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INTRODUCTION

In many applications, engineers and scientists are faced

with the problem of measuring a quantity to predict a physical

Phenomenon, control a specified mechanism, or infer a quantity

which is not directly measurable. In these cases, a filter or

an estimator is built to remove unwanted information which may

be deterministic or random. If the measured signal varies

extraneously and is not repeatable, then it is called a random

signal. In this case, an estimator must be built to extract

useful information. In contrast to filters which are built to

remove deterministic disturbances, scientists are, in general,

concerned with the development of signal-processing techniques

to extract pertinent signal information from random signals

using prior useful information. This is known as the construc

tion of an estimator. The estimation problem can be thought of

as a procedure which consists of two main parts:

(1)_ Choice of the family model,



(2)_ Selection of the best element according to a criterion

function.

The most popular criterion function in signal extraction is

the minimisation of the mean squared error of the estimator.

Models represent a broad class of information formalizing the

apriori knowledge about the process generating the signal and

noise characterization. A popular family of models is that of

an observed signal with an additive noise:

Measurement = signal + noise

where the noise statistics and the signal model are to be

specified.

The estimation procedure is usually chosen taking into account

relevant practical specifications and constraints. One import

ant step in the estimation procedure is the choice of the

technique used. The choice of the technique can take many

different forms depending on the model, the representation of

the solution which is seeked, and the chosen criterion func

tion. For example, one may decide, based on computational con

sideration, to calculate an estimate recursively rather than

as a result of a bath process because we require an on-line

estimate. Furthermore, one may choose a nonparametric estima

tor rather than a model-based processor because the measure

ment at hand arise from a physical phenomenon which is not

well understood so that the choice of a parametric family of

models will be difficult to justify.

Each estimation procedure must provide a measure of estimation
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quality, usually in terms of the expected estimation error

which provides a means for comparing the efficiency of differ

ent estimators.

In the present work, we are interested in the performance of a

recent parametric method of estimation known as the modified

Kalman smoother, and that of a nonparametric statistical

method of estimation known as the smoothing spline.

In chapter 2, we present a detailed derivation of the Kalman

smoother which is used to obtain an algorithm for the modified

Kalman smoother (MKS). In chapter 3, we present the smoothing

spline and the generalized cross validation technique which is

used to determine the correct degree of smoothing applied to

the measurements. In chapter 4, The comparison of the modified

Kalman smoother and the smoothing spline methods is carried

out using simulated stationary smooth random signal observed

in a noisy environment over a fixed period of time. The cri

terion used for the comparison is the average mean squared

estimation error (AMSE). Furthermore, the robustness of the

modified Kalman smoother against errors which may occur in the

identification step of the parameters will be investigated. A

new statistical test based on the bootstrap techniques is also

suggested to investigate the validity of the model used in the

construction of the modified Kalman smoother. The computa

tional complexity will also be presented. In chapter 5, a

modification of the standard smoothing spline will be

proposed. It is a new estimator based on a local smoothing
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parameter in stead of a global smoothing parameter used by the

standard smoothing spline (SS). Its properties will be illus

trated using simulated random processes. In chapter 6, con

cluding remarks are drawn and further work is proposed.
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CHAPTER LLl

THE MODIFIED KALMAN SMOOTHER

2.1 INTRODUCTION

The problem of statistical signal estimation from recorded

data has been studied for several decades. The mostly used

signal processing model is that of the signal corrupted with

an additive noise:

where s(t) is the signal, w(t) is the noise that corrupts the

signal, and z(0 is the observed measurement at time t.

The two random variables s(t) and ty(Q are not observable. The

only observed random variable is the measurements. The

measurements z(0> the models of s(f) and iy(t) are used to obtain

an estimate of the signal s(0. In the litterature, there are

two approaches for the estimation of sQt):

1)_ The transfer function approach: In this approach, estima

tors are built by estimating the parameters of the transfer

function of the assumed model of s(() •

2)_ The state space representation approach: In this approach
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a state space representation is used for modelling. In other

words, the estimation of s(0 reduces to that of the estimation

of the state vector.

The chronological improvement of the model-based processor,

known as the parametric methods, can be summarized as fol

lows :

Kolmogorov [2], Wiener [2] and kalman [2,20,26] have

reintroduced and reformulated the linear least square approach

for the estimation of the signal s(0•

For the first approach, Kolmogorov [2] studied discrete time

problems ie: the time t is assumed to be discrete. He obtains

the estimator using a recursive orthogonalisation procedure

known as the Wold decomposition. Weiner [2] studied mainly the

continuous time problem and arrived at the famous Wiener-Hopf

integral equation. The solution of this equation is difficult

to solve except in the case where the signal s(0 and the noise

w(t) are stationary processes. The equivalent of this integral

equation in the discrete case are the so-called "normal equa

tions", which can be solved by a fast algorithm given by

Levinson [6] in the case of stationary time series.

For the second approach, Kalman [20] has used a state space

representation as a model for the signal sQt) and treated the

discrete time problem. Kalman and Bucy [21] have extended the

theory to continuous time problem. A recursive estimate was

proposed by Kalman and Bucy [21] to treat the cases where the

process is generated by passing a white noise through a linear

•6-



time varying system and assuming a complete knowledge of the

system described by state space representation, and the input

and output noise covariance matrices. They approached the

estimation problem from a statistical point of view (condi

tional distributions and expectations), and they used the

concept of orthogonal projections to solve the problem. D. C.

Fraser et al [13] have considered the estimation of s(0 as a

smoothing problem. In this case all the data (measurements)

must be collected before the use of the estimation procedure.

One of the optimal smoothers is the Kalman smoother [13] which

is basically a combination of two optimum filters. The first

one is run in a forward direction and the other one is run in

a backward direction. The two filters are then combined in an

optimal manner.

Kailath and Gevers [19] solved the recursive least squares

estimation problem using the innovation process. Recently J.

Vaccaro and Fu Li [32] have made a modification to the Kalman

smoother and suggested an elegant and efficient algorithm for

the case where the signal s(0 is stationary, and it is

observed in a noisy environment. The obtained estimator is a

time-invariant Kalman smoothing estimator modified by a

data-dependent correction term involving an estimated initial

state vector.

In this chapter, we derive the Kalman filter, the Kalman

smoother and we end up with the modified Kalman smoother.
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2.2 STATE SPACE REPRESENTATION OF RANDOM SIGNALS.

Generally, we model a random signal as the output of a

dynamical system driven by a white noise. The system is called

dynamical when the output at any instant t depends not only on

the input at time t but it also depends on the prior history

of the system. One representation of dynamical systems which

enables us to take into acount the intial condition of the

system is the state space representation. Any set of variables

that summarizes the past history of the system affecting its

future behavior is said to be state variables of the system.

More, precisely, we define the state of a system at time n0 as

the information at n0, other than the input at time n0, which

is used to determine uniquely the output for n>na.

Given at time n0 a set of p state variables

*i(rc0).*2(O *P(rc0)> we can define a state vector x(n0) as

*(0-[*i(0 x2(n0) ... xp(n0)]T

The number p of state variables used in a description of a

system is called the order of the system. The vector x(n) is

called the state vector of a p-dimensional dynamical system

with a state equation of the form which is a common

representation of a p-order Markov process:

x(n+l)-i1(rc-t-l,rc)x(n) +g(nMrc) (2.2.1)

where A(n+l,n) is a pxp state transition matrix and g(n) is a

pxls input matrix. u(rc) is a sequence of zero mean l«-vector

random processes satisfying

cou(u(fc),u(n)> -£{v(k)vT(n)} -Q(n)6(n- k) (2.2.2)
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where Q(rt) is the covariance matrix of the input noise, 6 is

the Dirac function, and ls is the dimension of the input noise

vector.

The observed data vector z(n) will be assumed to have the form

z(rc)-C(rc)x(n) +u/(n) (2.2.3)

where C(n) is an lcxp matrix called the observation matrix and

w(n) denotes the noise introduced in the observation process.

w(n) is assumed to be a zero mean vector random process with

cou{io(/c), win)}-E{w(k)wT(n)} -R(n)6(n-k) (2.2.4)

where R(n) is the covariance matrix of the output noise.

The input and output noises, u(n) and w(n), are assumed to be

uncorrelated. That is:

coy(u/(*),u(n)}-0 (2.2.5)

We will assume that the initial state x(l) is a zero mean

vector random variable with

cou<x(I).x(l)}-/>(l) (2.2.6)

and it is uncorrelated with v(k) and w(n) for k.n>\.

This model is illustrated in Fig:2.1

w(vi) Sf(n)

x(n+l) xCn)

i
I

V/7Z777, Ac«-i,r,> W&

Fig:2.1 Model for the estimation
problea.
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In figure 2.1, z-> stands for a backward unit time shift oper

ator .

The problem is to find, for each n> 1, the linear minimum mean

square error estimates of the components of x(i) from the

data, {2(1) z(n)}, observed from time 1 up to the present

time n (z(l) z(rc)> with l<i<n. Therefore, this problem is a

smoothing problem.

2.3 ESTIMATION USING THE INNOVATION PROCESS [18].

Consider the space Z(n-l) of scalar random variables gener

ated by the components of the observed data (z(l) z(a-l)}.

The optimum least square estimates of the components of x(i)

from the observed data are the projections of the components

of x(i) onto the space Z(n-l). We will denote these estimates

by

*(i/n-l)-?Wi)/Z(n-l)} for i-1 rc-1 (2.3.1)

We will use the innovation process to obtain the estimates

*(i/rc- 1).

Definition 2.3.1: Assume that z(n) is a measurement vector

process. Its innovation process a(rc) is given by:

a(/i)-z(n)-*(n/n-l) (2.3.2)

where

z(n/n-l)-$(z(n)/Z(n-l)> (2.3.3)

which is the optimum least square prediction of z(n) given the

measurement data observed up through time n-1. See Fig.2.2.
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z<n)

Measurement

at tine n

+
+

«(n)

innovation

at tine n

z(n/n-l)

Fig.2.2: The innovation process

•

Since Z(n-l) is the space generated by the measurements

<*(1) z(rc-l)}. using the projection theorem we see that a(n)

is orthogonal to the space Z(/i-I). Therefore, we can easily

derive that:

£<a(n)zr(fc)}-0 for lSk<n (2.3.4)

Hence a(n) is orthogonal to Z(fc) for any k such that 1Sfc <*.

In other words, <x(n) is the new information contained in the

observation z(n). See Fig:2.3.

Fig.2.3:Orthogonal decomposition of
the neasurenent space.
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From Eq(2.3.2) it follows that a(fc) lies in the space Z(k)

which is spanned by z(y) for l</<jfc. As a result

£{a(*)aT(rc)}-0 for k+n (2.3.5)

Therefore, the innovation process <a(n)> is a sequence of

uncorrelated vector random variables.

Since the process {a(l)....,a(n)> spans the space generated by

the measurement process {z(l) z(n)} and it forms an orthogo

nal set in this space, each zero mean finite variance vector

process x(i) can be written as a sum of a linear combination of

<*(1) a(i) and a term xaat(i) describing the part of x(i) that

falls outside the space generated by z(l)....,z(n). That is:

x(Q- Ilc(*)a(A) +xwU(i)
t-i

(2.3.6)

where {£,(£)} is a set of pxlc constant matrices.

The linear least square estimate of this process based on the

measurements <z(l) z(rc)} is given by

x(i/n)-J[,(t)a(l:) for i-l,...,n

According to the projection theorem:

*(0-l£,(*)a(k)
*-'

Using Eq(2.3.5), Eq(2.3.8) reduces to

£{x(i)aT(m)> -It(m)£{a(m)ar(m)}

If we denote by V^n)- coy{a(/i).a(a)}, we obtain

I,(m)-£{x(Oar(m)>l^;1(m)

Therefore,

ar(m) >-0 for m- 1 n

•12-
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*(i/rc)- ^£{x(i)aT(fc)}l/;,(fc)a(fc) (2.3.9)

The k"1 term in the sum is the projection of x(i) onto the

subspace generated by <x(fc) .

2.4 KALMAN FILTER

We derive the Kalman filter algorithm from the innovations

view-point following the approach given by Kailath [18,19].

The Kalman filter will be, then, used for constructing an

algorithm for the Kalman smoother [13,21,22,30].

The state equation (2.2.1) can be recursively solved to yield

x(fc)-/!(fc.l)x(l)+£/!(*, i+l)g(i)u(i) for k>\ (2.4.1)
(-i

*-i

where A(k. 1) -£ /(i+ 1.Q with /<(*.*)-/„, and Ip is the identity

matrix of order p.

We notice that x(k) is a linear combination of v(l) u(fc-l)

and x(l). Since the output noise w(n) is uncorrelated with

x(l) and v(k) for n,k>\, we deduce that:

£{x(fc)ior(n)}-0 for n,k>l (2.4.2)

Therefore, according to Eq(2.2.3), the measurement z(fc) can be

expressed as a linear combination of x(l), u(l) y(Jfc-l) and

w(k).

Using Eq(2.4.2), we can derive that

£(z(*)u/T(n)}-0 for l$k<n-l (2.4.3)

so that

${w(n)/Z(k)}-0 for l<k<n-l (2.4.4)
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and

£(z(*)ur(rc)}-0 for l<k<n (2.4.5)

so that

?{w(n)/Z(*)>-0 for l<k<n (2.4.6)

Consequently, 2(n/n-l) can be expressed as:

z(n/n- 1) - $(C(n)x(n) +w(n)/Z(n- 1)}

-C(n)^{x(n)/Z(n-l)} +^{ty(n)/Z(n-l)}

-C(n)*(n/n-l) (2.4.7)

where x(a/a- 1)- $<*(/i)/Z(n- 1)> is the optimum estimate of the

vector x(n) obtained from the observed data vectors

{z(l),...,z(a- 1)> and the innovation can be written as:

a(n)-z(n)-C(n)x(rc/rc-l) (2.4.8)

substituting Eq(2.2.3) for z(n), Eq(2.4.8) becomes

a(n)-C(n)x(n/n- l) +u/(n) (2.4.9)

where

*(rc/a-l)-x(n)-x(rc/n-l) (2.4.10)

we can also deduce that

V,(n)-C(n)E{x(n/n-l)x\n/n-l)}CT(n)

+C(n)E{x(n/n-l)wT(n)}

+E{w(n)xT(n/n- 1)}CT(n)+£{u/(n)u/r(n)} (2.4.11)

The middle two terms on the right-hand side of Eq(2.4.11) are

equal to zero as a result of Eq(2.4.2) and Eq(2.4.4). The

quantity

/5(n)-£<x(rc/n-l)xT(n/rc-l)> (2.4.12)
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is the error covariance matrix for the optimum prediction of

x(n) from the data observed up to time n-1. Thus

V.(n)-C(n)P(n)CT(n) +R(n) (2.4.13)

According to Eq(2.3.9), the optimal estimate of x(n+l)

obtained from the data observed up to time n is given by:

*(n+l/n)- ££<x(rc+l)ar(A:)>lC(A:)a(A:) (2.4.14)

which can be written as

*(n*l/n)-Zf{x(n+l)aT(fc)>/;'(fc)a(*)+£{x(a+1)ar(n)}l,-.(n)a(n)

(2.4.15)

Using Eq(2.4.6) and the fact that <x(*) is in the space Z(k),
it follows that for 1<k<n

E(x(n+ l)aT (k)} - E{[A(n+\, n)x(n) +g(n)v(n)]aT (k)}

-A(n+l,n)E{x(n)aT(k)} (2.4.16)

Therefore,

•-i

]lE{x(n+\)aT(k)}V:\k)a(k)-A(in+l,n)Y.E(x(n)aT(k)}V;,(k)a(k)
*-i

-A(n+ 1,n)x(n/n- 1) (2.4.17)

We define K(n) by:

K(n)-E{x(n+\)aT(n)}V:\n) (2.4.18)

The matrix K(n) is referred to as the Kalman gain for one step
prediction.

Using Eqs(2.4.8), (2.4.15), and (2.4.17), we have:

2(n +l/n)-A(n+l,n)x(n/n-l) +K(n)[z(n)-C(;n)x(n/n-l)] (2.4.19)

-15-



The form of the solution in Eq(2.4.19) is computationally very

useful. The result of Eq(2.4.19) is a sequential algorithm for

determining x(rc+l/rc) based on x(n/n-l) and the new observation

z(/i). The new estimate is formed by predicting forward from

the old estimate and then correcting it by the innovation

term which contains the new information. On the other hand,

the Kalman gain matrix K(n) can also be expressed in terms of

the one-step predictor error covariance matrix P(n) defined by

Eq(2.4.12).

Using Eqs(2.4.9) and (2.4.16), we can deduce that:

£(x(rc+ l)a7(n)}-/l(n+ 1, n)£(x(rc)[C(n)x(n/rc- 1) +u/(n)]T>

- A(n+l.n)E{x(n)xT(n/n-l)}CT(n) (2.4.20)

Since x(a) and w(n) are uncorrelated, we can write

x(n)-x(a/rc-l) +x(rc/n- 1)

Since x(rc/rc-l) is orthogonal to a(lfc) for k<n-l, it is also

orthogonal to x(n/n-\) (since x(n/n-\) is a linear combination

of a(fc) for k<n-l). Equation (2.4.20) can then be written as:

£<x(nM)a7(n)}-/l(n+l,n)£<x(n/rc-l)xr(rt/rt-l)}C7'(rc)

-A(n-H,n)P(n)CT(n) (2.4.21)

Therefore, using Eq(2.4.13), Eq(2.4.18) and Eq(2.4.21), we can

see that:

K(n)-A(n+l,n)P(n)CT(n)[C<in)P(n)C(;n)T +R(n)]~l (2.4.22)

This formula for K(n) is not very useful because P(n) must be

known. To overcome this problem we will derive a recursive

16-



formula for computing P(n). The error in the one-step

prediction of x(n+l) can be written as

x(/?+ l/rc)-x(n+ l)-x(n+ 1/n)

- A(n + l,n)x(n) + g(n)v(n)-A(n+ \,n)x(n,n- 1)

-K(n)[z(rt)-C(rc)x(rc/rc-l)] (2.4.23)

Substituting Eq(2.2.3) for z(n) and rearranging terms yields

to:

x(rc+ l/n)-[A(n+ 1, n)-AT(n)C(n)]x(n/n- l) +g(n)u(n)-K(n)w(n)

(2.4.24)

since x(/i/ri-l), v(n) and w(n) are mutually uncorrelated, we

find that

P(n+ I)-cou<x(rc+l/rc)}

-[A(n+ I, n)-K(n)C(n)]P(n)[A(n+ I,n)-K(n)C(n)]T

+9(n)(Kn)gT(n) +K(n)R(n)KT(n) (2.4.25)

We will now derive a set of equations for recursively

calculating the filtered estimate x(n/n). According to

Eq(2.3.1) we have

*(n+l//0-5(x(nfl)/Z(n)}

-${A(n+ l,n)x(rt) +g(n)u(n)/Z(n)>

-A(n + l,n)x(rc/rc) (2.4.26)

and the filtered estimate can be computed as

x(n/rc)- A~\n+ l,n)x(n+ l/n)

- A(n,n+ l)x(n + 1/n) (2.4.27)

This expression is helpful in the derivation of the Kalman

smoother where we assume A(n+l,n) is nonsingular. Though the

final form of the Kalman smoother does not require this

-17-



assumption.

According to Eq(2.4.19)

x(n/n)-x(n/n- l) +W(n)[z(n)-C(n)x(n/n- 1)] (2.4.28)

where H(n)- A(n,n+l)K(n)

-P(n)CT(n)[C(n)P(n)Cr(n) +/?(n)]"' (2.4.29)

It follows from Eq(2.4.26) that

x(n/n- 1)- A(n.n-\)x(n-\/n- 1) (2.4.30)

Therefore, Eq(2.4.28) can be written as

*(n/n)-/l(rt,rc-l)x(rt-l,n-l) +tf(rt)[z(n)-C(rt),1(rc,rt-l)x(n- l./i-l)]

(2.4.31)

which is the desired recursive formula for x(n/n).

A block diagram of the estimator, specified by Eq(2.4.31),

including the signal model is shown in Fig:2.4.

z(n)

wmw,
as (n/n-1 )

W///////^ ~(n/n )

K«> ^^ W77Z77777b>
>e Cn — i/n- ±

§
C(n) A(n, ri—i ) ^^%

>c <¥i^ri—1>

Fig:2.4 Optinun filter for direct
computation of x(n/n).
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Using Eq(2.4.28) for x(n/n), the estimation error can be
written as

x(rc/n)-x(rc)-x(rc/n)

-*(n/n-l)-//(/i)a(n) (2.4.32)

Therefore, the filtering error covariance matrix is

• r(rc)-£<x(rc/rc)xr(rc/n)>

-P(n)-E{Xcn/n- l)aTin)}HT in)

-H(n)E{a(n)xT(n/n-l)} +Hrn)Varn)HT(n) (2.4.33)

Using Eq(2.4.16) and Eq(2.4.21) and the fact that xin/n-l) is
orthogonal to ot(rc) , it follows that

£<x(n/n- l)a7(n)}-£{x(n)ar(n)}

-A(n,n* l)£<x(n+l)aT(n)}

•P(n)CTin) (2.4.34)

Using Eq(2.4.29), Eq(2.4.13) and Eq(2.4.34), we find that the

filtering error covariance matrix can be written as:

nn)'P(n)-Pin)CTin)[Cin)Pin)CT(n) +Rin)]',C(in)Pin) (2.4.35)

Using the expression of K(n) given by Eq(2.4.22), and expand

ing the first term on the right hand side of Eq(2.4.25), Pin)
can be written in the following consice form:

P(n+1)-Ain+l,n)rin)ATin+l,n) +gin)Qin)gTin) (2.4.36)

As a consequence, the up to date estimate x(/i//i) given by

Eq(2.4.31) can be computed using the following algorithm which
consist of 5 steps:

STEP_1: compute tf(rc) for n> 1 using

"W- P(n)CTin)[Cin)Pin)Crin) +Rin)]'x
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with the initial condition ?(1)- cou<x(l ),x(l)}

STEP_2: compute the up to date estimate xin/n) using

xin/n)-Ain.n-\)xin-\/n-\)*Hin)[zin)-Cin)Ain.n-\)Scin-\/n-\)]

with the initial condition x(0/0)- £{x(0)} -0

STEP_3: compute T(a) using

Tin)- Pin)- Pin)CTin)[Cin)Pin)CTin) +Rin)}1 Cin)Pin)

STEP_4: compute Pin+l) using

Pin* 1)- Ain* 1,a)r(a)/Jr(n+ 1,n)+g(n)Q(n)gr(n)

STEP_5: increment n to n+1 and repeat the sequence.

2.5 KALMAN SMOOTHER

We will now investigate the smoothing problem, ie: the prob

lem of estimating x(i) from the available data vectors

W) zin)} for \<i<n. The general estimation equation

(2.3.9) can be written in the form:

xii/n)- Y. E{xii)*Tik)}V-Jik)aik)

«

+ £ E{xii)aTik)}v;\k)aik)
*-<♦■

*

•x(t/o+ Y. E(^anaTw}v:'ik)aik) (2.5.i)
k-C+l

Thus the smoothed estimate can be computed by modifying the

filtered estimate xii/i) .

We will derive an explicit computational formula by converting

Eq(2.5.1) into an alternative form from which we will derive a
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recursive formula for computing the smoothed estimates back

ward from time n. As a first step, the innovation sample a(fc)
can be expressed as

<*W-Cik)Aik,k-l)xik-l/k-l) +Cik)gik-l)vik-l) +wik)

Where *(*"!/*-l)-x(fc-l)-x(Jfc-l/jfc-l)
Then for I<k

E{xii)aTik)}-E{xii/i)aTik)}

-E{xii/i)xTik-\/k-\)}ATik,k-\)CTik) (2.5.2)

If we substitute this expression in Eq(2.5.1), we get:
a

xii/n)-xii/i)+ Y^ E{xii/i)xTik-\/k-\)}ATik,k-\)C\k)V^ik)<iik)

(2.5.3)

It follows from Eq(2.4.28) and Eq(2.4.29) that

CTik)V'u\k)<xik)-p-\k)[xik/k)-xik/k-\)] (2.5.4)

Therefore, Eq(2.5.3) can be written as

*

xii/n)-xii/L)+ Y E{xii/i)5cTik-\/k-\)}ATik,k-\)p-xik)*

[xik/k)-xik/k-\)} (2.5.5)

When i=n-l Eq(2.5.5) reduces to

*(Wn)-*in-l/n-l) +rin-l)ATin.n-l)p-\n)[xin/n)-xin/n-l)]
(2.5.6)

where

r(rc- 1)- £{x(rc- l/n- l)xr(rc- \/n- 1)}

Similarly when i=n-2, Eq(2.5.5) becomes
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xin-2/n)-xin-2/n-2)^Yin-2)ATin- I, n-2)P'\n- I)

*[*(n-l/n-l)-xin-l/n-2)]+E{xin-2/n-2)xTin-l/n-l)}ATin,n-l)p-lin)
*[xin/n)-xin/n-\)] (2.5.7)

Using the facts that:

xin-l/n- l)-/1(n-l,rt-2)x(n-2/n-2) +//(rt-l)a(a-l)

and

xin-1)- Ain-l,n-2)xin-2) +gin-2)uin-2)

we deduce that

x(n-l/rt-l)-x(n-l)-x(n-l/rc-l)

~ Ain-l,n-2)xin-2/n-2) +gin-2)vin-2)-Hin-l)ain-l)i2.S.8)

Therefore,

E{xin-2/n-2)xTin-\/n-\)}-Tin-2)ATin-\/n-2)

-E{xin-2/n-2)aTin-\)}HTin-\) (2.5.9)

The expression on the right-hand side of Eq(2.5.9) can be

evaluated by letting i=n-2 and k=n-l in Eq(2.5.2).

Using the obtained expression, we derive that:

E(xin-2/n-2)xTin-l/n-\)}-rin-2)ATin-l/n-2)[I-CTin-l)HTin-l)]

-Tin-2)ATin-\/n-2)P'\n-\)

*[Pin-l)-Pin-l)CTin-l)HTin-l)] (2.5.10)

from Eq(2.4.29) and Eq(2.4.35), it follows that the expression

which is within the brackets on the right-hand side of

Eq(2.5.10) is T(/i-I) which has been defined in Eq(2.4.35) for

n-l .

Thus
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*in-2/n)-xin-2/n-2) +rin-2)ATin-l.n-2)p-,in-l)

*W*-"n-l)-*in-l/n-2)]+E{xin-2/n-2)xTin-l/n-l)}ATin,n-l)p-\n)
*[xin/n)-xin/n-l)] (2

Using the facts that:

*(*-!/*-l)-i4(n-l.rt-2)*(rt-2/n-2)+//(rt-l)a(rt-l)
and

x(n-l)- Ain-l,n-2)xin-2) +gin-2)uin-2)
we deduce that

*(n-l/rc-l)-x(n-l)-x(n-l/rc-l)

-/Krc-l.rc-2)x(rc-2/n-2)+g(rt-2Mn-2)-//(n-l)a(rc-l)(2.S.8)
Therefore,

E(*in-2/n-2)xTin-l/n-l)}-rin-2)ATin-l/n-2)

-E{xin-2/n-2)aTin-l)}HTin-l) (2.5.9)

The expression on the right-hand side of Eq(2.5.9)can be

evaluated by letting i=n-2 and k=n-l in Eq(2.5.2).

Using the obtained expression, we derive that:

E(*in-2/n-2)xTin-l/n-l)}-nn-2)ATin-Wn-2)[I-CTin-l)HTin-l)]
~Tin-2)ATin-\/n-2)p-\n-\)

*[P(n-l)-Pin-\)cTin-l)HTin-l)] (2.5.10)

from Eq(2.4.29) and Eq(2.4.35), it follows that the expression

which is within the brackets on the right-hand side of

Eq(2.5.10) is rC/i-I) which has been defined in Eq(2.4.35) for
n- 1 .

Thus
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E{xin-2/n-2)xTin- \/n- \)} -Yin-2)ATin- \ ,n-2)P~\n- \)Yin- \)

(2.5.11)

The substitution of Eq(2.5.11) into Eq(2.5.7) gives

xin-2/n)-xin-2/n-2) +rin-2)ATin- 1, n-2)P'\n- 1)

*{xin-\/n-\)*Tin-\)ATin,n-\)P'\n)

*[xin/n)-xin/n-l)]-xin-l/n-2)} (2.5.12)

According to Eq(2.5.6), the sum of the first two terms within

the braces on the right-hand side of Eq(2.5.12) is equal to

x(n- \/n).

Therefore, we deduce that:

xin-2/n)-xin-2/n-2)*Tin-2)ATin-\,n-2)P'xin- 1)

*[xin-\/n)-xin-l/n-2)] (2.5.13)

Continuing in the same manner, we can see that:

xii/n)-xiL/L) +<t-iL)[xii+ 1/n)-x(i+1/£)] for £-1 n- 1

-♦(Q*0+l/n) +G(0**(l/0 for i-1 n-l (2.5.14)

where

*(0-r(i)^T(i+l.i)/'"1(i+l) (2.5.15)

and

G(i)-/-4>(0/l(i-1.0 (2.5.16)

Equations (2.5.14), (2.5.15), and (2.5.16) provide a mean for

computing recursively the smoothed estimates backward from

time n as desired once the solution x(£/i) for £-1 n has

been computed and stored.

The error of the smoothed estimate is given by:
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xii/n)- x(Q-x(t/a)

• xil/i)- $ii)[xii+ I /n)- xii+ 1/i)]

which can be rearranged into the form

x(t/n) + <J>(i)x(i+ l/n)-x(i/i) + *(0-*('+ 1/0 (2.5.17)

We will denote the smoothing error covariance matrix by:

A(i/rc)-cou{x(i/rc),x(i/rc)} (2.5.18)

From the orthogonality condition of the projection theorem, it

follows that

coy{x(t/n).x(t+ 1/n} - cov(xii/i), x(i+ I/O)- 0, (2.5.19)

cou<x(£+ l/n),x(i* l/n)>-cou{x(i+l),x(i+ 1)}-A(i+ 1/n). (2.5.20)

and coy{x(t+l/i).*(t+l/0>-cou{x(t+l).x(i + l)}-P(i+1). (2.5.21)

Taking the covariance of both sides of Eq(2.5.17) and using

Eqs (2.5.19 to 2.5.21), it follows that

A(i/n)-r(0 +<t>(0[A(t+l/n)-P(i+l)]<l>r(0 (2.5.22)

This equation can be solved backward in time starting with

i=n-l and the terminal condition A(n/rc)-r(a) since T(n) is a

best estimate from the recorded data.

PARTICULAR CASE:

When a stationary zero mean signal process is observed over a

fixed interval [n-l.a-A/] in a white noise environment, the

signal in state-space form is

x(n+ 1) - Ax in) + guin)

sin)-Cxin)

z(rc)- s(n) + to(n)

-24-

(2.5.23)

(2.5.24)



where x(n) is the state vector, sin) is the signal, zin) is the

measured data and u(a), w(n) are respectively the input and

output noises. The system parameters (/ipxp.gpxl,Clxp) are con

stants due to the assumption of stationarity.

Using the Eqs(2.4.22),(2.4.31), (2.4.35), (2.5.14), (2.5.15)

and (2.5.16), the Kalman smoother takes the form

xin/n)- Fin)xin-l/n- \) +Kin)zin) (2.5.25)

x(n/A/)-4>(n)x(n+ l/N) +G(n)x(n/n) (2.5.26)

§in/N)-Cxin/N) (2.5.27)

where

Kin)-Pin)CT[CPin)CT*R]'1 (2.5.28)

*(n)-r(n)ATP'\n+l) (2.5.29)

Gin)-I-i>in)A (2.5.30)

Fin)-[l-Kin)C]A (2.5.31)

r(rc)-P(rc)-P(n)CT[C/>(a)Cr +fl]~'cP(n) (2.5.32)

All parameters Fin), Kin), <p(n), Gin), Tin) are time-varying

associated with the state error covariance matrix Pin) which

is solved recursively from the difference Riccati equation:

Pin+l)-ATin)AT +gQgT (2.5.33)

with the initial conditions

x(0/0)-£<x(0)>-0

and />(l)-coy{x(l).x(l)}

we can easily see that although Kalman smoothing estimates are

optimum, they are computationaly expensive because at each

step of the estimation algorithm the parameters

-25-



Fin), Kin), 4>(rc), Gin), T(n), and Pin) must be computed. A modi

fied Kalman smoother which consists of a steady-state Kalman

smoothing algorithm and a correction for transient effects

using an initial state vector will be discused, in the next

section, to reduce the computational burden.

2.6 THE MODIFID KALMAN SMOOTHER

The modified Kalman smoother provides an efficient and compu

tationally cheap algorithm. The approach of this section fol

lows the work of J. Vaccaro. and Fu Lu [32].

Equations (2.5.25) and (2.5.26) can be written as

xin/n)-\ UFii)]xiO/0)*Y\^Eii)]KiJ)ziJ) (2.6.1)

xin/N)-\S*U)]*W/N)+ £rV<p(olG(y)x(y/;) (2.6.2)

where the initial state vector x(0/0) is assumed to be zero

due to missing data zin), for n<0.

It is well known that if we use the infinite-past data, the

Kalman filter is then time-invariant, and Eq(2.6.1) becomes

x(n/n)-£*x(0/0)+^£*-/ffz(;) for l<n<N (2.6.3)
/-i

where x(0/0) is no longer 0.

x(0/0) is a function of past data z(n) for n<0. F, K are now

constants and, therefore, they are defined only once from P

which is the solution of the steady-state algebraic Riccati

equation [1,33].
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I

P-A[P-PCTiCPCT +R)~'cP]AT +gQgT (2.6.4)

Thus the time-invariant estimation is much more efficient than

time-varying estimation of the previous section.

However, the problem is that the infinite-past data from which

x(0/0) is required to be calculated is missing. Common prac

tice is to use x(0/0)-0 which is a poor estimate because a

good time-invariant estimation procedure needs a nonzero

initial value.

Since the initial state vector x(0) summarizes the past his

tory of the signal for rc<0, the infinite past data is not

needed if the value of x(0) is known. Furthermore, since x(0)

contributes to the signal in a known way, an estimate x(0) can

be calculated from the given data which minimizes the sum of

the squared error between the estimated signal and the data.

Using Eqs (2.5.23) and (2.6.3), and if we denote by

e(n) for n-\ N the error of the estimated signal estimated

from the forward filtering with the initial state x(0/0)-0, we

have

zin)-Cxin) +win) \<n<N

" Cxin/n) +e(n) +win)

-CF*x(0/0)+C^£*-//fz(i) +e(n) +u/(a) (2.6.5)
/-i

We define the residual data r(rc) by:

rin)-zin)-cYF*''KziJ) (2.6.6)
/-i
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If we denote by uin) the total error which is the sum of the

observation and the estimation errors:

u(rt)-e(rc) +itf(rc) (2.6.7)

We deduce from Eqs (2.6.5 to 2.6.7) that:

r(n)-CF*x(0/0) +u(rc) (2.6.8)

Assume that Eq(2.6.8) has been computed for sufficient time to

form N consecutive residual data vector. The obtained resid

uals allows Eq(2.6.8) to be expressed in the following vector

form:

u(l)

u(2)

'r(l)" ~CF{~
r(2)

-

CFZ

_r(A/)_ _CFH _

x(0/0) (2.6.9)
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In order to estimate the initial state vector x(0/0) uniquely

the number of data records N must not be less than the signal

model order p.

Rewriting Eq(2.6.9) in a stacked notation we obtain:

r-9,x(0/0) +u (2.6.10)

in which:

e;-(Cf1 CFN)

rr-(r(l) r(A/))

ur-("(l) <N))

rearranging Eq(2.6.10) in terms of the total error u:

u-r-9,x(0/0) (2.6.11)



and select an estimate *(0/0) which minimizes j, the sum of
squares of the total error.

J-Y"\n)-uTu (2.6.12)

To find the least square estimate, we rewrite Eq(2.6.12) in
terms of the residual data vector and the initial state
vector:

^-(r-9,x(0/0))T(r-9,x(0/0))

-r7r-xr(0/0)e;r-rre/x(0/0)-Kxr(0/0)9;e/x(0/0) (2.6.13)
setting to zero the derivative of J with respect to x(0/0):

dx(0/0)""29'rr+29/6/*C0/0)-0 (2.6.14)

yields:

9;e,x(o/o)-e;r (2.6il5)

The solution is unique if the second derivative matrix:

d*J

dx2iO/0)~2QfQ' (2.6.16)

is positive definite.

Hence the least squares estimator under this assumption for
the initial state vector x(0/0) is:

*(0|0)-(9;9,)-'9;r r2.6A7)

Thus the forward filtering estimate given in Eq(2.6.1) is com
pletely obtained.

The backward filtering parameters *(*). C(rt) are only a
function of forward filtering parameters. Once the forward
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filter is in steady-state, by approximating x(0/0) the back

ward filter is also time-invariant. This completes the deriva

tion of the modified Kalman smoothing algorithm.

The algorithm is summarized as follows:

STEP_1: solve the following algebraic Reccati equation to get

the state error covariance matrix P.

P- AiP-PCTiCPCr +R)'lCP)AT +gQgT

Then compute the parameters $,K,F and G by:

K-PCTiCPCT +R)~x

F-U-KC)A

*-TATP'1

G-I-FA

r-P-PCriCPCT +R)~lCP.

STEP_2: Estimate the state vector by forward time-invariant

filtering with zero initial conditions and compute the resid

ual data r(n),i.e.

xin\n)-Fxin-l\n-\) + Kzin) for n-1 N.

r(n)- z(n)-Cx(n |n)

STEP_3: Approximate the initial state estimate x(0|0) from

r(n) by least-squares estimation (LSE). The LSE solution is

x(0|0)-(9;9/)",9;r

Where

QTf-iCF CFN)

rr-(r(l) r(W))

Correct the state estimates obtained by forward filtering by
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*(n|rO-x(n|n) +F*x(0|0) for n-j Ni

STEP_4: Calculate the smoothed state vector estimates using
backward time-invariant filtering with final condition x(W |N)
obtained from step_3:

*(n|AO-+*(n+i \N) +Gxin\n) for n-N-l 1.

STEP_5: Compute the signal estimate by

$in)-C*in\N) n„l N

2.7 ILLUSTRATIVE EXAMPLE.

In this section we compare the performance of the modified

Kalman smoother (MKS) to that of the time-varying Kalman

filter (KF) in the case of estimating a stationary signal
observed in a noisy envirement.

The signal is modelled as the output of first order linear

time-invariant filter driven by a zero mean white noise, „(*).
of variance o2- 1. The signal represents a first order Markov

process. Its description in a state space representation is
given by:

xin+ I)-0.91x(rc) +y(n)

s(n)-x(n) (2.7.1)

with

x(l)-0.3

The measurement model is described by the signal with an addi

tive zero mean white, win), noise of variance o2-l:

zin)-sin) +win) (2.7.2)
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Both the modified Kalman smoother and the Kalman filter have

been applied to the measurement in order to estimate the sig
nal sin).

The estimated signals obtained by the two above methods are

Ploted together with the actual and the measurement signals.
See Fig:2.5

The mean squared estimation error is computed for both estima

tors. The result for the (MKS) and the (KF), in the case of

long data records, were 0.446, and 0.547 respectively. In the

case of short data records, where only 16 data samples are

used, the mean squared estimation error is computed for both

the (MKS) and (KF) and the result were 0.375 and 0.404,

respectively. It is worthnoting that the clear superiority of

the (MKS) over the (KF) decreases in the case of short data

records. This may be due to the inaccuracy of the least square

estimation in the case of short data records.
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CHAPTER III:

SMOOTHING SPLINE

3.1 INTRODUCTION

Consider the classical input-response model where for given

inputs at i, tN in some interval [tx, tN] , the corresponding

output z(£R) satisfy:

*(*.)-«(*.) +"'(*.) (3.1.1)

where s(t„) is a smooth signal observed in noisy environment

described by a zero mean white noise witn) with variance a2.

The random variables s(t„), and u;(£„) are not observed. The only

observed random variable sequence is {z(£„)> for n- 1 N which

is recorded to obtain an estimate §itn) of the signal s(t„).

Many nonparametric approaches had been proposed to obtain an

estimator 5(0 of the signal sit), among which:

1) The polynomial fit: In this approach we use an approxima

tion to the model described by Eq(3.1.1) of the form:

z('.)-P('.) +«"(*„) (3.1.2)
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where P({) is a polynomial of a certain predefined order m,
that is:

m

>(0-£a''_ <f (3.1.3)
(-0

This has the advantage that the unknown parameters, at's, in

the approximate model enter in a linear fashion. Hence, they

may be estimated by ordinary least square method. The poly

nomial regression approach models provide an entirely satis

factory description of a set of data. However, it fails to fit

satisfactorily data which have a more rapid variation in one

region than other regions since polynomials along with most

other mathematical functions, have the property that their

behaviour in a small region determines their behaviour every

where. Another drawback is that it is not suitable for fitting

a set of data that possesses several high peaks.

2) Cubic smoothing spline fit: This nonparametric approach

uantifies the competition between two conflicting aims in

100th signal: one wants to produce a good fit to the data,

d to avoid too much rapid local fluctuation. This phenomenon

is encountered in the case of noisy data interpolation.

A measure of the rapid local variation of the signal can be

given by the roughness penalty defined as the integrated

square second derivative.

q

smo

an

/ \s'it)\2dt (3.!.4)
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when the roughness penality is small, the signal fluctuates

considerably.

Using this measure, the estimation of the signal sit) reduces

to the minimisation of:

/U"(0|2d«+̂{l(z(«.)-*(«.))2| (3.1.5)
where \ is a smoothing parameter which represents the rate of

exchange between residual error and local variation. The

minimization of the expression Eq(3.1.5) over the class of all

twice-differentiable functions s(0 will yield an estimate §it)

which, for a given value of \, gives the best compromise

between smoothness and goodness of fit.

In the spline approach, the estimated signal is, assumed to

be, composed of piecewise polynomials of degree three as given

by the following expression:

*(0-a.+b.(«-t.) +c.(t-«.)2 +d.(*-ta)3 for *.<*<*„., (3.1.6)

The consecutive piecewise polynomials join at the knot tn and

fulfils the continuity condition for the signal and its first

two derivatives. The piecewise nature of the estimated signal

$itH) makes it a reasonable approximation for models with

changing structure since it provides more locally adaptive

fits. As a result, the smoothing spline regression does not

suffer from the two drawbacks of the polynomial regression

approach. It can be regarded as an extention of polynomial

regression.

Smoothing splines which is a nonparametric estimator have
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enjoyed increased popularity as a tool in both theoretical and

applied statistical research. They have been found useful for

handling problems such as nonparametric regression [8,14],

data smoothing [7,27], numerical differentiation [27], model

validation [9,11], and nonparametric density function estima

tion [28]. They have also been used in many applications to

image processing [23] including enhancement, interpolation,

enlargement, and reduction [17]. In other words, they are an

essential tool for data analysis [36].

In this chapter, a detailed development of smoothing spline is

presented along with the generalized cross-validation for

choosing the right value of the smoothing parameter \ which is

crucial for smoothing spline.

3.2 SMOOTHING SPLINES

Suppose that the measurement model is given by

zVJ-sitJ +wit,) (3.2.1)

where s(0 is a signal observed over a fixed interval [t^t,,] in

a noisy environment described by an uncorrelated zero mean

noise u/(t„) with variance a2. In order to filter the signal, we

consider the fidelity criterion

minimize] \§"it)\zdt (3.2.2)

which is defined among the class of all function for which <?(0

and §\t) are absolutely continuous and §'\t) is square-inte-

grable, such that
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f fzit^-sitjy
.?,[—sT^J " ^2-3>

where the positive quantities 6^ controls locally the smooth

ing window at time tn and S controls the overall extent of

smoothing. If available one should use for 6. the estimate of

the standard deviation of the noise at time ta. According to

Reinsch [24], natural values of S lie within the confidence

interval corresponding to the left hand side of (3.2.3) that

is

N-2N'"<S<N +2N1'2 (3.2.4)

where N is the number of data records during the time interval

[ti,tN]. The solution to the constrained problem Eqs:(3.2.2) and

(3.2.3) was shown by Reinsch [24] and Woodford [37], to be a

cubic spline and more generally it is a spline of degree 2q-l

for least square minimisation of the qth derivative [25]. The

case where q=2 is computationaly attractive since it leads to

a very simple algorithm for the estimation of sit).

Applying the well known Lagrange multiplier method after

normalisation of the inequality (3.2.3) constrained by intro

ducing a dummy variable (3. The object function

must be minimized.

The optimal solution 5(0 of the constrained problem given by
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Eqs(3.2.2-3) was shown by Reinsch [24] to satisfy the

following conditions.

*(*.).-*(*.).-0 for n-2 N - 1 (3.2.6)

£(°(<.)--£(,)(U.-0 for n-2 N-l (3.2.7)

Moreover,

*""(«„)_-^"(tJ.-O for n-l N (3.2.8)

5ct)(tJ^-lim 5ct)f£-+e)
«->o \ - J

for n-l N (3.2.9)

§l)it)-0 for tK<t<t„t n-l N-l (3.2.10)

sc"({) stands for the A:"1 derivative of sit).

Eqs(3.2.6 to 3.2.10) indicate that the function sit) is a

piecewise polynomial of degree 3 in each interval [«„.*„.,]. See

Fig.3.1.

a +b (t-t )*c (t-t )2+d (t-t )3
n n n n n n n

\ *W*\*l""Vl )+cn*l «-*n*l >2 'Vl <*-Vl)3

T- I

Fig:3.1 piecewise polynomials of the
SMOothing spline estimates.
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The pieces are joined in the knots tn and fulfil continuity

condition for the function itself and the first two

derivatives. Hence §it) is of the form

^(0-a.+b„(f-fJ +c.a-iJ2+da(i-iJ3 for t^t<t^x (3.2.11)

The following two extra conditions are needed to determine

completely the spline.

S^it^-S^it^-S^it^-s^it^-O (3.2.12)

In this case, the function is called natural spline of degree

3.

The unknown coefficients of the spline are found by inserting

Eq(3.2.11) into Eqs(3.2.6 to 3.2.9) and Eq(3.2.12) as follows:

from Eq(3.2.8) and Eq(3.2.12), we have:

c, - cN - d, - dN - 0, and d-
3/1.

from Eq(3.2.6)

b« Z c./i.-dX for

where hn- tK.x -tK .

using Eq(3.2.7), the coefficient c-ict

satisfy:

Tc-QTa

n-2 N-l (3.2.13)

n-l N-l (3.2.14)

.c,,.,)7" and a-(a, aw)'

(3.2.15)

where T is positive definite, tridiagonal matrix of order N-2.

T is given by:

r(t,i)-2(rt(.l +a()/3. and F(i+ 1,i) - r(i.t+ 1) -h(/3
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and Q is a tridiagonal matrix with N rows and N-2 columns. Q

is given by:

Q(i-1.0-1/Vi. Qii.i)--l/hl.l-l/hi, and QiL-H,i)-l/ht

For a uniformly sampled signal with unit sampling inter

val, tn-n, Q and T have the form

Q -

from Eq(3.2.9)

; and T -

4/3 1/3

1/3 4/3 1/3

Qc-hD~'iz-a)

1/3 4/3 1/3

1/3 4/3

(3.2.16)

(3.2.17)

where

C ™ (C2 CJV-l)

z-iz, zN)T

a-(a, aN)T

D-diagibx 6„)

Using Eq(3.2.15), and a left hand multiplication of Eq(3.2.17)

by QTDZ separates the variable c :

iQTDzQ +\T)c-KQTz (3.2.18)

we can obtain an expression for a by using Eqs(3.2.17) and

(3.2.18). The result is given by Eq(3.2.19).
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a-z-D2QiQTD2Q +\T)-'QTz (3.2.19)

If we denote by 5„ the estimated signal evaluated at the

design points tn, using the smoothing parameter \, then the

optimal smoother with respect to the constraints (3.2.2) and

(3.2.3) is obtained as:

^-(/-02Q(QTD2Q+\7yV)z (3.2.20)

the matrix iQTD2Q+KT) has an inverse provided that X is posi

tive which is a common assumption. The object function J given

by expression (3.2.5) has to be minimized also with respect to

(3 and \, leading to the conditions

and

dJ
-0

Using the expression of S„ given in Eq(3.2.20), the left-hand

side of Eq(3.2.22) can be written as the square of the func

tion Fi\.) given by:

Fi\)-\\DQiQTDzQ +kT)-lQTz\\2 (3.2.23)

from Eq(3.2.21) we conclude that either K.-0 or (3-0. A sol

ution corresponding to k-0 would be a single polynomial of

degree at most 1 and the integral smoothing criterion would be

a trivial minimum.

If F(0)>S, then h +0 and p-0. The inequality constraint

^-0
3|3

te:

te: \|3-0 (3.2.21)

„ ($(tt)-z(tt)
-S-|J' (3.2.22)
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(3.2.3) becomes an equality constraint. In this case we have

to find a value of \ such that

Fik)-S1'2 (3.2.24)

Equation (3.2.24) has at least one root since F(\) is a

decreasing function. The uniqueness of the root was shown by

Woodford [37]. This positive unique solution can be determined

by using Newton's method.

The parameter \ and S are interchanged by Eq(3.2.24) and they

both have the same effect on smoothing. According to

expression (3.2.5) the parameter \ controls the tradeoff

between the roughness of the smoothed signal as measured by

Iti" \S"it)\zdt and the fidelity to the data as measured by

As \.-*€, where e is very small number £». becomes increasingly

smooth, and the limiting function §t is the least squares

straight line. As a result, the shape of the signal sit) will

be lost. On the other hand, as \->« , §y passes through the

data .5. is the natural cubic spline of interpolation to the

measured data in this case 5_ is too wiggly and picks up too

much noise.

For many reasons, the variance of the measurement noise is noc

available in practice. This forces us to set D-IN, where / is

the identity matrix of order N. Hence, the linear smoother can

be written in more concise form [23] as:

S,-Aif>)z (3.2.25)

where
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Aip)-[l +-Clj (3.2.26)

and

n-QT-'Q7 (3.2.27)

The lack of information on the common observation noise vari

ance is incorporated in a new smoothing parameter p. To use

the smoothing spline method in practice, it is convenient to

have an automatic method for choosing the optimal parameter p.

A strong candidate for choosing p is the cross-validation

method [31,34,35] which is described in the next section.

3.3 THE GENERALIZED CROSS-VALIDATION METHOD

Ideally, we might wish the selected p to minimize the true

mean square error (mse) given by

^se(p)--^^i(s((J-5,(ta))2 (3.3.1)

In practice, the random variable s(£„) is not observed which

makes Eq(3.3.1) impossible to apply.

An obvious alternative is to use its sample estimate

m$e(P)-^C-, <>(<*)-VU)2 (3.3.2)

Unfortunately, Eq(3.3.2) is always minimized at p-<», since 5.

interpolates the data. This fact led Wahba and Wold [35] to

suggest to use the smoothing parameter value which minimize

the cross-validation (CV) criterion

C^P)-77lW«J-z«,))2 (3.3.3)
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where §* is the smoothing spline fit to

<z(*i) zitK.x),zit^) zitN)} for n-l N.

The use of Eq(3.3.3) is justified by the belief that a good

value of p should be the one for which §"it*) is a good predic

tion of the omitted data value z((„). In 1979, Wahba and Craven

[34] has proposed an automatic method called the generalized

cross-validation (GXV) for choosing the optimal smoothing

parameter which has computational advantages over the

cross-validation [35] and good statistical properties. They

have suggested an estimate p, called the generalized cross-va

lidation estimate, for the minimiser of mseip). The estimate p

is just the minimiser of l/(p) defined by

w , iCw^-sCt.))'
1/(P)-TJ7 ; rr- (3.3.2)

W(l-^race(^(p)))2

where /1(p) is as defined by Eq(3.2.26) .

They have shown that the minimiser of l/(p) converges asymp

totically to the minimiser of mseip). The main aim of Wahba

and Craven's paper was to obtain a good estimate of the

minimiser of mse9 from the data which does not require knowl

edge of the observation noise variance. This feature makes the

smoothing spline attractive in many fields of application. We

can see that (GXV) is meanly a weighted version of the mseip)

which utilizes the weight (l -i«race(/1(p)))"2 to counterpart the

tendency to choose p as infinity. On the other hand, the (GXV)

criterion also prevents against the choice of small values for

p since the increase in (l -^race(/4(p))) 2 obtained by decreasing
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p tends to be counteracted by an increase in the average size

of the residuals. Hopefully, the selected value will then

reflect the correct balance, between total fidelity to the

data obtained when p-», and the smoothest possible fit

realised at p-e

3.4 UTRERAS [31] IMPROVEMENT

The computation of l/(p) for any particular value of p using

Eq(3.3.2) requires the determination of §t and the trace of

Aip) which is computational expensive. Utreras [31] proposed

an algorithm that devides by the factor N the number of oper

ations used to obtain p in the case of equally spaced data.

The main idea of the method proposed by Utreras is the

expression

frace(/l(p))-£(eigem;aJues of A) (3.4.1)

From Eq(3.2.27) we see that the matrix H does not depend on p.

It is clear that we must approximate its eigenvalues to find

the trace of Aip) with negligible computational cost. If we

denote by u>/s the eigenvalues of n, Utreras has found an

approximation to the eigenvalues of H given by

where a, are the eigenvalues of the differential operator that

occurs in classical mechanics when the vibrations of a rod

with free ends are considered. The first ten eigenvalues a,

are tabulated by Utreras [31] page 23 and he noticed that for
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i>10 the a,'s satisfy the following relation

a(-n4(i-1.5)4 (3.4.3)

As a result the trace of A will be computed as follows:

traceiA)-Y j— (3.4.4)
l-l 1 +-ou(

Finally, the smoothing spline algorithm is summarized as fol

lows :

STEP_1: form the matrices Q and T.

STEP_2: obtain the minimiser of the following expression.

{/r . 1g.,(3p(tJ-zqj)2
N (l -j;traceiAip)))2

STEP_3: insert the value of p, found in STEP_2, in the follow

ing expression to obtain the smoothing spline estimates evalu

ated at the design points {tH}.

S,VH)-U-QiQTQ +pT)-lQT)zitn)

STEP_4: in order to completely determine the smoothing spline

the parameters a. . b, . cR , d„ are computed as follows

a-Sp

c-T'1QTa

cl-cH-dl-dH-0 d„--^-—- for n-2 N-l.
3/1.

b» Z c«n«-d«/i» for n-l N-l.

where
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and bn should be initialised.

3.5 ILLUSTRATIVE EXAMPLE

In this section, the smoothing spline estimator will be

applied to 50 data samples simulated by adding normally

distributed errors, with zero mean and standard deviation of

.1, to a signal obtained by passing a zero mean white noise of

variance (.001)2 through a linear time-invariant filter. The

signal and the measurement model are given, in state space

representation, by Eq(3.5.1).

x(n+l) -
.91 .3

0 .74
x(n)

2.2

1.5
win)

sin) - [1.8 0]x(n)

zin) - sin) + uin)

with

x(0)-[.5 .5]r

Figure 3.2 displays the signal estimated by smoothing spline,

the actual signal and the measurements. The optimal smoothing

parameter p is found by minimizing expression (3.3.2) as shown

in Fig.3.3.

-48-

(3.5.1)



measurements
signal

ss

Fig:3,2 : signal estimation when

° 2 < 6 8
Flg.3.3: smoothing parameter by (GXV) x1^

/'opt =1.8 E-2
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Note that the signal estimated by the smoothing spline

exhibits some oscillation in the last 30 data samples. On the

otherhand, the estimated signal is not able to follow the

actual peak. These two important remarks are the result of the

global smoothing parameter found by (GXV) which gives the best

compromise between the overall smoothness and goodness of fit.

This drawback is remedied by the use of local smoothing

parameter which is the basic idea on which a new estimator,

called local smoothing spline, is based. A detailed descrip

tion of the local smoothing spline will be given in chapter 5.

For the sake of comparison, the signal estimated by both the

smoothing spline and the modified Kalman smoother are plotted

together with the measurement and the actual signal as

depicted in Fig.3.4. The mean squared estimation error (MSE)

has been computed and the results were 14.7992E-4 and

4.9032E-4, respectively. According to this single example, the

modified Kalman smoother excels on the smoothing spline as far

as the (MSE) is concerned. A detailed comparison of the two

estimators will be given in the next chapter.
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Fig.3.4: signal estimation whencr=,1
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CHAPTER lii.

COMPARISON OF THE PERFORMANCES OF

THE MODIFIED KALMAN SMOOTHER AND SMOOTHING SPLINE

4.1 INTRODUCTION

In this chapter, a number of simulation experiments have been

conducted to compare the performances of the modified Kalman

smoother estimator to that of the smoothing spline estimator.

Long and short data records have been considered in the simu

lation study to see how good the performances of the estima

tors are in function of the data size. Furthermore, the

robustness of the two estimators is investigated when certain

required assumptions under which the two estimators are opti

mum, have been violated such as: the smoothness of the signal

to be estimated in the case of the smoothing spline, and the

knowledge of the signal parameters A, g, and C in the case of

the modified Kalman smoother. Some diagnostics, such as inno

vations plots and the whiteness test are, also, provided to

investigate the validity of the models used. Computational

complexity is also given to compare the efficiency of the two
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estimators. Finally, a new method based on the bootstrap tech

nique is suggested to investigate the validity of the model

used. The motivation was based on the fact that the whiteness

test may lead to erronous conclusions.

4.2 SIMULATION STUDY:

In this section, we present simulation results based on ten

different linear time-invariant signal models driven by a

white noise of variance (0.001)2. An initial state vector

*(0)-[.5 .5]r is used for the signals whose transfer-function

is given by:

Hiz)-C[zI-A]-ig (4.2.1)

where H(z) is the input output model for the signal known as

the transfer function, A, g, and C are the signal parameters

when the state space representation for the signal is used, z

is the forward time shift operator, and / is the pxp identity

matrix.

The poles and the zeros of the transfer function for each of

the ten simulated signals are given in table_4.2.1:

The ten simulated signals are chosen to cover a wide range of

signals which satisfy both the smoothness property required by

the (SS) estimator and the stationarity property required by

the (MKS).

The measurement model consists of the signal corrupted with
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white noise of variance Q2. In other words, the measurement

model is given by the following equation:

zin) - sin) +uin) (4.2.2)

where s(n) represent the signal evaluated at time n, u(n) is

measurement noise added to the signal at time n and the only

observed random variable is z(n) which is the measurement

recorded at time n.

SIGNAL NUMBER ZERO POLE 1 POLE 2

SIGNAL 1 0.77 0.97 0.87

SIGNAL 2 0.67 0.99 0.87

SIGNAL 3 0.80 0.999 0.90

SIGNAL 4 0.98 0.999 0.90

SIGNAL 5 0.65 0.91 0.74

SIGNAL 6 0.83 0.99 0.90

SIGNAL 7 0.54 0.91 0.74

SIGNAL 8 0.81 0.85 0.92

SIGNAL 9 0.81 0.88 0.98

SIGNAL 10 0.30 0.42 0.87

....

Table_4.2.1: The poles and zeros locations for the ten

different signals.

We simulated ten different realisations from each of the ten

considered signals. For each of the ten realisations of the
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measurement noise, we take three different values of the out

put noise variance (o2-(0.0S)2, a2-(0.1)2, and a2-(0.5)2). For

each realisation, corresponding to a row in the tables:(4.2.2

to 4.2.7), the mean-squared estimation error (MSE), given by

Eq(4.2.3), is computed for both the modified Kalman smoother

(MKS) and the smoothing spline (SS) for the ten different sig

nals numbered from 1 to 10.

1 ^
M SE--Y(sin)-Sin))2 (4.2.3)

where N is the data size. For short data records, N is taken

to be equal to 16 while for long data records N is taken to be

equal to 50. §in) is the estimated signal which is obtained

either by the (MKS) or the (SS), and s(rc) is one of the ten

simulated signals.

The last row of the tables:(4.2.2 to 4.2.7) gives the average,

AMSE, of the mean squared estimation errors for the ten reali

sations. The plots of the (AMSE) as a function of the signals

numbered from 1 to 10, are shown in Figs:4.1, 4.2 and 4.3.

We notice that the (AMSE) decreases, in general, when the

measurement noise variance decreases and that is for both the

modified Kalman smoother and smoothing spline. More import

antly, these figures indicate clearly the superiority of the

performance of the (MKS) on that of the (SS). However, for

signal number 8 the performance of the (SS) is close to that

of the (MKS) because this signal does not have large local

variations.
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TABLE_4.2.2: This table gives 1.E+5x(MSE) of the (SS) and the
(MKS) whena2-(0.05)2.

signall signal2 signal3 signal^ signals

ESTI

MATO

RS

SS MKS SS MKS SS MKS SS MKS SS MKS

noise 1 19.33 10.13 24.42 10.23 13.45 6.58 18.08 5.98 29.28 20.75

noise 2 17. 12 3.96 24. 17 4.31 10.27 3.03 12.08 2 . 24 10.96 13.21

noise 3 18.15 10.22 26.75 12.35 12.60 7.85 10.97 5.92 32.29 12.17

noise 4 25.63 6.67 32.29 8.79 17.82 3.99 12.05 2.67 40.38 22.95

noise 5 19.05 14.31 23.28 17.96 16.80 7.23 17.75 4.16 26.63 13.03

noise 6 23.02 7.72 35.77 9.79 13.19 5.39 16.98 3.61 41.07 12.73

noise 7 21.69 5.42 26.14 5.60 18.09 2.52 16. 60 2.05 27.59 20.30

noise 8 9.95 6.03 13.13 6.41 7. 12 3.55 21.10 2.29 20.66 12.42

noise 9 28.78 9.01 39.17 12.14 15.97 6.36 10.96 4.57 41.77 22.01

notse 10 18.23 7.05 24.30 7.27 11.86 4.81 15.08 4.11 20. 12 16.98

AMSE 20. 10 8.10 26.94 9.49 13.72 5.13 15.17 3.76 29.08 16.63
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TABLE_4.2.3: This table gives l.E+5x(MSE) of the (SS) and the
(MKS) wheno2-(0.05)2.

signal6 signal7 signalQ signal9 signallO

ESTI

MATO

RS

SS MKS SS MKS SS MKS SS MKS SS MKS

noise 1 16.77 7.84 37.33 19.37 13.40 9.42 16.81 13.81 19.59 19.21

noise 2 13.72 3.81 42.04 11.42 10.92 4.45 15.24 7.56 15.05 21.03

noise 3 15.38 9.93 46.64 10.81 6.20 7.29 15. 19 14.55 13.90 13.30

noise 4 22.30 5.67 44.39 20.46 10.83 3.65 23.18 14.13 15.12 27.55

noise 5 18.54 11.55 38.56 11.00 3.10 11.03 18.73 21.31 22.31 8.29

noise 6 18.30 7.01 50.80 11.84 8.49 5.63 16.96 11.50 22.14 12.42

noise 7 20.20 3.77 38.89 18.15 14.27 5.43 20.62 11.79 18.78 17.23

noise 8 82.40 4.73 28.82 11.85 6.93 5.34 8.67 7.14 25.11 13.25

noise 9 22.72 8.28 52.36 20.47 9.00 4.49 22.51 15.57 15.36 25.47

notst 10 15.25 5.83 39.69 15.40 12.16 6.94 16.03 10.69 17.32 20.12

AMSE 24.56 6.84 41.95 15.08 9.53 6.37 17.39 12.81 18.47 17.79
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TABLE_4.2.4: This table gives 1.E+4x(MSE) of the (SS) and the
(MKS) when a2-(0.1)2.

signall signal2 signal3 signal! signals

ESTI

MATO

RS

SS MKS SS MKS SS MKS SS MKS SS MKS

noise 1 5.75 3.27 7.54 3.39 3.50 2.27 5.68 2.14 8.44 5.25

noise 2 4.45 1.05 6.53 1.31 2.84 0.80 4.33 0.64 3.21 3.06

noise 3 5.06 3.13 7.11 3.76 4.01 2.39 3.41 2.16 7.41 3.47

noise 4 7.36 1.28 9.95 2.06 4.41 1.00 3.63 0.80 10.43 4.25

noise 5 6.62 3.79 7.54 4.31 5.98 1.78 4.58 1.48 7.32 3.82

noise 6 5.33 1.90 9.06 2.62 3.42 1.47 4.73 1.25 9.05 3.65

noise 7 7.36 1.41 8.54 1.42 7.72 0.65 5.17 0.35 8.33 4.02

noise 8 2.98 1.55 3.86 1.94 2.45 0.94 5.87 0.75 4.97 4.32

noise 9 6.79 1.75 11.08 2.91 4. 14 1.85 3.21 1.63 10.37 4.76

noise 10 5.10 2.16 7.04 2.35 3.17 1.54 5.01 1.39 5.83 4.16

AMSE 5.68 2.13 7.83 2.61 4.16 1.47 4.56 1.26 7.54 4.08
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TABLE_4.2.5: This table gives 1.E+4x(MSE) of the (SS) and the
(MKS) when a2-(0.1)2.

signal6 signal7 signalB signal9 signallQ

ESTI

MATO

RS

SS MKS SS MKS SS MKS SS MKS SS MKS

noise 1 4.83 2.61 14.80 4.90 4.68 3.98 4.89 3.86 6.41 4.19

noise 2 3.64 0.99 11.14 2.80 3.63 1.22 3.68 1.64 4.96 4.26

notse 3 4.60 2.86 11.95 3.27 1.81 2.33 4.43 4.32 4.06 3.91

noise 4 6.38 1.26 13.81 3.76 3.08 4.55 6.44 2.81 4.54 6.52

noise 5 6.43 2.59 9.79 3.63 0.74 3.61 6.34 5.80 6.26 2.05

noise 6 4.53 1.78 15.64 3.43 2.75 1.50 4.11 3.20 6.35 3.13

noise 7 6.79 0.94 10.61 3.61 4.77 1.40 6.81 2.06 5.76 2.54

noise 8 2.72 1.23 7.14 4.17 2.07 1.39 2.66 2.30 7.80 4.23

noise 8 5.52 2.10 16.05 4.30 2.91 0.63 5.36 3.84 3.94 6.57

noist 10 4.24 1.80 12.97 3.85 4.16 2.60 4.29 2.75 5.69 4.23

AMSE 4.97 1.82 12.39 3.77 3.06 2.32 4.90 3.23 5.58 4.16
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TABLE_4.2.6: This table gives l.E+3x(MSE) of the (SS) and the
(MKS) when o2-(0.5)2.

signall signal2 signal3 signal! signals

ESTI

MATO

RS

SS MKS SS MKS SS MKS SS MKS SS MKS

noise 1 4.25 6.74 7.23 0.63 2.10 5.16 9.32 5.14 10.30 5.51

noise 2 3.69 1.40 5.93 1.30 3.51 1.42 5.53 1.40 5.47 2.54

noise 3 7.82 6.17 9.41 6.04 7.53 5.23 4.08 5.21 3.92 4.55

noise 4 3.87 1.30 8.05 1.77 2.78 1.83 4.65 1.81 6.04 1.20

noise 5 6.70 7.14 14.32 5.48 7.7 3.56 2.43 3.54 2.41 4.73

noise 6 5.28 2.89 7.46 2.96 4.70 2.97 5.94 2.94 6.21 3.44

noise 7 4.99 2.19 8.88 1.56 3.12 1.13 8.03 1.11 9.88 2.35

noise 8 4.49 2.22 5.66 2.20 2.70 1.73 3.68 1.71 3.77 5.60

noise 9 7.27 2.09 9.24 3.09 5.35 3.92 5.89 3.89 7.35 1.80

notst 10 3.97 4.07 6.58 0.97 2.81 3.29 7.43 3.27 7.89 4.03

AMSE 5.23 3.62 8.28 2.60 4.23 3.02 5.70 3.00 6.32 3.58
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J^"4:2'7:«Th,iS \*ble giV6S ^^^MSE) of the (SS) and the(MKS) when o2-(0.5)2.

signal6 signal7 signal8 signal9 signallO
ESTI

MATO

RS
SS MKS SS MKS SS MKS SS MKS SS MKS

noise 1 2.94 5.57 12.34 5.44 7.85 6.70 3.01 6.63 11.24 4.91

noise 2 3.96 1.46 7.67 2.48 3.17 2.37 3.43 1.59 9.74 2.60

noise 3 8.08 5.63 8. 17 4.50 2.32 5.13 5.10 6.39 7.12 4.13

noise 4 3.62 1.78 9.34 1.13 3.50 0.26 3.19 1.86 6.41 5.88

noise 5 12.06 4.44 7.79 4.67 1.29 8.24 4.25 6.42 5.14 1.10

noise 6 5.18 2.98 9.11 3.38 4.65 2.98 4.84 3.22 7.71 2.99

noise 7 4.07 1.41 12.65 2.28 6.86 2.75 3.98 2.05 10.04 1.81

noise 8 4.01 1.86 6.11 5.54 2.96 2.68 3.35 2.38 6.09 11.4

noise 9 6.67 3.71 10.97 1.70 5.89 0.60 6.14 3.14 6.35 6.53

notse 10 3.45 3.51 10.00 3.96 5.51 4.53 3.22 4.11 10.49 3.75

AMSE 5.40 3.23 9.41 3.50 4.40 3.62 4.05 3.77 8.03 4.51
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As an example, the signal and the measurement models in state

space representation of the signal number 1 are given by

Eq(4.2.4 ):

x(n+l) -
.97 .1

0 .87
xin) win)

sin) - [2 0]x(n)

zin) - sin) +vin) (4.2.4)

The transfer function of the signal can be obtained from

Eq(4.2. 1).

z-0.77
Hiz)-

(z-0.97)(z-0.87)

In this illustrative example, the first realisation for the

measurement noise is used which is denoted by notsel in the

tables:(4.2.2 to 4.2.7).

The estimated signal by (SS) and (MKS) are plotted together

with the measurements and the actual signal for o2-(0.1)2 and

a2-(0.5)2, as shown in Fig:4.4 and Fig:4.5, respectively.

Note that in Fig.4.4, obtained for o2-(0.1)2, both the (MKS)

and (SS) follows satisfactorily the noise-free signal and the

transient effect are not visible. This is due to a good esti

mation of the initial state vector. However, in Fig.4.5 we

increase our incertitude on the measurement by increasing the

measurement noise variance to o2-(0.5)2. This has bad effect on

the (MKS) estimator since the transient effects have not been

decreased at the beginning of the estimation. The transient

effects are visible because the (MKS) uses a suboptimal gain

with a poor estimation of the initial state vector due to the

large incertitude on the measurement. As more data records are

used the estimated signal becomes closer and closer to the
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noise free-signal. On the other hand, the (SS) appears like a

straight line trough the measurement which is confirmed by a

small value of the smoothing parameter, p-6.6£-6, found by

(GXV).

0 10 20 n 30 40 60

smoothing parameter by (GXV) P =0.006
Flg.4.4:plot of the example when«2-(0.l)2

smoothing parameter by (GXV)/=6.6 l.E-6
Flg.4.6: plot of the example when^^as)2
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In the case of short data records only the first sixteen

measurement data and only the first realisation of the

measurement noise is used to compare the performance of the

two estimators for the ten different signals. The criterion

used for comparison is the (MSE). The (MSE) computed for both

the (MKS) and (SS), for the three different measurement noise

variance, is given in tables:(4.2.8 to 4.2.10) and plotted as

function of the ten signals numbered from 1 to 10 in Figs:4.6,

4.7 and 4.8. We also notice that, the (MSE) decreases when the

measurement noise variance decreases. Furthermore, the modi

fied Kalman smoother appears to perform better than the

smoothing spline although the superiority is not as obvious as

in the case of long data records.

TABLE_4.2.8: This table gives l.E+4x(MSE) of the (MKS) and the

(SS), when o2-(0.05)2.

signal

1

signal

2

signal

3

signal

4

signal

5

signal

6

signal

7

signal

8

signal

9

signal

10

MKS 1.92 2.06 2.07 0.71 2.84 2.03 2.55 1.80 2.53 2.80

SS 3.09 3.63 2.79 2.21 3.78 3.02 3.73 2.41 3.09 3.09

-65-



TABLE_4.2.9: This table gives l.E+4x(MSE) of the (MKS) and the

(SS), when o2-(0.1)2.

signal

1

signal

2

signal

3

signal

4

signal

5

signal

6

signal

7

signal

8

signal

9

signal

10

MKS 7.34 7.56 7.59 8.72 7.78 7.72 7.31 6.81 8.16 7.91

3S 10.3 11.4 10.4 9.96 13.0 9.3 13.2 9.01 12.2 9.76

TABLE_4.2.10: This table gives 1.E+3x(MSE) of the (MKS) and

the (SS), when a2-(0.5)2.

signal

1

signal

2

signal

3

signal

4

signal

5

signal

6

signal

7

signal

8

signal

9

signal

10

MKS 21.3 18.3 21.0 19.1 15.2 18.9 15.1 16.8 18.4 20.6

SS 21.5 34.2 21.1 22.5 22.9 23.1 35.2 20.6 22.0 27.8

For comparative purposes we define the following ratios

MSEMKSi
SS

_ mseSSl
R ce; — , R

MSE SS,
MKS

MSE MKS,— — iW I\*2 I

Rl~ i* or- ' &S~
MSE SS,

MSE MKS,

MSE MKSS

MSE SS,

where:

MSESSs stands for the (MSE) computed for the (SS) in the case

of short data records.
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MSESSi stands for the (MSE) computed for'the (SS) in the case

of long data records.

MSEUKSi stands for the (MSE) computed for the (MKS) in the

case of short data records.

W5fv/tSi stands for the (MSE) computed for the (MKS) in the

case of long data records.

The ratios are computed for each signal, and for the three

different measurement noise variances o2-(0.05)2, a2-(0.l)2, and

a2-(0.5)2. The results are given in tables 4.2.11, 4.2.12, and

4.2.13, respectively.

Table_4.2.11: this table gives the values of the ratios when

o2-(0.05)2.

signal

1

signal

2

signal

3

signal

4

signal

5

signal

6

signal

7

signal

8

signal

9

signal

10

R SS 0.63 0.67 0.48 0.82 0.77 0.56 1.00 0.56 0.54 0.63

° MKS 0.53 0.50 0.32 0.84 0.73 0.39 0.76 0.52 0.55 0.69

*l 0.52 0.42 0.49 0.33 0.71 0.47 0.52 0.70 0.82 0.98

Ra 0.62 0.57 0.74 0.32 0.75 0.67 0.68 0.75 0.82 0.91
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Table_4.2.12: this table gives the values of the ratios when

o2-(0.1)2.

signal

1

signal

2

signal

3

signal

4

signal

5

signal

6

signal

7

signal

8

signal

9

signal

10

R SS 0.56 0.66 0.34 0.57 0.65 0.52 1.12 0.52 0.40 0.66

R MKS 0.45 0.45 0.30 0.25 0.67 0.34 0.67 0.58 0.48 0.53

Rl 0.57 0.45 0.65 0.38 0.62 0.54 0.33 0.85 0.79 0.65

Rs 0.71 0.66 0.73 0.88 0.60 0.83 0.55 0.76 0.67 0.81

Table_4.2.13: this table gives the values of the ratios when

o2-(0.5)2.

signal

1

signal

2

signal

3

signal

4

signal

5

signal

6

signal

7

signal

8

signai

9

signal

10

R SS 0.20 0.21 0.10 0.41 0.45 0.13 0.35 0.38 0.14 0.40

R MKS 0.32 0.03 0.25 0.27 0.36 0.29 0.36 0.40 0.36 0.24

Rl 1.59 0.09 2.46 0.55 0.53 1.89 0.44 0.85 2.20 0.44

Rs 0.99 0.54 1 0.85 0.66 0.81 0.43 0.82 0.83 0.74

Using the three tables, we deduce that the ratio Rs is larger

than RL. This suggests that the superiority of the performance
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of the modified Kalman smoother on that of the smoothing

spline decreases as N decreases. On the other hand, the

comparison of the ratios Rss with RUKS shows that the

smoothing spline is slightly less sensitive than the modified

Kalman smoother to short data records.

4.3 INTERPRETATION.

According to the simulation study results reported in the

tables:(4.2.2 to 4.2.7), there exist some realisations of the

measurement noise, in the case where a2-(0.5)2, for which the

(MSE) of the (SS) is smaller than the one of the (MKS). In

general, According to the values of the (AMSE) reported in the

last row of the tables:(4.2.2 to 4.2.7) we can conclude that

the performance of the modified Kalman smoother using the true

signal model is better than that of the smoothing spline.

Signal number 7 has a large variation in the degree of

smoothing, see Fig.5.1 of the next chapter. This degrades the

performance of the (SS). It is expected because of the

pronounced peak in the graphs shown in Figs:(4.1 and 4.2).

Comparing, for the ten different signals, the (mse) of the

(SS) and that of the (MKS) given for the noisel in the case of

short and long data records, we note that the performance of

the (MKS) are more sensitive to short data records than that

of the (SS) when the measurement noise variance is o2-(0.05)2

or a2-(0.1)2. While for the measurement noise variance of

(0.5)2, the (SS) estimator, using the value of the smoothing
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parameter p found by the (GXV), is unable to recover the

noise-free signal. This is illustrated by plotting the first

16 data samples of signal number 1 with the measurement, the

estimated signal by the (SS) using two different smoothing

parameters, and the signal estimated by the (MKS), as shown in

Fig.4.9. We notice that the estimated signal by (SS), using a

smoothing parameter p(Wf„} found by the (GXV), is undersmoothed.

When p-piCXV)/S, the estimated signal presents less fluctu

ations and captures the shape of the noise-free signal. On the

other hand, (MKS) estimator behaves as if it is a biased

estimator because it captures the shape of the signal but the

estimated signal is either boosted up or down. The conclusion

is that both the (MKS) and the (SS) are unable to follow

closely the noise-free signal in the case of short data

records observed with large incertitude.

The pronounced peak that occurs in Figs:(4.1 to 4.2) for long

data records has been minimized for short data records

Figs(4.6 to 4.7). This suggests the use of local smoothing

which will be covered in the next chapter.

The (SS) is more sensitive to outlying data samples than the

(MKS) since, in the case of the (MKS), the gain matrix used to

weight the innovations is suboptimal. This means that the

(MKS) is more confident on the signal model than it is on the

measurements, so that outlying data samples will not affect

too much the estimator performances. However, the outlying

data could have an effect in the identification procedure when
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the model is identified (not known) which may lead to the use

of an incorrect model. The effect of the case of an incorrect

model will be investigated in the next section.

4 8 n 12

Fig. 4.9: estimation of the example

when er =(0.5) and N=16.

-72-



4.4 MODEL MISMATCH.

Model mismatch comes from three main points. It can come

either from lack of knowledge on the physical system under

study or the use of a reduced-order model in order to decrease

computational complexity or linearizing nonlinear model. It is

clear that an imprecise estimator model degrades estimator

performance. These modeling errors may even cause the estima

tor to diverge.

In this section we investigate the effects of using signal

models that do not fit the exact assumption needed by the

modified Kalman smoother or the smoothing spline estimators.

The analysis of the performance of the two estimators is

presented under the effect of model mismatch.

4.4.1 MODIFIED KALMAN SMOOTHER

In applying the modified Kalman smoother to a given signal,

the state-space model parameter [A,g,C], noise statistics

(Q,R), and initial condition (P(l), x(0)) must be specified.

In real situations we either not have these parameters or they

are estimated which can introduce some errors in the final

model. In the following simulation example we consider the

process modeling error of the signal given by Eq(4.3.1). For

this purpose, the (MKS) estimator is computed using the model

set A+AA, g, C, R, Q, Pil), ie, only the process dynamics

modeling error is considered. A^, is given by:
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Ay4,-
-.02 -.01

L .08 .01

with the measurement noise variance a2-(0.1)2.

In figure 4.10, the plots of the signal estimated by the (MKS)

under process dynamics modelling error, the measurement that

have been obtained from the exact signal model, the true

signal, and the used signal. The mean squared estimation error

(MSE) is computed under model mismatch and the obtained result

was 68.344E-3 while the (MSE) obtained for the (SS) was

5.75E-4. Using this A^ the signal model has became unstable

since one of the poles has been shifted out of the unit

circle. It is clearly shown, in Fig.4.10, by the increase in

the amplitude of the signal used for the (MKS) computation. An

other example for process modelling error, Ay!,, is taken where

the poles and zeros of the modified model are in the unit

circle. In this case, the process modelling error AAZ is given
by:

AA2-
-.02 .05

0 -.01

As the previous example; the plots of the measurements, the

true signal, the used signal, and the estimated signal are

given in Fig.4.11. The mean squared estimation error is

computed for this second example and the obtained result was
10.316E-3.

For the diagnosis of the quality of the (MKS) estimator we

use the bias test [5] as well as the whiteness test which will
be introduced in the next section.
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Fig.4.10: estimation under model mismatch AA,
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Fig.4.11: estimation under model mismatch AA.
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BIAS TEST:

The bias test is to check statistically whether the mean of

the innovation is zero or not. When the innovations sequence

is ergodic and gaussian, The sample mean for the innovation

vector ain) is given by:

1 "
™«-T7Za(n) (4.4.1)

" «-i

A test is performed to decide if the innovation mean is zero,

ie:

we test the null hypothesis H„: m,-0 against the alternative

hypothesis //,: m.»*0.

The zero-mean test [5] on the innovation a(rc) rejects H„ if

m, > \x and accepts it if m.,,<u..

Under the null hypothesis Ha, m. is assumed zero. At 5 percent

significant level, the confidence interval for the innovation

is given by:

H-[m.-I.96*V.(0). m.+ 1.96*Vr.(0)] (4.4.2)

where r.(0) is the sample variance given by:

1 "
r«(°)-77^a2^) (4.4.3)

This test is applied for the first and the second process

dynamics modelling error illustrative examples and the results

are given in Figs.(4.12 and 4.13), respectively.

Note that, in Fig.(4.12) 36 data samples are out of the band

which gives 18 out 100 are out of the band. Sine 18%>5% we

conclud that the estimator is biased. The same conclusion is
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Flg.4.13: the Innovations plot (aaj
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found for the second example since 6%>5% as shown in

Fig.4.13.

In general, the bias test is not sufficient for the analysis

of the estimator performances. Another test is applied to

innovation which is the whiteness test to decide on whether

the estimator is good or not.

WHITENESS TEST

The whiteness test is to check statistically whether the

covariance function of the innovation is that of a white noise

or not. When the innovations sequence is ergodic and gaussian,

the x'* component covariance is given by

1
N-l

N i-\
(4.4.4)

where a(a) is the innovation. Furthermore, the 95 percent

confidence interval estimate of r(x) is given by [5]:

/r(t)
, . 1.96*r(0) , x I.96*r(0)

r("0 rrr >r{x)* —{N ,'^"j' ffj~

When the innovation is white, r(x)-0 for x •* 0 .

The whiteness test is applied for the first and the second

process dynamics modelling error illustrative examples and the

results are given in Figs.(4.14 and 4.15), respectively.

Observing the two Figs.(4.14 and 4.15), we notice that the

autocovariance functions are out of the bands this means that

the innovations are nonwhite.
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From these simulation runs, we conclude that under small pro

cess dynamics modeling inaccuracies, the innovations becomes

biased and nonwhite. Although they were judged to be white and

unbiased when the true signal has been used. See Fig.4.16 and

Fig.4.17 for the bias test and the whiteness test, respect

ively.

The effect of input modeling error Lg and measurement modeling

error AC are also investigated. The results of the run show

that, for small measurement modelling error, ie,

AC-[-0.1 0.08], the innovations are unbiased and white. The

estimated signal by the (MKS) under small measurement modeling

error is shown in Fig.4.18. The mean squared estimation error

is computed under model mismatch and the obtained result was

3.28E-4. Under small output modelling error the (MKS) follows

closely the noise-free signal. The same result was obtained

when taking small input modeling error. However, when either

the input or the output modelling errors are large the (MKS)

diverges. As an example, taking AC-[0.6 0.9], The obtained

mean squared estimation error under large output modeling

error was 2.155. Similarly, When Ag-[5 -3], The mean squared

estimation error is computed under input modeling error and

the obtained result was 61.260. Figure 4.19 provides the

Plots of the signal estimated by the (MKS) under large input

modeling error, ie Ag-[5 -3], the measurement that comes from

the exact signal model, the true signal, and the signal
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used that comes from the model under input modelling error.

The estimated signal is truncated, in the figure 4.19, because

of its large amplitude compared to the other signals shown on

the same figure.

From these simulation runs, we can conclude that the (MKS)

diverges under small process modelling error and large input

or output modelling error. However, under small input or

output modelling error the (MKS) does not diverge.

4.4.2 SMOOTHING SPLINE

In the case of estimation of signals via smoothing spline the

assumption of smoothness may not be true that is the measured

data comes from a process that does not satisfy the assump

tions imposed by the smoothing spline. The effect of model

mismatch in the case of smoothing spline will be investigated

by the simulation of two different first order Markov pro

cesses. The results are compared to the modified Kalman

smoother.

The first simulation example is obtained by passing a white

noise of variance 1 through a linear time invariant filter.

The measurements consist of the signal corrupted by a white

noise of variance (0.1)2. the signal and the measurement

models are described in state space representation by:

xin+ l)-0.9802x(rc) + 0.04io(n)

s(n)-x(n)

z(rt)-s(rc) + u(a) . (4.4.6)
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with

x(0)-0.7

Figure 4.20 plots both the signal estimated by the (SS) and

(MKS) with the actual signal and the measurements. The mean

squared estimation error has been computed for both the (MKS)

and (SS). The obtained (MSE) of the (MKS) and that of (SS)

were 15.9418E-4 and 13.0576E-4, respectively.

The state space representation of the second first order Mar

kov process used in the second simulation example is given by:

x(n+ l)-0.3679x(n) +0.894u/(n)

sin)-xin)

zin)-sin) + uin) (4.4.7)

where

x(0)-0.7

Figure 4.21 plots both the signal estimated by the (SS) and

(MKS) with the actual signal and the measurement. The mean

squared estimation error has been computed for both the (MKS)

and (SS) and the results were 89.0650E-4 and 0.6779, respect

ively. In this example, the signal estimated by the (MKS) is

undistinguishble while the (SS) estimator brakes down. From

these two previous simulated examples we can conclude that the

(SS) is unable to follow a signal which has a large local

variations.

A third simulation example where a noisy portion of some

triangular wave which is given to the (SS) estimator to see

how the smoothing spline behaves in the region of the signal
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where the smoothness assumption is violated. For the simula

tion results see Fig.4.22 where the plots of the signal and

the measurements which are obtained by corrupting the signal

by white noise of variance o2-(0.1)2, and the estimated signal

are depicted. In figure 4.23, the error which is defined as

follows:

e(n)-5(n)-s(n) (4.4.8)

is plotted. §in) is the estimated signal and s(rc) is the signal.

According to Figs: 4.22 and 4.23, we note that near the peak

the (SS) estimator has larger error. The smoothing spline

estimator will not follow closely the noise-free signal in the

regions where the smoothness assumption is violated. The

problem of minimizing the error near the peaks will be

investigated in the next chapter.

The conclusion that we can draw form this section is that the

smoothing spline estimator does not perform well when we

estimate nonsmooth signals with large local variations. The

performance of the modified Kalman smoother are better than

that of the smoothing spline only when the signal model is

precisely known. Therefore, in the situations where we may be

unable to provide a precise model for a certain set of

measurements; the smoothing spline will be a good alternative.
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4.5 COMPUTATIONAL COMPLEXITY

The analysis of computational complexity is presented here in

order to compare the efficiency of the two methods. The

computational complexity of the two methods are calculated in

terms of the numbers of "flops". One flop counts one for a

multiplication or a division in the case of real numbers. When

the size of the measurement data is N and the underlying

linear time invariant signal model has order p, the modified

Kalman smoothing methods needs (70p3+12p2) flops for the

estimation of parameters P, Y, G, <J>. K and F, and iSp2 +6p)N
for signal estimation [32]. On the other hand, the smoothing

spline needs 25N flops for the signal estimation [27] and

(28/V- +3) flops for the computation of the (GXV) [31].

Therefore, there are about ((28A, +3)m +2SN) flops in total

since the (GXV) needs to be evaluated m-times to find the

optimal smoothing parameter. Summary of the computational

complexity and their description is given in table_4.5.1:

To have a clear idea on the computational complexity, we take

two values for m which are 15 and 30. The data size is taken

to be N=16 for short data records and N=50 for long data

records. The underlying linear time invariant signal model

order is taken to be p=lf 2, 4, 6, and 8. The corresponding

number of flops are given in table_4.5.2.
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ESTIMATORS DESCRIPTION NUMBER OF OPERATIONS IN

FLOPS

SMOOTHING

SPLINE

FOR SIGNAL ESTIMATION

FOR THE (GXV) COMPUTATION

2SN

28A/ + 3

IN TOTAL i28N + 3)m + 2SN

MODIFIED

KALMAN

SMOOTHER

FOR PARAMETER ESTIMATION

FOR SIGNAL ESTIMATION

IN TOTAL

70p3+12p2

(5p2 +6p)N

(70p3 + 12p2)+(5p2-t-6p)7V

Table_4.5.1: Summary of the computational complexity of the

two estimators.

Table_4.5.2 indicates that the (MKS) involves less computation

compared to (SS) when the signals are modelled by small order

linear time-invariant systems (p<4 ). It is worth noting that

the computation required for the identification of the signal

are not included. The computational cost for smoothing spline

is more sensitive to data size than that of the modified

Kalman smoother.
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NUMBER OF OPERATIONS IN FLOPS

DATA

SIZE

MODEL

ORDER

MODIFIED KALMAN

SMOOTHER

SMOOTHING SPLINE

m=15 m=30

N = 16

P = l 258 7165 13930

P = 2 1120 7165 13930

P=4 6336 7165 13930

P = 6 19008 7165 13930

P = 8 42496 7165 13930

N = 50

P = l 632 22295 43340

P = 2 2208 22295 43340

P=4 9872 22295 43340

P = 6 26352 22295 43340

P = 8 55008 22295 43340

Table_4.5.2: Number of flops for various values of N, p, and

m.
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4.6 BOOTSTRAP BASED METHOD OF VALIDATION OF THE MODEL USED.

In the previous section, we illustrated the effect of the use

of incorrect values of the parameters A, g, and C on the

performance of the (MKS) which was shown to be affected

seriousely when some errors are introduced in the parameters.

On the other hand, the application of the whiteness test may

lead to erroneous conclusions under model mismatch. For

instance, the output errors were judged as nonwhite despite

the fact that they were simulated from a white gaussian

process. These remarks motivated us to develop a new test

which detects the nonvalidity of the model used rather than

the nonwhiteness of the output noise.

4.6.1 DESCRIPTION OF THE MODEL

Consider the state-space representation, given in page 24, of

the signal:

xin+ I)- Axin) + gwin)

sin)-Cxin)

z(/i)-s(n) +u(n) (4.6.1)

It is clear that the signal sin) could be estimated by the

(MKS) and the (SS) methods simultaneously. On the other hand,

if Tin) denotes the (SS) estimator, the corresponding residuals

are defined by:

Oin)-zin)-Sin) for n-l N (4.6.2)
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The sequence {0(i) 0(A/)> is a consistant estimate of the

unknown output noise {vin)}. Therefore, it could be used to

determine the required statistics of the unknown output noise

{vin)}. It is worthnothing that {0{n)} is free independant on

the true unknown model of the signal s{n). On the other hand,

if the model used

x(n+ 1)- Ax{n) + gwin)

s{n)-Cx{n) (4.6.3)

is a correct model, then the obtained estimator (MKS) fits

well the measurements z{n). Furthermore, the obtained estima

tor should be comparable with the (MKS) estimator computed

from artificial measurements simulated from the model

corrupted by a simulated noise from the model of {0{n)}. It is

obvious that we can simulate, as many as we like, samples of

artificial measurements from which we can obtain a sequence of

(MKS) estimators.

The desicion on whether the obtained (MKS) is compared to the

simulated ones, may be taken using Bootstrap techniques which

consist of constructing a confidence interval of the (MKS)

estimator under the hypothesis that the model used is a

correct one. If the obtained (MKS) estimator computed from the

original data does not belong to the confidence band, we

deduce that the original data and the artificial data sets are

not generated from the same model. Since the model of the

residuals noise <0(a)> is a consistant estimator of the model

of the unknown output noise v{n), the descripancy between the
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original data and the simulated ones is due to the descripancy

between the two models (4.6.3) ie the values A, g, and C,

used in the computation of the (MKS) estimator, are not good

estimates of the unknown parameters. On the other hand, it is

natural to expect that the (MKS) computed from the original

data will lie within the confidence band if the measurements

are governed by model given by Eq(4.6.3) because the original

data and the simulated ones are generated from the same model.

The confidence band of the estimated (MKS) under the model

used can be obtained using the following algorithm:

I_* Simulate a set of measurements z'in), n=l,...,N, from the

model given by Eq(4.6.3) to be corrupted by simulated noise

from the model of the sequence (0(1),...,0{N)}

II_* Compute the (MKS) estimator MKS' using the measurements

z'{n)

III_* Repeat step (I) and step (II) 95 times. 19 runs are

sufficient in practice

IV_* Construct the 95% confidence interval using

UP_MKS{n)-Uaxtmi ..^{MKS'in)) for n-l N

LW_MKS{n)-M\nlml^{MKS'{n)) for n-l N

4.6.2 SIMULATION OF THE ARTIFICIAL OUTPUT NOISE

A random sample of size N which is required in step 1 of the

algorithm can be generated from the law of the sequence

(0(1) 0{N)} easily using one of the Bootsrap techniques which
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are summarized as follows:

A) PARAMETRIC BOOTSTRAP METHOD:

* Fit a parametric model (Guassian Law in average case) to the

sample of residuals (0(1) 0{N)}, and then simulated samples

from the estimated distribution Ni^.a2) where

I » 1 "
v-'nLOW and ^'-^Tryl^CO-ii)2 (4.6.4)

B) DISCRETE NONPARAMETRTC BOOTSTRAP METHOD:

* Simulate a random integer i* from {1,...,N} and take

v'{i)-0{i')

* Repeat the above step N times with replacement. This

approach is justified by the fact that the empirical

distribution function of the residuals is asymptotically a

consistant estimate of the unknown distribution of the output

noise.

C) SMOOTHED NONPARAMETRTC BOOTSTRAP METHOD:

One could estimate nonparametrically the density of

<0(1) 0(A/)>. One popular asymptotically consistant estimator

is the Kernel estimator [10,12,29] defined by

/.(u./O-—-- ^exp —^ (4.6.5)
V2jin/ifc7 \ h J

Simulated observations from fK{v,h) can be obtained using:

V'iL)m[l+F2J <0O+/iG<> (4.6.6)

where h is an estimator of the smoothing parameter and e, is a

simulated number from the standard gaussian law.
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The optimal value of fi can be defined as the value which

minimises the integrated mean square error of /„ defined by:

M/S£-£(/.(u./i)-A^(ji.a2))2du (4.6.7)

The minimisation of the MISE leads to take:

h» l.06aN'us (4.6.8)

4.6.3 ILLUSTRATIVE EXAMPLE:

In order to illustrate this test, we take the second example,

described in the last section, of the process dynamics

modelling error where

AA- AA,-
-.02 .05

0 -.01

It is clear from Figs(4.13 and 4.15) that the innovations are

biased and nonwhite. The answer to the question, "does the

divergence of the (MKS) come from the model mismatch", is

provided by the following bootstrap test for model validation.

First we have applied the (SS) estimator to the original

measurements and obtain an estimated signal sin). From the

residuals which are defined by

0{n)-z{n)-5{n) for n-l N

we obtained an estimate of the output noise statistics

If.,.. 1 ^

(4.6.7)

N
7Z(<K0-|i)2 (4.6.8)

We found (1-3.3F-18 and a-0.094.

Then we simulate 19 realisations, using the Gaussian law, with
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parameters ji and 6- Moreover, the (MKS) is run for each of the

19 realisations using the model under process dynamics

modelling error, AA2. The 19 obtained (MKS) estimators enable

us to construct a 95% confidance band to the (MKS) estimator

of the original data under the model. For the graphical

illustration see Fig.4.24 where the bands, the estimate of the

(MKS) using the original data and the signal used are plotted.

We notice that the (MKS) estimate using the original data does

not lie within the constructed bands. This means that the

model which had been used for the estimation is not the

appropriate one. In figure 4.25 the same procedure has been

conducted to obtain a 95% confidence band for the (MKS)

estimate when the exact model parameter for the signal was

used. This figure shows that the (MKS) estimate using the

original data lies within the band which is an expected result

under no model mismatch.
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CiiAEIEft Y_l

LOCAL SMOOTHING SPLINE

5.1 INTRODUCTION

We were concerned with nonparametric regression and data

smoothing for which smoothing spline (SS), an optimal solution

of a constrained least square based on the minimisation of the

second derivative [24], has been found useful. However, it has

been shown through simulation studies of the previous chapter

that the performance of the (SS) degrades when fitting pro

cesses whose degree of smoothness may not be constant [16,27].

This is due to the fact that the parameter which controls the

degree of smoothing applied to the measurements is constant.

In order to overcome this problem the smoothing parameter

should not be kept constant. It should take different values

depending on the curvature of the measurement pattern which is

nothing else than the curvature of the actual signal when the

noise is of zero mean. Our aim in this chapter is to develop a
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new nonparametric estimator, local smoothing spline, for over

coming the problem of global smoothing. The proposed estimator

which, is going to be denoted by (LSS), is based on local

smoothing parameter that controls the smoothness of the

measurement signal in different intervals. For example, near a

peak a relatively large value of smoothing parameter is appro

priate, whereas a small value should be used on approximately

linear section. Other techniques have been developed for the

adaptation of the local smoothing parameter in the case of the

nonparametric estimator known as the kernel estimator

[12,16,29].

In section two, we shall develop the (LSS). The superiority

of the (LSS) over the (SS) is demonstrated in section three.

Concluding remarks and further scopes are presented in section

four .

5.2 LOCAL SMOOTHING SPLINE.

It can be easily seen that the smoothing parameter, in stan

dard smoothing spline, is the Lagrange multiplier. Our idea is

very simple one: in order to end up with, for example, two

different smoothing parameters, the integral of Eq(3.2.2) is

split into two integrals. As a result, we have two constrained

problems which are solved "independently", following Reinsch

approach, with an additional constraint that the two estimated

signals and their first two derivatives must be continuous at
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the point where the integral is split.

Suppose that the measurement model is given by

zC'J-saj +i/CfJ (5.2.1)

where s(i) is a signal observed over a fixed interval [tltTN] in

a noisy environment described by an uncorrelated zero mean

noise u(t,) with variance a2.

In order to filter the signal which is composed of two signals

one observed in the interval [tltT,] and the other observed in

the interval [tjtl,TN].

the first fidelity criteria

minimize at (5.2.2)

are defined among the class of all functions for which S,(t)

and §\{t) is absolutely continuous and S\\t) is

square-integrable such that

£(*('.)-*,(*.))2*S,

and the second fidelity criteria

minimize J \s'z(t)\zdt

are defined among the class of all functions for which

and §z(0 is absolutely continuous and S2'(0 is

square-integrable such that

I (z('»)-*2('a))2SS2
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Applying the well known Lagrange method after normalisation

of the inequality constrained Eq(5.2.3) by introducing a dummy

variable p,.

the object function

Jimf/U\\t)\2dt*\ll^iz{tlt)-Slitll))z*^-Sl\ (5.2.6)
must be minimized.

The same procedure is done for £z(t) then

the object function

J2- ("\§2(t)\2dt +\J £ ^(tJ-s2(tK))2*\i2-S2) (5.2.7)

where p2 is a dummy variable; must be minimised.

According to Reinsch [24], §l(t) and §2(t) must satisfy condi

tions given by Eqs:(3.2.6 to 3.2.10) and Eq(3.2.12) except

that

i(2)/$!"(',). S\3\t,), S^it,.,), and §?\t,.t) (5.2.8)

are left to be determined from the continuity constrains

imposed on the two estimated signals at t/M which are as fol

lows :

^'('/♦J.-srC/.J.-O if fc-0,1,2

See fig.5.1 for graphical interpretation.
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y

a .*b .(t-t .)*c .(t-t .)Z+d .(t-t .)3
J J J J J J J

Vl'VlCt_tj >1 )tcj*l (t-*j*l >*dj*l"-*!♦! >

Si«J>.
S, (t .)

1 .] ♦

VVi'- ™ 2 J+l ♦
\

measurenent

t .
J

I

tine

Fig :5.1 Graphical illustration
of the continuity conditions.

Then the estimated signal over the interval [t{,TN] is composed

of sx(t) and s2(0 • The resulting estimate is then formed by

cubic polynomials.

s(0-a.+ 6n(f-tn) +ca((-fj2 +da(f-ta): for ta<f<0. (5.2.10)

which join at their common endpoints such that 5(f), Scn(t) and

sc2)({) are continuous. Hence, the solution is a cubic spline.

The relation among the spline coefficients is obtained by

inserting §,(£) and §2(0 into Eqs(3.2.6 to 3.2.10), and sat

isfying Eq(5.2.9). This yields to the following set of equa

tions :

when k - 2

c.-c^-d.-da-O. d.-((^,-0/(3/0 for n-2,..,N-l. (5.2.11)

when fc- 0
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^"(a.M-aJ/^-c,/i„-ci„/iJ for n-l N-l. (5.2.12)

when k - 1

Tc-QTa

when k - 3

Qc- M{z-a).

where

c"[c2.c3 cw_,]r

z-{z,,zz z„Y

a-[al,a2 a„]T

and the smoothing matrix M has the following form:

0

M -

\..

0

(5.2.13)

(5.2.14)

(5.2.15)

T and Q are as defined in Eq(3.2.16), for unit sampling

period.

A left hand multiplication of Eq(5.2.14) by QTM'1 separates

the variable c:

{QTM'[Q*T)c-QTz

a-z-M~'Qc

If we denote by Su the estimated signal evaluated at the
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design points <tn>, then the local smoothing spline estimator,

can be written in the following matrix form:

^-(/-M-,Q(QrW-'Q+r)"'Q7M-|)z (5.2.18)

and in more concise form the (LSS) can be written as

§u-A(M)z (5.2.19)

where

A(M)-(I +M-lQT-lQTy' (5.2.20)

If we denote by \apt the minimiser of the expression given by

Eq(3.3.2), and if \, apt -\2 apt -^ap( then the local smoothing

spline (LSS) becomes the standard smoothing spline (SS).

X., apt and Kz opt are found by the minimisation of the genera

lised cross validation (GXV) criterion for the first set of

the measurements, <z(l) z(>)>, and the second set of the

measurements, {*(;+!) z(N)>, respectively. A detailed illus

tration of the application of the (LSS) will be given in the

next section.

5.3_ ILLUSTRATION OF THE METHOD

The signal is taken to be the output of a linear time-invari

ant filter driven by a zero mean white noise, w{n), with vari

ance (0.001)2. The signal and the measurement models are given,

in state space representation, by Eq(5.3.1). The actual signal

has linear section as well as a curvature, as shown in

Fig.5.2.
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With

*(0)-[.5 .5]r

x(a + 1)

s(n)

z(n)

.97 .3

0 .74
x(n)

[1.8 0]x(n)

s(n) + u(n)

2.2

1.5
w(n)

Fig;5,2 :signal and the measurement

(5.3.1)

Figure 5.2 displays also some data simulated by adding nor

mally distributed errors, v(n), with zero mean and a standard

deviation of .1, to the signal s(n). The size of the data

samples is taken to be 50 that is (n =l, ...,50) . Note that from

the measurement pattern seen over the 50 data samples two dif

ferent section are well noticeable. The first section defined

by the first 20 data points suggesting that the actual signal
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has a certain curvature whereas, the second section which con

sists of the remaining data points suggest that the actual

signal is approximately linear. This remark recommend the use

of two different amounts of smoothing since the smoothing

parameter represents the rate of exchange between residual

error and local variations. Therefore, good estimation of the

smoothing parameter, Kl apt, for section one could be obtained

by minimizing V(\) where only the first 20 points are used.

The obtained value was \,opi -4.8f -2, see Fig.5.3. The same

procedure is applied to the last 30 points to obtain a good

estimation of \2 opt, and the obtained value was \zopt -5.8F -4,

see Fig.5.4.

-3
x)0

Flg:5.3: smoothing parameter by (GXV)
A i opt =4,8 E-2
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These two optimal local smoothing parameter, x and x
1 opt "-2 apt'

obtained by the method described above are fed to the (LSS)

through the smoothing matrix M. The estimated signal by (LSS)

is obtained by applying Eq(5.2.19) using the obtained

M. For the sake of comparison the signal estimated by

(SS) is first found by obtaining the optimal global

smoothing parameter (OGSP) \opt which is the minimiser of

expression (3.3.2), as shown in Fig.3.3 page 49. Figure 5.5

Plots the signal estimated by the (LSS) and (SS) together with

the actual and the measurement signals. Note that section on

of the signal estimated by (SS) is not able to follow the peak

of the actual signal. On the other hand, section two of the

(SS) estimate exhibits some oscillations. This comes from the

fact the (OGSP) obtained by generalized cross-validation is

not suitable in these sections since it is either over

smoothed or under smoothed, respectively. However, the signal

estimated by the (LSS) follows closely the actual signal. The

mean squared error (MSE) is computed for both estimators. The

result for the (SS) based on global smoothing parameter and

the (LSS) based on local smoothing parameter were 14.7992E-4

and 8.4023E-4, respectively. This confirms the superiority of

the (LSS) over the standard (SS).

e
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In order to justify the superiority of the method and the

noncruciality of the choice of the cutting off point, two

other sectioning points have been identified. The first was at

the data point numbered 15 and the second was the data point

numbered 25. The mean squared estimation error has been com

puted for the two estimators using the two different section

ing. The results were 6.0847E-4 and 8.6459E-4, respectively.

These results indicate that the choice of the sectioning point

is not crucial since for the three cases the (LSS) is better,

in the (MSE) sense, than the standard (SS).

In the case where the data pattern of the measurement signal

is not noticeable, we recommend to apply the standard smooth

ing spline directly to obtain an indication of the general

pattern of the data so that good choose of the sections could

be made and the application of the (LSS) would be feasible.

The algorithm of the local smoothing spline is summarized as

follows:

STEP_1: Identify the different section of the measured signal

(curvatures as well as linear regions). If necessary apply the

standard smoothing spline to identify the different section of

the signal.

STEP_2: Choose moderate data sample for each chosen section in

step_l and for each section obtain the optimum smoothing para

meter by minimizing the following expression:
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^(O
1 2>«x,(0-z,(0)s
^<(l-^race(/!I(^1)))2

where

sn

Y.I is the sum over the data samples of the section i.

STEP_3: Form the smoothing matrix M by inserting the optimum

smoothing parameters, found for each section, obtained in

step_2.

STEP_4: Compute the Q and T matrices. Then the local smoothing

spline estimator evaluated at the design point (O is given

by:

STEP_5: In order to completely determine the local smoothing

spline, the parameters a, , b„ , c„ , d„ are computed as fol

lows

a - S u

ci - cw -d, -dN -0 d,-
~3h~

for n -2 N - i

c-T'xQTa

a»-i -a*
•-cahn-dnn: for n - 1 N - 1

where

^.-^.l-*.

and

6„ should be initialised, as for the (SS) estimator.
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5.4_ CONCLUSION

The development of the (LSS) shows that the (SS) is a special

case of the (LSS). It has been shown that the (LSS) is suc

cessful, in the sense, that it provides a way through which

visual information could be fed to the (LSS) estimator

resulting in a good estimation compared to the standard

smoothing spline which are based on global smoothing para

meter. The adaptation of the smoothing parameter is achieved

by the use of the visual information drawn from the

measurement data pattern. Other technique could be applied to

the local smoothing spline (LSS) by making the local smoothing

parameter either dependent on the second derivative which is

known as the plug-in method, or found through the bootstrap,

which is a resampling technique. The bootstrap technique has

been successfully applied to the kernel estimator in the case

of nonparametric regression [10,15,16], and density estimation

[12,29].
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CONCLUSION

In this research work, two linear smoothers, the smoothing

spline (SS) and the modified Kalman smoother (MKS), are com

pared through simulation study. The choice of which technique

is suitable depends on the following concluding points which

are meanly drawn from the simulation study.

1_ The (SS) estimator does not force the model into a rigid

class and does not need information on the measurement noise

variance, the only requirement is that the signal to be esti

mated is smooth. On the other hand, the (MKS) requires a com

plete information on the signal model, the output and input

noise variance for closely optimal results.

2_ In the case of long data records, the performances of the

(MKS) are found to be better than that of the (SS), when the

signal parameter, the input and output noise statistics are

known. However, in the case of short data records the

superiority of the (MKS) over the (SS) decreases as compared
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to long data records.

3_ Both the (SS) and the (MKS) do not give good results for a

moderate number of data sample recorded with an additive noise

of high variance.

4_ Non stationarity of the measurement noise is easily handled

by (SS), where the 6^ are chosen to locally controls the

smoothing window at time tn as it has been used by Peyrovian

and Sawchuk [23] in the restoration of a blurred image and

Silverman [27] in the case of estimating smooth signal

observed with an additive non stationary noise. Whereas (MKS)

assumes a constant variance of the measurement noise.

5_ The (MKS) is suitable for adaptive processing application.

6_ The (MKS) involves much computations compared to the (SS),

specially for signals modelled by a large signal model order.

On the other hand, the computational complexity of the (SS)

has been found more sensitive to the size of the data records

than that of the (MKS).

7_ The (SS) are suitable for fitting empirical functions and

for functional analysis [27,36] where estimation of higher

order derivative is encountered.

8_ The (SS) is quite close to an ideal low-pass filter which

make it resistant to brief spikes, but it is very sensitive to

a set of out laying data samples and especially at the bound

aries .

9_ The model mismatch has been investigated for both the (MKS)

and the (SS), and it was shown through simulation studies that
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the performance of both estimators has been degraded under

model mismatch. In the case of the (MKS) divergence, a stat

istical test based on the bootstrap technique has been devel

oped to investigate whether the signal parameter, found

through identification, are not correct or the noise

assumption is not appropriate.

10_ The computation of the global smoothing parameter by gen

eralized cross-validation restricts the ability of the use -of

the (SS) to processes whose degree of smoothness may not be

stationary. To overcome this problem, a new approach which is

the local smoothing spline (LSS) which is based on a local

smoothing parameter has been found to be feasible and effec

tive .

11_ Other techniques such as the bootstrap [10,15,16] and the

plug-in method [10] could know be used, for finding the local

smoothing parameter, for the (LSS).

•115-



REFERENCES:

[1] B. D. 0. Anderson and J. B. Moore: Optimum Filtering.

PP.153-162, Englewood Cliffs, NJ. Prentice-Hall, Inc., (1S79).

[2] A. J. Berkhout and P. R. Zaanen: A comparison between

wiener filtering, kalman filtering, and deterministic least

squares estimation. Geophysical Prospecting, 24, pp. 141-197.

(1974) .

[3] R. Boucheta and M. Djeddi: Parametric and nonparametric

estimators: "simulation experiments based comparative study".

Advances in Modelling and Analysis, B, vol.30, N°2, pp.19-29,

(1994) .

[4] R. Boucheta and M. Djeddi: Smoothing spline: "local

adaptive smoothing parameter". Advances in Modelling and

Analysis, A, vol.20, N°3, pp.55-64, (1994).

[5] James V. Candy: Signal Processing: The Model-based

Approach. Mc Craw-Hil1,Inc (1986).

[6] James V. Candy: Signal Processing: The Modern Approach. Mc

Craw-Hill,Inc, pp.220-231, (1988).

[7] R. M. Clark: Non-parametric estimation of a smooth

regression function. JRSSB, vol.39, pp.107-113, (1977).

[8] D. Cox: Asymptotics for M-type smoothing splines. Ann.

statist, vol. 11, No.2, pp.530-551, (1983).

[9] D. Cox and E. Koh: A smoothing spline based test of model

adequacy in polynomial regression. Ann. Inst. Statist. Math.,

•116-



vol.41, No.2, pp.383-400, (1989).

[10] B. Efron: More efficient bootstrap computations. Journal

of Amer Statis Ass, vol 85, No.409, pp.79-89, (1990).

[11] R. L. Eubank: Approximate regression model and splines.

Comm. statist, theory, math., 13(4), pp.433-484, (1984).

[12] J. J. Faraway and M. Jhun: Bootstrap choise of bandwidth

for density estimation. Amer Statist Ass, theory and methods

vol. 85, No 412, pp. 1119-1122, (1990).

[13] D. C. Fraser et al: The optimum linear smoother as a

combination of two optimum linear filters . IEEE Trans, on AC,

Vol-8, pp.387-390, (1963).

[14] T. N. E. Greville: Introduction to spline functions: In

theory and applications of spline functions. (T.N.E. Greville

ed. ),pp.1-36, New York: Academic Press, (1969).

[15] P. Hall: Using the bootstrap to estimate mean squared

error and select smoothing parameter in nonparametric prob

lems. Journal of Multivariate Analysis, vol 32, pp.177-203,

(1990).

[16] W. Hardle and A. W. Bowman: Bootstrapping in nonparamet-

ric regression: local adaptive smoothing and confidence bands.

Amer Statist Ass, theory and methods vol. 83, No 401,

PP.102-110, (1988).

[17] H. S. Hou and H. C. Andrews: Cubic splines for image

interpolation and digital filtering. IEEE trans, on ASSP, vol

26, No 6, pp.508-517, (1978).

[18] T. Kailath: An innovations approach to least-squares

-117-



estimation. Part I: Linear filtering in additive noise. IEEE

trans, on Aut. Contr. AC-18, pp.601-607, (1973).

[19] T. Kailath and M. R. Gevers: An innovations approach to

least-squares estimation. Part VI: Discrite-time innovations

representation and recursive estimation, IEEE trans, on Aut.

Contr. AC-18, pp.601-607, (1973).

[20] R. E. Kalman: A new approach to linear filtering and

prediction problems. Trans. ASME, Journ. Basic Eng., vol.82,

PP.34-45, (1960).

[21] R. E. Kalman and R. S. Bacy: New results in linear

filtering and prediction theory. Trans. ASME, Journ. Basic

Eng., vol.83, pp.95-107, (1961).

[22] F. L. Lewis: Optimal Estimation. John Wiley & Sons,

Inc.(1986).

[23] M. J. Peyrovian and A. A. Sawchuk: Restoration of noisy

blurred images by a smoothing spline filter. Applied Optics

vol. 16, No.12, pp.3147-3153, (1977).

[24] C. H. Reinsch: Smoothing by spline functions. Numer.

Math. 10, pp.177-183, (1967).

[25] C. H. Reinsch: Smoothing by spline functions II. Numer.

Math. 16, pp.451-454, (1971).

[26] B. G. Robert: Introduction to Random Signal Analysis and

Kalman Filtering. John Wiley and Sons, Inc. (1983).

[27] B. W. Silverman: Some aspects of the spline smoothing

approach to non-parametric regression curve fitting. J. R.

statist, soc. B, 47, No 1, pp.1-52, (1985).

•118-



[28] P. L. Smith: Splines as a useful and convenient

statistical tool. The American Statistician, vol. 33, No.2,

PP.57-62, (1979).

[29] C. C. Taylor: Bootstrap choice of the smoothing parameter

in kernel density estimation. Biometrika, 76, No.4, pp.705-

712, (1989).

[30] S. A. Tretter:Introduction to Discrite-Time Signal

Processing, pp.371-387, John Wiley York, (1976).

[31] D. F. Uteras: Sur le choix du parametre d'ajustement dans

le lissage par fonctions spline. Numer. Math. , 34, pp.15-28,

(1980) .

[32] J. Richard Vaccaro and Li Fu: Signal estimation over

short data records: A data-dependent time-invariant algorithm.

Journal of the Franklin Institute Vol.327, No.3, pp.439-455,

( 1990) .

[33] D. R. Vaughan: A nonrecursive algebraic solution for the

discrete reccati equation. IEEE Trans. Automatic Control,

Vol.AC-15, No.5, pp.597-599, (1970).

[34] G. Wahba and P. Craven: Smoothing noisy data with spline

functions. Numer. Math. , 31,pp.377-403, (1979).

[35] G. Wahba and S. Wold: A completely automatic frensh

curve: fitting spline functions by cross-validation, comm.

statist., 4,pp.1-17, (1975).

[36] S. Wold: Spline functions in data analysis. Technomet-

119-



rics. 16, pp.l-ll, (1974).

[37] C. H. Woodford: An algorithm for data smoothing using
splines functions. BIT, 10, pp.501-510, (1970).

120-



ANNEXE

Liste et composition du jury en vue de la soutenance du Memoire

de Magister en Ingineerie.des.Systemes.Electroniques

de/ )/)•-..BOUCHETTA. .Rachid ,

PRESIDENT /: Dr.HOUACINE, Maitre de Conference U.S.T.H.B

RAPPORTEUR/: Dr.M.DJEDDI, Charge de Recherche, I.N.E.L.E.C.

MEMBRES /: Dr.A.KEZOUH, Maitre de Conference , U.S.T.H.B

Dr.K.HARICHE, Charge de Recherche, I.N.E.L.E.C


