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Abstract

In multivariable systems, state feedback design and compensator design may be achieved using
block-pole placement. Unlike the usual pole placement, block pole placement allows a better
tuning of time response performance and robustness. Given a set of desired poles, the
construction of block poles is not unique. This nonuniqueness is used to meet the following

criteria:

i.  Small feedback gain matrix using state feedback design,
ii. A proper compensator with minimal degree using compensator design
iii. The best time response characterisation

iv.  And yielding system with good robustness.

The methods for designing state feedback controllers and compensators are given and
illustrated by a large number of case studies. The step response of these systems are plotted, the
time response characteristics (POS, Tr, Ts, SSV), gain matrix, proper with minimal degree of a
compensator, the sensitivity function and the condition number of each system are computed.
Three measures are provided to compute the robust stability of all eigenvalues. The above
results are then compared to select the best form meeting the required criteria mentioned

previously.
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Résumé:

Dans les systémes multivariables, le concept de retour d’état et le concept de compensateur
peuvent étre réalisé en utilisant le placement de block-pdle. Contrairement au placement de
pole, le placement de block-pdle permet une meilleure performance de temps de réponse et une
meilleure robustesse du systéme. Considérant un ensemble de pdles désirés, la construction de

block-poles n’est pas unique. Cette variété est utilisée pour satisfaire les critéres suivants:

i.  Une norme minimale de la matrice de gain de retour, en utilisant le concept de retour
d’état

ii. Un compensateur propre avec un degré minimal, en utilisant le concept de
compensateur.

iii.  Les meilleures caractéristiques de temps de réponse

_El

et rend le systéme plus robuste.

Les méthodes pour concevoir les commandes en retour d’état et compensateurs sont donnés et
illustrés par un grand nombre d’études de cas. Les réponses en échelon unitaire a ces systémes
sont tracées, les caractéristiques de temps de réponse (POS, Tr, Ts, SSV), la matrice de gain,
compensateur propre avec degré minimal, la fonction de sensibilité et le conditionnement de
chaque systeme sont calculés. Trois mesures sont fournies pour calculer la robustesse en
stabilit¢ de toutes les valeurs propres. Les résultats ci-dessus sont alors comparés pour
sélectionner la meilleure forme qui satisfait les critéres mentionnés précédemment.

Des recherches sont développées pour justifier théoriquement les conclusions tirées de 1’étude

comparative.
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Introduction

State feedback is one of the most popular and well known technique for altering the
transient response of systems. This technique 1s usually used to assign the eigenvalues of the
closed-loop system to desired locations under the assumption of complete controllability.

In the case of transfer function the use of the compensator is in order to satisfy specified
requirements for steady state error, transient response or closed-loop pole locations.

The design of compensators for block poles placement is based on solving a matrix
Diophantine equation. The proposed method in our work allows the computation of proper
and minimal degree compensators; the proposed algorithms are based on the search for
linearly dependent rows in the Sylvester matrix.

A large- scale MIMO system, described by a state space equation is often decomposed
into small subsystems, for which analysis and design can be easily performed, so the dynamic
properties of the MIMO system depend on the block-poles of its characteristic matrix
polynomial. These block poles are no more than the solvents of the closed-loop denominator
matrix polynomial of the considered MIMO system.

The solvents play an important role in the spectral decomposition of A-matrices. The
relationship between the solvents and latent roots of matrix polynomial will be presented in
chapter three.

In multivariable systems a transfer function matrix is given either by

Hg(s) = Ng(s)Dg'(5)

or

HL(5)=DL ' (SINL(9)

where

viii



Dr(s)=1,s" +As" +...+ A,

NR(S) == Clsn_l +C23n_2 +...+Cn
and

D (5)=5"1,, +s" A +...+ A,

N, (s)=s"'C, +s"2C, +..+C,
Hgr(s)and H (s)are the right and left matrix fraction description, respectively.

The nonsingular denominator matrix of the right (left) matrix fraction description is called the
characteristic matrix polynomial and characterizes the properties of the multivariable control

system.

I ,
The closed-loop right characteristic A-matrix is given by Dg(S) = Z R;s' such that the
i=1

systems is decomposed into | subsystems, the closed-loop poles are the roots of

det[DR (S)] =0, from the pole assignment point of view, Dg () or its matrix coefficients
Rj,1 =1,2,...,] are nonunique for a required set of closed-loop poles and associated

eigenvectors. This leads to the conclusion that different feedback gains may result from the
same set of closed-loop poles but different sets of associated eigenvectors.

This nonuniqueness of the gain matrix offers freedom that permit not only to place the
closed-loop system eigenvalues but also to satisfy the closed-loop system robustness to
parameter variations which is mainly handled by minimizing the closed-loop system

condition number [31].

The robustness of the closed-loop system is one of the most important concerns of control
system designers. Variations in system parameters due to component aging might result in
system performance deterioration and even in system internal stability concerns. Eigenvalue
locations can also be affected by external disturbances and, hence, those disturbances should
be considered when designing feedback systems.

In single-input single output, the transfer function size is measured by its magnitude, for
multi-input multi-output case we deal with transfer function matrices, i.e., matrices whose
elements are transfer functions. There are a variety of methods for measuring the size of such
matrices; one measure that has gained acceptance is the singular value of a matrix. In our
work the singular values are developed in the study of the robustness of the closed-loop

systems.
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The sensitivity of the eigenvalues and the robustness of the closed-loop system both in

state space and transfer function are presented in chapter five.
Problem Statement:
The choice of the closed-loop block poles in the case of Compensator Design

The design of unity feedback compensators leads to the so-called Diophantine equation [6].
The use of block poles constructed from a desired set of closed-loop poles offers the
advantage of assigning a characteristic matrix polynomial rather than a scalar one. The
desired characteristic matrix polynomial is first constructed from a set of block poles selected
among a class of similar matrices, and then the compensator is synthesized by solving the
Diophantine equation. The forms of the block poles used in our work are the diagonal, the
controller and the observer forms.

Given a set of desired closed-loop poles {/lld Ad - - - And }, a set of | block poles

are constructed each in the form of:

e An mxm diagonal form matrix

e An mxm controller canonical form matrix
e An mxm observer canonical form matrix

Forcing these block poles to be matrix roots of the matrix polynomial D, (S) will determine
the desired closed-loop matrix polynomial described by
D¢ (s)= Is' + Dflsl_1 +...+ Dy

The modified recursive algorithm [31] is used to compute the row index of the given proper

rational transfer matrix H (S). The recursive [86] or row searching [6] algorithm is used to

solve the compensator equation.

Robustness is assessed, in each case, using the infinity norm, the singular value of the closed-
loop transfer matrix and the condition number of the closed-loop transfer matrix.

Time response is assessed by plotting the step response and comparing the time response
characteristics.

A comparison study is conducted to determine, in light of the above criteria, the best choice

of the form of the block poles.



The choice of the closed-loop block poles in the case of State feedback design

The state equation describing linear time-invariant multivariable systems may be
transformed via a similarity transformation to block controller form [69]. If the number of
inputs m divides exactly the number of states n, a state feedback controller may then be
designed by assigning block poles to the resulting characteristic matrix polynomial [86]. In
the case where m does not divide n, a two stage procedure may be used: a block pole
placement followed by usual pole placement [48].

The characteristic matrix polynomial of the closed-loop system is forced to equal a
desired matrix polynomial which may be constructed from a set of desired mx mblock poles
.These block poles are to be selected from the class of similar matrices having as eigenvalues
a set of desired closed-loop poles. Three forms are selected (diagonal, controller and observer
form) and compared as to their effects on robustness, time response and feedback gain
magnitude.

Stability robustness is assessed, in each case, using the robustness measures
My, M, and M3 proposed by Tsui [77]. Performance robustness is measured by subjecting the
closed-loop system to small random perturbations, then computing the relative change on
each closed-loop eigenvalue.

Time response is assessed by plotting the step response and comparing the time response
characteristics.
A comparison study is conducted to determine, in light of the above criteria and the state

feedback gain magnitude, the best choice of the form of the block poles.

The organization of the thesis

The thesis is divided into seven chapters;

Chapter one constitutes a brief review of state space representation and different block

canonical forms used in multi-input multi-output systems.

Chapter two represents a general review on matrix polynomials theory with some material on

solvents since they constitute the basic tools for the present work.

X1



The block pole placement using state feedback is presented in chapter three whereas

compensator design using block pole placement is developed in chapter four.

To maintain stability and performance of the closed-loop system, robust stability, robust

performance and the sensitivity of the eigenvalues are presented in chapter five.

Investigations are attempted to justify theoretically the conclusions drawn from the

comparison developed in chapter six.

Extensive testing on a large set of case studies is conducted in chapter seven for illustrative

purposes to choose the best block pole form among different forms proposed.

Finally, we provide the general conclusion of this thesis and suggest topics for further

research.
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Chapter 1 State Space Variable and Canonical Forms

Chapter 1

State Space Variable and Canonical

Forms

1.1 Introduction:

The analysis and synthesis of complex physical or engineering systems always start by
building up models which realistically describe their behavior. The reason is that once a
physical phenomenon has been adequately modeled so as to be a faithful representation of
reality, all further analysis can be done on the model and experimentation on the process is no
longer required. Because of different analytical methods used, we may often set up different
mathematical equations to describe the same system.

The transfer function that describes only the terminal property of a system may be called
the external or input-output description of the system.

The set of differential equations that describe the internal as well as terminal behavior may be
called internal or state-variable description of the system [49].
In this chapter an overview of state space representation and different block canonical

forms, which are very useful in the design of state feedback, is given.

1.2 The State-Variable Description:
The state space description of the system provides a complete picture of the system

structure showing how all of the internal variablesx;(t) (i=1,2,..,n)interact with one
another, how the inputs uy(t) (k =12,...,m)affect the system statesx;(t), and how the
outputs y;(t) (j=12,..,p)are obtained from various combinations of the state-variables

X; (t) and the inputsu (t) .
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A linear state model is formed by a set of first order linear differential equations with

constant coefficient (1.1.a) and a set of linear equations (1.1.b).

{X(t) = AX(t) + Bu(t) (L.1.a)
y(t) = Cx(t) + Du(t) (1.1b)
where
x(t) =[x @) , ..., x,(t)] isthe system state vector.
X; (t),1 =1,2,...,nare the system state variables.
ut)=[ug®) , ..., un@] isthe system input.
y(t):[yl(t) s e yp(t)]T is the system output.

(“T * stands for transpose).

and the system matrices (A, B,C, D) are real, constant and with dimensions nxn,nxm, pxn
and pxm , respectively.

In the above model, equation (1.1.a) is called the dynamic equation which describes the
dynamic part of the system and how the initial system state x(0)and system input u(t) will
determine the system state x(t) . Hence matrix A is called the dynamic matrix of the system.
Equation (1.1.b) describes how the system state x(t) and system input u(t) will instantly
determine system output y(t) . This is the output part of the system and is static (memoryless)

as compared with the dynamic part of the system.
From the definition of (1.1), parameters m and p represent the number of system inputs

and outputs, respectively. If p>1 and if m>1 , then we call the corresponding system

multi-input multi-output system.[77]

Definition 1.1: [6]

The state of a system at time tp is the amount of information at t, that, together with

Upt, o) determines uniquely the behaviour of the system for all t > t;.

System analysis generally consists of two parts: quantitative and qualitative. In the
guantitative study, it is dealt with the search for the exact response of the system to certain

input and initial conditions. In qualitative study, the general properties of a system are seeked.
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The following section introduces two main qualitative properties of linear dynamical

equations: controllability and observability [6].

1.3 Controllability and observability of Linear Systems

Controllability and observability have an important role in both theoretical and practical
aspects of modern control, before the control system designer can apply a particular design
method to a system, it is necessary to establish to what extent the available inputs influence
the system behavior, and to what extent the available outputs indicate the system behavior.
The extent to which the input influences the system is defined as the controllability of the
system and the extent to which the output monitors the system behavior is defined as the

observability of the system [49].
1.3.1 Controllability of Linear Time Invariant System

1.3.1.1 Controllability Matrix
Definition 1.2: [37]

For the system given by (1.1), if there exists an input upo  which transfers the initial state

x(0) = x, to the zero state x(t;) =0 in a finite timet;, the state X is said to be controllable. If

all initial states are controllable the system is said to be completely controllable.
The solution of (1.1) is:

t
x(t) = eAtxy + j eAtIBu(r)ds (1.2)
0

If the system is controllable, i.e., there exists an input to make x(t,) = x, = 0 at a finite time

t =t,, then after premultiplying by e At yields:
Lk
Xg = j e A"Bu(r)dr (1.3)
0

Therefore any controllable state satisfies (1.3), and for a completely controllable system,

every state x, € R"satisfies t, (>0) andupg ;-

It is found that complete controllability of a system depends on matrix A and Band is

independent of the output matrixC .
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Theorem 1.1 : [6]
The n dimensional linear time invariant state equation in (1.1) is controllable if and only if

any of the following equivalent conditions is satisfied:
i. All rows of e'Bare linearly independent on [0,)over the field of complex

numbers

f T
i, w(0t)= Ie‘AtBBTe‘A tdt s nonsingular for any t; > 0.
0

iii. The nxnm controllability matrix ® =|B AB A’B ..., A”‘lB] has

rankn .
Proof: see Chen [6].

1.3.2 Observability of Linear Time Invariant System
Dual to controllability, observability studies the possibility of estimating the state from the
output. If a dynamical equation is observable all the modes of the equation are observed from

the output.

Definition 1.3: [37]
When using the input of the system (1.1) measured from time zero to timet,, if the initial
state x(0) = Xq is uniquely determined, xo is said to be observable, when the input is assumed

to be completely known. When all states are observable, the system is said to be completely
observable.
The output of the system (1.1) is given by:

t
y(t) = CeMxy + j Ce ") Bu(r)dr + Du(t) (1.4)
0

1.3.2.1 Observability Matrix:
Theorem 1.2: [6]

The n dimensional linear time invariant dynamical equation in (1.1) is observable if and
only if any of the following equivalent conditions are satisfied:
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i.  All columns of Ce”tare linearly independent on [0,o)over the field of complex

numbers.

b
i.  w(0,t)= jeATtCTCeAtdt is nonsingular for any t; >0

0
F e
CA
CA2?
iii.  The npxn observability matrix ®o=| . has rank n.
_CAnil_

Proof: see Chen [6].
1.4 Diagonalization in Linear Time-Invariant system

The Diagonalization is more general method for converting the state equation by means of
a linear similarity transformation. Since the state variables are not unique, the intention is to
transform the state vector x to a new vector X by means of a constant, square, nonsingular
transformation matrix T so that
X =TX
Since T is a constant matrix, the differentiation of this equation yields
x=TX

Substituting these values into the state equation X = AX + Bu produces
TX = ATX + Bu
Premultiplying by T gives
X =T ATX +T 'Bu
The corresponding output equation is
y=CTX + Du

The matrix T is called the modal matrix when it is selected so that T *AT is diagonal, i..,
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TIAT=A= ' (1.5)

1.5 Block Companion Form for MIMO System [68]
1.5.1 Block Controllable Form

Consider the n-dimensional linear time-invariant, multivariable dynamical equation

{)‘((t) = Ax(t) + Bu(t) (1.6)
y(t) = Cx(t) + Du(t)

where A, B,C, D are constant matrices of dimensions nxn,nxm, pxn and pxm real

constant matrices, respectively.

Definition 1.4: [68]
The system is block controllable of index | if the matrix
w, =[B AB ... A"B] has full rank.

The system (1.6) can be transformed into block controller form if the following conditions are

satisfied

n .
i.  The number — =1 must be an integer.
m

i.  The system is controllable of index 1.

Let w, = [B AB . .. A'B|:the system is controllable if rank (w;) =n.
Then we make a change of coordinates
Xe =TeX (1.7)
SR
T4A
where T, = : (1.8)
|
TaA j
[ TaA

and
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1
T =[0n Oy .. 1] [B AB . .. A"18T (1.9)
In the new coordinates system, we have
{Xct) = AcXc (t) + Bou(t) (1.10)
y(t) =Ccxc (1)
where A, =T AT;' ,B. =T.B and C. =CT.*
or
— - _Om_
Om I . Op 0
Om Om Om "
A = , Be =
Om Om Im
A —Aa — A I.
and
Cc=[c Cu ... Gl

Opand I are mxm null and identity matrices, respectively. A and C, (i=12,...1) are

block elements.

1.5.2 Block Observable Form
Consider the n-dimensional linear time-invariant, multivariable dynamical equation

described in (1.6)

Definition 1.5: [68]
The system is block observable of index q if the matrix

Wo = has full rank.

AL
The system (1.6) can be transformed into block observable form if the following conditions

are satisfied
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iii.  The number n_ g must be an integer.
p

iv.  The system is observable of index q

C
CA
Let w, = ; the system is observable if rank (w,) =n.

cadl

Then we make a change of coordinates

X=ToX, < Xo =T, X (1.11)
where
Ty =[To ATy AZTy ... ATST] (1.12)
and
T ¢ Y0
CA 0,
Tol = . )
- .
_CA | _| b |

In the new coordinates system, we have

{Xo (t) = Ay, (t) + Bou(t)
y(t) = CoX, (1)

where
A, =T, AT,
B, =T,'B
and
Co =CT,
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or
Op Op Op —Aq B, |
Iy Op 0p —Aq B,
Al N
Op Op .Op -A, o
_Op Op Ip —Al_ L °q |
and
Co=[0, 0, ... 1,].

0, and I are mxm null and identity matrices, respectively. A and B; (i

block elements.

1.5.3 Block Diagonal Canonical Form

=12,..,Qq) are

Once we have the block controllable canonical forms, we can transform it into block

diagonal form using the following similarity transformation
Xc =VRXR
where V_ is a Vandermonde matrix which will be described in the next chapter.

Let {R;,R,.,..., R, } a complete set of right solvents, and

O I | ]
R R; Ry
2 p2 2
Vg = R Ry ... R (mx1)x(mxI)
R Ry LR

The transformation changes the coordinates systems as follows:
X, =VrXg < Xg =Vr'X,

Differentiating both sides of the above equation produces

.\l
Xg =VR" X

and replacing (1.14) in (1.15) yields

Xg =VR (AgXc + Beu)

Xg = (VR 'AVR)Xg + (VR 'Bo)u

(1.13)

(1.14)

(1.15)

(1.16)
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and
Yy =C.X; =(CVR)Xr (1.17)
Hence, the new coordinates system matrices are:
Az =VR'AVR
Bg = Vg B, (1.18)
Cr =C.Vg

The system may be written in block form as:

R, 0, B,
R, B,
X= X+ u
_Om RI _ L BI i
(1.19)
y= [Cl C, ... ¢G ]X

As it can be seen, this is a block decoupled system. Thus it can be decomposed into |

independent subsystems.

10
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Chapter 2

Elements of Matrix Polynomial

Theory

2.1 Introduction

In linear time-invariant single-input single-output system, the transfer function is a ratio of
two scalar polynomials. The system modeling of physical, linear, time-invariant multi-input
multi-output control system, results in high degree coupled differential equations, or an n-th

degree m -th order differential equation in the form:
XM+ AXM D)+ + A XDV 1)+ A X)) =U(1) (2.1.2)

Where A e R™™, X" e R™ represents the i-th derivate of the vector X (t), and

U (t) € R™ being the input vector.

The output y(t) e R*" is generally given by a differential equation in the form,
yO) =C, XDty +C, X "Dty +..+C X D(t)+C X (1) (2.1.b)

Where C, e RP".

The Laplace transformation of (2.1.a) and (2.1.b) with zero initial conditions results in
s"X(s)+ As"X(S)+...+ A X(s)=U(s) (2.2)

and

Y(s)=C,s"'X(s)+C,s"*X(S) +...+C X(s) (2.3)

11
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which yields,
Y($)=[Cis" T +Cos" 2 44 Crlllms” + As" T+ A TTIUGs) (2.4)
where |, stands for the mxm identity matrix.

Equation (2.4) can be written as,
Y(s) = Ng(s)Dg' (U (s) 2.5)

which yields the pxm transfer function matrix,

H(s) = Ng(s)Dg'(5) (2.6)

Where Dr(s)and Ng(s)are mxm and pxm matrix polynomials also called A-matrices, the

complex variable A is often used in stead of s, defined by:

Dr(s)=l,s" +As" +..+ A, (2.7)
Np(s)=C;s" 1 +Cys"? +..+C, (2.8)

The equation (2.6) is the right coprime matrix fraction description (RMFD), or the polynomial
matrix description [34] of MIMO system shown in (2.1).

The matrix polynomial Dg(S)in (2.6) is a right denominator matrix [34, 42]
An alternative factorization of H(S) is the left matrix fraction description (LMFD)

defined by,
H(s)=DL'(S)NL(s) (2.9)

where D (S)is a px pleft denominator matrix polynomial and N (S)is pxm left

numerator matrix polynomial.

The MFD’s can be regarded as extensions of the classical single-input single-output

(SISO) transfer functions to the multivariable case with coprime numerator and denominator

12
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polynomials. Several methods are available for obtaining MFD’s, to mention Wolivich [83],
Patel [53].

In this section, we attempt to present some of important results obtained in the theory of
matrix polynomials. A more emphasis will be given to the latent structure of these matrix

polynomials, which consists mainly of the latent roots and latent vectors as well as solvents.

The algebraic theory of matrix polynomials has been investigated by Dennis et al. [14]
Gohberg et al. [24,25, 26]. Spectral factors of a lambda matrix and right (left) solvents, for a
right (left) characteristic matrix polynomial have been defined. The different transformations

between right (left) solvents and spectral factors are mainly proposed by Shieh and Tsay [67]

Definition 2.1: The following mx m matrix:

a(h) an) . . . ()
P RS R M 0.10)
an (D) 8D . am(d)

is called a A-matrix of order m , where &;;(4) are scalar polynomials over the field of

complex numbers.

Definition 2.2: The matrix polynomial A(A) is called:
i.  Monic if A is the identity matrix.
ii.  Comonic if A,is the identity matrix.
iii.  Regular if det(A(1))#0.
iv.  Nonsingular if det(A(A4)) is not identically zero.

v.  Unimodular if det(A(A))is nonzero constant.

Other definitions for regularity and nonsingularity may be encountered in matrix polynomials
literature. For example [43] defines a regular A-matrix as one whose determinant is not
identically zero and nonsingular A-matrix as one whose determinant is a nonzero constant,

thus making statement (iv) and (v) of definition 2.2 equivalent. Note that, if A, is

nonsingular, one can always multiply by A,' to get a monic matrix polynomial.

13
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2.2 Latent Structure of Matrix Polynomials
Definition 2.1: [66]

The complex number A, is called a latent root of A(A) if it is a solution of the scalar
polynomial equation det(A(ﬂ)) =0.

The nontrivial vector Vv, solution of A(4,)v=0 is called a primary right latent vector
associated with A,. Similarly the nontrivial vector p, solution of p'A(4,)=0 is called a

primary left latent vector associated with A,,.

From the definition we can see that the latent problem of a matrix polynomial is a
generalization of the concept of eigenproblem for square matrices. Indeed, we can consider
the classical eigenvalues/vector problem as finding the latent root/vector of a linear matrix
polynomial Al — A.

We can also define the spectrum of a matrix polynomial A(A) as being the set of all its
latent roots (notationo(A)). It is essentially the same definition as the one of the spectrum of

a square matrix.

2.3 Structure and Existence of Solvents of Matrix Polynomials

In this section we are going to see the existence of solvents and how they are important in the

study of matrix polynomials.

Let X be mxm complex matrix, the two matrix polynomials, defined by
AL(X)=AX"+AX"" + + A X+ A (2.11)
and
A(X)=X"A + XA+ 4 XA+ A (2.12)

are referred to as the right and the left matrix polynomials associated with the A-matrix

A(A) respectively.

14
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Definition 2.3: A right solvent R of A(A) is defined by
A,(R)=AR"+AR"™ +..+ A R+A =0, (2.13)
and the left solvent L of A(A)is defined by
ALy=L'A +L"'A +..+LA_ +A =0, (2.14)
where 0, 1s an mxm null matrix, and R,L are mxm complex matrices.

The relationship between latent roots, latent vectors, and the solvents can be stated as

follows [67]

Theorem 2.1 : If A(A) has n linearly independent right latent vectors p, p,,..., p, (left latent

vectors @,,0,,...,q,) corresponding to latent roots A,,A4,,...,4,,then PAP™"  (Q'AQ) is a

right (left) solvent, where P=[p; Py ... pn] Q=[4; o ... dn]') and

A =diag(4,,4,,....4,).

Proof: see [40]

From the above, we can determine the relationship between a right solvent and the

corresponding left solvent.

Theorem 2.2 :If A(4) has n latent roots A,,4,,...,.4,, and the corresponding right latent
vectors P,, P,,..., P, has as well as the left latent vectors Q,,d,,...,q,are both linearly

independent, then the associated right solvent R and left solvent L are related by
R=wWLW "
where W = PQ, P=(p,,...p,) and Q=(,,.0,)"

“T “ stands for transpose

proof: the proof follows from theorem 2.1

15
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Theorem 2.3 :[28] given A(1)= AjA' + AL +..+ A then,

e The remainder of the division of A(A)on the right by binomial Al —R is
A; (R) where,

A-(R)=AR' +AR™" +..+A_R+A (2.15)

e The remainder of the division of A(A)on the left by the binomial Al —Lis

A, (L) where,
A(L)=LA +L"A +..+LA , +A (2.16)

The theorem above can be used to prove the following corollary.

Corollary 2.1: A matrix R (resp. L) is a right (resp. left) solvent of A(A) if and only if
Al =R (resp. Al —L)divides exactly A(A) on the right (resp.left).

Proof: see Hariche [28]

Theorem 2.4: The generalized right (left) eigenvectors of a right (left) solvent are generalized
latent vectors of A(A1).

Proof : see Hariche [28]
2.4 Block Companion Form

In analogy with scalar polynomials a useful tool for the analysis of matrix polynomials is

the block companion form matrix.

Given a A —matrix
A =12+ AL+ + A (2.17)

where A e C™" and A € C, the associated lower block companion form is,

16
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Om Im
Om Om
AL = . .
Om Om

_Om 0m
Im Om
AR — Om Im
0y Op
_Om Om

Note that A is the block transpose of AR .

(2.18)

(2.19)

It will be useful to know the form of the eigenvectors of the lower and right block companion

matrices. The results are a direct generalization of the scalar case [40].

If 4, is a latent root of A(4)and p; and g, are the corresponding right and left latent vectors

respectively, then A, is an eigenvalues of A and of Agdefined in (2.18) and (2.19),

We have the following result,

Pi
Z’i pi
J ' is the right eigenvector of A (2.20.2)
,1'.‘.1 P
‘q_|—1 -
. ' is the left eigenvector of A (2.20.b)
q;"
L 9 ]

17
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P
o ' is the right eigenvector of Ag (2.20.c)
O
1
L Pi
“ g ]
/,i’iqi
. ' is the left eigenvector of A, (2.20.d)
,‘L!‘.lq.
where
A(i)p' 1-1 (1) 71-2 1-1
— = T+ pP A+ + 2.21
2o =eA e P (221)
and
—i(/l)ji =q A" +q" A7 +.+q (2.22)

2.5 Block Vandermonde Matrix

The block Vandermonde matrix is of fundamental importance in the theory of matrix

polynomials.

Given a set of mxm matrices {R,R,....,R, }which are a complete set of right

solvents of a matrix polynomial A(4), the following km x km matrix

Rl R2 Rk
V(R,R,,...R,) = (2.23)
Rk—l RI.(_I Rk—l
1 2 k

18
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is called the right block Vandermonde matrix of order k, and the block transpose of left

block Vandermonde matrix of order k is a kmx km matrix defined by

I, L ... L
| L . . . L

Vi(L,L,.,L)=| ™ 7 2 (2.24)
L ... L

where {L1 Ly e Ly }represents a set of mxm left solvents of a matrix polynomial A(A).

The companion matrices A and Ag defined in (2.18) and (2.19), can respectively block

diagonalized via the right and left block Vandermonde matrices and since the

Vandermonde matrices are nonsingular [14], we can write
[V (R, Rysees ROI™ ARIV (R.RyRT = diag Ry, Ry s Ry ) (2.25)
and

V(L Ly LOIA IV (L, Ly L) =diag(L,, L., L) (2.26)

2.6 Complete Set of Solvents

Several methods have been developed for solving complete set of solvents and spectral
factors, without prior knowledge of the latent roots and latent vectors of a matrix polynomial,
we mention for instance, Shieh et al. [66] have derived a generalized Newton’s method.
Dahimene in [11] proposed a generalization of the Quotient-Difference algorithm for the
computation of spectral factors of a matrix polynomial. Tsai et al.[91] have obtained several
algorithms for solving the complete set of solvents and spectral factors of a matrix
polynomial. In this section we shall see that a complete set of solvents can be constructed

using the latent roots and the latent vectors of A(1) .

Definition 2.4 [66]: Given A(1), the set of mxm matrices {R1 R, R, }is called a complete

set of solvents if the following conditions are met:

i. oc(R)No(R;)=0fori=]

19



Chapter 2 Elements of Matrix Polynomial Theory

|
i. (JoR)=0(A())

i=1
ii.  detV(R,R,,...,R)=0
where o(R;) is the spectrum of R, and O'(A(/i))is the spectrum of A(A)

Note that in the definition 2.4 the latent roots of A(A) are not required to be distinct, and

the concept of complete set has been defined only for the case of distinct latent roots.

The conditions for the existence and uniqueness of the complete set of solvents have been

investigated by Lancaster [42], Dennis et al. [14] and Gohberg et al. [24]
The more general condition can be stated as follows [67]

Theorem 2.5: If the elementary divisors of A(A1) are linear, then A(A) has a complete set of

right and left solvents.
2.7 Complete Spectral Factorization

Definition 2.5: In the spectral factorization A(4)= A (4)A,(1)in which A (1) and
A, (A) are called spectral divisors of A(4) .

Definition 2.6: If a monic A -matrix can be decomposed into the product of first-degree linear

A -matrices,
A = (A Q) Q). —Q)) (2.27)

then the mxm matrices Q,,Q,,...,Q,, are called the spectral factors of A(4)and the equation

(2.27) is called a complete factorization of A(1).

Note that Q,is a right solvent of A(4), whereas Q,is a left solvent of A(1) ; other spectral

factors are not, in general, right or left solvents of A(1) .

The relationship between solvents and spectral factors are explored by Shieh and Tsay in

[67], and various transformations have been developed.
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Chapter 3

Block-Pole Placement Using State
Feedback

One of the most popular and well known techniques used to assign the eigenvalues of the
closed-loop system to desired locations is state feedback. In the case of multivariable systems,
the feedback gain matrix permitting the assignment of the desired set of poles is not unique.
Pole assignment techniques to modify the dynamic response of linear systems are among the
most studied problems in modern control theory.

The fundamental result on pole placement by state feedback in linear time-invariant
controllable systems was presented in the 1960s by Wonham [84] who states that the closed-
loop eigenvalues of any controllable system may be arbitrarily assigned by state feedback
control. Davison in 1970 generalized Wonham’s result and showed that if the number of
output variables | is less than the order of the systemn, then it is always possible, by a
constant feedback gain matrix, to assign | poles of the closed-loop system matrix [64]. Song
and Ishida developed a method to assign the poles of the system, only one output and only
one input in system was used to create the feedback controller [72]. Many different aspects of
pole placement via feedback have been studied [1, 50].

One of the most important characteristics of desired performance is stability which can be
achieved by locating the system poles (eigenvalues) in the left half of the s-plane [6, 34].

The pole placement discussed above uses the controllable canonical form [6, 34, 13].
However, a large scale multivariable control system described by state equations can be
decomposed into small subsystems with lower order state equations, Shieh et al. in [69]
showed that this decomposition can be achieved via the assignment of the block poles of the

closed-loop system state feedback

3.1 Pole Placement for MIMO Systems Using State Feedback
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Consider the n-dimensional linear time —invariant, multivariable dynamical equation

{)’((t) = AXx(t) + Bu(t) (3.1)

y(t) = Cx(t) + Du(t)

where A,B,C,Dare, respectively, nxn,nx p,gqxn,gx pconstant matrices. In state
feedback, the input u(t) in (3.1) is replaced by

u(t) = r(t) + Kx(t) (3.2)
where r(t)stands for a reference input vector and Kis a pxn real constant matrix, called
the feedback gain matrix, and equation (3.1)becomes

%(t) = (A— BK)x(t) + Br(t) (33)
y(t) = (C — EK)x(t) + Dr(t)

In the following, we shall show that if the dynamical (3.1) is controllable, then the

eigenvalues of (A—BK)can be arbitrarily assigned by a proper choice of K. This will be

established by using three different methods.

Method I: [6]

In this method we change the multivariable problem into a single-variable problem and then
apply the SISO method.

A matrix A is called cyclic if its characteristic polynomial is equal to its minimal polynomial,
i.e., if and only if the Jordan canonical form of A has one Jordan block associated with each
distinct eigenvalue. The term of cyclicity arises from the property that if A is cyclic, then

there exists a vector b such that (A,b) is controllable.
Theorem 3.1: If (A, B) is controllable, then for almost any pxn real constant matrix K, all

the eigenvalues of (A— BK)are distinct and consequently (A— BK) is cyclic.

Proof: see [6]

Theorem 3.2: If the dynamical equation in (3.1) is controllable, by a linear state feedback of

the form (3.2), where Kisa pxn real constant matrix, the eigenvalues of (A—BK) can be

arbitrarily assigned provided complex conjugate eigenvalues appear in pairs.
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Proof: see [6]

Method Il (Controller-Form Method): [6, 34]

In this method, the first step will be to transform the given controllable pair (A, B)into the

controllable form, that is, we search the columns of the controllability matrix from left to right

until we find n linearly independent vectors, which we then rearrange in the form

b A

then by suitable recombination of these vectors we can find a new basis

T = {911

€1k,

k-1
Al lp b,

€21

€m1

Aknlp }

emkm }

with respect to which the pair (A, B)is in controller form, i.e.,

A, =T, AT; 1, B, =T.B

where A.and B have the forms

A Ap
Ay Ay

and C.is in general form. The block matrices A;, A; and B, are such that:

An Az -

. Ao

. B

A

(3.4)

(3.5)

(3.6)

3.7)

A is of dimension k; xk;, Ajjis of the dimension k; xk;,and B;is of dimension k; xm,

where Zki =n and they have the following forms :

i=1

01 0. .0
O 01..0
Ai = . 'Aij =
0 00 . .1
. X_

where the first i —1 columns of B, are zero and X is nontrivial element.

0 0 0
0

23
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Under the transformation
Xe (t) = Tex(t) (3.9)

The state equation (3.1) becomes

X () = (A~ BoKo)x: () + Bor() (3.10)
where {A;,B,} are asin (3.7) and
K =K.T, (3.11)

The first step in pole shifting algorithm will be to perform elementary column operations on
Boto zero out the entries marked xin the &, (k, +k,)", (k, +k, +k;)", ..}rows of
B. . This can be done by elementary transformations because of the appropriately located 1s

in these rows. Let us choose the nonsingular matrix D to represent these elementary

transformations; i.e., we choose D such that

B, D = block diag{[o 0 . . . 1", 1xk ,i=1,...,m} (3.12)
= Eb,
Let us also define
K. =D'K,, K.=DK, (3.13)
so that we shall have
Kip - Kin
_ _ Koy + . . Koy
B.K, =B.DK, =Eb.K,=| - - .. . (3.14)
_kml kmn

It then follows that we can make

m
~ a matrix with arbitrary elementsin rowsy Ky, K; +Ko,..., > K;
AC _ EbCKC — { 1 1 2 é 1 } (315)

and the other rows justasin A.

then we compute the required K.
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That is, by a suitable choice of input transformation D and feedback gain matrix K we
can arrange for a controllable pair (A ,B) to have an arbitrary nth degree characteristic
polynomial. We may choose K so that (A, —B.K.) has blocks of companion form on the

diagonal with the ordersk,,k,,...,k, respectively, or only one block companion form with

m

order n.
Algorithm
Consider a multivariable system given by equation (3.1)

1. Transform the given system into controllable form.
2. Compute Kcsuch that A, — EbckuC has a set of desired eigenvalues.
3. Compute K, = DRC where DissuchthatB, = Eb.D .

4. Compute K fromK¢, such thatK = K_T,.

Method I11: [6]
In this method the feedback gain matrix is computed without transforming A into a

controllable form. It will be achieved by solving a Lyapunov equation.
Algorithm

Consider a controllable (A,B), where Aand Bare, respectively, nxn and nx p constant
matrices. Find a K so that (A— BK) has a set of desired eigenvalues.

1. Choose an arbitrary nxn matrix F which has no eigenvalues in common with those
of A.

2. Choose an arbitrary nxn matrix K such that {F, K} is observable.

3. Solve the unique T in Lyapunov equation AT —TF = -BK .
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4. If T is nonsingular, then we have K = KT ™, and (A - BK) has the same eigenvalues

as those of F . If T is singular, choose a different F or a different K and repeat the

process.

3.2 Block-Pole Placement for MIMO Systems Using State Feedback

In this section, block pole placement in MIMO system is introduced; it is based on Shieh
et al. results which concern mainly the class of MIMO systems for which the number of
inputs mdivides exactly the order of the state equation n: it is based on a similarity
transformation that converts the state equation into a block controllable companion form [68].
In the case where the number of inputs does not divide exactly the order of the state equation
[48], design can be achieved through a new similarity transformation that converts the state

equation of the given multivariable system into a block-decoupled form.

To introduce the block poles of a matrix fraction description (MFD) which are the
solvents of a characteristic A -matrix, we define the characteristic A -matrix of an MIMO
system as follows:

3.2.1 Characteristic A-matrices of MIMO Systems

Consider a linear time-invariant system described by a state equation in general coordinates:
{)‘((t) = Ax(t) + Bu(t) (3.16)
y(t) = Cx(t)
where xe R",ye R, ueR", AcR™,BeR™,and C e R™".
The system (3.16) is block controllable of index | if the matrix
i ®=[B AB AB . . . A"'B|hasfull rank
i. l=n/misan integer
Theorem 3.3: The multivariable control system described in (3.16) can be transformed into a
block controller form if two conditions are satisfied:
i. |I=n/misan integer.

ii.  The system is block controllable of indexl| .

If both conditions are satisfied, then the change of coordinates
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X (1) = Tex(®) (3.17)
where:
T,
TqA
T A
To=| . (3.18)
Ta A
and
1
T =[0m Op - .. 1] [B AB . . . A'—laf (3.19)
transforms the system into the following block controller form
{Xc (t) = Acxc (1) + Beu(t) (3.20.a)
y(t) = Cexc (1)
where
Om Im Om Om
1 m O Im . O
A =T AT =| . . L (3.20.b)
Om Om Om Im
e
B, =T.B=[0, Op ... I,[ (3.20.c)
c.=CT.t=[c, ¢, ... C] (3.20.d)
where x. e R",A e R™",C, e RP"i=12,...,1, 1 and 0, are m x m identity and null

matrices respectively, and the superscript T (3.20.c) denotes the transpose.

Proof: see Shieh et al.[68]

The characteristic polynomial in SISO system is directly obtained from the nonzero
elements in the last row of the system matrix, when transformed into the controllable
canonical form, and the characteristic polynomial is a scalar polynomial. For multivariable
control systems, the characteristic polynomial is a matrix polynomial. The right matrix
fraction description (RMFD) of the system can be formulated directly from (3.20) as:
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H(2) = Ng(2)Dg"(2) (3:21)
where the matrix Dg(4)is the right denominator given by
Dr(A) = InA + A+ + AA+A (3.22)
and the right numerator N (A1) is given by
Np(2)=C A +CoA 2 +..+C_1A+C; (3.23)

Note that the matrix coefficients of Dg(4)and Ng(A) can be directly obtained from those

nontrivial block entries of the block controllable canonical form in (3.20.b) and (3.20.d).

Dr(A4)is referred to as the right characteristic A —matrix of the system (3.16). In fact,

Dg (4) can be directly determined as

Dr'(A) = (E) (A, - A) = (E])T (A, - A) "B (3.24)

where

(EN"=[I, 0, . . . 0, ]er™™ (3.25)

Examining T, of (3.17) we have the following new result:

T. = P(A;,B.)P (A B) (3.26.a)
P(AB)=[B AB . . . A"'B| (3.26.b)
P(Ac.Bo)=[B. AB. . . . AS'B] (3.26.¢)

Substituting (3.26.a) into (3.24) yields the right characteristic A-matrix of the system in
(3.16),
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DrY(A) = (ENTPY(A B)AI, - A)IB (3.27.a)

(Y =[o, o, ... 0, I,Jer™™ (3.27.h)

m

From the definition of the characteristic A -matrix, we can introduce the block poles of an

MFD from the solvents of a A -matrix.

3.2.2 Block Decomposition of MIMO Systems
Given an | -th degree m -th order monic A -matrix

Dr(A) =14 + A+ + A+ A (3.28.a)
The associated left matrix polynomial is given by
De (A) = X"+ XA +..+ XA + A (3.28.h)

where X e C™" . If there isan L, e C™"such that Dg (L;) =0, then L;is referred to as a

left solvent of Dy (A1) .
If there exist a set of left solvents {L,,i=1,...,1} such that U:zla(Li) =o(Dg(4)) .then

DR (4) has a complete set of left solvents [67].
When Dg(A4) has a complete set of left solvents, the RMFD of (3.21) has a block partial

fraction expansion as follows.

Lemma 3.1: [68] Let { L,i=1..1 }be a complete set of left solvents of Dg (A1), then

|
H(2) = Nr(4)DR'(4) = Y Hi(Al, - L) ™ (3.29.)
i=1
where
| .
Hi = ZCjZiLI_J =11 (3.29.b)
j=1

and Z; eC™™ i=1,..,1 can be determined from the following matrix equation:
I
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[z Zo ... Z1]=[0m O ... Om ImV B4 Lo ly) (3.29.¢)

V (L, L,,..L,)is the inverse of the block transpose of the left block VVandermonde matrix

[66] and is defined in (2.23) .

Lemma 3.1 indicates that the system of (3.16) is decomposed into | parallel subsystems whose
RMFD can be expressed as H (A1, —L,)™. The solvents L,,i =1,...,1in (3.29) are called the
right block poles of the RMFD in (3.21) and H,are the associated block residues of the block
partial fraction of the RMFD.

If an open-loop system does not have a complete set of right block poles, then it cannot be

decomposed into (3.29)

In [66] the transformation of a given system into the observable block companion form is

obtained and is stated in the following theorem:

Theorem 3.4: The linear time-invariant system described by the state equation (3.16), can be

transformed into the observable block companion form,

{Xo (t) = AgXo (1) + Bou(t) (3.30)
y(t) = CoXo (1)
where
[ -A, 1, 0, . . 0]
-A, O, I, . .0,
A =T,AT," = . . Ce (3.31.38)
_AO(q—l) Op Op Co Ip
| Ay 0, 0, . . 0]
B,=[BL BL . .. Bl BL| (3.31.b)
Co=[t, 0, 0, .. . 0,] (3.31.0)
by the similarity transformation,
X(t) =TyX, (1) (3.32.8)

30



Chapter 3 Block-Pole Placement Using State Feedback

where
T, =[A"*P,'C, ,A"?P,'C] ..., AP, 'C] P, 'C, ] (3.32.b)
P=lca™" (A" . .. (AT CT] (332.0)

if and only if :

i. g=n/pisaninteger.

ii.  The matrix B, in (3.32.c) has full rank.

Where xq e R", Ay e RP*P, By eRP™i=1..,q and I,and 0, are pxp identity and

null matrices respectively.
Proof: see [66]

The LMFD of the system (3.16) can be directly formulated from the block observable form
(3.31) as follows,

H(2) = D' (AN (4) (3.33)

where the left denominator and numerator matrices are respectively given by

Dy (A) = 1 pA% + A A% + o+ Agqpy A + Aog (3.34)

N (4) = By AT + BppAd®2...+ By(q_1y4 + Bog (3.35)

D, (4) is called the left characteristic matrix polynomial of the system(3.16).

The left characteristic matrix polynomial D (1) of the block observable system is given by
D' (2) = C(Al, — A) Ty (EQ) (3.36)

where (E(?):[Op 0, .. . 0 Ip]T e R™P and T,is nonsingular matrix defined in
(3.32.b)
When D, (1) has a complete set of right solvents {Iii,i :1,...,q}, the LMFD in (3.33) has a

block partial fraction expansion as follows,

31



Chapter 3 Block-Pole Placement Using State Feedback

q " “
H(A) =DM (ANL(A) =D (A, —R) ' H; (3.37.a)
i=1
where
R a .. ..
Hi= > R 1ZiByj, i=1..q (3.37.b)
j=1

and Zi e CP*P i=1,..,q,can be determined from the following matrix equation:

ST 5T 5T -1/6. B 5
20 zq]T VR, Ry R)0p 0p . 1] (3.37.0)
\Y ‘1(F§1, ﬁz,..., Fiq) is the inverse of the block VVandermonde matrix shown in (2.23).

Similar to the decomposition shown in (3.29), equations (3.37) indicate that the system (3.16)

is decomposed into g parallel subsystems whose LMFD can be expressed as (4l , — Iii)‘ll-]i.
The right solvents Fii,i =1...,q in (3.37.a) are called the left block poles of the LMFD in
(3.33), and I:|iare the associated block residues of the block partial fraction expansion of the

LMFD, the left solvents I:i ,i=1...,q of D,(1) are simply called block poles of the LMFD.

3.3 Block-Pole Placement by State Feedback

The block pole placement technique, using state feedback, in multivariable control systems is
formulated as follows: Given a MIMO system described by the state equation (3.16), with

n=Im, and a desired matrix polynomial D, (1) find an mxn gain matrix K such that under

the state feedback operation
u(t) = r(t) — Kx(t) (3.38)

the matrix (A— BK)in the new state equation

X(t) = (A— BK)x(t) + Br(t) (3.39)

has the desired characteristic matrix polynomial ,

D,(4)=14 +DA"+D,A % +..+ D, ,A+D, (3.40)
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Note that the matrix polynomial D, (1) has to be constructed from a desired complete set of

closed-loop block poles.
3.3.1 Block Pole Placement for a Class of MIMO Systems

The pole placement by state feedback is an effective method for the design of closed-loop
control systems. In MIMO systems, the block controllable canonical form of (3.20) is
especially suitable for the closed-loop block pole placement.

For the class of MIMO systems for which the number of inputs divides exactly the order
of the state equation, i.e., n=Im, the computation of the state feedback gain matrix,

achieving the desired block poles, consists of finding the matrix K. such that the closed-loop
state equation matrix A. —B.K. has the desired right characteristic matrix polynomial

D, (4)in (3.40).

Let the state feedback control law be
u(t) = re (t) - Kexe (1) (3.41)

where r,(t) e R™ is the reference input.
Ke=[Ky Koy - .. Kgler™im (3.42)
and
KeeR™Mi=1..,1

then the closed-loop state equation of (3.26) become

{Xc(t) = Ax, (1) + B,r, (t) (3.43.a)
y(®) =Cex. (1)
where the closed-loop system matrix AC IS given by
Om I Onm Om
A Om Op Iy ... 0O,
A.=A,-B.K,=| . , Ce (3.43.b)
: : A
-A —Ag —AL A

and
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A=A+K,i=1..,1
hence
K, =A-A (3.43.¢)
From (3.43), we have the closed-loop right characteristic A -matrix
~ I ~ ~
Dr(A) =Y Al A =1, (3.43.d)
i=0

which is equivalent to the desired characteristic matrix polynomial in (3.40).

3.3.2 Block-Pole Placement for General MIMO Systems

In the previous section, the block pole placement requires that the MIMO system is block
controllable of index | i.e., the controllability indices of the system are all equal to | and
n =Im.When the dimension n of the system matrix described (3.16) is not equal to Im, where
| is an integer and m is the number of inputs, the proposed method cannot be directly applied.
According to Shieh [69] a set of nondominant stable eigenvalues can be added at the diagonal
entries of the system matrix A in (3.16) to enlarge the dimension of Afrom nton such that
A =Im. As aresult, the proposed method can be applied to obtain the block decomposition of
the modified MIMO system.

In order to avoid enlarging the dimension of the system matrix A, Loubar [48] proposed a
similarity transformation that will decompose the system in (3.16) into two subsystems of
dimension A =Im and k respectively such that n=A+k andk < m. In this case, he proposed
a two stage design procedure that will achieve the desired block pole placement for the
system of dimension A, and a pole placement for the remaining k eigenvalues through state
feedback.

3.3.2.1 The Block-Decoupled Form

Consider a MIMO system described by (3.16) where n/m is not an integer. Since m does
not divide exactlyn, we can write:

n=Im+k with k<m

The desired block-decoupled form is chosen as,
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{Xc v = Acxc )+ Bcu(t) (3.44)
y(t) = Cexc (1)

where the matrices A. and B, can be written in the following form:

ACl 0Im,k
A = |:0k‘|m 0 } (3.45.a)
Be,
B. = {BCJ (3.45.b)
Cc=[Cq Co.l (3.45.c)

where Oy Oy m are Im x k and k x Im null matrices respectively, and

om Im om Om
0, Op O
Aa =| . : C e (3.45.d)
0, Op Oy ... Iy
A AL AL A
P =diag(P,P,,....R,) (3.45.e)
B.=[, 0, .. . 1, B,J (3.45.f)

and B, isan mxk matrix.

The desirable similarity transformation which transforms the coordinates xin (3.16) into X.

in (3.44) is defined as

Xe =TcX (3.46.a)
where
_ T, _
TcZ
T.=| . (3.46.h)
Tcl
_Tcl+1_

with, T¢ are mxn matrices for i =1,2,...,1 and T¢+1iS a k x n matrix.
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Hence we obtain,

A =T AT (3.47.a)
B. =T.B (3.47.b)
C. =CTS! (3.47.c)

Theorem 3.5 : [48]
Given a linear time-invariant multivariable system described by the state equation:

{x(’t) = AX(t) +Bu(t) (3.48)
y(t) = Cx(t)
where xe R",y e R P, UeR", AcR™ BeR"™ CeR”™and n=Im+k.

The system described by (3.48) can be transformed by the similarity transformation x. =T.X,

into the following state space equations:

{xc(t) = A, (t) + Bou(t) (3.49)
Y(t) = CcXc (t)
with
I Om Im 0m Omk_
Om 0m 0m Omk
=T.AT'=| ' S ' ' 3.50.a
Ao =TeAle o, 0, . .. 1,60, ( )
-A -AL, ... -A 0,
_Okm Okm oo Okm P _
P = diag(p,, P..... Py) (3.50.b)
B.=T.B=[0, 0, .. . I, B,J (3.50.c)
where B, isan mxk matrix satisfying
Bk =Tei41B (3.50.d)

with T,,1being a k xn matrix given in (3.65), if and only if the nxnmatrix
=B AB ... A"BV, V, ... V] (3.51)
Is nonsingular, with V, being a right eigenvector of A corresponding to the eigenvalues p,

fori=12,.. k.
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In this case the similarity transformation T. exists and it is given by:

TCl
T. A
T A2
T.=| (3.52)
T01A|_l
L Tcl+l _
with
Te=[0, 0, .. .1, 0,][B AB ... A'B YV, V, ...V]E@E5
and
Tc|+1:[T1T TzT . TkT]T (3.54)

where T, is a left eigenvector of A corresponding to the eigenvalues p, for i =12,...,k.

Proof: see [48]

Similar to the previous results, a second block- decoupled form can also be obtained; this will

be summarized in the following theorem.

Theorem 3.6 :[48]
The linear time-invariant multivariable system described by the state equation (3.48) can be

transformed by the similarity transformationx. =T.X, into the following state space

equations:

{).(C 1) = AcXe (t) + Bcu(t) (3.55)
y(t) =Cexc ()

with
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P 0km Okm Okm 0km
Omk - A1 - Az o T A|—1 - A|
AL =T AT = O i1, o, ... 0, 0, (3.56.2)
¢ © 0mk Om Im 0m 0m . .
_Omk Om 0m Im Om _
P =diag(p,, P,.-..\ Py (3.56.h)
B.=T.B=[B, I, 0, ... 0. (3.56.c)
where B, isan mxk matrix satisfying
Bk =Tol:1B (3.56.d)
with T, being a k xn matrix given in (3.60), if and only if the nxnmatrix
®=M Vv, ...V, AB . . . AB B (3.57)

Is nonsingular, with V, being a right eigenvector of A corresponding to the eigenvalues p,
fori=12,...,k.

In this case the similarity transformation T. exists and it is given by:

Tcl+l
TClAI_1
TClAI_2

T.=| (3.58)

with
T =0y 1, .. .0, 0] @ (3.59)
and
Too=m ™7 .. 1T (3.60)

where T, is a left eigenvector of A corresponding to the eigenvalues p, for i =1.2,...,k.

Proof: see [48]
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3.3.2.2 Find State Feedback Gain Matrix

Theorem 3.7: Given a linear time-invariant multivariable system described by the state

equation:

{X(t) = AX(t) + Bu(t) (3.61)
y(t) = Cx(t)

where xe R",y e RP,UcR", AcR™ BeR"™ ,CeR” and n=Im+k, with k <m.
And given a desired complete set of | block poles: {L,,L,,..., L, } and k poles:{p,, p,,..., p, }-

If the system described by (3.61) can be transformed by the similarity

transformation x. =T, X, into the block-decoupled form,

Ac 0m, _ Bc:
] el

Ok,Im c2
where, Oj .0y mare Imxkand kxIm null matrices respectively, and the matrices
A.,,P,B.,and B, are given in (3.45).

Then the state feedback gain matrix that achieves the desired set of block poles and poles for

the closed-loop system is given by
Ke = [Kc1 +Ke,L Kcz] (3.62)

where K, is the feedback gain matrix which places the block poles of (A;; — B, K,) at the

desired left soIvents{Ll, L,,....,L } and L is a solution of the following Lyapunov equation :
I—(Ac1 - 801K01) —-PL=B,K¢, (3.63)

and K., is the feedback gain matrix which places the remaining k poles of

P — (B¢, + LB¢,)K., atthe k desired locations.

Algorithm
Let

n : Order of the state equation
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m : Number of inputs

I,k are integers satisfying n=Im+k withk <m.

Stepl : Input the system matrices A, B,C and the complete set of | left solvents{Ll, L,,..., Ll}
or right solvents {R,,R,,...,R, }, and the set of k poles to be assigned.
Step2 : Form the desired matrix polynomial D, (1),
D, (1) =14 +DA" +D,A % +..+ DA +D,
from the given set of desired solvents using either:
D Dy ... D]=-[R! Ry ... RV (3.64.3)

if the matrices R, R,,..., R, form a complete set of right solvents,

or,
D, | L]
Diy L,
VRN (3.64.b)
| Dy L

if the matrices L, L,,...,L, form a complete set of left solvents.

V. and V° are the right and the block transpose of the left block VVandermonde

matrices respectively.

Step3 : Compute k eigenvalues of A, respectively p,, p,,..., p, , and find their corresponding
left T, and right V, eigenvectors( for i =1,2,....,k).
Step4 : Check that the matrix
=B AB . .. A"B V, V, ... V] (3.65)

is nonsingular, if not the system cannot be transformed into the block-decoupled form;
hence, select a new set of k eigenvalues and go back to step3.

Step5: Compute the similarity transformation x. =T.x shown in (3.69) and transform the

system into the following block-decoupled form ( block controllable form if k =0)
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At Oim,k | Bas
w5 el

Ok, Im c2
Step6 : Compute a state feedback gain matrix K, that places the block poles of
(Ac; — B¢ K,) at the desired | block poles using
K=K K, ... K] (3.66)
where K.=D, - A fori=12,..,I and A (i=12,..,1) are mxm matrices obtained
from A, in the block controllable form in (3.45.a).

Step7 : Compute a k x Immatrix L satisfying the Lyapunov equation :
L(Am - Bc1Kc1) —-PL=B,K¢, (3.67)

Step8 : Compute a feedback gain matrix K, that places the k poles of P —(B., + LB¢,)K¢,

at the k remaining desired locations.

Step9 : Compute the state feedback gain matrix using
K¢ = [Kc1 +Ke, L Kcz] (3.68)
and compute the state feedback gain matrix in original coordinates using

K =K.T, (3.69)
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Chapter 4

Compensator Design Using Block-Pole
Placement

4.1 Introduction

The problem of block-poles placement using state feedback is studied in the chapter 3. In
this chapter, we consider the problem of assigning the closed-loop block-poles of linear time-
invariant multivariable system to achieve a compensator design.

There are many possible feedback configurations: Output feedback, Input-output feedback
and Unity feedback, this chapter is based on the last one.

Let us consider the feedback configurations stated above. The design problem is to find a
proper compensator that achieves the desired set of poles or block poles for the closed-loop
system such that the degree of the compensator is as small as possible.

The main step in the design of compensators, using arbitrary block pole placement for the
closed-loop system, is the solution of the compensator equation (Diophantine equation). The

solution whose rows have the minimal possible degree is proposed.

The matrix fraction description provides a natural generalization of the scalar rational
function, though in multivariable case we have to distinguish between right and left
descriptions, some definitions and results concerning matrix fraction description of MIMO

systems needed later in this chapter are reviewed in the following section.
4.2 Matrix Fraction Descriptions

Theorem 4.1: Let H (s)and H,(s)be, respectively gx pand pxqrational function

matrices (not necessary proper), then we have
det[(I, + H, ($))H,(s)]= det|(1, + H, (5)H, (5)]
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Theorem 4.2: If det[(lq + Hl(s))Hz(s)J;t 0, then

H )1, (8) + H, (5)H, ()] =1, + Hy(5)H, ()] " H, (s)
Proof: see Chen [6]

Theorem 4.3: Let H,(s)and H,(s)be, respectively gx pand pxqrational function

matrices. Then the closed-loop transfer matrix
H(s) = Hy(s)[1, () + H, (s)H, ()]
is proper if and only if 1, +H,(o0)H, (o0) is nonsingular.

Proof: see Chen [6]

Definition 4.1: Consider a proper rational matrix H (s) factored as

H(s) = Ng(5)DR*(s) = DL (S)NL(5).-

It is assumed that Dg(s)and Ng(s)are right coprime and D, (s) and N _(s)are left coprime,
then the characteristic polynomial of H(s)is defined as
det Dy (s) or detD, (s)
and the degree of H(s) is defined as
deg H(s) =degdet Dg (s) =degdet D (s)

where deg det stands for the degree of the determinant.

Lemma 4.1: N(s)and D(s)will be right coprime if and only if they have no common latent

vectors and associated latent roots.

Proof: see Kailath [34]
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p
Let k; be the degree of the i-th column of D(s): if degdet D(s) = Zki , We say that D(s)is

i=1

P
column reduced. If degdetD(s):Zk'i wherek'; is the degree of the i-th row of D(s),
i=1
D(s) is said to be row reduced.

In general, we can write

D(s) = Dy, S(8) + L(s)

where
S(s) = diag{s'“,i =1..., p}
D,. =the highest-column-degree coefficient matrix, or the
leading (column)coefficient of D(s)
L(s) =denotes the remaining terms and is a polynomial matrix with column
degrees strictly less than those of D(s).
Then

ki

detD(s) = (detD,.(s))S  +terms of lower degree in's

and therefore it follows that a nonsingular polynomial matrix is column reduced if and only if

its leading (column) coefficient matrix is nonsingular.

The following Lemma gives the properness of N(s)D™'(s) when D(s) is column reduced.
Lemma 4.2: If D(s)is column-reduced, then H(s) = N(s)D*(s) is strictly proper (proper) if
and only if each column of N(s)has degree less than (less than or equal to) the degree of the
corresponding column of D(s).

Proof: see [34]

4.3 Pole Placement for MIMO Systems Using Design of Compensator

4.3.1 Single-input or Single-output
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In this section we discuss the design of compensators to achieve pole placement for

single-input multi-output and multi-input single-output systems. The general case (MIMO
system) is postponed to the next section.

Consider the unity feedback system shown in figure (4.1) where the plant is described by the
qx1 proper rational matrix H (s) :

Compensator Plant

r C(s) - H(s) Y

i

Figure 4.1.a: Single-input Multi-output

Compensator Plant

r +_ C(s) ::> HE) Y

v

Figure 4.1.b: Multi-input Single-output

[NY(9) ]
NDll ((S)) Ny (9) |
2( N,(s)
D', (s) 1 . .
H(s)=| - 56 . |7 N(s)D7(s) (4.1)
N'q (5) [ Ng(s),
| D'q() ]

where D(s) the least common denominator of all elements of H(s).
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We assume
D(s)=D,+D,s+D,s?+...+D,s" D, #0 @2
N(s)=N, + N,s+N,s2+...+ N, s" '

where D, are constant and N, are g x1constant vectors.

The problem is to find a compensator with a proper transfer matrix of degree mso that n+m
number of poles of the feedback system in figure (4.1.a) can be arbitrarily assigned.
Furthermore, the degree m of the compensator is required to be as small as possible.

The closed- loop transfer function matrix of the feedback system of figure (4.1.a) is given by
Hy (5) = H(S)L+ C()H ()] "C(s) (4.3)
Let us write the compensator C(s) as

o

“O=p

[Nei(s) Neo(s) . . . Ng(s)]= Dg'(s)Ng (s) (4.4)

with

D.(s) = D¢y + DgyS+...+ Dy S™ (4.5)
Ne(S) =Ng, + Ng,S+...4+ N, 8™

where D, are scalars and N are 1x(qconstant vectors. The substitution of (4.1) and (4.4)
into (4.5) yields

Hq (5) = N(s)D(s)[L+ D& (s)N¢ ()N (s)D*(5)] * D (s)N¢ (5)

) (4.6)
= [Dc (5)D(s) + N¢ (S)N(s)]™* N(s)N¢ (s)

because N(s)and N.(s)are gxland 1xqvectors, N.(S)N(s)is a 1x1 matrix and

N(s)N.(s)isa gxqmatrix. Hence H(s)is a qxq rational matrix. Define

D, (s) = D¢ (8)D(s) + Nc (S)N(5) @.7)
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Hence the problem of pole placement reduces to solve equation (4.7) which is called the
Diophantine equation (or the Compensator equation).

Theorem 4.4: Consider the feedback system shown in figure (4.1.a) with the plant described
by a qx1strictly proper (proper) rational matrix H(s)= N(s)D™*(s) with degD(s)=n.
Then for D, (s)of degreen+m, there exists a 1xqproper (strictly proper) compensator
C(s) = Dc_l(S)NC(S)With degD.(s)=m so that the feedback system has qx q transfer
function matrix N(s)D;'(s)N.(s) if and only if D(s)and N(s)are right coprime and

m>v-1 (m=>v), where vis the row index of H(s).

Proof: see Chen [6]

Dual to theorem 4.4, we have the following theorem for the feedback system shown in figure
(4.1.b).
Theorem 4.5: Consider the feedback system shown in figure (4.1.b) with the plant described

by a strictly proper (proper) 1x p rational matrix H(s) = D (s)N(s)withdeg D(s) = n. Then
for any D, (s)of degreen+m, there exists apx1 proper (strictly proper) compensator
C(s) = N.(s)D:'(s) withdegD,(s)=m so that the feedback system has 1x1 transfer
function N(s)D, (s)N.(s)if and only if D(s)and N(s)are left coprime and

m>pu—-1 (m> g)where x is column index of H(s)

Proof: see Chen [6]

The polynomial equation arising in this theorem is of the form
Dy (s) = D(s)D,(s) + N(s)N¢ () (4.8)

4.3.2 Multi-input Multi-output
In this section, the design technique developed in the previous section will be extended to
general proper rational matrices. We extend it first to a special class of rational matrices,

called cyclic rational matrices, and then to the general case.
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4.3.2.1 Pole Placement for Cyclic Rational Matrices

Consider a g x p proper rational matrix H(s) .

Let W(s)and A(s)be the least common denominator of all elements of H(s)and the
characteristic polynomial of H(s), respectively. In general, we have A(s)=Y¥(s)h(s) for
some polynomialh(s). If A(s)=Y¥(s)k for some constantk, then H(s)is called a cyclic

rational matrix. For cyclic rational matrices, the characteristic polynomial is equal to the

minimal polynomial.

Theorem 4.6: Consider a qx pcyclic rational matrixH(s). Then for almost all pxland

1x q real constant vectors t, andt,, we have
AlH($)]= A[H ()] = At H(s)] (4.9)
Where A(.)denotes the characteristic polynomial of a rational matrix.

Proof: see Chen [6]

Using theorem 4.6, we can extend the design procedure in theorems 4.4 and 4.5 to cyclic
rational matrices.

Theorem 4.7: Consider the feedback system shown in figure (4.2) with the plant described by

a qx pcyclic strictly proper (proper) rational matrix H(s) of degreen. The compensator is
assumed to have a pxqproper (strictly proper) rational matrix C(s)of degreem. If
m>min(ux—-1,v-1) [m > min(,u,v)], then all n+ mpoles of the unity feedback system can
be arbitrarily assigned, where wand vare, respectively, the column index and the row index

of H(s).
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HES) —>

e o o o o e o e e o = = =

(b)
Fig 4.2: design of compensators for plant with cyclic proper rational matrices.

Since H (s) s cyclic, there exists a p x1constant vector t, such that A[H (s)]= A[H (s)t,].
Let us write the g x21rational matrix H(s)t, as
H(s)t, = N(s)D(s)
then theorem 4.4 implies the existence of a 1xq proper rational matrix
C'(s) = D' (s)N (s)with degC'(s) =m>v—1if H(s)is strictly proper, such that n+m
poles of
D; (s) =D, (s)D(s) + N (s)N(s) (4.10)

can be arbitrarily assigned. It is shown [6] that the qx pcompensator defined by
C(s) =t,C'(s) = D' (s)t,N (s) can achieve arbitrarily pole placement.

The closed-loop transfer function is given by

H, (5) = N(s)D;"(s)Nc (s) (4.11)
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where D(s)and D (s)are 1x1polynomial matrices.

4.3.2.2 Pole Placement for General Rational Matrices

We can now discuss the design of compensators for general proper rational matrices. The
procedure consists of two steps: First change a noncyclic rational matrix into a cyclic one and
then apply Theorem 4.7.

Theorem 4.8: consider a qx p proper (strictly proper) rational matrix H(s). Then for almost

every pxq constant matrix K, the gx p rational matrix
H'(s)=[I + H(S)K]'H(s) = H(s)[l + KH(s)]"

is proper(strictly proper) and cyclic.

Proof: see [6]

With this theorem, the design of a compensator to achieve arbitrarily pole placement for

general H(s) consists of two steps: We first introduce a constant gain output feedback K to

make H'(s)=[l + H(s)K]"H(s)cyclic. We then apply Theorem 4.7 to design a

compensator C(s) . Hence all the poles of the feedback system in figure (4.3) can be arbitrarily

assigned.
H’(s)
: I
r +O C(s) + I H(s) ! R
A - : :
! |
! |
! |
! |
I K | !
I N |

Figure 4.3 :Unity feedback system for noncyclic rational matrices
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4.4 Block-Pole Placement for MIMO Systems
In this section, we study the design of compensator to achieve arbitrary block- poles for
the closed-loop system; this is equivalent to the assignment of an entire denominator matrix

polynomial.

4.4.1 Unity Feedback Systems
Consider the unity feedback system in figure (4.4). The plant is described by a qx p proper

rational matrix.

H(s) = N(s)D*(s) (4.12)

Figure 4.4: Unity feedback for multivariable system

The compensator to be designed is required to have a p x g proper rational matrix.
C(s) = D¢’ (s)Nc (s) (4.13)
The closed-loop transfer matrix is given by
Ha (s) = [Iq + HEICE) TH()C(s) (4.14)
Using a theorem 4.1 we obtain,
He (s) = HES)[I p +C)H )] C(s) (4.15)

Replacing (4.12) and (4.13) in (4.15) yields
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_ 1
Her(5) = NEDL(s)]1 + DELENG (INS)D ()] “DEL NG (9) (4.16)

which can be written as

Hei (s) = N(8)[Dc (s)D(s) + N¢ ($)N (S)FNC (s) (4.17)

Define the matrix polynomial,
D () =D (s)D(s) + N (S)N (s) (4.18)

Then we have
Her(s)=N(s)D (s)N¢ (s) (4.19)

Hence the design problem becomes: Given D(s)and N(s) and an arbitrary D, (s), find

D. (s)and N (s) to satisfy the compensator equation (4.18).
From (4.19) we note that the roots of D, (s)are the poles of the closed-loop transfer

matrix H (s), and the solvents of D, (s)are block-poles of H (s).

4.4.2 Input-Output Feedback Systems using Design of Compensator

Consider the input-output feedback system shown in figure (4.5). The plant is described by a

g x p proper rational matrix H(s) = N(s)D'(s). The compensators are denoted by the
pxp proper rational matrix C,(s)=D:'(s)L(s) and pxq rational matrix
C,(s) = DZ'(s)N. (s) . The closed-loop transfer matrix can be computed as

H (s) = N(8)[Dc (s)D(s) + L(S)D(s) + N¢ ()N ()] Dc (s) (4.20)

or H, (s) = N(s)D;*(s)D¢ (s) (4.21)
where Dy (s) is defined as

D, (S) = D (s)D(s) + L(s)D(s) + N, (s)N(s) (4.22)
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H (s)

v

T\
v

A 4

Co(8) C.(s)

Figure 4.5: Input-Output Feedback

If we let
E(s) = D, (s) - D¢ (s)D(s) (4.23)

then (4.22) can be written as

E(s) = L(S)D(s) — N (S)N(s) (4.24)

which is the compensator equation.

Note that before solving the compensator equation (4.24), the denominator matrix D, (s) of

the compensators C,(s) and C,(s) should be chosen in order to compute E(s)in (4.23).

4.4.3 Output Feedback Systems
Consider the feedback system in figure (4.6). Using the previous results, it can be readily
shown that the closed-loop transfer matrix can be written as

He (8) = N(s)(Dc ()D(s) + N (s)N(s)) "D (s) (4.25)
o,
H, (s) = N(s)D;"(s)D¢ (s) (4.26)

defining again D (s) as

D; () = Dc (5)D(s) + N ()N(s) (4.27)
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it follows that the solvents of D, (s) are the block poles of the closed-loop transfer matrix.

Note that the main step in the design of compensators is the solution of the compensator
equation (Diophantine equation).

r + H(s)

v

C(s)

Figure 4.6 : Output Feedback

4.5 Solution of the Diophantine Equation
The compensator design, to achieve arbitrary block pole placement for the feedback

configurations described previously, requires the solution of the compensator equation:

D; (s) =D, (s)D(s) + N.(s)N(s) (4.28)
for a given plant rational transfer matrix H(s) = N (s)D‘l(s) and a desired matrix polynomial
D; (s).
and

D¢ (s) = D(s)Dc (s) + N(s)N¢ (s)
for a given multivariable system described by a LMFD H(s) = D‘l(s)N (s) where
D(s),D.(s)and Dy (s) areq x g polynomial matrices, while N(s)and N (s) are
gx pand p x g polynomial matrices, respectively. The desired compensator will be described
by the pxqRMFD,
C(s)=N¢(s)Dg " (5)
The following theorem gives the condition for the existence of the solution of (4.28).

Theorem 4.9: Consider a qx p proper rational matrix with the fraction H(s) = N(s)D ™ (s).
Let k;, 1=12,.,p, bethe column degrees of D(s), and let v be the row index of H(s). If
m>v-1, then for any D, (s)with column degrees m+Kk;,i=12,..,por less, there exist

D.(s)and N (s)of row degree m or less to meet
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D (s) = D (8)D(s) + N¢ (s)N(s)

if and only if D(s)and N(s)are right coprime and D(s) is column reduced.

Proof: see Chen [6]

Various numerical algorithms, for solving the Diophantine equation, have been developed
and different approaches have been attempted [88, 40, 20, 63, 19, 85, 41].

It has been shown in [6, 34] that the coprimeness of D(s)and N(s)ensures the existence of
the solution to the Diophantine equation for an arbitrary D; (s).

The method proposed in this section is developed from the results obtained by Chen [6] and
Lai [41]. The idea is basically to transform the given matrices into a set of linear algebraic
equations, which leads to the construction of a Sylvester matrix (or a generalized resultant

matrix of {N (s),D(s)}). The solution is obtained by applying searching algorithms for

linearly dependent rows of the obtained matrix.

The compensator equation defined in (4.28) can be written [41] as

D(s)
[De(s) Nc(s) 1] | N(s) [=0 (4.29)
_Df(s)

Let us write

D(s):iDis‘ ; Dc(s):iDcisi;N(s)zzh:Nisi ;Nc(s):zm:Ncis‘;

i=0

D, (s) :ZI:Dfs‘ (4.30)

as a set of linear algebraic equations

The substitution of (4.30) in (4.28) yields

[DCO NcO I |Dc1 Nc1| Dc2 Nc2 | . | Dcm Ncm:lém:0 (4-31)

55



Chapter 4 Compensator Design Using Block-Pole Placement

where
[ D, D, D, 0 O 0 |
No N, N, 0 0 : 0 1st block
D Pu oo o TPm Dy 0 .. 0|
0 D, D, D, 0 . . 0
0 N, N, . N, O . 0
~ 0 0 D, D D, O 0
S, = ° " (4.32)
0 0 N, N, N, 0 0
0 o . . . 0 b b . . . Db }(m+1)th block
0 0 0 N, N, N |

The matrix §m has m+1block rows; the first block contains (2p +q) rows and g+ p rows in
the i-th block, where 2 <i<m+1.

For the solution of the compensator equation we need to search for the linearly dependent
rows of §min order from top to bottom using either row-searching [6] or recursive [86]

algorithm.
Let D-row denote the rows formed from the rows of D;’s and let D;; -row denote the « —th

D -row in the x—thblock of (4.32).

Definition 4.2: [41]
A dependent row, say DZ‘-row, is called a primary dependent row of §m if all the fo -

rows are independent rows inS_ for < 7.

The general form of the solution of a compensator C(s) = D, l(s)NC (s), instead of

[DCO NcO I |Dcl Ncl| Dc2 Nc2 | : | Dcm Ncm] (4-33)
will be

[DICO NICO C |D'c1 Nlc1| ch2 N'c2 | : | D'cm NIcm] (4-34)

with
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m ) m .
D'c(s) =2 D'gs' N'.(5) =D N'y s’
i=0 i=0
Theorem 4.10: [41] Consider a given D(s),N(s) and Dy (s) in (4.28). Then there exists a

solution if and only if Cin (4.34) is a real constant matrix with det(C) # 0.

The solution of (4.31) will be given by the product ,
C_l[DICO N'CO C |D'c1 N'cl| ch2 N'c2 | : | I:)'cm Nlcm] (4-35)

D¢ (s)=C D' (s)
N (s) =C7IN'; (s)

C(s) = Dz ' (s)N (s)

the obtained compensator will have the minimal degree which is one of the requirement stated

previously.

In the determination of the solution of the compensator equation (4.28), the main step is to

search for the first linearly dependent rows of §m :

Lemma 4.3: [6] If H(s)=N(s)D"(s)is proper, all D-rows in §m, are linearly independent

of their previous rows.

Some N-rows in each block, however, may be linearly dependent on their previous rows.

Let r;be the number of linearly dependent N-rows in the (i +1)th block of §m, then because

of the structure of §m we have ry <, <...<r, <q.let vbe the least integer such that r, =q.

In this case, we call v the row index of H(s).

In the case where the number of inputs is less or equal to the number of outputs, it is sufficient
to find the row index of H(s) in order to solve (4.31) with m=v.

The following algorithm is a modified version of the recursive algorithm used for finding the
row index of the given H(s).
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4.5.1 Modified Recursive Algorithm for Finding the Row Index

Consider the matrix §min (4.32) but without the Dy —rows, say S, and consider a
g x p proper rational matrix H(s) = N(s)D™*(s). In order to improve the recursive algorithm
we will make use of the following properties of Sy, :

i.  The linearly dependent rows appear only in N-rows
ii. ~ The addition of the block row to S, results in the addition of zeros to the right of the

previous block row.

According to the definition of the row index, if the number of linearly dependent N-rows in

the (j +Dth is equal to q (number of outputs), then the row index of H(s) is equal to j.

Let:

S;: generalized resultant matrix with (i +1) block rows
P, : projection matrix corresponding to the last row of S;
rj : number of linearly dependent N-rows in the (j +1)th block row of S;

v: the row index of H(s)

Stepl: Initialize i =0and

Step2: Use the recursive algorithm to compute r;
while r; = q do

Step3: Update

S, 0

S.,=10 D- rows
0 N- rows

Step4: Update
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p=0 0
i+l_0 Im

Step5: Update i =1i+1 then back to stepl

Step6: Finally v=i.
4.5.2 Algorithms for Finding the Solution of the Compensator Equation

For the computation of a minimal degree proper compensator that achieves a desired set

of block poles for the closed-loop unity feedback systems two algorithms are proposed, and to
ensure the existence of g primary dependent rows on §Vin the case where the number of

inputs is less or equal the number of outputs, both algorithms require the computation of the
row index of H(s).

4.5.2.1 Row -Searching Algorithm
Let:

v: the row index of H(s)

p: number of inputs

g: number of outputs
Stepl: Input D; and N; for i =12,...h

Input Dy fori=12,.l.

Step2: Use the modified recursive algorithm to find the row index v of H(s)

step3: Form
[ D, D, D, 0 0 0]
Ng N, N, 0 0 0
-Dto -Dgy D -Dy O 0
0 D, D, D, O 0
0 No N N, O 0
s _| O 0 D, D D, O 0 (4.36)
Y 0 0 Ny Ny N, O 0
0 0 0 D, D Dy,
| 0 0 0 Np N Np, |
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and apply the row — searching algorithm to §V to obtain the primary dependent rows.

Step4: Select the first q primary dependent rows among the primary dependent rows of §V :
then form
[Dco N'eo C D'y N'gy| Dicz N'ep |+ | Dien Nign)
(4.37)

Using the coefficients of the linear combinations of the chosen primary dependent

rows from their previous linearly independent rows in S,, .

Stepb: If the test matrix C is singular then back to step 4

Step6: If C is nonsingular then compute
Dc(s)=C'D'¢ (s)
Nc(s)=C7N'c (5)

step7: If C(s) = Dc_l(s)NC (s) is not a proper compensator the back to step 4.

If the closed loop transfer function matrix is not proper then back to step 4.

Remark: Once the row-searching algorithm is applied to Sylvester matrix §m for searching
for the linearly dependent row, the result is a matrix, say S, given by

Kn1Kn2--KoKiSp = KSp =Sy

where n=(q+ p)(m+1)+q

The rows of §m corresponding to the nonzero rows of §m are linearly independent of their

A

previous rows. If a row in S is a zero row, then the corresponding row in S, is linearly

dependent of its previous rows, and the corresponding row vector in K will give the

coefficients of the linear combination.

4.5.2.2 Recursive Algorithm
Using the same notations as the previous algorithm
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Stepl: Input D; and N; for i=12,...h
Input Dy fori=212,.l.
Step2: Use the modified recursive algorithm to find the row index v of H(s)
Step3: Form §V as in (4.36), then apply the recursive algorithm to §V to obtain
the primary dependent rows.
Step4: Select the first q primary dependent rows among the primary dependent rows of §V :

Then solve the corresponding equation of the form, XA = B, to obtain the coefficients
of the combination in the form (4.37).

Step5: If the test matrix C in (4.37) is singular then back to step4.

Step6: If C in (4.37) is nonsingular then compute

D (s) =C D' (5)
Ne(5)=C7IN'c (5)
Step7: If C(s) = Dc‘l(s)NC (s) is not a proper compensator then back to step 4

If the closed —loop transfer function matrix is not proper the back to step 4.

In the case of the multivariable systems described in LMFD, the previous algorithms can be

applied for the compensator equation given by
D" 1(s)=D¢ (s)D" (s)+ N] (s)NT (s)

where T stands for the matrix transpose.
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Chapter 5

Sensitivity and Robust systems

Sensitivity considerations are important in the design of control systems. Since all
physical elements have properties that change with environment and age, we cannot always
consider the parameters of a control system to be completely stationary over the entire
operating life of the system. In general, a good control system should be insensitive to
parameter variations but sensitive to the input commands ones [39].

High system performance and low sensitivity are two required properties of control
systems. Low sensitivity is defined with respect to the system’s mathematical model
uncertainty and terminal disturbance called robustness [77]. Unfortunately, high performance
and robustness are usually contradictory to each other; higher performance systems usually
have higher sensitivity and worse robustness properties. Yet both high performance and high
robustness are the key properties required by practical control systems.

One of the primary objectives of feedback control or compensator design is to ensure that
the system response remains well behaved even under parameter uncertainty and the most
important characteristic of desired performance is stability.

There is considerable literature available on robustness analysis of linear systems with
parameter perturbation. A method for stability-robustness analysis based on a quadratic
Lyapunov function that varies linearly with uncertain parameters is derived in [44].

In control systems the poles dominate the transient response as well as the system stability
and so many studies [eg. 6] have addressed pole assignment design. Another important
control strategy is the robust stabilisation problem, i.e., the ability to maintain system stability
under plant uncertainties. Cruz et al. [9] have discussed the robust stabilization of linear
feedback systems with time varying nonlinear perturbations in terms of the roles of singular
values. However their results are valid only when the plant and the compensator design are
stable. Other work [16, 7] uses the spectral norm to formulate an upper bound on the largest
singular value of the closed-loop transfer matrix to guarantee robust stability of a

multivariable control system under parameter variation. Allowable perturbations are discussed
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in [87, 90] for maintaining stability of uncertain systems. These results are concerned only
with stability robustness; they do not deal with robustness of system performance. Robustness
results which do address the performance problem are found in references [29, 30] and a
design criterion has been developed to simultaneously consider the performance and the

stability robustness of a multivariable feedback system in reference [78].

5.1 Low Eigenvalue Sensitivity

Eigenvalues sensitivity problems have been addressed by many researchers. The selection
of the closed-loop eigenvalues is always a tough problem for control engineers, uncertainties
are inevitable and always exist in the system models, the eigenvalues would only be assigned
within certain specified regions rather that the exact locations. Thus the problem eigenvalues
assignment robustness is to decide whether the eigenvalues, both perturbed or not, can be
placed in some specified regions [33]. Pole assignment with minimal eigenvalue sensitivities,
given in [61] and T.R.Crossley [8], relate changes in the eigenvalues to changes in the
elements of matrix A. In 1990 Chang derived a criterion for the selection of closed-loop
eigenvalues such that the resulting closed-loop system has low sensitivity to the variation of
feedback gain [4]. In the case of more than one input m >1, many authors [62, 15, 36] have

investigated ways made available by degrees of freedom to achieve low sensitivity of the

closed-loop eigenvalues to perturbation in A Band K (whereAe R™",BeR™™ and

K e R™"is feedback gain matrix). Different algorithms are proposed in [74] for the robust
pole assignment problem, these algorithms are based on the fact that the sensitivity of the
eigenvalues of a nondefective® matrix to perturbations in its entries is directly related to the

condition number of the associated eigenvector matrix.

In situations when an ill-conditioned system is considered, some of the eigenvalues may
be very sensitive. The results may then yield large variations for only small uncertainties in

the data. The condition of an eigenvalue Ais derived [27] using the right eigenvector

V of Acorresponding to eigenvalue 4 and corresponding left eigenvector T of AT e,

AV = AV, TTA=ATT

! Nondefective: a matrix M € ™" be a non-definite matrix if its Jordan matrix is diagonal [71]
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with |V =|T|=1 and the subscript T denotes the transpose.

Let us examine how the eigenvalue is affected when a matrix A is perturbed.

Consider the eigenvalues A(&) and eigenvectors V (¢) of (A+ &F) as functions of &

(A+&F)V(e) = eV (¢) (5.1)
By differentiating (5.1) with respect to ¢ and setting ¢ = 0, we obtain

AV (0) + FV = A(0)V + AV (0) (5.2)
Applying TT to both sides of (5.2) and solving for A(0) gives

TTRV
TV

A(0) = (5.3)

The absolute value of the factor % is known as the condition of the eigenvalue 4 [3].

If perturbations on the order ¢ are made to A, then an eigenvalue A may be perturbed by an
amount proportional to the condition value, thus if the condition value is large, the eigenvalue
Ais regarded as being ill-conditioned and will have a large sensitivity to changes inA.

Additional analytical formulas for eigenvalues perturbation theory are derived in [22].
5.2 Low Eigenvalue Sensitivity Using Eigenstructure Assignment

In order to achieve low eigenvalue sensitivity of closed loop system using eigenstructure
assignment, a measure of eigenvalue sensitivity is defined in terms of the closed-loop
eigenvectors. By noting the freedom in eigenvector selection, beyond eigenvalues assignment,
in multi-input controllable state feedback systems, many algorithms have been proposed to
select eigenvectors to improve system robustness. S. Srinathkumar [73] developed design
procedures to select both eigenvalues and eigenvectors to improve system robustness.

Three problems of eigenstructure assignment [left, right and simultaneous left and right
eigenstructure assignment] in multivariable linear systems via output feedback have been
proposed by G.R Duan [17], complete parametric expressions for both the closed-loop
eigenvector matrices and the output feedback gain matrix are established in terms of some

parameters vectors representing the design degrees of freedom which are used to minimize the
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condition number of the closed-loop eigenvector matrix for the purpose of obtaining a

solution which gives minimum closed-loop eigenvalues sensitivities.

Liu and Patton [47] introduced some performance functions which measure sensitivity of the

closed- loop matrix and robustness performance of the closed-loop systems.
5.2.1 Individual Eigenvalue Sensitivity

A measure of individual eigenvalue sensitivities which is particularly well known is found
by computing a certain function of the closed-loop right and left eigenvectors [55].
The sensitivity of the i-th eigenvalue of a closed-loop matrix A to perturbations in some or all
of its elements is given by the expression [82]:

IRill, Ll
LIR,

7i(R,L) =

2
where R;and L;are the right and left eigenvectors of the closed-loop matrix A, respectively,
and L=R™" ,7(R,L)<1for i=12,...,n

Thus, a proper measure « of individual sensitivities of the closed-loop matrix is given by

Patton, Liu and Chen [56] and [18]

u=max{n; },i=12,..,n
The following quantity is a sensitivity measure of the eigenvalue of the closed-loop matrix A:

Y7,
by

7n

where n is the dimension of the matrix A[18].

If perturbations of ordero(g)occur in the elements of the matrix closed-loop A, the

eigenvalues of the perturbed matrix will satisfy [82]
Ji = 4 +o(nn;e)

where n is the dimension of the closed-loop matrix A. It is clear that the small eigenvalue

sensitivity #; (R, L) will produce relatively small changes in eigenvalue positions if the
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elements of A are perturbed. An eigenvalue is said to be perfectly conditioned if 7;is equal to

unity since it gives the smallest change in the eigenvalue position [55].
5.2.2 Overall Eigenvalue Sensitivity

An overall measure of eigenvalue sensitivity can be derived in terms of the closed-loop
right (or left) eigenvectors only [55]
The overall eigenvalue sensitivity of the closed-loop matrix A is defined as [82]

7R =Rl R,
where R is the right eigenvector matrix of the closed-loop matrix A.
Patton, Liu and Patel [57] define the whole sensitivity function of the closed-loop matrix A as

7= Rl |L,

Suppose that the right eigenvector matrix R is unitary, i.e., RTR=1. Then n(R) =1. This

indicates that if R is a unitary matrix then the corresponding eigenvalues are perfectly

conditioned and hence minimally sensitive to perturbations or parameter variations.
5.3 System Sensitivity and Robustness using State Feedback
5.3.1 Condition Number

Definition 5.1: [77]
Condition number of a computational problem:

Let Abe data and f(A) be the result of a computational problem. Let AAbe the variation of
data Aand Af be the corresponding variation of result f (A) due to AAsuch that

f(A+AA) = f(A) +Af
Then the condition number y(f)of the computational problem f(A)is defined by the
following inequality:

At ] < 2CEaal/Al (5.4)
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Therefore, y(f) is the relative sensitivity of problem f with respect to the relative variation
of data A. A small y(f) implies low sensitivity of problem f , which is then called a well-
conditioned problem. On the other hand, a large x(f)implies high sensitivity of the problem

f, which is then called an ill-conditioned problem [82].

Matrix eigenvalue sensitivity analysis [82], reveals that the condition number of the

matrix A defined by

1< 7(A) :||A||2HA_1H2 <o

represents eigensystem robustness, where ||A[, is the Euclidean norm of the matrix. Thus, a

system tends to be sensitive to parameter perturbation if y(A) is large.

It is well known that minimizing the closed-loop eigenvector matrix condition number

7 (A) results in minimizing an upper bound on the closed-loop eigenvalue deviation due to
system parameter variations [35, 32] as
51 < 2V

where o4 is the eigenvalue deviation from its nominal value, E is a perturbation matrix and

x (V) is the condition number defined [31] as:

7= W)=V

With F refers to the Frobinious norm.

A minimization of the condition number y.(V)=1 is obtained when the eigenvectors are

orthonormal which indicates that one can either minimize the system condition number or

adjust the closed-loop eigenvectors to become as orthogonal as possible.
5.3.2 Robust Performance
Robust performance is defined as the low sensitivity of a system performance with respect

to system model uncertainty and terminal disturbance.

Any real square matrix A can have the eigenstructure decomposition [77] as
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A=VAV !
(5.5)
=T IAT
where AV =VA
and
TA=AT

where V and T are right and left eigenvector matrix of matrix A, respectively, and

A =diag{A;,A,,..,A,}is a Jordan form matrix , whose diagonal matrix blocks
Aj,i=12,...,n are called Jordan blocks.
From (5.5)
VAV = A
Therefore, if A becomes A+ AA, then
VIA+AAN =A+V LAV = A+ AA (5.6)
Using the inequality used in the definition 5.1 we will have

JAaf <V vt fan = 2v) [l (5.7.3)

Inequality (5.7.a) indicates that the condition number y(V)of eigenvector matrix V can

decide the magnitude of [AA.

Based on (5.6), a result using x(V) to indicate the variation of eigenvalues was derived in
Wilkinson [82]:
min{2; —A'i|}= min{a4 [} < 2 (V)[4 (5.7.b)
Where 4;,i=12,...,nand A';are an eigenvalue of matrices A and (A + AA), respectively,
Because the left-hand side of (5.7.b) takes the minimum of the difference A, between the
eigenvalues of Aand(A+ AA), the upper bound on the right-hand side of (5.7.b) does not
apply to other A4; ’s.

From (5.7), it is reasonable to use the condition number of eigenvector matrix V of the

matrix A, y(V), to measure the sensitivity of all eigenvalues (A ) of matrix A,s(A).

In other words, we define

s(A) = 2v) = V| v (5.8)
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Even though s(A)is not an accurate measure of the variation (sensitivity) of each individual
eigenvalues. The advantage of this measure is that it is valid for large [AA] [82].

In order to obtain a more accurate measure of the sensitivity of individual eigenvalues,

first order perturbation analysis is applied and the following result is obtained under the

assumption of small [|AA| [82].

Theorem 5.1: [55]

Let A4;,v;and t; be the i-th eigenvalue, right and left eigenvectors of matrix A,
respectively (i =12,...,n). Let 4; + A4 be the i-th eigenvalue of matrix A+ AA, (i =12,...,n) .
Then for small enough||AA],

Az <]l Vil |AA] =s(a)|AA i=12,..,n (5.9)

Proof: see [55]

This theorem shows clearly that the sensitivity of an eigenvalue is determined by its

corresponding left and right eigenvectors.

Relative Change

To study how the eigenvalues are affected by small random perturbations matrix||AA|, the
relative change R, is computed as:

A=A (Al

R. = = i=12,..,n
© Al 4|

5.3.3 Robust Stability

Stability is the foremost system property. Therefore the sensitivity of this property, called
robust stability, with respect to system model uncertainty is also critically important.
Consequently, a generally accurate numerical measure of this sensitivity is also essential to

guide robust stability analysis and design.
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5.3.4 Existing Methods
Various robustness measures have been investigated in [81], providing upper bounds on

perturbations for maintaining the stability of the perturbed system.

Consider the following linear state space model:
Nominal system: x = Ax (5.10)
Perturbed system: x=(A+ E)x (5.11)

Where A is nx nstable matrix and E is the perturbation matrix.

For perturbed system (5.11) Lyapunov based method of deriving robustness bound measure
has been considered as well established by Patel and Toda [54]
The perturbed system (5.11) is stable if

B _on@ _

L 1<« =
x| om (P)

w (5.12)

or o (E) <
where Qis some symmetric positive-definite matrix and P is the symmetric positive-definite

matrix that satisfies the Lyapunov equation
AP+ PA=-2Q

om ()and o, (.)are the maximum and the minimum singular values of the matrix (.). u«is
the robustness measure and ||| is the Euclidean norm, A'is transpose of A.

The bound defined in (5.12) is maximum.
It is shown in [54] that the perturbed system is stable if

1

Ei| Sl (5.13)

where P is the solution of the Lyapunov equation
A'P+PA=-2I
In [80] Wang and Lin studied the robust eigenvalue assignment for systems with

parameters perturbation via matrix measures. Their analysis is based on some essential

properties of the induced norms and matrix measures to compute some robustness bounds.
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Definitions of norm, induced norm and matrix measures and detailed properties can be found
in [80, 79].

For a specific norm on C", in general, it is not always easy to obtain the explicit expression

of the induced norm as well as the matrix measure. However, corresponding to norms

o], .[#],and [e] the induced norms and matrix measures have explicit expressions as shown

in the following table:

P Norm on C" Induced normon C™" | Matrix measure on C™"
1 max|X
i ‘ J‘ max(Z‘aU ‘] maX{Re a.” +z‘aij ‘]
j i J i#]
2 X |naX(JZZK?;5) o (A2
i 2
0 max|X;
s m?X(Z\au ﬂ ”"?X[Rea" * 2f ‘J
J ji

Where x e C"and Ae C™",

Piou and Sobel [59] extend the matrix measure results of Wang and Lin [80] to compute the
robustness bounds.
Consider the linear time-invariant multivariable system described by

X(t) = Ax(t) + Bu(t)

y(t) = Cx(t)

where A, Band C are real constant matrices.

(5.14)

Suppose that the system is subject to uncertainties in the entries of A, B described by dAand

dB, respectively, where

X(t) = (A+ dA)x(t) + (B + dB)u(t)

y(t) = Cx(t)
Further, suppose that bounds are available on the absolute values of the elements of dAand
dB, that is

(5.15)

\daij\ < (@) max+i =142, 0, j=1,2,...,1
(5.16)
‘dbij‘ < (05 max 1 =120, j=12,...,m
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define dA*and dB* as the matrices obtained by replacing the entries of dAanddB by their
absolute values. Also, define A,y and By, as the matrices with entries (i) max and (bjj ) max
then

dA:dA" < Angy

(5.17)
dB:dB* < By

and where "<"is applied element by element to matrices and A, € R7"and By € RT

where ‘R is the set of non-negative numbers.

Consider the control law described by
u(t) = —Kx(t)
then X(t) = (A-BK)x(t) (5.18)

and the uncertain closed-loop system is given by
X(t) = (A—BK)x(t) + dA+dBK (5.19)

Let u;, (M) be the matrix measure defined by [80]

I +eM| -1
pip(M) = lim———F 1< p<w (5.20)
&

&0

Theorem 5.2: [59]

Suppose that closed-loop system described by (5.19) has its eigenvalues in the R region of
figure 5.1. Further, suppose that the matrix A-BKin (5.19) is non-defective. The
eigenvalues of the closed-loop system with uncertainty described by equation (5.20) will be in

R region for all uncertainty described by (5.17) if

max[ypl,,upzj<1 (5.21)
where

Hip (Amax = BmaxK +)

= 5.22
al 3y cos — wip[(A— a1 - BK)cos |- uip[(-A+ay 1 + BK) jsin ] (.22)
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|21291=0,alza1
IZZ:HZ 292,8.2 :O

where

A s-plane

Jog 12

v

-jog 12

Figure 5.1 : S-plane performance region

5.3.5 Proposed Method

The most basic criterion of system stability is that every matrix eigenvalue has a negative
real part. Hence the sensitivity of these eigenvalues with respect to system model uncertainty
should be the most direct and critical factor in measuring the sensitivity of system stability
(robust stability).

Let us compare the Routh-Hurwitz criterion of system stability, where the system
characteristic polynomial must be first computed. The sensitivity of this step of computation
can be as high as the direct computation of the eigenvalues (see Wilkinson [82]). The Routh-
Hurwitz criterion requires additional determination based on the characteristic polynomial
coefficients and on the basic stability criterion. This indirectness will reduce the accuracy of
both the stability determination and the measure of robust stability.

Compared to the above stability measure of classical control theory, the sensitivity of
eigenvalues (poles) is used to measure robust stability which has the ability to accommodate

pole assignment and thus to guarantee performance.
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There are three robust stability measures using the sensitivity of system poles. In [77] they

are called M{,M,and M;. We will analyse and compare the general accuracy of these three

measures.

Let us introduce these three measures.

5.3.5.1 The Robust Stability Measure M; [15]
Consider the multivariable linear closed-loop system which is given by
X(t) = Qx(t) (5.23)
where Q = A—BK,Qis an nxnreal matrix .
Assume that under variation in the parameters of Q, the system model is now given by
X(t) = (Q+E)x() (5.24)
where E is an nx nreal matrix which represents the model uncertainty.

The robustness problem will be the following. Let the system given by (5.23) be stable,

namely, the eigenvalues of Qare located in the open LHP, then the system is robust if under
variations in the parameters of Q, the eigenvalues of the system given by (5.24)are still in the

open LHP.

If one of the eigenvalues of Q + E, say 4,, p=12,...,n, is located on the imaginary axis,

namely, 4, = jw,, then the matrix [ja)pl -(Q+ E)J is singular, namely,

omli@pl —(Q+E)|=0 (5.25)

where for a matrix A, oy, [A] denotes the smallest singular value of a matrix A.

Since Qis nonsingular and since o, [A]= o[- A], then the condition
omlQ-jol]>om[E] Vo=0 (5.26)

is sufficient for the system given by (5.24) to be robust, and increasing o, [Q— ja)l] will

enable one to cope with larger uncertainties in the sense of (5.26), let

Mi= min oy[Q- jol] (5.27)

0<w<x
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denote the robustness measure, namely, the largest perturbation’s spectral norm for which

stability is guaranteed in the sense of (5.26).

Theorem 5.3: [35]

The stability robustness measure M is given by

Mi= min op[Q- jol ]

0<w<oo

where Q = A—BK and | denotes the nx nunit matrix.

5.3.5.2 The Robust Stability Measure M [45]

Consider the linear time-invariant multivariable system

%(t) = Ax(t) + Bu(t) (5.28)

with x e R, the state vector and u e R™the input vector ,1<m<n. We assume that

(A, B)is completely controllable, B has full rank, and we denote by K the state feedback gain

matrix
u(t) = —Kx(t) (5.29)

so that the closed-loop system is

X(t) = (A- BK)x(t) (5.30)
We introduce the set L = {4;,1,,..,4,} of desired closed-loop characteristic values, where
the system is assumed stable i.e. Re{4; }<0,i =12,...,n

We shall order the characteristic values according to their real parts as follows:

Re{}}<....<Re{l,}<Re{i,jq}=..=Re{l,} =15 <0 (5.31)

indicating that the last 1,1 <1 < n characteristic values have identical real parts. Note that A is

that minimal distance, in the complex plane, between the set L and the imaginary axis, i.e.,

]rsrll<|sr1n|Re{/’tk 1= 40 (5.32)
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Since (A, B)is completely controllable, there exist one or more matrices K, which achieve a

closed-loop pole location at L .
Given a stable closed-loop system (5.23) and perturbed system (5.24)

Definition 5.2: [45]

Stability robustness measure: we denote by p(A, B, L, K) the stability robustness measure

of the quadruple (A, B,L,K)

p(AB,LK)=supl| [E|, <af
a>0

where || is the 2-norm.

Now we define the maximal stability robustness
Corollary 5.1: [45]
Taking the supremum of both sides of (5.27) yields

pm(A B, L) = sup{min[am(Q — jol )]}
K L o

The following theorem states an upper bound for p,;, .
Theorem 5.4: [45]
The maximal stability robustness measure p,,of the triple(A,B,L), satisfies the

following upper bound:
pm(AB,L) < 4 (5.33)

Proof: see Lewkowicz [45].

It is shown that the robustness margins are given by the eigenvalues closest to the imaginary
axis [5].

The approach in [35] considers the robust stability as a part of the robustness of all
eigenvalues, J.Kaustky [35] states that Q is a normal matrix if and only if, it has a nonsingular

eigenvector’s matrix V, so that the following relations hold:

vV IQV =diag{, 4y, Ay | V) =1
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where y(V)=opm (V)/ o (V) is the condition number of the matrix V. A few algorithms for

minimizing y (V) for a given (A, B,L)are presented in [35]. The smallest y(V) is, the more

reluctant are the characteristic values of M e C™"to move as a result of a perturbation [45].

From [2], for M,E e C™" and 1<k <n, we have

A (M) + A4 (M +E)| < (V)|E,

where V is the eigenvector’s matrix of M.

It is known [35] that the stability robustness measure

(A B,L,K)> ;c/k)/) (5.34)

hence, minimization of y (V) is a desired property .

An upper bound for stability robustness measure is based on the characteristic values of
the system [45], and the maximal stability robustness as it shown in the theorem 5.4 is equal
to the smallest distance between a set L and the imaginary axis.

Using (5.34) and the theorem 5.4 then, the stability robustness measure M, is given by

M, = %0 _ for which (V) is minimized.
x\V)

5.3.5.3 The Robust Stability Measure M3
M3 is developed in the early 90’s [76, 75] and is given by

M3 = min s(2) " Re(4)} (5.35)

Let us analyze these three measures in the following.

Consider the multivariable linear time-invariant closed-loop system which is given by

%(t) = (A— BK)x(t)

_ox) (5.36)
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Assuming all its eigenvalues {1;,4,,..., 1, }are stable (Re{%;}<0,i=12,.n)and are

already assigned for guaranteed performance. The three stability robustness measures are

M, = min{o, (Q - jol)}
M, =s(A)*Re{2, ], (Re{z,}<...<|Re{a}) (5.37)
M, = min{s(2)Re(4,)}

where  s(A)is defined in (5.8)

Because opindicates the smallest possible norm of matrix variation norm for a matrix to

become singular, see the following the theorem

Theorem 5.5: [77]
If the singular values computed from a given matrix A+AA are

c120922..20,7>0 (r=n) (ris the rank of matrix A, n is the rank of the matrix
( A+ AA) then the necessary condition for the rank of the original matrix A to be less than n
(or o,of A=0)is [AA|> s, ,and the necessary condition for the rank of A to be less than
r(or o of A=0)is [AA|>s, (r=12,...,n).

Proof: see [77]

M, equals the smallest possible matrix variation norm for the matrix Q to have an unstable
and pure imaginary eigenvalue jo .

In the measure M,, the term |Re{/1n }| Is the shortest distance between the unstable region and
eigenvalues 4;. Thus, M,equals this distance divided by the sensitivity of all the eigenvalue
matrix A. The lower the sensitivity s(A), the greatest M,. In other words, M, may be
considered as the likelihood margin for A, to become unstable.

There exist several general and numerical algorithms which can compute state feedback gain
matrix K such that the value of s(A) “Lor M,is maximized, with arbitrarily assigned
eigenvalues in matrix Q [35]. However, M, seems to be less accurate in measuring the
likelihood margin for A,to become unstable, because s(A)is not an accurate measure of the

sensitivity of 4,,.
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In the definition of the measure M3, the likelihood margins for every eigenvalue to become
unstable are considered. The likelihood margin for each A;equals |Re{/1i}|divided by its
corresponding sensitivity s(4;),i =12,...,n.

Mjiand M, consider only the likelihood margin for A,to become unstable, while the

instability of any eigenvalue can cause system instability , the s(A)of M, is generally not an
accurate measure of individual eigenvalues sensitivity and is not as accurate as the sensitivity
s(4;)of A;itself in measuring the sensitivity of 4; for Vi (including i = n). Hence, Mjis

more accurate than M;and M, , and reflects the instability likelihood of all eigenvalues.

s(0) =] v > il ] =s() =1 i=12. (5.38)

M, =s(A)YRe{d, | < M3 <|Re{A, | (5.39)
From (5.38) and (5.39), if the overall eigenvalue sensitivity s(A)is at the lower possible
value (=1), then all three measures M;,i =1,2,3 will reach their common highest possible
value|Re{4, f|. A lower s(A)does not necessary imply a higher M; or Mj [35] which

implies that M, and M ;have higher accuracy thanM, .

5.4 System Sensitivity and Robustness using Compensator Design

In most practical situations, the given mathematical model (either state space or transfer
function) of the plant system is inaccurate because the parameters of practical physical system
are difficult to measure accurately. So there is a difference between the actual plant and its

mathematical model H(s).This difference is called model uncertainty and is defined as
AH (s) . Therefore, it is essential that the control systems have low sensitivity to AH(s).

Let AH(s)be the uncertainty of the overall control system H, (s), which is the closed-loop
transfer function, caused by the plant uncertainty AH(s). In single variable system, we use
relative plant system model uncertainty AH(s)/H(s)and relative closed-loop transfer
function uncertainty AH, (s)/H (s) to measure the overall control system sensitivity versus

plant system model uncertainty.
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Definition 5.2: [77]

The sensitivity of a control system H, (s)to AH(s) is defined as

_[AHg (s)/H 5)
| AH(s)/H(s) |

S(H cl (S)X H

for small enough AH(s)and AH (s)

0H e (S)H (s)

(Ha O =m0 9)

MIMO systems have transfer function matrices instead of scalar transfer functions. There are
different ways to measure the size or magnitude of a matrix, the singular value of the matrix
can be used to measure the size of a matrix. In [10] J.B.Cruz showed that, in multivariable

systems, there exists a matrix S which is defined as sensitivity matrix. And given by
S=[1+H(s)C(s)]?

The sensitivity function S is a very good indicator of closed-loop performance, both for SISO

and MIMO systems [70].

Considering the unity feedback for multivariable system shown in figure 4.4, the sensitivity
transfer function and the complementary transfer function can be represented as

S(s)=[1 +H(s)CE)]™
and
T(s)=HECE)[ +HECE)]™
These transfer functions are function of s, where (s = jw), and the singular values of these

matrices are functions of frequency. Therefore, the singular value plays an important role in
the frequency domain analysis of multivariable systems [51].

The performance of a feedback system indicates that the system performance can be
expressed in terms of the performance specifications of the sensitivity function and
complementary functions.

5.4.1 Condition Number [70]
We define the condition number of a matrix as the ratio between the maximum and minimum

singular values,
2(H)=on (H)/ on(H)
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A matrix with a large condition number is said to be ill-conditioned. If the condition number
is large then this may indicate control problem [70]:

1. A large condition number may be caused by a small value ofo,(H), which is

generally undesirable (on the other hand, a large value of o), (H) need not necessary

be a problem).

2. A large condition number does imply that the system is sensitive to unstructured input
uncertainty, but this kind of uncertainty often does not occur in practice. We therefore
cannot generally conclude that a plant with a large condition number is sensitive to

uncertainty.
5.4.2 Robust Stability

Theorem 5.5: [70, 58, 12]
Assume that the system M (s) is stable and that the perturbations A(s)are stable. Then

MA -system in figure 5.1is stable for all perturbations Asatisfying|A|_ <1ifand only if

omM(jo))<l Vo < M| <1 (5.40)

Condition (5.41) may be rewritten as
Robust stability < oy (M (jo)) oy (A(jw))<l, Vo,VA

\ 4

Figure 5.2 : MA -structure for robust stability

5.4.3 Robust Performance
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Robust performance means that the performance objective is satisfied for all possible plant in

the uncertainty set.
It says [20] that a robust performance problem is equivalent to a robust stability with

augmented uncertainty A ; as shown in figure 5.3

A 4

Ay

v
>

<
7y

A

Figure 5.3 : Robust performance versus robust stability
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Chapter 6

Proposed Approach

The contribution of this thesis is concerned with the choice of the closed-loop block poles in
multivariable systems. Given a multivariable system described by a state space equations or a
transfer function, we want to find the appropriate forms for the closed-loop block poles to be

assigned. Among the criteria used to select these forms, we have:

i.  Time response characteristics.
ii.  Robustness.

iii.  Magnitude of feedback gains.

6.1 Time Domain Specifications [39]

The transient portion of the time response is the part which goes to zero (for stable systems) as
time becomes large. Nevertheless, the transient response of a control system is necessarily
important, since both the amplitude and time duration of the transient response must be kept
within prescribed limits.
Performance criteria commonly used for the characterization of linear control systems in the
time domain are defined as follows:

i.  Maximum overshoot: Let y(t) be the unit-step response. Let Ymax denotes the maximum

value of y(t) , and y . be the steady-state of y(t), and Yy ax = Yss-
The maximum overshoot of y(t) is defined as

Maximum overshoot = Y.« — Yss

The maximum overshoot is often represented as a percentage of the final value of the

step response, that is,
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) maximum overshoot
Percent maximum overshoot = x100%

Yss

a system with large overshoot is usually undesirable

ii.  Delay time ty: is defined as the time required for the step response to reach 50 percent of
its final value.

iii.  Risetime T,: is defined as the time required for the step response to reach 10 to 90
percent of its final value.

iv.  Settling time Ts: is defined as the time required for the step response to decrease and
stay within a specified percentage (2% or 5%) of its final value or it is the smallest

value Tg such that:

|Y(t) - Yss| < 0.02ys0r 0.05ygs forall t>Tg

The four quantities just defined give a direct measure of the transient characteristics of a
control system in terms of the unit-step response. The rise time and settling time are measures
of the speed of the response, whereas the overshoot, steady state are related to the quality of the
response.

The unit step response is a measure for SISO systems, for this we have adapted its
characteristics to MIMO systems.

Maximum overshoot is the highest deviation from steady state value (which is not single in the

case of MIMO systems).

6.2 Proposed Procedure

Given a multivariable system described by the following state equation

{)’((t) = AX(t) + Bu(t)
y(t) =Cx(t)

where A, B,C are, respectively, nxn,nxm,q x n constant matrices. The feedback control law is
u(t) =—KXx(t). The given system can be converted into block controller form if it is block

controllable of index | where | =n/m is an integer. The block controller form is as follows

Xc(t) = Acxc (1) + Beu(t)
y(t) = CeXc (t)

where
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Om Im Om m
Om Om Im . . . m
T
A =| . . S Be=[0m Om - - . Inl
Om Om Om Im
-A AL A — A
Cc=[C Ciy Ci]
Using State feedback we will have
_Om Im Om Om— _Om_
Om Om Im Om
Ac —=BcKe = : - [Kcl Kea - - Kcl]
Om Om Om Im Om
A -AL A =A] LIm]
Om Im Om m
Om Om Im m
~A-Ka AL Koy —A3-Keg oo A K
Where K. =[Ky Ko . . . Kgand Kgj,i=12,...,1are mx mmatrices

Since (A; — B.K)is in block companion form, its characteristic matrix polynomial equation is
given by:

AS) =S +(A +Kg)s! ™ .+ (A + Kg)
The desired matrix polynomial constructed from desired solvents is

Aq(s) = ImsI + Ddls'_1 +...+ Dy
where Dj,i =1,2,...,] are an mx mmatrices.
By forcing A(S) = A4 (S), then the matrices K¢y, K¢o,..., K¢ are given by K¢ = Dgi — A
fori=12,..,1.

Given a set of right solvents {Ri }of Ay (s) which satisty
Ag(Ri)=1mRI + DRI+ ..+ Dggy =0, for i =12,...,1

The coefficients of the desired matrix polynomial are given by
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I TP PR P
Rl Ry R
| | | 2 2 2
[Da Dagey - - Ddl]:—[Rl RV .. R R RP..OR 6.1)
-1 pl-1 -1
_Rl RZ RI

For a set of left solvents {L; }of Ay (s) satisfies:

Ag(Li)=Lily +LDgy +... Dgj = 0py

The coefficients of the desired matrix polynomial are as follows

— _ B | B
Dy Ly
Dta-1 K
=B (6.2)
. Dfi | |_'I

where VLB is the block transpose of the left block Vandermonde matrix.
The block Vandermonde matrix is not necessary nonsingular for any choice of R;,R,,..,R|, a

necessary but not sufficient condition is that a set {Ri} for i =1,2,...,] form a complete set of

solvents.

From the same given set of desired eigenvalues, different structures of solvents can be

constructed; the well known forms are the following:

6.2.1 Diagonal Form
Given a set of ndistinct eigenvalues {/11 Ay - A }, the construction of the solvents in

diagonal form is as follows:

A4 0 .. 0
0 4 .. 0

Ri=|. . .. . (6.3.2)
0 0 n |

6.2.2 Jordan Form
If some eigenvalues are repeated, say A; with multiplicity u then the constructed solvents has

the form is
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A1 0
0 4
1
1
R, = A 0 (6.3.b)
0 4,
.0
1 0 0 A,
6.2.3 Solvents Constructed through Modal Matrices
In the case where some eigenvalues are complex conjugate pairs, i.e., 4j =0 + jo and
Ai+1 =0 — jw, the block poles are given as:
o o 0
-0 o . 0
Rl = /13
0 0 . . A
6.2.4 Companion Form
The characteristic equation constructed from a given set of n eigenvalues is
n
A =T -24)=2"+a 2"+ +a,
i=1
Two different structures of solvents can be constructed
6.2.4.1 Controllable Companion Form
0 1 0 0 |
0 0 1 0
Ri = ’
0 0 0 1
—8n —8p-1 —8p-2 —ay |
or (6.3.0)
—a; - —an_ —ap|
1 0 0 0
R = 0 1 0 0
0 0 1 0 |
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6.2.4.2 Observable Canonical Form

0 0 0 -a,

Rj = .
0 0 1 —q

or (6.3.d)

-a; 1 0 0
—dy 0 0

Rj = .

|

-a, 0 0 0

In the case of compensator design using block pole placement the proposed approach is as

follows:

Consider the unity feedback system in figure (6.1). The plant is described by a qx p proper
rational matrix.

H(s)=N(s)D™(s)

C(s) H(s)

Figure 6.1: Unity feedback for multivariable system

We want to find the compensator C(s) = D' (S)N (s) which is a p x g proper rational matrix

that achieves the desired block poles in the desired positions so that the closed- loop system

meets the different criteria stated before.

Given the coefficients matrices of the plant of N(s)and D(s),

D(s)=D,s" + Dy_iS+...+ Dy

and
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N(s)=Nps™ + Ny 8"+ + Ny
Find C(S) such that the closed-loop system is given by

Hy(8) = N($)D{ ()N (s)

or
Hg(s) = N(s)(D¢ ($)D(s) + Nc ()N (5)) " N (8)
yields
D (s)=Dc(s)D(s) + N ()N (s)
so that

Dt (s)=Ds" +Dg(npys" ' +...+ Dy
Forcing Dy (S) = Aq(s)which is the desired matrix polynomial constructed from desired
solvents that is D¢ = Dgj for i =1,2,..n
The coefficients Dyjare constructed as in (6.1) (6.2) and the solvents by the matrices described
in (6.3).
The coefficients of D (S) are found by solving the Diophantine equation using either recursive

or row searching algorithm, i.e., find the primary linearly dependent rows in Sylvester matrix.

To assess the stability robustness of the closed-loop system using state feedback, the three
following measures are proposed by Tsui [77] using the sensitivity of the eigenvalues

sayM|,M,and M3,

0<w<o

where M; = min {am (A-jol) }

M is the smallest possible matrix variation norm for the dynamic matrix to have an unstable
and pure imaginary eigenvalues

M, =s(A)'[Re{2, |, (Re{An | < ... < [Re{4 )

The term |Re {ﬂn }| is the shortest distance between the unstable region and the eigenvalues 4;,

M 5 equals this distance divided by the sensitivity of all eigenvalues matrix A or may be

considered as the likelihood margin for A, to become unstable
M3 = min {s(/ii )7 [Rely }|}

1<i<n

M 5 is defined as the likelihood margins for every eigenvalues to become unstable
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For the robust performance, the closed-loop system is subjected to small random perturbation

then the relative change of the eigenvalues is computed.

For each form used in different block poles, the step response of the closed-loop system is
plotted and the time response characteristics (Maximum overshoot, settling time, rise time and
steady state value) are computed. The robustness of the closed-loop system as well as the norm
of the state feedback gain matrix, the results are then compared to select the form of the
solvents so that the closed-loop system meet the required criteria (good robustness, small

transient response, and small feedback gain matrix).

6.3 Effect of Eigenstructure on Time Response
In this section it is shown that the feedback gain matrix K determines the eigenvectors as well
as the eigenvalues of the closed-loop plant matrix A— BK and both these quantities determine
the time response.
For the system represented by the closed-loop state equation
X =(A-BK)x=Qx (6.4)
the eigenvalue spectrum o (Q)is the set of roots of the characteristic equation which is formed
from
A= Q)= 2" +a,_ 1 A" . +ay =0 (6.5)
When all the eigenvalues of Q are distinct, the modal matrix T can be determined such that
TIQT =A (6.6)
The matrix A is a diagonal matrix in which the eigenvalues appear in the diagonal. The

eigenvectors V;j are the columns of T and satisfy the equation
[41-QNi =0 6.7)
The rows of T "' are the row vectors WiT , which are called the reciprocal or left eigenvectors

and satisfy the equation
wi [41-Q]=0 (6.8)
Thus
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wf
w;
T=[ v, . . . v] T1=] . (6.9)
Wi
Since TT ! =1 , the sets of eigenvectors Vjand reciprocal eigenvectors WiT are orthogonal, i.e.,
1 fori=j
W v = - (6.10)
0 fori=]

Solving for Q in equation (6.6) yieldsQ =TAT -1 , which can be substituted into the solution of

the state equation
t
x(t) = e9'x(0) + [e7Bu(t - r)dz (6.11)
0
Thus it is apparent that the state transition matrix e can be expressed in terms of the

eigenvectors and reciprocal eigenvectors. Using the series representation of et yields

— _l 2+2
e@ "AQ)t —1 +(Q_1AQ)'[+M+

2!
_ 2%2 . 12
=Q 1(I+At+A2;[ +.)0 (6.12)
_gleMg
In the case of distinct eigenvalues the matrix e Mhas the diagonal form
et 0
oot
el = : (6.13)

In case where the eigenvalues A;,4,,..., A are repeated with multiplicity

Hls M7 ..., Hi TESpectively,
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elit 0
ert
oAt _
1t t2/2 . . tA g -
i /11 0 01 t . . th 2y -2
O 1 . . . y' _3 )
Where Jj =| . _I | and edit =10 0 1 . th (= 3)! e it
. 1
0 0 A
100 0 1 |
ot ot
. e cos(w t) e sin(w t)
If J; :[_aw g} then edil = ¢
_eO' sin(w 1) e tcos(a) t)
Therefore from (6.13) the state transition matrix can be written as
Zv e itwf (6.14)
The output equation, when the dimension of the input U is m, is given by
k
y(t) =Y Cv; eitwl x(0) + ZZCV w JIe’i' uj(t—r)dz (6.15)

i=1 j=li=1
The transient response of the system is therefore a linear combination of n functions of the
form
vieMt,  i=12,..n (6.16)
which describe the dynamical modes of the system. From equation (6.15), the entire
eigenstructure determines the time response of the system: i.e., the eigenvalues 4;, the

associated eigenvectorsV; and the left eigenvectors w; all contribute to time response. The

T

terms Cy Vj, WiT X(0) and WiT bj are scalars and determine the magnitude of the modal

responses e 4t The ability to select vjand WI provides the potential for adjusting the

magnitude of each mode which appear in each of the outputs.

For a matrix A, in companion form, the eigenvector associated with 4; has the following form:

A 3L A}HP, i=12,..,N
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if a matrix A is in diagonal form its eigenvector is of the form

[0..010..0]

From the structure of the eigenvectors, the norm of the eigenvectors associated with the matrix

of companion form is larger than that of diagonal form, Hence the magnitude of the dynamical

At . .. . .
mode e decreases in diagonal form than is in companion form. However, as shown later, it

yields less overshoot and less settling time which gives rise to better time response.

6.4 The Effect of the Eigenvalues and the Associated Eigenvectors on the Feedback Gain
Matrix

Given a closed-loop matrix (A — BK), the purpose in applying state feedback is to assign both
closed-loop eigenvalue spectrum

o(A—BK) = {1, 45,0, Ay }
and an associated set of eigenvectors

V(A= BK) = 1{v,,V,,..,V, }
which are selected to achieve the desired time response characteristics.
The closed-loop eigenvalues and eigenvectors are related by the equation
(A-BK)v, = 4V, (6.17)

This equation can be put in the form

V.
[A-A41 B]{ '}Ofor i=1,.,n (6.18)
Where vV, is the eigenvector and

a; =Ky,

i (6.19)
In order to satisfy equation (6.18), the vector [V,T q ] must lie in the kernel or null space of
the matrix

S(4)=[A-A41 B]for i=12..n

The notation ker S(4,) s used to define the null space which contains all the vectors [V,T a; ]

for which equation (6.18) is satisfied.

Equation (6.19) can be used to form the matrix equality

[0, 9, . . . q,]=[Kv, Kv, . . . Kv,]

=K[v, v, . . . v] (6.20)
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hence

K=[a, 9 - . . q]Mv v, . . . v]'=Qv" (6.21)
If the eigenvalues of (A— BK)are specified and the associated eigenvectors are selected to

satisfy equation (6.18), then equation (6.21) specifies the required state feedback matrix K .

The selected eigenvectors must be linearly independent so that the inverse matrix V! in

equation (6.21) exists.
6.5 Sensitivity of Eigenstructure [46]

If Ais an eigenvalue of a matrix A and its associated right and left eigenvectors are V and T

respectively, it is shown that
2= Al<eT],

where A'is an eigenvalue of a slightly perturbed matrix (A+ E) with ¢ = ||E|

2 the Euclidean

norm of E. We notice that the sensitivity of A is determined by the norm of the corresponding

left eigenvector. Hence,

T|| ) is a condition number for the eigenvalue 4 .

And we have

, &
Vvl <

where V'is an eigenvector of (A+ E)and Ay an eigenvalue of A other than 4.

It is clear from above that the left eigenvector T play an important role in the sensitivity of the
eigenvalue 4 .
In multivariable system, both closed-loop eigenvalues and eigenvectors are assigned. Given a

perturbed closed-loop matrix as (A — BK) + AA, the idea is the select the norms of the left

eigenvectors of the corresponding closed-loop eigenvalues to minimize the effect of the
perturbation AA of A.

Given a closed-loop matrix

Om Im Om .. Oy
Om Om Im
A-BK=| . , .
. . A I
-Dy -Di . .. -D

Its matrix characteristic polynomial is A(A1) = Im/lI + D1/1| T+ D
The left eigenvector of A— BK is defined as
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o LAt | [QTeen]
A’ ... QT2
T= . ... . |=|" where Q" =[q;, . . . q,]
q ... q .
9 ... 09, L Q |
qi!
Ti =
(1)
I
L4 ]

The norm of the left eigenvector is given by

a ] e
qll—z o ql—2 QT(I—Z)
q . - . 0 :
aQ . - - q, Q'
Hence qi|-1

"Ti ” -

q-;”
g;

We have a latent vector is a subvector of the left eigenvector and the norm of the left
eigenvector depends on the norm of the latent vector.

We have L; :Qj_lAijwhere QJ— :[qu C qmj]Tfor j=1,2,....1 ; hence the latent vector

are related to the left solvent so the norm of the left eigenvector depends on the norm of the
solvent.

The minimal norm of the left eigenvectors is given by the minimal norm of the solvent which is
no more than the solvent in diagonal form.

6.6 The Effect of the Block Pole on the Magnitude of the State Feedback Gain Matrix

Given a multivariable system X = AX + Bu with the characteristic equation

AG)=1s' + A s T4+ A
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It is desired to find the state feedback gain matrix so that the block controllable matrix

(A. — BcK¢) has the following desired characteristic equation

Ag(s)=1s' +D; ;s +..+ D,

or
Ag(s)= 18"+ (A +Kpe)s' ™+t (A + Kge)
where
Dj = A +Kjc
or
Kic = Di — A

and we have

[Kicl =[1Pi = Al < D] + | A

Our purpose is to find the norm of the state feedback gain matrix as small as possible, since

||Ai || cannot be selected, we seek to get ”Di || minimum.
Let {Ri }be a set of right solvent of the desired matrix polynomial A 4 (S), we can write:

Aqg(8) =Q(S)(Al = Ry)

where

Q(s) =s"1Qy +5'2Q, +...+Q_,
Qp =1

hence

Ag(s)=Q(S)(A1 =R)=1Is' + D;_;s'™ +...+ D,
To get ”Di || minimum, R; must be selected so that ”Ri || 1s minimized.
Using the fact that the norm of the solvents in companion form is larger than the norm of the
solvents in diagonal form, the solvents R; must be selected in diagonal form to have the norm

of the desired closed-loop block poles D; minimum, hence the norm of the state feedback gain

matrix is minimum since we have ”Kic” < "Di || + ||A| ||
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6.7 Conclusion
i.  From the above discussions, we notice that the choice of the form of the closed-loop
block pole minimizes the norm of the state feedback gain matrix and is given, as it is
shown later, by a block pole in diagonal form.
ii.  We notice that both eigenvalues and corresponding left and right eigenvectors can be

selected to provide better time response.

iii.  The magnitude of the dynamical mode e%il decreases in diagonal form which leads to
less settling time and smaller percent overshoot.

iv.  Left eigenvector T play an important role in the sensitivity of the eigenvalue 4 .
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Chapter 7

Simulation Results

A large number of case studies are presented to test the proposed approach described in
chapter 6 using the software package MATLAB.

For multivariable state feedback, both cases n/mis an integer and n/m is not an integer
are considered.

The placement of block poles in multivariable system using either state feedback or
compensator design requires the construction of a matrix polynomial from a given a set right
or left solvents. The different right and left solvents are constructed using different canonical
forms: controllable, observable and diagonal canonical forms.

Let D¢ (s) represent the desired monic matrix polynomial,
D¢ (s) = Is' + Dflsl_l +...+ Dy
then the complete set of right solvents R; and left solvents L; satisfy, respectively, the
following matrix polynomial
Ri +DpaRl 4.4 Dy yRi + D =0,  i=12,.,l
and

Lli + Lli_lDfl +...+ Lin(|_1) + Dﬂ =0m, i =1,2,...,|

hence, the coefficient matrices of the desired matrix polynomial can be obtained by using

either:

[Dfl Dta-y - - - Df1]=—[R1I Rlz S R”Vﬁl
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D L)
D a-1) L,

or C =B
. D1 | L'I

where Vg and VLB are the right Vandermonde and the block transpose of the left

Vandermonde matrices, respectively, given in (2.23) and (2.24) mentioned in chapter 2.

To ensure the stability and the performance robustness of the block poles to be assigned

the proposed methods given in chapter 5 are used.
7.1 The Case of the Block Pole Placement using State Feedback
Case Study 1:

Consider the following open-loop system with 2-inputs and 2-outputs and the system is of

order 4 given by the following matrices:

_ 0501 —0.985 0.174 0 0.109 0.007
A_| 1683 —0575 00123 0| o _|-132.8 27.19
=| 23227 0321 -21 0| B=|_1620 —1240
0 0 10 0 0
1000
o100
C=loo1o0
0001

Hence, n=4=2x2=1Im, i.e., lis an integer, it follows that we can assign two block poles of
dimension 2x 2.

We want to design a state feedback controller such that the closed-loop system A-BK has the
following set of desired eigenvalues: —53,-54,-13.3333+14.8897i .

Since rank®, =rank[B AB]=4, i.e., the controllability matrix has full rank, the pair
(A, B)is block controllable. Therefore the pair (A, B) can be converted into multivariable

block controllable companion form (A, B;) .

The pair (A.,B.)and C_ are as follows:
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0 0 1 0
A =TAT- = 0 0 0 1
= C c —_ Ll
-48.1221 -77.2688 -0.2358 0.6516
-330.3420-530.4239 -2.1174 -2.9402

-0.1511 -0.2426 0.0001 0.0000
1 | 0.0845 0.1357 -0.1328 0.0272
and C.=CT. =
0 -0.0000 -1.6200 -1.2400
-1.6200 -1.2400 0.0000 0.0000

*103

where T, is the required similarity transformation.

The characteristic matrix polynomial of this block companion form is determined by the last
2 x4 block row

-330.3420-530.4239 -2.1174 -2.9402

Ac _{ -48.1221 -77.2688 -0.2358 0.6516 }
The state feedback gain K. is to be selected so that:

Ac —BcK¢=Ap ,

where Ap is a desired closed-loop matrix whose eigenvalues are the set of desired
eigenvalues.

7.1.1 State feedback Using Block Poles in Diagonal Form.

The desired block poles are constructed in diagonal form as

R, = [-13.3333 14.8897 } R, = { 53 0 }
-14.8897 -13.3333 0 -54
The corresponding 2 x 2 desired right denominator matrix polynomial of degree 2 is:
D¢ (s)=1s? + D15+ Dgop
where

[sz Dfl]:—[Rl2 Rzz] Vg!

h> 5 ]_ 713.0690 - 786.6613 66.4541 -14.5678
f2 =117 806.6448 713.4733 15.2197 67.2125
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Then we can have K. which given by

664.9468 - 863.9301 66.2183 -13.9162
476.3029 183.0494 13.1023 64.2723

c

Computing the state feedback gain matrix, that places the block poles of the closed-loop
system to the desired locations, in original coordinates, yields

10.5375 -0.4952 0.0004 -1.4191
1.6660 0.4220 -0.0426 -0.4274

The norm of feedback gain matrix is: |K|, =10.7773

The closed loop matrix using solvents in diagonal form will be:

-0.0002 -0.0001 0.0000 0.0000
0.1371 -0.0078 0.0001 -0.0177 %104
1.5910 -0.0279 -0.0054 -0.2829

0 0 0.0001 0

(A- BK)diagonal =

The following table summarizes the time response for this choice:

Transient Maximum Percent Settling | Rise time Steady
steady state | overshoot | overshoot time (T¢) State
Inputs | specifications | (M) (POS) (Ts) Value
(SSV )
y1 0.0835 8.5826% 0.361s 0.149s 0.0769
Yo 0.128 197.6744% | 0.308s | 0.000185s | -0.043
= y3 5.45 / 0.376s Os 0
ya -0.722 430.8824% | 0.385s 0.0104s -0.136
y1 -0.282 10.5882% | 0.277s 0.0504s -0.255
Yo 0.184 28.6713% 0.39s 0.00315s 0.143
U2 y3 1.29 ] 0.34s Os 0
ya -2.03 7.26% 0.289s 0.0599s -1.89
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Step Response

From: In(1) From: In(2)
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Figurel: Time response for diagonal form

Initial response for xo = [1;1;1;1] in diagonal Form

Response to Initial Conditions
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Figure2: Response to initial condition X,= [1;1;1;1]
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The response to initial condition of the closed-loop matrix for diagonal form is summarized in

the following table

Transient Maximum Percent Settling | Steady State Value
steady state overshoot overshoot time (SSV)
specifications (Mp) (POS) (Ts)
y1 1.2262 5.7069% 0.316s 0.00362
Yo 15.1100 12.7612% 0.324s 0.00268
y3 165.5000 49.0991% 0.299s 0.000222
ya 6.2250 5.8673% 0.382s 0.00207

7.1.1.a Robust Stability
For the study of the robustness of the system, three measures stated in the chapter 5 are
computed.

Let us compute the right and the left eigenvector of the closed-loop matrix

-0.0026 - 0.0065i -0.0026 +0.0065i 0.0018 -0.0036

0.0449-0.04631 0.0449+0.0463i -0.0827 -0.0199
0.9966 0.9966 -0.9964 0.9996

-0.0333-0.0371i -0.0333+0.0371i 0.0188 -0.0185

V =

its norm is V|, =1.9968

The norms of v;,i =1,2,3,4are equal to 1

The norm of the left eigenvector is [T, =532.4127
The norm of t;,i =12,3,4

Ita], = 254.3486, |t,||, = 254.3486 ,|t5||, =382.0304, |t,|, =93.8477

l2
The sensitivity of all the eigenvalues is

s(A) =|V||,T|,=1.0631*10° its inverse is given by s(A)™ =9.4063*10
The sensitivity of every eigenvalue is computed as follows:

s(4) =|vi ||2||ti |2,i=1234

yields
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s(4y = —13.3333+14.8897i) =|\vy |, [ty ], = 254.3486
s(4, = —13.3333-14.8897i) =|\v, |, |t2[ .= 254.3486
s(43 = —53) = V3|, |ts|,=382.0304

S(A4 = —54) = V4|, |ta ], = 93.8477

Finally we compute the stability robustness measures

Computing My = min {o(A- jol)} we have M, =0.0986
0<w<oo

Computing M, =s(A) *|Re{4, ||, (Re{4, ] <...<|Re{4,}|) we have M, =0.0125
Finally for M3 = min {s(/ii)_l IRe{2; }|} we have
I<i<n

s(4, =—13.3333+14.8897i) " x|-13.3333+14.8897i| = 0.0524
s(1y =-13.3333-14.8897i) " x|-13.3333 - 14.8897i = 0.0524
s(43 =-53) " x|-5/=0.1387
s(A4 =-54) " x|- 2| =0.5754

hence M3 =0.5754

7.1.1.b Robust Performance
The following perturbation is generated randomly using MATLAB

0.0935 0.0058 0.0139 0.0272
0.0917 0.0353 0.0203 0.0199
0.0410 0.0813 0.0199 0.0015
0.0894 0.0010 0.0604 0.0747

With |AA| =0.1933

The new closed-loop matrix, after perturbation, is:

-1.5678 -0.9282 0.1882  0.1849

1371 -77.7715 1.2465 -176.8103
15910 -278.4754 -54.1787 -2828.8
0.0894 0.001 1.0604 0.0747

(A—BK + AA)diagonal =

with eigenvalues: -12.3260 +15.6215i, -12.3260 -15.6215i, -54.7737, -54.0176 .

The relative change of the eigenvalues of the closed-loop matrix due to the perturbation is
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A = A . . . .
= ‘f‘ where J; is the eigenvalue of the closed-loop matrix and 4'j the eigenvalue of
i

the perturbed closed-loop matrix. This leads

r, =0.0623, r, = 0.0623, ry =0.0335, r, = 3.2615%10™*.

7.1.2 State Feedback Using Block Poles in Controllable Form

The desired block poles are constructed in controller form as

[ 0 1.0000} {-107 - 2862}
Rl = y R2 =

-399.4801 - 26.6666 1 0
hence
2.8590 0.0838 0.1070 0.0062 3
[sz Dfl]: *10
-0.0117 0.3996 -0.0009 0.0266
Kcis given by

K. = 2.8109 0.0065 0.1068 0.0068 %103
© 1 -0.3420 -0.1309 -0.0030 0.0237

The required feedback gain matrix in the original coordinate systems is

16.5763 -0.5718 -0.0179 -3.3109
-0.9190 0.2011 -0.0147 0.3073

The norm of feedback gain matrix is: K|, =16.9411

The closed loop matrix using solvents in controller form will be as follows:

-0.0002 -0.0001 0.0000 0.0000

0.2243 -0.0082 -0.0002 -0.0448 |

2.2487 -0.0677 -0.0049 -0.4983
0 0 0.0001 0

4
(A= BK) controliable =
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The following table summarizes the time response obtained for this choice:

Transient
Inputs steady state My POS T T, SSV
specifications
V1 -0.0557 0.798% 0.101s 0.0326s 0.0553
Yo 0 0% 0.128s 0.133s 0.0309
U
1 V3 0.0201 / 0.129s 0.171s 0
Y4 -0.581 0.335% 0.105s 0.0317s -0.579
V1 -0.63 5.86% 0.301s 0.0704s -0.596
Yo 0.917 175% 0.359s 0.00594s 0.333
Us
y3 -27.5 / 0.359s 0.0274s 0
Y4 -3.15 5.71% 0.301s 0.071s -2.98
Step Response
From: In(1) From: In(2)
5 - - - - -
]
5 “\ /// 7\‘« ///
o -10 ,\\\ /// . \\ ,//
%— \\\ ///
5 -15 ! )
yl \\ /
i | o y2 \\ /’ vyl
200 |7 o : . e
- y4 \\ // 777777 y3
251 \ I o
-30 L L L L L L L L
0 0.05 0.1 0.15 0.2 0.250 0.05 0.1 0.15 0.2 0.25
Time (sec)

Figure3: Time response for controller form
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Response to Initial Condition xo=[1;1;1;1] using Controller Form

Transient Maximum overshoot Percent Settling time | Steady State Value
steady state (Myp) overshoot (Ts) (SSV)
specifications (POS)
V1 1.1577 9.2170% 0.349s 0.00263
Yo 13.1 0% 0.187s 0.006
y3 144.7000 50.2596% 0.43s -0.255
ya 4.2400 12.4668% 0.351s 0.013
Response to Initial Conditions
100 T T T T T

//\‘ yl

r/ \\ - y2

| e y3

r‘ \\ — - —vy4

50 —," \\\
-
PR N [ o
o \ S B e
-50 1 \\\ ’\// i 1 1 1 1 1 L 1
(0] 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
Time (sec)

Figure4: Response to initial condition xo=[1;1;1;1]

7.1.2.a Robust Stability

The right eigenvector of the closed-loop is given by

0.0018 -0.0018 -0.0065-0.0076i

-0.0065 + 0.0076i
vl 0.0841 0.0842 -0.0227-0.0012i -0.0227 +0.0012i
| -0.9963 0.9963 0.9984 0.9984

0.0184 -0.0188 -0.0333-0.0372i -0.0333+0.0372i

its norm is |[\/||2 =1.9964

the norms of vj,i =1,2,3,4are equal to 1
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The norm of the left eigenvector is [T, = 3.7068*10%

The norm of tj,i =1,2,3,4 with tjare columns of the left eigenvector T

], =2.6218*10% |t, |, =2.6204*10%, |t5], =123.7316 |t, |, =123.7316
The sensitivity of all the eigenvaluesis  s(A) = |V ,[T|.= 7.4001*10%

its inverse is given by: s(A)‘1 =1.3513*10
The sensitivity of every eigenvalue is as follows:
s(4) =|vi ||2||ti |2,i=1234

yields
s(4 =-13.3333+14.8897i) = |v |, |tz ,=123.7316
s(1, = —13.3333-14.8897i) =||v, |, t2] ,=123.7316
$(A3 =-53) = |va],|ts ], = 2.6204*10*
$(A4 =-54) =|Va|,|ta],= 2.6218*10*

Now we can compute the stability robustness measures

M, =0.1848

M, =1.8018*10
we have:
s(4, =—13.3333+14.8897i) " x|-13.3333+14.8897i =0.1078
s(4, =-13.3333-14.8897i) " x|-13.3333 -14.8897i| = 0.1078
s(43 =-5) " x|-53 = 0.0020
s(44 =-2) ' x|-54) =0.0021

hence M3 =0.0020

7.1.2.b Robust Performance
The closed-loop matrix after perturbation is given by:

-2.2079 -0.9183  0.1900 0.3859
2243.2 -81.9393 -1.9493 -448.0220
22487 -676.5500 -49.3707 -4982.5
0.0894 0.001 1.0604 0.0747

(A—BK + AA) controliable =
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with eigenvalues: -59.1879, -47.8118, -13.2218 +15.6415i, -13.2218 -15.6415i

The relative change of the eigenvalues of the closed-loop matrix due to the perturbation is

.= A where /;is the eigenvalue of the closed-loop matrix and A';j the eigenvalue of

i
the perturbed closed-loop matrix. This leads
r, =0.0961,r, =0.0979,r; =0.0380 , r, =0.0380.

7.1.3 State Feedback Using Block Poles in Observable Form

The desired block poles constructed in observer form as:

0 -399.4801 -107 1
F\’1 = ’RZ =
1 -26.6666 - 2862 0

this gives

0.3973 0.0803 0.0267 0.0021 3
[sz Dfl]: *10
-0.0803 2.8612 0.0008 0.1069

Kcis given by

c

0.3492 0.0030 0.0265 0.0028 %103
-0.4106 2.3308 -0.0013 0.1040

The required feedback gain matrix in original coordinate systems is

2.0066 -0.1345 -0.0052 -0.4097
-20.3864 0.8029 -0.0664 2.1967

The norm of feedback gain matrix is: K|, =20.6216

The closed loop matrix using solvents in observer form is given by:

-0.5770 09760 01750  0.0293

837.6180 -40.2698 1.1280 -114.1392

(A= BR)obsenvable =/, Soev10t 778.0471 -92.8108  2060.1
0 0 1 0

The time response is shown in the following figure:

109



Chapter 7

Simulation Results

Step Response

From: In(1) From: In(2)
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The following table summarizes the time response obtained for the observer form:

Figure5: Time response for observer form

Transient Maximum Percent Settling Rise time Steady
steady state | overshoot | overshoot time (T¢) State
Inputs | specifications (Myp) (POS) (Ts) Value
(SSV)
y1 -0.418 5.76% 0.304s 0.0727s -0.395
Uy Yo 0.417 88.6878% 0.355s 0.197s 0.221
y3 2.29 / 0.359s Os 0
Ya -4.38 5.88% 0.302s 0.0711s -4.14
V1 -0.0753 2.14% 0.117s 0.028s -0.0737
Yo 0.238 477% 0.325s 0.000848s 0.0412
U2 V3 0.45 ] 0.184s 0s 0
ya -0.347 9.5% 0.248s 0.0245s -0.317
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Response to Initial Condition xo=[1;1;1;1] in Observer Form

Response to Initial Conditions

60
40 - o R - 5; _
20 - //// \ . - ii i
o/ij?,ffk\\ — —
20 | /,/‘ u
£ ,/ |
w0 | ]
-100 7‘1\ ,’/ .
-120 ,\‘\\ /,’/ _
_1400 : 0.05 0.1 0.15 O‘.2 O.‘25 O‘.S 0.‘35 O‘.4 O.L15 0.5
Time (sec)
Figure 6: Response to initial condition xo=[1;1;1;1]
Time response for the initial condition in case of observer form:
Transient Maximum Percent overshoot | Settling time | Steady State
steady state overshoot (POS) (Ts) Value
specifications (Mp) (SSV)
y1 1.2 20% 0.312s -0.00129
Yo 8.6590 4.4511% 0.364s 0.0209
y3 -89 33.0827% 0.238s 0.251
ya -2.7760 14.5846% 0.367s -0.0134
7.1.3.a Robust stability
The right eigenvector of the closed-loop is given by
0.0036 0.0037 -0.0034-0.0035i -0.0034+0.0035i
Ve 0.0174 0.0174 0.0808+0.0047i 0.0808 0.0047i
-0.9997 -0.9997 0.9955 0.9955
0.0185 0.0189 -0.03320.0371i-0.0332+0.0371i

its norm is |[\/||2 =1.9968
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the norms of vj,i =1,2,3,4are equal to 1
The norm of the left eigenvector is [T, = 4.0851*10*
The norm of tj,i =1,2,3,4 with t;jare columns of the left eigenvector T

tu], =2.8893%10%, |t,[, =2.8893*10",|ts], =141.3501, [t,], =141.3501.
The sensitivity of all the eigenvalues is
s(A) =|V[,[T[.= 8.1572*10" its inverse is given by: s(A) ™ =1.2259*10
The sensitivity of every eigenvalue is as follows:
s(4) =|vi ||2||ti |2,i=1234
yields
s(44 = —13.3333+14.8897i) =|\vy]), t, | ;= 141.3501
s(1, = —13.3333-14.8897i) = \v, |, [t,[ .= 141.3501
$(4g =—53) = v, |ts] .= 2.8878*10*
$(44 ==54) =|Vvy],|ta],= 2.8893*10*
Now we can compute the stability robustness measures
M, =0.1658

M, =1.6346*10™
we have
s(4 =—13.3333+14.8897i) " x|-13.3333 +14.8897i| = 0.0943
s(4, = -13.3333-14.8897i)  x|-13.3333-14.8897i| = 0.0943
s(43 = -53) " x|-53 = 0.0018
s(14 =—54) ! x|-54) = 0.0019
hence M3 = 0.0018
7.1.3.b Robust performance

The closed-loop matrix after perturbation is as follows:

-0.4835 -0.9702 0.1889 0.0565
837.7097 -40.2345 1.1483 -114.1193
-2.5255 778.1284 -92.7999  2060.1

0.0894 0.001 1.0604 0.0747

(A—BK + AA) gpservable =

its eigenvalues are: -53.3944 +14.2210i, -53.3944 -14.2210i, -13.3272 +14.7359i,
-13.3272 -14.7359i
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The relative change of the eigenvalues of the closed-loop matrix due to the perturbation is
Ai = A';

i where 4;is the eigenvalue of the closed-loop matrix and A'; the eigenvalue of

the perturbed closed-loop matrix. This leads
r, = 0.2636,r, =0.2684,r; = 0.0077, r, =0.0077.

7.1.4 Comparison of the results
Now we gather the results in the following tables to facilitate the comparison

7.1.4.1 Time response:

Diagonal Form Controller Form Observer Form
yl_MP 0.0835 -0.0557 -0.418
yl_POS 8.5826% 0.798% 5.76%
yl Ts 0.361s 0.101s 0.304s
yl Tr 0.149s 0.0326s 0.0727s
y1-SSV 0.0769 0.0553 -0.395
y2_MP 0.128 0 0.419
y2_ POS 197.6744% 0% 88.6878%
y2_Ts 0.308s 0.128s 0.355s
y2_Tr 0.000185s 0.133s 0.197s
y2-SSV 0.043 0.0309 0.221
vt y3_MP 5.45 0.0201 2.29
y3_POS / / /
y3_Ts 0.376s 0.129s 0.359s
y3_Tr Os 0.171s Os
y3_SSV 0 0 0
y4_MP -0.722 -0.581 -4.38
y4_POS 430.8824% 0.335% 5.88%
y4_Ts 0.385s 0.105s 0.302s
v4_Tr 0.0104s 0.0317s 0.0711s
y4_SSV -136 -0.579 -4.14
u2 yl_MP -0.282 -0.63 -0.0753
yl_POS 10.5882% 5.86% 2.14%
yl Ts 0.277s 0.301s 0.117s
yl Tr 0.0504s 0.0704s 0.028s
y1-SSV -0.255 -0.596 -0.0737
y2_ MP 0.184 0.917 0.238
y2_ POS 28.6713% 175% 477%
y2_Ts 0.39s 0.359s 0.325s
y2_Tr 0.00315s 0.00594s 0.000848s
y2-SSV 0.143 0.333 0.0412
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y3_MP 1.29 -27.5 0.45
y3_POS / / /

y3 Ts 0.34s 0.359s 0.184s
y3_Tr Os 0.0274s Os
y3_SSV 0 0 0
y4_MP -2.03 -3.15 -0.347
y4_POS 7.26% 5.71% 9.5%
y4 Ts 0.289s 0.301s 0.248s
y4_Tr 0.0599s 0.071s 0.0245s
y4_SSV -1.89 -2.98 -0.317

7.1.4.2 Robust Stability:

Stability Measures Diagonal Form Controllable Form | Observable Form
M1 M1 0.0986 0.1848 0.1658
M2 M2 0.0125 1.8018*10 1.6346*10 *
M31 0.0524 0.0021 0.0019
M32 0.0524 0.0020 0.0018
M3 M33 0.1387 0.1078 0.0943
M34 0.5754 0.1078 0.0943
M3 0.0524 0.0020 0.0018
7.1.4.3 Robust Performance
A - BK (A-BK)+AA Relative Change
-13.3333 +14.8897i -12.3242 +15.6225i 0.0624 0.0624
-13.3333 -14.8897i -12.3242 -15.6225i 0.0336
Diagonal Form -53.0000 -54.7785 3.0275*10™
-54,0000 -54.0163
-54,0000 -59.1879 0.0961
-53.0000 -47.8118 0.0979
Controllable Form -13.3333 +14.8897i -13.2218 +15.6415i 0.0380
-13.3333 -14.8897i -13.2218 -15.6415i 0.0380
-54.0000 -53.3944 +14.2210i 0.2636
-53.0000 -53.3944 -14.2210i 0.2684
Observable Form -13.3333 +14.8897i -13.3272 +14.7359i 0.0077
-13.3333 -14.8897i -13.3272 -14.7359i 0.0077

Finally we can make the comparison between different forms as follows:
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In this case study and following the tables given before we can say that the block pole in
controller form yields smaller percent overshoot and smaller settling time. The smallest
relative change and smallest norm of the feedback gain matrix are given by the block pole in
diagonal form. The block form giving the likelihood margin for the dominant eigenvalue and

for every eigenvalues of the closed-loop matrix to become unstable is the diagonal form.

Case Study 2
Consider the following 2-input, 5-output system of order 5 given by its matrices

[-0.1094 0.0628 0 0 0 | 0 0
1.3060 -2.1320 0.9807 0 0 0.0638 0
A= 0 15950 -3.1490 1.5470 0 ,B=]0.0838 -0.1496
0 0.0355 2.6320 -—4.2570 1.8550 0.1004 -0.2060
0 0.0023 0 0.1636 —0.1625 10.0063 —0.0128
10 0 0 O]
01000
C=/|0 0100
00010
10 0 0 0 1]
Hence n=5=2x2+1=Im+k ie, |I=2and k=1

It follows that we can assign two block poles of dimension 2 x 2 and one remaining pole.
So we can transform a given system into the block- decoupled form; we need to compute
arbitrary eigenvalues of matrix A with their corresponding left and right eigenvectors.
The eigenvalues of A are: -5.9822,-2.8408,-0.8953,-0.0143, -0.0773. This leads to
A'=-5.9822 with the corresponding right eigenvector V' and left eigenvector T'given by

[ -0.0015 ]
0.1362
V'=| -0.5326|and T'=[-0.0623 0.2801 -0.6874 0.6357 -0.2026]
0.8350
-0.0235 |

We form the matrix @ as follows

d=[B AB V]
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Since @ is nonsingular, the given system can be transformed into the following block-

decoupled form

0 0 1 0 0
0 0 0 1 0
Ac =TcAT;1=| 0.0523 -0.3917 -0.6849 -2.6039 0 |and P =-5.9822
0.0472 -0.2999 0.1869 -3.1428 0
o 0 0 0 -5.9822 |

0 0
0 0
Be=T.B=| 1 0
0 1

| 0.0228 -0.0255

and

0.0038 0.0002 0.0000 0.0000 -0.0015 |
0.0067 0.0003 0.0605 0.0037 0.1449

C.=| 0.0128 -0.0249 0.0967 -0.1641 -0.5666
0.0175 -0.0436 0.0801 -0.1833 0.8884
0.0193 -0.0521 0.0069 -0.0134 -0.0250 |

Hence the wanted structure is given which is as follows:
0 B
A = Ac1 Im, Kk and Bc:{ cl}
0k1|m P BCZ

Let construct the desired block poles with a following desired eigenvalues:
-0.2-05,-1#i,-1

7.2.1 State Feedback using Block Poles in the Diagonal Form

The desired block poles constructed in diagonal form

o _[02 0 o [l
1™ 0 -05 2711 -

The corresponding 2 x 2 desired right denominator matrix polynomial of degree 2 is
Df (S) =1s2+ Df18+ Df2
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where
[sz Dfl]: _lRlz R%J VR
this gives

b, Dl 0.2429 -05857 1.4143 -1.1714
f2 =f117101786 03929 0.8929 1.2857

The remaining closed-loop pole is to be assigned at —1.

Now we compute 2 x 4 state feedback gain matrix K;that places the block poles of
(At —BeiKcp)at Dgjand D5 .

02952 -0.9774 0.7294 -3.7753
7102258 0.0930 1.0797 -1.8571

Then we compute the 1x 4 matrix L by solving the Lyapunov equation
L(Ac1 — B Ker) = PL =B K
This yields
L =[-0.0002 -0.0042 -0.0036 -0.0065]

Next we compute a 2 x1state feedback gain matrix K, that places the eigenvalue of

P —(B¢o + LB¢1) K, at the desired closed-loop pole—-1.

0
K. =
¢ [155.8956}
Using K¢ =[Kg +Keol Kep]

Its yields

1 02952 -0.9774 0.7294 -3.7733 0
© 101982 -0.5606 0.5168 -2.8627 155.8956

Using K = KT, where T, is the similarity transformation, the required state feedback gain

matrix in the original coordinate system is given by

13.0044 -19.2565 10.8008 10.1741 4.9741
| 4.0307 28.4686 -98.8280 106.9219 -31.4029

The norm of the state feedback gain matrix is given by K|, =151.7639

The closed loop matrix using solvents in diagonal form will be as follows:
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(A- BK)diagonal =

-0.1094 0.0628
1.1143 -0.9034 0.2916 -0.6491 -0.3173
0.3512 7.4676 -18.8388 16.6899 -5.1147
0.5287 7.8334 -18.8110 16.7474 -5.1134

| 0.0327 0.4880 -1.3330 1.4681

0

0

0

-0.5958 |

The following table summarizes the time response for this choice:

Transient steady
Inputs state
P Mp POS T, T, Ssv
specifications
Y1 -0.0269 -0.7435% 21.9s 5.96s - 0.0269
Yo -0.0736 56.9% 19.5s 1.77s - 0.0469
0

Ul Y3 0.202 677% 14.7s 0.0937s 0.0261
Vs 0.257 230% 10.4s 0.244s 0.078
Vs 0.151 44.3% 23s 1.3s 0.104

0.0685 0.1460% 21.4s 0.0685
Y1 5.3s
0.181 51.3% 20.4s 1.13s 0.119

Y2

Uz
Y3 -0.223 - 621% 16.9s 4.36s 0.0428
Ya -0.313 3.1x10°% 10.6s 0.0188s - 0.00981
Vs -0.172 332% 25.8s 0.541s - 0.0398

Step Response
From: In(1) From: In(2)

0.3

Amplitude

-0.2 - vyl | | H y1 i
— 2 i
- — —y2
****** y3 1 s
-03F | T ya4| | U Y i
v ] eesmsema y4
y5
y5
-04 L L L L
0 10 20 30 0 10 20 30
Time (sec)

Figure 7: Time response for diagonal form
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Response to Initial Condition xo=[1;1;1;1;1] in Diagonal Form

Transient
steady state My POS T SSV
specifications
Y1 1 0% 22.2s 0.00345
Yo 1.831 83.10% 20.7s -0.00476
Y3 0.0235 13.2340% 16.7s -0.00554
Ya 31.2 0% 15.6s 0.000848
Y5 2.06 0% 23.9s 0.0158
Response to Initial Conditions
35
yl
- y2 |
,,,,,, y3
_______ y4 a
y5
-1 | | | | |
0 5 10 15 20 25 30
Time (sec)

Figure 8: Response to initial condition x,=[1;1;1;1;1]

7.2.1.a Robust Stability
For the study of the stability robustness of the system, let us compute the right and the left

eigenvector of the closed-loop matrix
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[ 0.4127-0.0126i 0.4127 + 0.0126i 0.4333 0.4303 -0.4251 0.4284

-0.6434 -0.6434 -0.6553 -0.6534 0.6459 -0.6493
V= 0.4313+0.0350i  0.4313-0.0350i 0.3920 0.3984 -0.4133 0.4050
| 0.1846+0.0056i  0.1846 - 0.0056i 0.1797 0.1806 -0.1876 0.1848

-0.2729+0.0008i -0.2729-0.0008i -0.2769 -0.2764 0.2723 -0.2744
0.3459+0.0025i  0.3459 - 0.0025i 0.3466 0.3467 -0.3491 0.3483

its norm is |V, = 1.8692
the norms of vj,i =12,3,45are equal to 1
The norm of the left eigenvector is |T|, =44.7178
The norm of t;,i =1,2,3,4,5
[ta] , =26.5911, [t[, = 26.5911,t3],, = 7.3349, |ts], =20.4448, |ts], =17.2025.
The sensitivity of all the eigenvalues is
s(A) =|V|,|T[.=83.5864 its inverse is given by s(A) "1 =0.0120
The sensitivity of every eigenvalue is computed as follows:
s(4i) = |vi[,[ti]2.i=12345
yields
s(Aq = —1+1i) = v, tz]| o= 26.5911
s(Ap = -1-1i) = Vo, |t2] 2= 26.5911
s(4g =-1) =|\v3| ,|ts]2=7.3349
s(24 = —0.5) =|v4|, |ta |2 = 20.4448
s(45 = -0.2) =|vs| ,|ts],=17.2025
Now we can compute the stability robustness measures

Computing My = min {o(A- jol)} we have M; =0.0611
0<w<oo

ComputingM , =s(A) *|Re{4, ||, (Re{4, ] <... <|Re{4, ) we have M, =0.0024

Finally for M3 :Jr_n_in {s(zi)‘l |Re{/1i}|} we have
<i<n
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s(4 =-1+i) 1 x|-1+i| = 0.0376

s(Ay = -1-i) " x|-1+i| = 0.0376

s(43 = -1) " x|-1=0.0581

s(A4 =-0.5) " x|~ 0.5/ = 0.0245

s(5 = -0.2) ' x|-0.2| = 0.0273
hence M3 =0.0245

7.2.1.b Robust Performance

The following perturbation is generated randomly using MATLAB is:

[ 0.0665 0.0674 0.0549 0.0701 0.0634 |

0.0365 0.0999 0.0262 0.0962 0.0803
AA=| 0.0140 0.0962 0.0597 0.0751 0.0084
0.0567 0.0059 0.0049 0.0740 0.0945
0.0823 0.0360 0.0571 0.0432 0.0916

with |AA| =0.3004

The new closed-loop matrix after perturbation is:

-0.0429 0.1302 0.0549 0.0701 0.0634]
1.3425 -2.0321 1.0069 0.0962 0.0803
(A-BK + AA)diagonal =| 0.0140 1.6912 -3.0893 1.6221 0.0084
0.0567 0.0414 2.6369 -4.1830 1.9495
0.0823 0.0383 0.0571 0.2068 -0.0709 |

its eigenvalues are: -1.4375 + 1.5326i, -1.4375 - 1.5326i, 0.3693,-0.0529, -0.7496

Computing the relative change of the eigenvalues of the closed-loop matrix due to the

A4

perturbation is r; =

‘ where /;is the eigenvalue of the closed-loop matrix and A'; the
i

eigenvalue of the perturbed closed-loop matrix.
This leads: r, =0.4874, r, =0.4874, r; = 2.8465, r, =0.8942, r; =0.2504.
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7.2.2 State Feedback using Block Poles in the Controllable Form

The desired block poles constructed in controller form

0 1 -2 -2
Ry = Ry =
-0.1 -0.7 1 0

The corresponding 2 x 2 desired right denominator matrix polynomial of degree 2 is

Df(S)=|SZ+Df1$+Df2
where
2 52|y-1
[sz Dfl]:_lRl RZJVR

this gives

by, Dyl 0.2632 -0.1053 1.9474 1.6316
f2 =171 00053 0.7579 -0.6211 0.7526

The remaining closed-loop pole is to be assigned at —1.

The computation of 2 x 4 state feedback gain matrix K, that places the block poles of

(Acg —BeiK¢g)at Djand Dyyp.

[0.3155 -0.4970 1.2624 -0.9723
171 0.0525 0.4580 -0.4342 -2.3902

Computing the 1x 4 matrix L by solving the Lyapunov equation
L(Act —BeaKe1) —PL=BoKg
This yields
L =[0.0013 -0.0027 0.0079 0.0104]

A 2x1state feedback gain matrix K, to place the eigenvalue of P — (B, + LB )Kp at the

desired closed-loop pole —1.

-162.0316
c2 = 0

Using K¢ =[Kg +Keol Keo]

This yields
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[0.0988 -0.0646 -0.0250 -2.6588 -162.0316
© 100525 0.4580 -0.4342 -2.3902 0

The required state feedback gain matrix in the original coordinate system is given by

| 58.0567 -67.3316 118.7618 -94.8833 23.8164
| 93.9378 -26.1520 6.4780 8.0414 -18.3953

The norm of the feedback gain matrix is K|, =183.1118

The closed loop matrix using solvents in controller form will be as follows:

[-0.1094 00628 0 0 0

-2.3980 2.1638 -6.5963 6.0536 -1.5195
(A= BK)controllable =| 9-1879 3.3250 -12.1321 10.7012 -4.7478
13.5223 1.4083 -7.9572 6.9258 -4.3256
| 0.8366 0.0917 -0.6653 0.8643 -0.5480

The time response for this choice is summarized in the following table:

Transient
Inputs | steady state My POS T T, SSvV
specifications
0,
V1 0.0868 0.1153% 23.2s 6.55s 0.0867
Yo 0.19 25.8278% 22.2s 0.876s 0.151
Y3 0.329 11.9048% 20.6s 3.59s 0.294
U
Y4 0.403 0.2488% 14s 4.66s 0.402
Y5 0.448 0.2237% 25s 8.46s 0.447
- - 0, -
Y1 0.0331 0.3012% 22.5s £ 7s 0.0332
Yo -0.0729 26.1246% 21.5s 0.674s -0.0578
Uy Y3 -0.176 20.5479% 18.5s 0.409s -0.146
Y4 -0.212 - 0.4695% 12.2s 0.513s -0.213
Y5 -0.239 - 0.8299% 22.5s 5.34s -0.241
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Step Response
From: In(1) From: In(2)

Amplitude

0 10 20 30 0 10 20 30
Time (sec)

Figure 9: Time response for controller form

Response to Initial Condition in Controller Form

Response to Initial Conditions
3.5 T T T

Time (sec)

Figurel0: Response to initial condition xo=[1;1;1;1;1]
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Transient
steady state My POS Ts SSV
specifications
V1 1. 0% 25.1s 0.00596
P 1.54 35.1299% 19.4s -0.00884
Y3 9.11 5.2909% 17.1s -0.0125
Ya 10.8 0% 11.4s 0.00362
Y5 5.66 0% 24.5s 0.0446

7.2.2.a Robust Stability

Computation of the right and the left eigenvector of the closed-loop matrix

[ 0.0090+0.0042i  0.0090-0.0042i -0.1269 -0.0154 -0.0405 |
-0.1947 +0.0824i -0.1947-0.0824i 0.1831 0.2190  0.2519
V= -0.7026 -0.7026 0.2599 0.7266  0.6942
-0.6684-0.0457i -0.6684+0.0457i -0.0737 0.6322 0.5233
0.0217+0.1109i 0.0217-0.1109 -0.9367 -0.1553 -0.4233 |

its norm is V|, = 1.9946

the norms of vj,i =12,3,45are equal to 1

The norm of the left eigenvector is [T}, =122.7915

The norm of tj,i =1,2,3,4,5

[ta] , =37.3812, [t,[, =37.3812, |t3]|, = 19.1699, |ts], =104.6121, t5|, =61.647.
The sensitivity of all the eigenvalues is

S(A) =|V|,[T] 2= 244.9139

its inverse is given by s(A)_1 =0.0041
The sensitivity of every eigenvalue is computed as follows:

s(4i) = |vi[,|ti]2.i=12.345

yields
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s(A = -1+1) =|v|, [ta] .= 37.3812
s(Ag = —1-1i) =|va|,|t2]2=37.3812
s(23 =-1) =|va ,[ts]2=19.1699
s(A4 = —0.5) =|va|, [ta],=104.6121
s(25 =-0.2) =|vs| ,[t5 2= 61.6470
Now we can compute the stability robustness measures
M = 0.0390

M, =8.1661x10

We have
s(4 = -1+i) " x|-1+i| =0.0268
s(Ap =—1—i) "t x|-1+i|=0.0268
s(43 = -1) "+ x|-1 =0.0096
s(44 = —0.5) "1 x|-0.5/=0.0081
s(4s =—0.2) x|~ 0.2 = 0.0104

hence M3 =0.0081

7.2.2.b Robust Performance

The new closed-loop matrix after perturbation is:

[-0.0429 0.1302 0.0549 0.0701 0.0634 ]|
-2.3615 2.2637 -65701 6.1498 -1.4392
(A=BK + AA) controliable =| 9-2019  3.4212 -12.0724 10.7763 -4.7394
135790 1.4142 -7.9523 6.9998 -4.2311
| 0.9189 0.1277 -0.6082 0.9075 -0.4564 |

its eigenvalues are: -1.6749 + 1.6971i, -1.6749 - 1.6971i, 1.0336, -0.4961 + 0.2808i
-0.4961 - 0.2808i

The relative change of the eigenvalues the closed-loop matrix due to the perturbation is given

by:
r, =0.6861,r, =0.6861,r; = 6.1679, r, =0.5769,r; =0.5616.
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7.2.3 State Feedback using Block Poles in the Observable Form

The desired block poles constructed in observer form
0 -01 -2 1

Ry = Ry =
1-07 -2 0

1.0632 -0.4947 2.4947 -0.9632
[sz Dfl]:

This yields

0.4947 -0.0421 2.0421 0.2053

The remaining closed-loop pole is to be assigned at —1.

The computation of 2 x 4 state feedback gain matrix K4 that places the block poles of

(At —BgKep)at Dgjand Dy .

| 1.1155 -0.8865 1.8098 -3.5671
171 05420 -0.3420 2.2290 -2.9375

Computing 1x 4 matrix L by solving the Lyapunov equation
L(Act —BeaKe1) —PL=BoKg
This yields
L =[0.0011 -0.0015 -0.0048 -0.0000]
A 2x1state feedback gain matrix K, to place the eigenvalue of P —(B., + LB )Kp at the

desired closed-loop pole —1.

0
K.n =
= {194.9810}
Using K¢ =[Kg +KeL Kgol
This yields

| 1.1155 -0.8865 1.8098 -3.5671 0
© 107532 -0.6389 1.2918 -2.9461 194.9810

The required state feedback gain matrix in the original coordinate system is given by

| 189.4934 -0.9360 12.0040 8.2826 5.0825
| 115.7060 50.6889 -124.3284 131.0557 -37.3606

The norm of the feedback gain matrix is K|, = 255.8213

The closed loop matrix using solvents in observer form will be as follows:
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(A - BK)observable =

[ -0.1094 0.0628 0
-10.7837 -2.0723 0.2148
1.4301 9.2565

0
-0.5284

-22.7545 20.4589

4.8103 10.5714 -24.1848 21.9089
0.2872 0.6570 -1.6670

1.7889

0
-0.3243
-6.0151
-6.3516
-0.6728 |

The time response for the observer choice is summarized in the following table as follows:

Transient
Inputs steady state Mp POS Ts T, SSv
specifications
- - 0,
V1 0.0381 0.5222% 21.7s 5.61s 10,0383
Yo -0.103 54.1916% 20s 1.47s - 0.0668
Y3 0.491 18.6% 13.5s 0.856s 0.414
Ug
Va 0.764 0.1311% 11.8s 1.23s 0.763
Y5 0.927 0.1075% 20.5s 4.43s 0.93
V1 0.0632 0.1585% 21.6s 5 415 0.0631
Yo 0.163 48.6% 20.6s 1.16s 0.11
Uy V3 -0.676 11.7355% 13.8s 0.942s -0.605
Ya -1.11 - 0.8929% 12.3s 1.35s -1.12
Vs -1.36 0.7299% 20.9s 4.69s -1.37
Step Response
From: In(1) From: In(2)

Time (sec)

Figurell: Time response for observer form
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Response to Initial Condition in Observer Form

Response to Initial Conditions

?
< _
yl
- y2 |
,,,,,, y3
- - y4
y5|
-12 | | | ! !
0 5 10 15 20 25 30
Time (sec)
Figurel2: Response to initial condition xo= [1;1;1;1;1]
Transient
steady state My POS Ts SSV
specifications
V1 1 0% 21.1s 0.00275
Yo 4.66 366% 11.1s -0.0039
Y3 11.1 1010% 8.42s 0.00545
Ya 12.3 1130% 11.2s -0.00743
Y5 6.2 520% 20.9s -0.0524

7.2.3.a Robust Stability

Computation of the right and the left eigenvector of the closed-loop matrix
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[ 0.0112-0.0012i 0.0112+0.0012i 0.0514 -0.0125 -0.0399 |
-0.1400+0.1957i -0.1400-0.1957i -0.0741 0.0775 0.5664
V =| 0.6349+0.0867i 0.6349-0.0867i 0.1065 -0.6278 -0.4416
0.7173 0.7173 -0.1408 -0.5599 -0.6553

| -0.0549-0.1181i -0.0549+0.1181i -0.9802 0.5350 0.2305 |

Wwith V|, = 1.8964
The norms of v;,i =1,2,3,4,5are equal to 1
The norm of the left eigenvector is |T |, =63.5080
The norm of t;,i =1,2,3,4,5
|ta], =35.6008, |t , =35.6008,|t3], = 23.4548, |ts|, =49.5561, |ts|., =23.1346.
The sensitivity of all the eigenvalues is
s(A) =|V|,[[T[2=120.4346 its inverse is given by s(A)™* =0.0083
The sensitivity of every eigenvalue is computed as follows:
s(4i) =|vi[,[ti]2.1 =12.3.4,5
yields
s(4y = ~1+1) = |y, |t~ 35.6008
s(Ap = —1-1i) = v, |t2] 2= 35.6008
s(23 =-1) =|va ,[ts]2= 23.4548
S(A4 = —0.5) =|Vva|, [ta] 2= 49.5561
s(45 =—0.2) = |vs |, |ts ] 2= 23.1346
Now we can compute the stability robustness measures
M = 0.0291
M, =0.0017
We have
s(4 = -1+i) " x|-1+i|=0.0281
s(Ay = -1-i) " x|-1+i|=0.0281
s(4g =-1) " x|-1 =0.0432
s(44 = 0.5) 1 x|-0.5/=0.0101
s(45 = -0.2) ' x|~ 0.2 = 0.0085

hence M3 =0.0085.
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7.2.3.b Robust Performance
The new closed-loop matrix after perturbation is:

[ -0.0429 0.1302 0.0549 0.0701 0.0634 ]|
-10.7472 -1.9724 0.2410 -0.4322 -0.2440
(A=BK + AA) gpsorvable =| 14441  9.3527 -22.6948 20.5340 -6.0067
4.8670 10.5773 -24.1799 21.9829 -6.2571
0.3695 0.6930 -1.6099 1.8321 -0.5812 |

with eigenvalues: -0.2914 + 1.7174i, -0.2914 - 1.7174i, -2.0117, -0.8401, 0.1262.

The relative change of the eigenvalues the closed-loop matrix due to the perturbation is given

by.
rn=0.7130,r, =0.7130,r; = 9.0584, r, =0.6803,r; = 1.1262.

7.2.4 Comparison of Results

7.2.4.1 Time Response:

Ul Diagonal Form Controllable Form Observable Form
yl_MP -0.0269 0.0868 -0.0381
yl_ POS - 0.7435% - 0.1153% - 0.5222%
yl Ts 21.9s 23.2s 21.7s
yl Tr 5.96s 6.55s 5.61s
y1-SSV - 0.0269 0.0867 -0.0383
y2_ MP - 0.0736 0.19 -0.103
y2_ POS 56.9% 25.8278% 54.1916%

y2_Ts 19.5s 22.2s 20s
y2_Tr 1.77s 0.876s 1.47s
y2-SSV - 0.0469 0.151 - 0.0668
y3_MP 0.202 0.329 0.491
y3_POS 677% 11.9048% 18.6%
y3_Ts 14.7s 20.6s 13.5s
y3_Tr 0.0937s 3.59s 0.856s
y3_SSV 0.0261 0.294 0.414
y4_MP 0.257 0.403 0.764
y4_POS 230% 0.2488% 0.1311%
y4 Ts 10.4s 14s 11.8s
y4_Tr 0.244s 4.66s 1.23s
y4_SSV 0.078 0.402 0.763
y5_MP 0.151 0.448 0.927
y5_POS 44.3% 0.2237% 0.1075%
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y5 Ts 23s 25s 20.5s
y5_Tr 1.3s 8.46s 4.43s

y5_SSV 0.104 0.447 0.93
yl_MP 0.0685 -0.0331 0.0632
yl_POS 0.1460% - 0.3012% 0.1585%
yl Ts 21.4s 22.5s 21.6s
yl Tr 5.3s 5.7s 5.41s
y1-SSV 0.0685 -0.0332 0.0631
y2_ MP 0.181 -0.0729 0.163

y2_ POS 51.3% 26.1246% 48.6%
y2_Ts 20.4s 21.5s 20.6s
y2_Tr 1.13s 0.674s 1.16s
y2-SSV 0.119 -0.0578 0.11
y3_MP -0.223 -0.176 -0.676
y3_POS - 621% 20.5479% 11.7355%
u2 y3 Ts 16.9s 18.5s 13.8s
y3_Tr 4.36s 0.409s 0.942s
y3_SSV 0.0428 -0.146 - 0.605
y4_MP -0.313 -0.212 -1.11
y4_POS 3.1x10°% - 0.4695% - 0.8929%
y4 Ts 10.6s 12.2s 12.3s
y4_Tr 0.0188s 0.513s 1.35s
y4_SSV - 0.00981 -0.213 -1.12
y5_MP -0.172 -0.239 -1.36
y5_POS 332% - 0.8299% 0.7299%
y5 Ts 25.8s 22.5s 20.9s
y5_Tr 0.541s 5.34s 4.69s
y5_SSV - 0.0398 -0.241 -1.37

7.2.4.2 Robust Stability

Diagonal Form | Controllable Form | Observable Form
M1 M1 0.0611 0.0390 0.0291
M2 M2 0.0024 8.1661x10™ 0.0017
M13 0.0376 0.0268 0.0281
M23 0.0376 0.0268 0.0281
M33 0.0245 0.0096 0.0432
M3 M34 0.0581 0.0081 0.0101
M35 0.0273 0.0104 0.0085
M3 0.0245 0.0081 0.0085

132



Chapter 7

Simulation Results

7.2.4.3 Robust Performance

A-BK (A-BK)+AA Relative Change
-1.0000 + 1.0000i | -1.4376 + 1.5329i 0.4874
-1.0000 - 1.0000i -1.4376 - 1.5329i 0.4874
Diagonal Form -0.2000 0.3693 2.8465
-0.5000 -0.0529 0.8943
-1.0000 -0.7496 0.2504
-1.0000 + 1.0000i | -1.6749 + 1.6971i 0.6861
-1.0000 - 1.0000i | -1.6749 - 1.6971i 0.6861
Controllable Form -0.2000 1.0336 6.1679
-1.0000 -0.4961 + 0.2808i 0.5769
-0.5000 -0.4961 - 0.2808i 0.5616
-1.0000 + 1.0000i | -0.2914 + 1.7174i 0.7130
-1.0000 - 1.0000i | -0.2914 - 1.7174i 0.7130
-0.2000 -2.0117 9.0584
Observable Form -0.5000 -0.8401 0.6803
-1.0000 0.1262 1.1262

In this example and following the tables given above the form of the block poles in

controller form yield smaller percent overshoot. The smallest relative change and smallest

norm of the feedback gain matrix are given by the block poles in diagonal form. The block

form giving the likelihood margin for the dominant eigenvalue and for every eigenvalues of

the closed-loop matrix to become unstable is the diagonal form.

7.3 The Case of Compensator Design using Block Poles Placement

Case Study 3

Consider the unity feedback shown in figure 4.4 in the chapter 4, the plant is described by the

following 2 -input strictly proper rational matrix

H(s)=N(s)D(s) :{

55-3
—-0.3s-0.7

0.2s+1] | s? +4s+5
s—5

0
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where D(s)and N(s)are assumed to be right coprime polynomial matrices.

The coefficient matrices are

5 [80] 5[40 R
o 51" "t |0 4| 2710 1

N -3 1 N = 5 02 N = 00
071 07 -5/ t7|-03 1| "2 |oo
This yields
10 4 0 50
D(s) = s2 + S+
01 0 4 0 5

5 02 -3 1
N(s) = S+
{— 03 1 } {—0.7 —5}

7.3.1 Block Poles Constructed in Diagonal Form

and

We need to find the minimal degree compensator C(s) = Dc_l(s)NC (s) that achieves the
following closed-loop right block poles in diagonal form

R_—40 R_—ll R_—O.2 0

"o -5 27 |-1 -1 7| 0 -o05

The desired matrix polynomial corresponding to the desired set of right solvents is

Df (S): Df3S3+Df2$2 + Df15+ DfO

10
where ngz{ }

5.4961 -0.9162 6.2436 -5.0391
0o 1" 27 » Dn= and

1.1872 6.2039 4.9860 6.3715

 [1.0369 -2.2905
f0 = 109497 1.7598

To obtain the row index vof H(s) the modified recursive algorithm is applied to the

Sylvester’ matrix to get v =2 which means that 3 is the number of block rows of §2
sufficient to solve the compensator equation D, (s) = D, (S)D(s) + N (s)N(s) ,given in

chapter 4.
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Applying the row searching algorithm to §2 , We obtain the following linearly dependent

rows: 9,10,13, therefore, the primary dependent rows are 9,10.

This yields:

06797 —49349 04901 -27910 41366 —04288 41366 —042881 0 0 00 Oéz_
06711 20276 06416 14750 —06332 11105 —06332 11105 0 1 0 00 0~

where C given by

B {4.1366 -0.4288

is nonsingular
-0.6332 1.1105

The computation of the minimal degree compensator yields:

s+0.2412 -1.067 0.2569s +0.1896 0.0992s — 0.5708}

D.(s) =
c(s) {0.7418 s+1.218 0.1465s +0.6858 0.957s+1.093

} and N.(s) ={
Finally the minimal degree 2 x 2 compensator is given by
C(s) = D¢ (SN (5)
The closed-loop system is given by
He () = N(s)D;l(s)NC(s) where Dy (s) = Do (S)D(s) + N (S)N(s)

The closed-loop transfer function is proper since H () is equal to 0.

Time response of the closed-loop transfer function for this choice is summarized in the

following table:

Inputs Transient
steady state My POS Ts Ty SSV
specifications
Vi <-1.3 - 7.6923% 21.3s 5.95s -1.3
U, Yo <-0.997 | -0.1003% 14.4s 2.32s - 0.997
Vi <-0.574 | -0.1742% 21.9s 7.91s -0.574
U, Yo <-2.2 - 4,5455% 10.2s 1.82s -2.2
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Step Response

From: In(1) From: In(2)

Arplitude

% 10 20 30 40 0 10 20 30 40
Time (sec)
Figure 13: Time response for diagonal form

To assess the robustness of the closed-loop transfer function, we compute first the sensitivity
function given by S =[I + H(s)C(s)]*
The smallest and the largest singular values of the closed-loop transfer function are computed
as:

e 0,(H,(s))=0.4435+0.0015i

. o, (H, (s))=0+2.2961i
The condition number of the closed-loop transfer function is given by

K(Hg (5)) = 0.0178 +5.1774i

The infinity norm of the closed-loop transfer function is computed as:||H ()|, = 2.6695

and the infinity norm of the sensitivity function is |S|  =3.6649

7.3.2 Block Poles Constructed in Controllable Form
We need to find the minimal degree compensator C(s) = Do 1(s)NC (s) that achieves the

following closed-loop right block poles in controller form

o [0 1] o [2-2] o [0 1
1701220 -9 27|11 o 27 |-01-07

The desired matrix polynomial corresponding to the desired set of right solvents is
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10 2 -1 2 =2 0 -2
D (s) = s3 + s2 + S+
0 1 6.8 9.7 8.9 19.6 2 6

To obtain the row index vof H(s) the modified recursive algorithm is applied to the

Sylvester’ matrix, we obtain v =2 means that 3 block rows of S o are sufficient to solve the
compensator equation D, (s) = D (S)D(S) + N (S)N(s).
Applying the row searching algorithm to §2 , We obtain the following linearly dependent

rows: 9, 10, 13, the primary dependent rows are 9, 10.

Then the corresponding coefficient of linear combinations:

01810 -21810 23423 —-30668 93484 —19876 —93484 -198761 0 0 00 Oz
11456 49282 —08468 49727 77156 23936 77156 23936 0 1 0 00 O[°

where C is given by

[-9.3484 -1.9876
| 7.7156  2.3936

Since C is nonsingular, the solution is given by

0.3849 -0.6497 -0.5572 -0.3612 1 0 1 O -0.3400 -0.2823 0 0 0 O
1.7193 4.1531 14424 32416 0 1 0 11.0958 13277 0 0 0 O

The computation of the minimal degree compensator yields:

s—0.3849 -0.6497 s—0.3849 —0.6497}

Dc(s) =
c(®) { 1719  s+4.153 1719  s+4.153

} and D¢ (s) = [
Finally the minimal degree 2 x 2 compensator is given by
C(s) = DcH(s)N ()

The closed-loop system is given by

Her (5) = N($)D7(5)N¢ (5) where Dy (s) = D¢ (5)D(s) + N ()N (s)

To check the properness of the closed-loop feedback we compute the following matrix

| + C(0)H (o0) must be nonsingular

In our case H () =0, hence H(S) is proper transfer matrix.
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The following table summarizes the time response of the closed-loop transfer function for this

choice:
Transient
Inputs steady state My POS T, T, SSV
specifications
1 1.04 67.4% 23.2s 1.86s 0.623
Ul Yo -1.33 1.21% 5.27s 1.4s -1.31
V1 <-3.06 - 0.3268% 24.3s 8.96s - 3.06
U 2 Yo -1.81 8.91% 16.4s 1.25s -1.66
Step Response
From: In(1) From: In(2)
1.5 T T T T T T
ffffff vyl ------yl
1 RSN ~ y2 y2 [
0_5jT******:iiii‘*’*’*‘*********: i} |
2L 4 \\ 4
25} 4 \\ d
-3 L | \\\“\‘7777 -
-3.5 L L 1 L I I I |
(o] 10 20 30 40 (6] 10 20 30 40

Time (sec)

Figure 14: Time response for controller form

To assess the robustness of the closed-loop transfer function, we compute first the sensitivity
function given by S =[I + H(s)C(s)]*

The smallest and the largest singular values of the closed-loop transfer function are given
by

o o(H¢(s)) =0+0.4433i

. o(Hg (5)) = 2.3112 + 0.0264i

The condition number of the closed-loop transfer function is given by
K(H¢ (s)) =0.0596 - 5.2139i
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The infinity norm of the closed-loop transfer function is computed as:|H (s)] , =3.4785

and the infinity norm of the sensitivity function is [S|_ = 4.2149

7.3.3 Block Poles Constructed in Observable Form
We need to find the minimal degree compensator C(s) = Do 1(s)NC (s) that achieves the
following closed-loop right block poles in observer form

0 -20 -2 1 0 -01

Ry = , Ry = , Rg=

1 -9 -2 0 1-07

The desired matrix polynomial corresponding to the desired set of right solvents is
Df (S) = Df353 + Df252 + Df15+ DfO

10 8.2331 1.9386 21.3047 -5.4261
where D3 = , Dfo = : f1= and
01 1.5997 3.4669 6.0517 1.0534

[7.5364 -2.9612
f0 =1 11433 00815

To obtain the row index vof H(s)we apply the modified recursive algorithm to the

Sylvester’ matrix and we get v =2 which means that 3 is the number of block rows of §2
sufficient to solve the compensator equation
Applying the row searching algorithm to §2 , we obtain the following linearly dependent
rows: 9,10,13, therefore, the primary dependent rows are 9,10.
This yields
{23011 —46289 39913 -42837 _05959 61406 -05959 61406 1 0 0 0 O OFZ B
10524 12949 00180 17738 07600 —15408 0.7600 -154080 1 0 0 0 O
where C given by

B {- 0.5959 6.1406

= is nonsingular.
0.7600 -1.5408

The computation of the minimal degree compensator yields:

s+2.67 0.2185 0.411s+1.67 1.638s +1.145
and Nq(s) =

D.(s) =
c(®) {0.6338 s—0.7326 0.2027s+0.812 0.1589s —0.5865

Finally the minimal degree 2 x 2 compensator is given by
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C(s) =D (s)N(5)
The closed-loop system is given by
Hei () = N(s)D 7 (s)N¢ (s) where Dy (s) = D¢ (5)D(s) + N¢ (S)N(s)

The closed-loop transfer function is proper since H («0) is equal to 0

Time response of the closed-loop transfer function for this choice is summarized in the

following table:

Transient
Inputs steady state My POS T T, SSvV
specifications
Vi <-0.853 -0.1172% 21.1s 6.6s -0.853
Uy Yo <-5.71 -0.1751% 21.6s 5.16s -5.71
Y1 -1.08 441.0% 21.4s 0.806s -0.2
U, Yo >7.45 0.1342% 19.1s 3.63s 7.45
Step Response
From: In(1) From: In(2)
8 r r r r
,,,,,, yl
y2
6 - _|
4+ |
4‘0 0 1‘0 2‘0 3;0 4‘0
Time (sec)

Figure 15: Time response for observer form

The smallest and the largest singular values of the closed-loop transfer function:
o a(H¢ (s)) =0+0.4440i
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o(Hg (s)) = 0.0270 + 2.3126i

The condition number of the closed-loop transfer function is given by
K(H (s)) =5.2091- 0.06009i

The infinity norm of the closed-loop transfer function is computed as:|H (s)] , =9.3912

and the infinity norm of the sensitivity function is S|  =8.6814

7.3.4 Comparison of the Results

7.3.4.1 Time Response:

Diagonal Form | Controllable Form | Observable Form
yl_MP <-1.3 1.04 <-0.853
yl_POS - 7.6923% 67.4% -0.1172%
yl Ts 21.3s 23.2s 21.1s

y1l Tr 11.1s 0.875s 11s
U1 yl SSV -1.3 0.623 -0.853
y2_MP <-0.997 -1.33 <-5.71
y2_POS - 0.1003% 1.21% -0.1751%
y2_Ts 14.4s 5.27s 21.6s
y2_Tr 6.64s 2.79s 12s
y2_SSV -0.997 -1.31 -5.71
yl MP <-0.574 <-3.06 -1.08
yl POS -0.1742% - 0.3268% 441.0%
yl Ts 21.9s 24.3s 21.4s
yl Tr 11.3s 11.7s 0.1s
U2 yl SSV -0.574 -3.06 -0.2
y2_MP <-2.2 -1.81 >7.45
y2_POS - 4.5455% 8.91% 0.1342%
y2_Ts 10.2s 16.4s 19.1s
y2_Tr 4.91s 2.09s 9.76s
y2_SSV -2.2 -1.66 7.45
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7.3.4.2 Robust Transfer Function

Diagonal Form | Controllable Form | Observable Form

the norm of sensitivity function

S 3.4759 4.9436 7.7616

the norm of complementary
sensitivity function T 2.4790 5.0184 6.9796

the norm of closed loop

function Hy 2.4790 5.0184 6.9796

the largest singular value of
the closed loop function 2.3089+0.0259i 0+2.3085i 0+2.2902i

the smallest singular value of
the closed loop function 0.4435+0.00151i 0.4432 0.0015+0.4436i

the condition number of the
closed loop function 5.2065+0.0406i 0+5.2082i 5.1624+0.0170i

In this example the form of the block pole in the diagonal form yields smaller percent
overshoot as well as smaller sensitivity function norm and smaller norm of the closed-loop

function. The smallest rise time is given in block pole using controller form.

7.4 Comment and Analysis

Large case studies are implemented with block pole placement using both state feedback
and compensator design to compare the different solvents forms (diagonal, controllable and
observable form). The norm of the feedback gain matrix, the sensitivity of the eigenvalues,
condition number of the closed-loop transfer function and others are computed so that the

system meet a set of criteria:
i.  Better time response characteristics.
i.  Smaller feedback gain norm.

ii.  Good robustness.

. The step response of the closed-loop system is plotted and its characteristics (settling time,

percent overshoot, rise time, steady state value) are computed.
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Comparison the results in the case of the block poles using state feedback

the form of
the block

The form of | which gives | the form of the

the block | the smallest | block which The form of
Case Studies which left gives the the form of the block The form of

gives the | eigenvector smallest left the block which gives the block

smallest norm of eigenvector which gives | the smallest | which gives
gain matrix every norm of all the shortest percent the smallest
norm eigenvalues | eigenvalues | settling time overshoot peak

Case study 1 | controllable diagonal observable / controllable | observable
Case study 2 | observable | controllable observable diagonal diagonal diag/con
Case study 3 diagonal diagonal diagonal diagonal diagonal diagonal
Case study 4 diagonal diagonal diagonal diag/con/obs | observable diagonal
Case study 5 diagonal diagonal diagonal controllable | controllable | observable
Case study 6 diagonal diagonal diagonal diagonal controllable diagonal
Case study 7 diagonal diagonal diagonal diagonal observable | controllable
Case study 8 diagonal diagonal diagonal diagonal diagonal controllable
Case study 9 diagonal diagonal diagonal diagonal diagonal diag/con
Case study 10 | diagonal diagonal diagonal diagonal diag/con diagonal
Case study 11 | diagonal diagonal diagonal diagonal diag/con/obs diagonal
Case study 12 | diagonal diagonal diagonal diag/obs controllable diagonal
Case study 13 | diagonal diagonal diagonal diag/obs diagonal diagonal
Case study 14 | diagonal diagonal diagonal diagonal con/obs controllable
Case study 15 | diagonal diagonal diagonal diagonal observable diag/obs
Case study 16 | observable | observable observable observable | controllable | observable
Case study 17 | diagonal diagonal diagonal diagonal controllable diag/con
Case study 18 | diagonal diagonal diagonal observable | controllable | observable
Case study 19 | controllable | controllable controllable con/obs observable | observable
Case study 20 | diagonal diagonal diagonal diagonal controllable diagonal
Case study 21 | observable | observable diagonal diagonal controllable | observable
Case study 22 | controllable | controllable controllable controllable | observable | controllable
Case study 23 | controllable | controllable controllable diagonal observable | controllable
Case study 24 | observable diagonal controllable diagonal diag/con diagonal
Case study 25 | diagonal diagonal diagonal diagonal controllable diag/con
Case study 26 | diagonal diagonal diagonal controllable diagonal diag/con
Case study 27 | observable diagonal diagonal / observable | observable
Case study 28 | observable | observable observable con/obs diag/con/obs | diag/con/obs
Case study 29 | controllable | observable observable diag/obs controllable | controllable
Case study 30 | diagonal controllable controllable diagonal observable diagonal
Case study 31 | controllable diagonal diagonal controllable | diag/con/obs | controllable
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the block
which gives
the block
the smallest ) )
) which gives the block
possible ] )
) the smallest | which gives | The form of
the block the block matrix
) ] ) o likelihood the smallest the block
which has which gives variation )
margin for likelihood pole which
) the smallest | the smallest | norm for the ) ] )
Case studies o o eigenvalue margin for gives the
sensitivity of | sensitivity of | closed loop o
) which is every smallest
all each matrix to ) )
] ] close to the | eigenvalues Relative
eigenvalues | eigenvalues have an ] )
imaginary to become Change
unstable and
axis to be unstable
pure
] ) unstable
imaginary
eigenvalues
Case study 1 diagonal observable diagonal observable | observable | controllable
Case study 2 | observable | controllable | controllable | observable | observable diagonal
Case study 3 diagonal diagonal diagonal diagonal diagonal diagonal
Case study 4 diagonal diagonal diagonal diagonal diagonal diagonal
Case study 5 diagonal diagonal controllable diagonal diagonal controllable
Case study 6 diagonal diagonal diagonal diagonal diagonal obs/diag
Case study 7 diagonal diagonal diagonal diagonal diagonal diagonal
Case study 8 diagonal diagonal controllable diagonal diagonal diagonal
Case study 9 diagonal diagonal diagonal diagonal diagonal diagonal
Case study 10 diagonal diagonal diagonal diagonal diagonal diagonal
Case study 11 diagonal diagonal diagonal diagonal diagonal controllable
Case study 12 diagonal diagonal diagonal diagonal diagonal diagonal
Case study 13 diagonal diagonal diagonal diagonal diagonal diagonal
Case study 14 diagonal diagonal diagonal diagonal diagonal diagonal
Case study 15 diagonal diagonal controllable diagonal diagonal controllable
Case study 16 | observable observable | observable | observable | observable | observable
Case study 17 diagonal diagonal diagonal diagonal diagonal controllable
Case study 18 diagonal diagonal diagonal diagonal observable diagonal
Case study 19 | controllable | controllable | controllable | controllable | controllable | controllable
Case study 20 diagonal diagonal diagonal diagonal diagonal diagonal
Case study 21 diagonal observable | observable diagonal observable | observable
Case study 22 | controllable | controllable | controllable | controllable | controllable | controllable
Case study 23 | controllable | controllable | controllable | controllable | controllable diagonal
Case study 24 | controllable diagonal observable | controllable diagonal observable
Case study 25 diagonal diagonal diagonal diagonal diagonal observable
Case study 26 diagonal diagonal diagonal diagonal diagonal observable
Case study 27 diagonal diagonal diagonal diagonal diagonal observable
Case study 28 | observable | controllable | observable | observable | observable obs/con
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Case study 29 | observable | controllable | observable | observable | controllable | controllable
Case study 30 diagonal diagonal diagonal diagonal diagonal Diagonal
Case study 31 diagonal diagonal controllable diagonal diagonal con/diag
Comparison in the case of the block poles using compensator design
the block the block
the block ) ) the block ) ) the block
the block ) ) the block which gives ) ) which gives ) )
) ] which gives ) ] which gives which gives
) which gives which gives | the smallest the smallest
Case studies the smallest the smallest the smallest
the shortest the smallest | norm of the N norm of ]
o percent condition . singular
settling time peak closed loop sensitivity
overshoot ] number ] value larger
function function
Case study A diagonal obs/con diagonal diagonal diagonal Diagonal diagonal
Case study B | observable diag/con controllable | controllable diagonal Controllable | controllable
Case study C diag/con observable diagonal diagonal diagonal Controllable diagonal
Case study D | controllable | controllable | controllable | controllable | observable | Controllable | observable
Case study E | observable diagonal diagonal diagonal Controllable Diagonal diagonal
Case study F | observable obs/con diag/con diagonal controllable Diagonal Observable
Case study G diagonal observable obs/diag observable diagonal Observable | Controllable
Case study H diagonal obs/diag diagonal diagonal diagonal Diagonal Diagonal
Case study | | controllable | controllable diagonal observable diagonal Observable Diagonal
Case study J diagonal diagonal observable | observable | controllable Diagonal Controllable
Case study K | observable diagonal diagonal diagonal diagonal Observable | Observable
Case study L | observable | controllable diagonal diagonal controllable / Observable
Case study M con/obs observable diag/con controllable | controllable | Controllable | Controllable

Now we are in a position to analyze and comment the results:

i.  The diagonal form for the block poles yields the smallest norm feedback gain matrix.

better robustness (lower eigenvalue sensitivity).

The diagonal form yields shorter settling time

insensitive to uncertainty model or parameters variation).
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vi.  The diagonal form yields smaller sensitivity of every eigenvalues (every eigenvalues

has low sensitivity).

vii.  The block pole using diagonal form yields smaller matrix variation norm for the

closed loop matrix to have an unstable and pure imaginary eigenvalues.

viii. ~ The diagonal form for block poles yields smaller likelihood margin for eigenvalues

which are close to the imaginary axis to be unstable.

ix.  The block poles in diagonal form yields smaller likelihood margin for every

eigenvalues to become unstable.

As concluding remark; using the block poles in diagonal form to assign the desired
eigenvalues makes the system robustly stable; since the three robust stability measures are
maximized and all eigenvalues has the smallest likelihood margin to become unstable this
means that the eigenvalues stay stable under model uncertainty or parameter variations.
The block poles assigned using diagonal form yields smaller feedback gain matrix which
is crucial for the system and the diagonal form improves the quickness of the system

transient response.

Compensator design case

The proposed method using the design of compensators for block pole placement allows the
computation of the proper and minimal degree compensator.

With same set of poles we construct different block poles using different forms (diagonal,
controllable and observable). To choose the best block pole we studied their effect on the
degree of the compensator and time transient response and the robustness of the closed loop
system.

After comparison, we will have:

i.  The block pole in observer form yields shorter settling time.
i.  The block pole in controller form yields smallest percent overshoot.

iii.  The block pole in diagonal form yields smaller higher peak.
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Vi.

vii.

The block pole in diagonal form yields smaller norm of closed loop transfer function.
The block pole in diagonal form yields smaller condition number.

The block pole in diagonal form yields larger smallest singular value.

The block pole in diagonal form yields smaller norm of the sensitivity function
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General Conclusion

In multivariable system, state feedback design and compensator design may be achieved using
block pole assignment. The construction of these block poles is not unique for a given set of
desired poles. This nonuniqueness is used in our work by constructing three different
canonical forms (diagonal, controller and observer) for the solvents to achieve stability and
better performance of the system. The solvents determine the behavior of the multivariable
system as shown in our thesis.

The purpose of our work is to choose a block pole form, constructed using the desired poles,
that achieves small settling time, small percent overshoot i.e., better time response, and less
sensitive to parameter variations and maintains the stability under perturbation which always
exist in the system and are inevitable.

Through the comparative study that we have made, block pole constructed using diagonal
form gives the smallest norm of feedback gain matrix which is crucial for the system.

The faster the transient response, the better (higher) is the performance of the closed-loop
system. Comparative study shows that smallest settling time and smallest time for the system
to reach 50% of its final value are given by the block poles in diagonal form.

Because the eigenvalues of the closed-loop matrix determine directly the stability of the
system, it is obvious that the sensitivities of these eigenvalues most directly determine a

system’s robust stability. Our work is based on a result of numerical linear algebra that the
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sensitivity of the eigenvalues is determined by their corresponding eigenvectors. Using block
poles in diagonal form yields less sensitive eigenvalue. We used the condition number of
eigenvector of the closed-loop matrix to measure the sensitivity of all eigenvalues; the
smallest condition number is given for block pole in diagonal form.

The norm of the left eigenvector plays a role in the sensitivity of the corresponding eigenvalue
as it is shown in this thesis.

Robust stability measures are applied in our case studies to evaluate the sensitivity of the
eigenvalues used to guarantee both stability and performance of the system. Using solvents in
diagonal form the closed-loop system is low sensitive to parameter variations.

In the case of block pole placement using compensator design, the infinity norm is used to
assess the robustness of the unity feedback design. The infinity norm used is related to the
robustness improvement and sensitivity reduction. In our work the smallest infinity norm of
the closed-loop transfer function is given by block poles in diagonal form.

The sensitivity function and complementary sensitivity function express important properties
of a feedback design as response of the output to disturbances and response to noise, the block
pole in diagonal form vyields smaller infinity norm of the sensitivity function and
complementary sensitivity function.

In light of the results obtained and illustrated in the simulation study, it is observed that the
block poles in diagonal form constructed from a set of desired poles yield robust closed-loop
system with low sensitivity to parameter variations, better closed-loop time response and
small state feedback gain.

Using the diagonal form improves the system’s performance and robustness of the system.

As further studies we may suggest the following problems:
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I.  More investigations of other additional robust stability measures in order to
improve the results obtained in this thesis.

Il.  Profound investigations of stability robustness and performance robustness with
respect to structured or unstructured uncertainties and additive or multiplicative
perturbations in the case of unity feedback design.

I1l.  Study the sensitivity of the zeros of a closed-loop system.
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Appendix A

The Recursive Algorithm

Given a set of n-dimensional rows T;,T,,..., Ty, an nxn matrix P(k) is determined
recursively for k =1,2,....m
1. initialize P(0) =1, (nxn identity matrix)

2. for k=12,.m do

if T P(k—1)T. #0, then

Pk-7 JPec-n1 ]
Te P(k —1)T£

P(k)=P(k-1) -

and T, is linearly independent of the previous rows
else P(k) =P(k-1)

and T, is linearly dependent.

Proof: see Yaissi [75]

The coefficients of combination of the j —th linearly dependent row on its previous j-1

rows can be computed by solving an equation of the type xA =bh.
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Appendix B

Computing the Coefficient of the Combination using Row-Searching Algorithm [2]

In the row searching algorithm the idea is to search for linearly independent rows using
elementary operations.

Consider the nxn matrix A= (a;;)
1- Choose a pivot as a nonzero element in the first row of A, say ay

2 — Construct the matrix K, as

1 00 .0
e, 1 0 .0
K,=|e, 01 .0

with e, =—-a, /a, 1=12,..,n then the k —th column , except the first element of

KiA= (ailj) is a zero column , where a; =a; +e;,a,,

3- Let a;; be any nonzero element in the second row of KA .Let K be of the form

1 0 0.0

1 0.0

K,={0 e, 1 0
0 e, O . 1]

with e, =-a%j/a’2j i =12,..,n, then the j—th column, except the first element of
K,oKA= (aﬁ) is a zero column , where a; =a'j +e;,a'";

4- If there is no nonzero element in a row , we assign K; as a unit matrix and then proceed to

the next row .
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5- The process is carried to the last row , and finally we obtain
KniKnz... KoKiA=KA= A
The number of nonzero rows in A gives the rank of A .If the j—th row of A is a zero row,
then the j—th row of A is linearly dependent of its previous rows. The coefficients of the
combination
[bjl b, . Dy by O OJA: 0
withbj; =1, is just the j—th row of K.

The matrix K can be computed using the following procedure:

1- We store the i-th column of K; in the i-th column of

1 0 0O .0
& 1 0 .0
F = e31 932 1 . 0

_enl en2 en3 1

2- The j-th row of K is computed using the first j-rows of F as follows:

bj; =1
_e(k+l)k—
€k+2)k

bJ'k:[bj(k+1) Diksoy - - - bjj]
L Gk

j . -
- ijpepk k=j-1j-2..1
p=k+1
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