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Abstract A hybrid weight function technique is presented. It consists of dividing an elliptical 
crack into two zones, then using the appropriate weight function in the area where it is more 
efficient. The proportion between zones is determined by optimizing two crack parameters (axis 
ratio and curvature radius). Stress intensity factors are hence computed by a self developed 
computer code. Static and fatigue loadings are considered. The results found by the present 
approach are in good correlation with the analytical and experimental solutions (when available) 
as well as with those obtained numerically by other researchers. 
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1. Introduction 

The principle of the weight function (called the Green’s function) technique consists 
of employing one or more known solutions (known as reference solutions) of a 
particular case in order to find the solution for the general case. The reference 
solution generally comes from the analytical results (exact). But in some cases, the 
absence of such results obliges researchers to use approximate solutions which 
could be already existing weight functions. In this paper, a method improving the 
calculation of SIF in mode I for elliptical and semi-elliptical cracks is developed 
by means of hybridization of two weight functions and coupling to the Point 
Weight Function Method (PWFM). In the fatigue problems, two crack propagation 
laws have been incorporated. Crack propagation life and crack profile are investig-
ated for various applications. The development of weight functions in fracture 
mechanics started with the work of Bueckner [2], based on the formulation by the 
Green’s function, for a semi-infinite crack in an infinite medium. The investigation 
of the weight functions on the one hand and the evaluation of the energy balance 
formula of Rice [14] on the other hand, allowed the extension of the use of the 
weight functions by several authors such as Oore and Burns [10] and Bortmann 
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and Banks-Sills [1]. In 1986, Gao and Rice [4] introduced the study of the stability 
of the rectilinear form of a semi-infinite crack front during its coplanar propag-
ation from which result the values of stress intensity factor (SIF) along the crack 
front. Recently, Sun and Wang [16] gave in-depth interpretations of the energy 
release rate of the crack front. Other investigations followed related especially to 
the crack shape (ellipse, half of ellipse, quarter of ellipse, rectangle, …) as well as 
to the fracture mode (I, II, III or mixed) and to the application domain (elastoplastic, 
elastodynamic, …). This paper is structured as follow. Detailed presentation of the 
hybridization approach is presented in Section 2. Fatigue crack propagation models 
are then implemented into the hybridization technique, subject of Section 3. In the 
next section, two industrial applications are discussed, one of them is in static and 
the other one is in fatigue loading. We end this paper by drawing some conclusions. 
This work is an extension of already published studies of crack modeling by the 
hybridization technique [5, 6, 8]. 

2. Presentation of the hybridization technique 

The solution of the SIF in mode I using the weight function technique is given by 
the general form [10]: 

∫= ′′
S

QQQI dSQqWK ).(  (1) 

where QIK ′ is the stress intensity factor in mode I at the Q' point of the crack front. 

QQW ′ is the weight function related to the problem and q(Q) symmetrical loading 
applied to the arbitrary Q point of the crack area S.  

This study is based on the hybridization of two weight functions deduced from 
a Green’s function formulation. 

The first one is developed by Oore and Burns [10] to model any closed shape of 
a crack in an infinite body, including elliptical cracks. Its expression is as follows: 
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The second one is developed by Krasowsky et al. [9] to model elliptical cracks 
in an infinite body. Its expression is as follows: 
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In expressions (2) and (3), r and ϕ are the polar coordinates of an arbitrary 
point Q. QQl ′  is the distance between the Q' point and the arbitrary Q point. Γ is 

the curve of the ellipse (the crack front), and ρQ is the distance between the  
Q point and the elementary segment dΓ, ∏ is a function such  
as )cos(sin)cos(sin)( 222242 θαθθαθθ ++=∏  and α=a/b. 

 
Fig. 1. Subdivision of the elliptical crack in two zones and its geometrical parameters 

The principle of hybridization is to divide, as shown in Fig. 1, the elliptical 
crack into two zones, an internal zone I (ellipse in grey) and an external zone II (in 
white), then to use each of the two weight functions in the area where it is more 
efficient. The two zones are defined by the following relations: 
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where a′ and b′ are such as β=′=′ bbaa  and [ ]1,0∈β , β being the proportion 
between the two zones and a, b are the axes of ellipse (e.g. Fig. 1). 

The weight function of Eq. (3) is intended exclusively for cracks of elliptical 
form. Nevertheless, it presents an additional singularity (1 − r/R)−1/2 compared to 
Eq. (2). This makes Eq. (3) less efficient in the vicinity of the crack front )( Rr → . 
This argument leads us to make the following choice: 
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It remains to determine the appropriate proportion β between two zones I and 
II. By construction of each weight function (see details in [6, 8]), the function (2) 
is preferable to the function (3) in the two following cases: 
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o When the crack front is close to a circle ( 1→α ) 
o When the crack front is close to a straight line (low values of α with 

value of θ far from zero) 

In fact, these two cases correspond to situations where the variation of the 
curvature radius Rc of the crack front is weak, excluding a very narrow zone 
corresponding of the smallest values of Rc (θ close to zero with low values of α). 
In this case and for a relatively high variation of the curvature radius of ellipse, the 
weight function (3) of Krasowsky et al. is more adapted. This is confirmed by the 
presence via the function Π(θ) of curvature radius )()/( 2/3 θα Π= aRc  in the 
expression of the function (3). 

Consequently, more the radius of curvature is relatively weak or its derivative 
(spatial gradient of the radius of curvature) is high, more the zone I should 
increase with respect to the zone II and vice versa. 

Taking into account all these considerations, we propose the relative parameter 
expressed by: 

( )( ) bbRb c ,min1 −=β  (6) 

For the representation of the influence of the curvature radius compared to the 
large axis of the ellipse b, and the following one: 
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To represent the influence of the gradient of the curvature radius for a given α. 
In this relation θ∂∂ /cR  is the partial derivative with respect to the angular 
position of the point Q′, its maximum and minimum values are calculated by 
“sweeping” completely the contour of the ellipse for a given α. The computation 
of the partial derivative is achieved numerically. 

The proportion parameter β  takes the value: 

( )21,max βββ =  (8) 

Details of the method regarding its numerical implementation, treatment of 
singularities, meshing can be found in references [5, 6, 8]. 

To extend the use of this hybrid approach for the semi-elliptical crack modelling, 
it’s coupling with the point weight function method [11] (PWFM) is considered in 
order to take into account the free edge effect. More details of the coupling 
between the present hybrid technique and the PWFM method can be found in [7]. 
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3. The hybrid method in fatigue 

The fatigue crack growth prediction is classically based on the SIF approach, 
known as the Paris law [12]. This last one is given as follows: 

m
Ic KCdNda )(/ Δ=  (9) 

C and m are material parameters related to Paris law usage. 

 
Fig. 2. Algorithmic schemes of the computing procedure 

As previously mentioned, the fatigue crack growth prediction can also be based 
on the SEDF approach. Its expression has first been given in 1979 by Sih [15], in 
which the strain energy density factor range replaces the stress intensity factor 
range in classical laws (Paris law for example). The Sih’s law (based on SEDF 
approach) has the following form: 

n
c SDdNda )(/ minΔ=  (10) 

D and n are material parameters related to Sih’s law usage. 

In the above equation Smin is the necessary strain energy density factor for a crack 
to propagate, and satisfying the condition dS = 0. This factor may be obtained in 
mode I according to the SIF value [15]. 
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Written for two points A (θ = 90°) and B (θ = 0°) of the ellipse contour (e.g. 
Fig. 1), one can obtain from Eqs. (9) and (10), respectively: 

( )mB
I

A
IBA KKCCdbda ΔΔ= /)/(/  (11) 

And: 

( )nBA
BA SSDDdbda ΔΔ= /)/(/  (12) 

From Eqs. (11) and (12), one can say that for two different values of SIF range 
ΔKA and ΔKB or SEDF range ΔSA and ΔSB, two different values of the crack 
growth segments da and db can be obtained. Consequently, a change in the crack 
profile is expected. On the algorithmic scheme presented in Fig. 2, are illustrated 
the different steps for the computation of the fatigue life and the evolution of the 
crack shape. 

4. Numerical tests, results and discussions 

In this section, practical applications are numerically treated using the computer 
operational software with graphic interface using the C++ object-oriented language 
named HWFun which we develop for this purpose.  

4.1. Internal semi-elliptical surface crack in a pressurized tube 

The theory of thick tubes (Lamé’s theory) shows that longitudinal cracks located 
on an internal face of the tube are the most dangerous ones. For this kind of 
application, the efficiency of hybridization approach coupled with the PWFM [11] 
is evaluated. For values of α = 1.0 and α = 0.4, numerical tests are carried out on 
tubes of t/Rint = 0.1, where t is the thickness of tube and Rint is its internal radius. 
The loading inside the crack has the form p = (y/a)i with { }.3,2,1∈i  

In accordance with the PWFM method ad for the sake of comparison, we 
choose a reference solution in the form p = σ0. The present results are for two 
characteristics angles θ = 0° and θ = 90°, and for linear (i = 1), quadratic (i = 2) 
and cubic (i = 3) loadings. From Fig. 3, the present results are in good agreement 
with those found by Raju and Newman [13] using finite element method and those 
of Krasowsky et al. [9], Vainshtok [17] et Orynyak et al. [11] using weight 
function methods such as ))(()( 4/1

0 θπσ Π= akEKK II , where E(k) is the elliptic 

integral of second kind and 21 α−=k . According to those graphs, loading mode 
has a significant effect on the stress intensity factor (SIF). In fact: 
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 The SIF values increase with the decrease of α  
 The maximum value of SIF is for a uniform loading 
 Only uniform loading induces a more important value of SIF at a surface 

point (θ = 0°) than at a depth point of (θ = 90°) 

Fig. 3. Adimensional SIF of a semi elliptical crack at the internal surface of a tube 

4.2. Out-of-plane gusset welded joint 

To this mechanical component (see Fig. 4) a tensile cyclic load is applied. Due to 
stress concentration, a surface crack can initiate either at the junction between 
portions 2 and 1, or between portions 2 and 3. Two cases have been considered: 
ρ = 0 mm and ρ = 30 mm (ρ is the radius of curvature of the welded joint) as 
shown on Fig. 4. The numerical computations in [3] used a finite element code 
known as “LUSAS”. The mechanical properties of the treated component are those 
of the steel called POSTEN 80. They are given in [3] as μ = 77GPa, and ν = 0.3. 

In the numerical computations, and in order to take into account of the stress 
concentration, the coefficient Fg was given in a format of curves [3]. It is introduced 
by modifying the value of the tensile stress by the term Fgσt at both points A and B 
and at each crack growth da or db. To facilitate the numerical implementation, this 
coefficient Fg has been substituted by a fifth order polynomial obtained by fitting 
the above mentioned curves. 

The values of the crack growth material parameters D, n, C, m are those used by 
[3]. It should be pointed out that the parameter D has been modified by multiplying 
it by a factor (π)n. This difference comes from the fact that in the case of plane 
stress, the SEDF equals to πμν 4/)21(2 −IK . 
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Fig. 4. Configurations and dimensions of the mechanical component 

The first numerical tests deal with those treated in [3], and concern the following 
configurations: 

(a) ρ = 0 mm, and R = 0.1 

• 
0

0.4 mma = , 4.00 =α , 0max 2.0 aa =Δ , 93 MPa
t

σΔ =  

• 
0

0.4 mma = , 4.00 =α , 0max 2.0 aa =Δ , 124 MPa
t

σΔ =  

• 
0

0.4 mma = , 4.00 =α , 0max 2.0 aa =Δ , 155 MPa
t

σΔ =  

(b) ρ = 30 mm, and R = 0.1 

• 
0

0.3 mma = , 1.00 =α , 0max 2.0 aa =Δ , 124 MPa
t

σΔ =  

• 
0

0.3 mma = , 1.00 =α , 0max 2.0 aa =Δ , 155 MPa
t

σΔ =  

• 
0

0.3 mma = , 1.00 =α , 0max 2.0 aa =Δ , 207 MPa
t

σΔ =  

Figure 5a, b shows the fatigue crack growth life numerically estimated via 
different approaches, and experimentally measured as well. At the first stage, one 
can make the following physical observations: 

1. The fatigue life is much affected by the radius of curvature ρ. Indeed, as the 
radius of curvature decreases (ρ = 0), the fatigue life decreases. 

2. The fatigue life is also affected by the stress range Δσ, i.e. as Δσ increases, 
the fatigue life decreases. 

The second observations deal with the numerical comparisons from which one 
can state the following: 

1. The hybrid approach (HWFM) is in correlation with the experimental data, 
for both radius of curvature and for the various values of Δσ. 

2. For the lower value of the radius curvature (ρ = 0), the SEDF approach gives 
better predictions than the SIF one. 

In the following numerical computations, the influence of the physical stress 
ratio parameter R on the fatigue crack growth is discussed. Figure 6 shows in a 
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log-log scale, the number of cycles to failure Nc, versus the stress range Δσ for the 
curvature radius ρ = 0 and ρ = 30, and for various values of the stress ratio R. 

On the same figure, the experimental data given by [3], which are only 
available for R = 0.1 are inserted. One can observe that a good correlation exists 
between the previously mentioned data and the numerical results obtained by the 
HWFM when using the SEDF approach. However, the usage of the SIF approach 
gives less accuracy in the fatigue life prediction. From Fig. 6a, b, it is also 
observed that the fatigue life decreases as the stress ratio increases. Overall, it is 
noticed that the curve relative to the number of cycles versus stress range obtained 
by the usage of the SIF approach lies in between the curves R = 0.1 and R = 0.3, 
obtained when using the SEDF approach. This interval can be considered as the 
interval of validity of the SIF approach for such treated problem. 

(b)(a)  
Fig. 5. Fatigue life prediction with different approaches: (a) ρ = 0, (b) ρ = 30 mm 

(b)(a)  
Fig. 6. Influence of the parameter R on the fatigue crack growth: (a) ρ = 0 mm, (b) ρ = 30 mm 
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5. Conclusions 

In this work, a hybridization weight function approach based on Green’s function 
formulation is developed. The method has been applied to static and fatigue loads. 
The idea of hybridization leads us to an optimization problem of two geometrical 
parameters (the ratio axes and curvature radius of ellipse). A computer code named 
HWFun has been developed and tested on various practical applications under 
static and fatigue loadings. In this modeling, a computation dealing with the stress 
intensity factors in mode I is first performed. The results obtained show a clear 
reduction in the error. The present approach was also tested on fatigue-crack-growth 
problems. The predicted crack shape evolution and the fatigue crack growth life are 
in perfect concordance with the results obtained by other researchers. The idea of 
hybridization undoubtedly opens horizons for the treatment of other complex 
problems in fracture mechanics such as mixed mode and interaction among cracks. 
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