three different 

canonical forms (diagonal, controller and observer) for the solvents to achieve stability and 

better performance of the system. The solvents determine the behavior of the multivariable 

system as shown in our thesis. 

The purpose of  our work is to choose a block pole form, constructed using the desired poles, 

that achieves small settling time, small percent overshoot i.e., better time response, and  less 

sensitive to parameter variations and  maintains the stability under perturbation which always 

exist in the system and are inevitable. 

Through the comparative study that we have made, block pole constructed using diagonal 

form gives the smallest norm of feedback gain matrix which is crucial for the system. 

The faster the transient response, the better (higher) is the performance of the closed-loop 

system. Comparative study shows that smallest settling time and smallest time for the system 

to reach 50% of its final value are given by the block poles in diagonal form. 

Because the eigenvalues of the closed-loop matrix determine directly the stability of the 

system, it is obvious that the sensitivities of these eigenvalues most directly determine a 

system’s robust stability. Our work is based on a result of numerical linear algebra that the 
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sensitivity of the eigenvalues is determined by their corresponding eigenvectors. Using block 

poles in diagonal form yields less sensitive eigenvalue. We used the condition number of 

eigenvector of the closed-loop matrix to measure the sensitivity of all eigenvalues; the 

smallest condition number is given for block pole in diagonal form.  

The norm of the left eigenvector plays a role in the sensitivity of the corresponding eigenvalue 

as it is shown in this thesis. 

Robust stability measures are applied in our case studies to evaluate the sensitivity of the 

eigenvalues used to guarantee both stability and performance of the system. Using solvents in 

diagonal form the closed-loop system is low sensitive to parameter variations. 

In the case of block pole placement using compensator design, the infinity norm is used to 

assess the robustness of the unity feedback design. The infinity norm used is related to the 

robustness improvement and sensitivity reduction. In our work the smallest infinity norm of 

the closed-loop transfer function is given by block poles in diagonal form.  

The sensitivity function and complementary sensitivity function express important properties 

of a feedback design as response of the output to disturbances and response to noise, the block 

pole in diagonal form yields smaller infinity norm of the sensitivity function and 

complementary sensitivity function. 

In light of the results obtained and illustrated in the simulation study, it is observed that the 

block poles in diagonal  form constructed from a set of  desired poles yield robust closed-loop 

system with low sensitivity to parameter variations, better closed-loop time response and 

small state feedback gain. 

Using the diagonal form improves the system’s performance and robustness of the system. 

 

As further studies we may suggest the following problems: 
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I. More investigations of other additional robust stability measures in order to 

improve the results obtained in this thesis. 

II. Profound investigations of stability robustness and performance robustness with 

respect to structured or unstructured uncertainties and additive or multiplicative 

perturbations in the case of unity feedback design. 

III. Study the sensitivity of the zeros of a closed-loop system. 
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Appendix A 
 

The Recursive Algorithm  

Given a set of n-dimensional rows mTTT ,...,, 21 , an nn×  matrix )(kP is determined 

recursively for mk ,...,2,1=  

1. initialize nIP =)0(  ( nn×  identity matrix) 

2. for mk ,...2,1=  do 

               

                 if 0)1( ≠− T
KK TkPT , then 

                       
[ ][ ]

T
KK

TT
K

T
K

TkPT
TkPTkP

kPkP
)1(

)1()1(
)1()(

−
−−

−−=  

 

      and kT  is linearly independent of the previous rows  

     else )1()( −= kPkP  

      and kT  is linearly dependent. 

 

Proof: see Yaissi [75] 

 

The coefficients of combination of the thj −  linearly dependent row on its previous 1−j  

rows can be computed by solving an equation of the type .bxA =  
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Appendix B 
 

Computing the Coefficient of the Combination using Row-Searching Algorithm [2] 

 

In the row searching algorithm the idea is to search for linearly independent rows using 

elementary operations. 

Consider the nn×  matrix )( ijaA =  

    1- Choose a pivot as a nonzero element in the first row of A, say ka1  

      2 – Construct the matrix 1K  as   

                         

                            

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

1.00
.....
0.10
0.01
0.001

1

31

21

1

ne

e
e

K  

 

with kiki aae 11 /−=   ni ,...,2,1=  then the thk −  column , except the first element of  

  )( 1
1 ijaAK =  is a zero column , where  jiijij aeaa 11

1 +=  

 

3- Let 1
2 ja  be any nonzero element in the second row of AK1  .Let 2K be of the form  

 

                            

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

1.00
.....
0.10
0.010
0.001

2

322

ne

eK  

 

with jiji aae 2
11

2 /−=  ni ,...,2,1= , then the thj −  column , except the first element of  

)( 2
12 ijaAKK =  is a zero column , where  jiijij aeaa 2

1
2

12 +=  

4- If there is no nonzero element in a row , we assign iK  as a unit matrix and then proceed to   

    the next row . 
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5- The process is carried to the last row , and finally we obtain      

                     Kn-1 Kn-2 . . .  K2 K1 A =K A = A~  

The number of nonzero rows in A~  gives the rank of A .If the thj −  row of A~  is a zero row, 

then the thj −  row of A is linearly dependent of its previous rows. The coefficients of the 

combination  

             [ ] 00...0... )1(21 =− Abbbb jjjjjj  

 

with 1=jjb , is just the thj −  row of K . 
The matrix K can be computed using the following procedure: 

1- We store the i-th column of iK in the i-th column of  

 

 

                         

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

1.
.....
0.1
0.01
0.001

321

3231

21

nnn eee

ee
e

F  

 

2- The j-th row of K is computed using the first j-rows of  F as follows: 

 

               1=jjb       

               [ ]

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

+

+

++

jk

kk

kk

jjkjkjjk

e

e
e

bbbb

.

.

.
...

)2(

)1(

)2()1(  

                    1,...,2,1
1

−−== ∑
+=

jjkeb
j

kp
pkjp  

 

 


