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This paper deals with the application of a variable structure observer developed for a class of 
nonlinear systems to solve the trajectory tracking problem for rigid robot manipulators. The 
considered observer design approach proposes a simple design methodology for systems having 
completely observable linear parts and bounded nonlinearities and/or uncertainties. The 
considered observer is basically the conventional Luenberger observer with an additional 
switching term that is used to guarantee robustness against modeling errors and system 
uncertainties. We propose to modify this observer structure and use the system nonlinearities in 
the observer structure under the Lipschitz condition. To solve the tracking problem, we have used 
a control law developed for robot manipulators in the full information case. The closed loop 
system is shown to be globally asymptotically stable based on Lyapunov arguments. Simulation 
results on a six D-O-F robot manipulator show the asymptotic convergence of the observation and 
tracking error vectors. 

Keywords: Variable Structure Observers, Switching-type observers, 6 DOF PUMA560 robot 
manipulator, Exponential stability, Tracking control.  

1. INTRODUCTION 

The control of rigid robot manipulators was solved by several classical and robust 
efficient methods, and it is shown that each control strategy ensures the stability of the 
trajectory tracking error in some suitable sense. One basic assumption to these methods is 
that the full state information is available for feedback. In fact, for robotic systems, a state 
feedback control is based on the exact knowledge of both the position and velocity vectors. 
Unfortunately, the velocity vector cannot generally be available for feedback for several 
reasons. A solution to this is the design of nonlinear observers that give the reconstruction 
of the missing velocity signal. Due to the nonlinear and coupled structure of the robot 
dynamical model, the problem of designing observers for robots is a very complex one.  

For nonlinear systems, several approaches have been presented in literature [13] to solve 
the nonlinear observer design problem. The first possibility consists to transform a 
nonlinear problem into a linear one by the extended linearization technique [3] or by the 
pseudo-linearization method ([15], [21]), which yields constant eigenvalues of the 
reconstruction error dynamics when linearized about any fixed equilibrium point. We also 
have the exact linearization technique [14] that consists of transforming the nonlinear 
system into a linear system with an output injection to apply the linear observation theory. 
A second possibility consists of designing an observer with a nonlinear observation error 
dynamics. To this fact, some techniques are established in the initial state coordinates [11], 
and others in the observable canonical form ([9], [10], [6]). All these methods are available 
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for nonlinear systems without uncertainties or disturbances in their dynamic equations (for 
a survey on nonlinear observers, the reader is asked to consult [22], [16], [20], [13]). 

Motivated by this, the control problem of robots using partial knowledge of the state 
variable (only joint measurements) has attained an increasing interest. A straightforward 
approach to this problem goes along a two steps design: first, construct a nonlinear observer 
driven by the available inputs and outputs, which reconstructs the lacking velocity signal, 
second, design a state feedback controller and replace the actual velocity by the one 
reconstructed from the observer. Indeed, based on this procedure a number of conceptually 
different methods for both regulation and tracking control of robots equipped with only 
position sensors have been developed. ([17], [4], [5], [12]). These observers guarantee the 
exponential and asymptotic stability of the observation error, but do not take into 
consideration system uncertainties, even though several studies have shown that under 
some conditions, some of them present robustness properties, especially those based on the 
passivity approach ([2], [4]). A solution to this is the design of robust observers. 

The design of observers that take into consideration system uncertainties have taken the 
interest of many people ([4], [7], [8], [16], [19], [20], [22]). 

In [21] a variable structure observer for a class of nonlinear systems is presented. The 
authors propose a simple design methodology for systems having completely observable 
linear parts and bounded nonlinearities or uncertainties. A minimum estimate for the rate of 
convergence of the observer error was also given. This observer is basically the 
conventional Luenberger observer with an additional switching term that is used to 
guarantee robustness against modeling errors and system uncertainties. Due to this 
supplementary switching term, this observer suffers from the chattering usually associated 
to Variable Structure Systems. To deal with this problem, the original observer is modified 
and a boundary layer approach is considered. However, with this modification, the 
asymptotic stability aspect of the observation error dynamics is lost, and only global 
uniform ultimate boundedness stability of the observation error is obtained. In [8], 
extension to the above variable structure scheme is proposed, and a continuous observer 
was used to ensure the global exponential stability of the observation error system.  

In [1], an application of the above variable structure observer to the class of robot 
manipulators is presented with an application to a 2 DOF rigid robot system. The 
exponential convergence of the observation error was shown. But, a difficulty in tuning 
observer gains was raised. This is due to the large nonlinearities contained in the system, 
which will induce large values of the nonlinearities upper bound to be used in the additive 
switching term, and as a consequence, high chattering is produced.   

In this paper, we propose to modify the variable structure observer described in [22], by 
including the system nonlinearities in the observer structure, under the global Lipschitz 
condition, and apply it to the system of n-DOF robot manipulators to solve the tracking 
control problem with only position measurements. The exponential stability of the 
observation error is shown under the condition that system uncertainties and external 
disturbances are bounded, which is generally guaranteed for this class of systems.  

The estimated velocity vector will be used in a trajectory tracking control law proposed 
in [18], which guarantees the global asymptotic stability of the tracking error for the 
manipulator control system. Keeping in mind that no separation principle exists for 
nonlinear systems, the study of the closed loop stability is performed using a Lyapunov 
function that contains two terms, one for the tracking error and the second for the 
estimation error. The asymptotic stability of the closed loop system is shown, under a 
suitable choice of the observer and controller gains.  
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This paper is organized as follows; we first consider from literature the variable structure 
observer design method. Then, we apply this observer to the class of rigid robot 
manipulators and show that under some assumptions, the exponential convergence of the 
observation error is guaranteed. Section 4 is devoted to closed loop control, where we use 
Lyapunov arguments to prove the closed loop stability. Finally, simulation results of the 
proposed scheme on a 6-DOF robot manipulator are illustrated. 

2. OBSERVER DESIGN 

Consider the following nonlinear system;  

( ) ( ) ( , , )

( ) ( )

x t Ax t f x u t

y t C x t

⎧ = +⎪⎪⎪⎨⎪ =⎪⎪⎩
                      (1) 

where ( ) nx t ∈ ℜ is the state vector, ( ) py t ∈ ℜ  is the output vector and ( ) mu t ∈ ℜ  is the 
control input. The vector (, , )f ⋅ ⋅ ⋅ , assumed continuous in ( )x t , is used to represent the 
nonlinearities and/or uncertainties in the plant. The problem is to design an observer with 
inputs ( )y t  and ( )u t , whose output ˆ( )x t  is the estimated state that is ensured to converge 

in a finite time to the real state. Before we give the observer structure, the following 
assumptions should be made. 

Assumption 1 - The pair ( , )AC  is detectable, i.e., there exists a matrix L  of appropriate 
dimensions such that the spectrum of oA A LC= −  is completely contained in the open 

left half-plane.  

Assumption 2 - There exist a positive definite matrix n nQ ×∈ ℜ  and a function h where 
(, ) : n ph +⋅ ⋅ ℜ ×ℜ → ℜ , such that the following matching conditions hold 

1( , ) ( , )Tf t x P C h t x−=                        (2) 

where P  is the unique positive definite solution to the Lyapunov equation 
T
o oA P P A Q+ =−                         (3) 

Assumption 3 - There exists a non-negative function (, ) : mρ + +⋅ ⋅ ℜ ×ℜ → ℜ , such that 

( , , ) ( , )h t x u t uρ≤ ,                        (4) 

,n mx u and t +∀ ∈ ℜ ∀ ∈ ℜ ∈ ℜ  

If assumptions 1-3 are satisfied, then the proposed observer is described by the following 
differential equations 

0ˆ ˆ ˆ ˆ( ) ( , , )x Ax L y C x t x yν= + − +                    (5) 

where 
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1

0

( , ) 0
ˆ( , , )

0 0

TP C C e
t u C e

C et x y

C e

ρ
ν

−⎧⎪−⎪⎪ ∀ ≠⎪⎪⎪= ⎨⎪⎪⎪⎪ ∀ =⎪⎪⎩

             (6) 

and L  is a positive diagonal design matrix.  

Let the observation error be defined as, ˆe x x= − . The observation error system will 
then be described by 

0 ˆ( , , ) ( , , )oe Ae t x y f t x uν= + −                     (7) 

The exponential convergence of the estimation error is stated by the following theorem. 

Theorem 1 - Given the nonlinear system described by (1) and the observer governed by (5)-
(6), if assumptions 1-3 are satisfied, then the observation error ˆe x x= −  is globally 
exponentially stable. 

The poof of this theorem can be found in [22]. It can be seen that this observer is the 
conventional Luenberger observer with the additional switching term 0 ˆ( , , )t x yν , which 
ensures robustness against system nonlinearities. Unfortunately, this discontinuous term 
will cause the undesirable phenomenon of “chattering”. Hence, it is advantageous to design 
a gain law that is continuous in the error and ensures that the estimated state will converge 
at least asymptotically to some arbitrary small neighborhood of the real state. 

 To satisfy these requirements, a boundary layer strategy that offers a continuous gain 
function is proposed in [22]. This is done, by replacing the discontinuous term given by (6) 
by the continuous term given by  

1

2

0
1

2

ˆ( , , )

T

T

P C C e
if C e

C e
t x y

P C C e
if C e

ρ ρ ε
ρ

ν

ρ ρ ε
ε

−

−

⎧−⎪⎪⎪ >⎪⎪⎪⎪= ⎨⎪⎪−⎪⎪ ≤⎪⎪⎪⎩

              

 (8) 

with 0ε > . With the observer (5) (8), the error system obeys to 
1

0 ˆ( , , ) ( , , )T
oe A e t x y P C h t x uν −= + −                  (9) 

It can easily be shown, that the error signal is globally uniformly ultimately bounded. 

3. APPLICATION TO ROBOTIC SYSTEMS 

In this section, we consider a modification of the above observer, and apply it to the 
system of n-DOF robot manipulators. Instead of using an upper bound of system 
nonlinearities and external disturbances, as specified by assumption 3, we consider only the 
upper bound of external disturbances, friction terms and possible system uncertainties, and 
we use system nonlinearities in the observer structure. This will prevent high values of the 
upper bound that causes considerable chattering, as can be seen from (6). 

In order to apply this scheme to robot manipulators, we consider the dynamics of a n-
DOF robot manipulator given in [23], written in the following state space representation   
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( , , ) ( )dx Ax f x u t t

y C x

η⎧ = + +⎪⎪⎪⎨⎪ =⎪⎪⎩
                     (10) 

with 
q

x
q

⎛ ⎞⎟⎜ ⎟= ⎜ ⎟⎜ ⎟⎟⎜⎝ ⎠
, 

0

0 0
nI

A
⎛ ⎞⎟⎜ ⎟⎜= ⎟⎜ ⎟⎜ ⎟⎜⎝ ⎠

, ( )0nC I=                (11.a) 

( )1

0
( , , )

( ) ( , ) ( )
f x u t

M q C q q q G q u−

⎛ ⎞⎟⎜ ⎟⎜ ⎟= ⎜ ⎟⎜ ⎟− + −⎜ ⎟⎜⎝ ⎠
               (11.b) 

u τ=                             (11.c) 

where nq ∈ ℜ is the vector of joint angular positions, ( ) n nM q ×∈ ℜ is the symmetric 
positive definite inertia matrix, ( , ) nC q q q ∈ ℜ is the Coriolis and centrifugal torque vector,  
( ) nG q ∈ ℜ is the gravity vector and nτ ∈ ℜ  is the vector of applied joint torque. ( )d tη  is 

the vector representing external disturbances, friction terms and system uncertainties. The 
vector ( , , )f x u t  is assumed to satisfy the following assumption. 

Assumption 4:- There exists a constant 0κ >  such that for all 1x  and 2
1 0

nx D∈ ⊂ ℜ , 
then 

1 2 1 2( ) ( )f x f x x xκ− ≤ −                    (12) 

where { }2
0 / ( )n

MD x q t V= ∈ ℜ < , with 0MV > , and κ  is the Lipschitz constant. 

The first step to be considered in the design of the variable structure observer for robot 
manipulators is to satisfy assumptions 1-3. From expressions (11), assumption 1 can always 
be satisfied since the matrix 0A A LC= −  can be selected to be a stable matrix for any 

positive gain matrixL , so 0TP P= >  is the unique solution to the Lyapunov equation 
given in (3).  

In addition, by exploiting the structural properties of rigid robot manipulators given in 
[23], we can always verify that; 

1( ) ( )T
d t P C w tη −=                         (13) 

where  ( ) ( )w t tρ≤                         (14) 

and ( )w t  is a parameterization of the disturbance vector ( )d tη . We can notice that we have 
considered only an upper bound ( )tρ of friction and disturbance terms, which is different 
from assumption 3, where an upper bound of system nonlinearities is considered. 

The observer is then given by 

0ˆ ˆ ˆ ˆ ˆ( , , ) ( ) ( , , )x Ax f x u t L y C x t x yν= + + − +                (15) 

with 0( , , )t x yν  defined as in (6). The observation error system is obtained as 
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0ˆ ˆ( , ) ( , , ) ( )o de Ae f x x t x y tν η= + + −                   (16) 

with ( )1 2ˆ
T

e x x e e= − =  is the observation error vector and 

ˆ ˆ( , ) ( , , ) ( , , )f x x f x u t f x u t= − . We can see from (16) that the additional switching term 

0 ˆ( , , )t x yν  is used in the observer structure to cope with the effects of uncertainties in the 
plant model and input disturbances.  

To show the exponential convergence of the observation error, we consider the following 
Lyapunov function candidate; 

1
2
TV e Pe=                            (17) 

which time derivative evaluated along the error dynamics (16) yields 

( )1
0

1
ˆ ˆ( , ) ( , , ) ( )

2
T T TV e Qe e P f x x t x y P C w tν −= − + + − +           (18) 

If we consider assumptions 1-2 with equations (6) and (13), and assumption 4, this last 
expression can be bounded as  

2

min max

1
( ) ( ) ( )

2
T TV Q P e Ce e C w tλ κλ ρ

⎛ ⎞⎟⎜≤ − − − −⎟⎜ ⎟⎜⎝ ⎠
          (19) 

where min max(), ( )λ λ⋅ ⋅  denote the minimum and maximum eigenvalue of its argument 

respectively. Using (14) we can finally write 
2

min max

1
( ) ( ) 0

2
V Q P eλ κλ

⎛ ⎞⎟⎜≤ − − <⎟⎜ ⎟⎜⎝ ⎠
                (20) 

Therefore, the time derivative of the Lyapunov function candidate is negative definite iff; 

min

max

( )

2 ( )

Q
P

λ
κ

λ
<                           (21) 

which implies that, under the above condition, the error converges exponentially to zero. 
Furthermore, from bounds on the Lyapunov function, we can write 

2 2

min max

1 1
( ) ( ) ( )

2 2
P e V e P eλ λ≤ ≤                  (22) 

and  
2

min max

1
( ) ( )

2
V Q P eλ κλ

⎛ ⎞⎟⎜≤ − − ⎟⎜ ⎟⎜⎝ ⎠
                   (23) 

Then, we can write 

( )min max
1

max

( ) 2 ( )( )
( ) ( )

Q PV e
V e P

λ κλ
ε

λ
−

≤− =                   (24) 

or  
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( ) ( ) 1( ) (0)
t

V e t V e e
ε−

≤                        (25) 

Hence, the rate at which the error converges to zero is determined as 

1
2 2

max

min

( )
( ) (0)

( )
tP

e t e e
P

ελ
λ

−
≤                     (26) 

This shows the exponential convergence of the observation error signal, and the rate of 
convergence. Again, the switching term in the observer will cause “chattering”. 

4. TRAJECTORY TRACKING CONTROL DESIGN  

In order to use the above observer for the tracking problem of robot manipulators, we 
consider the trajectory tracking controller proposed in [18], with the real velocity state 
vector replaced with the estimated one. We have the control law is given by 

ˆ ˆ( ) ( , ) ( ) ( )d d v d pM q q C q q q G q K q q K qτ = + + − − −              (27) 

where dq q q= −  defines the position tracking error, pK  and vK  are positive design 
controller gains. We should make the assumption that the desired velocity vector is 
bounded as; d Pq V≤ , which is reasonable from the implementation point of view. Using 

the robot dynamics, the closed loop system is governed by 

2ˆ( ) ( , ) ( , ) ( )d p vM q q C q q q C q q q K q K q e+ − = − − +              (28) 

where dq q q= −  is the velocity tracking error and 2 ˆe q q= −  is the velocity observation 
error. Using the structural properties of the Coriolis and centrifugal torque vector [23], we 
can write 

2ˆ( , ) ( , ) ( , ) ( , )d dC q q q C q q q C q q q C q q e− = −                 (29) 

According to this, consider the following Result: 

Given the control law given in (27), and the observer (15) with (6), if assumptions 1-2-4 
and relations (13)-(14) are satisfied, then the closed loop system described by (16) and (28) 
is globally asymptotically stable. To investigate the stability of this closed loop dynamics, 
consider the Lyapunov function candidate 

1 1 1
( , , , ) ( )

2 2 2
T T T

pV e q q t e P e q M q q q K q= + +                (30) 

The time derivative of this Lyapunov function evaluated along the trajectories of the 
error dynamics (16) and (28) and using relations (13)-(14), is obtained directly as 

( )1
0 2 2

1
ˆ( , ) ( ) ( , )

2
T T T T T T

v v dV e Qe e P f x x P C w t q K q q K e q C q q eν −= − + + − − − +   (31) 

This can be bounded as, using the structural properties of the Coriolis and centrifugal 
torque vector [23]; 

( )22
min max , 2 ,

1 ( ) ( )
2 v m v M M PV Q P e K q q e K C Vλ κ λ⎛ ⎞≤ − − − + +⎜ ⎟

⎝ ⎠
 (32) 



A. Abdessameud & F. Khelfi: A Variable Structure Control System for a 6 DOF PUMA 560 Robot Manipulator 
 

 8 

with ,v mK  and ,v MK  denote the minimum and maximum eigenvalues of matrix vK . 

Knowing that 2e e≤ , we can write 

( )

( )

, ,

, min max

1
2

1 1
( ) ( )

2 2

T

v m v M M P

v M M P

K K C Vq q
V

e eK C V Q Pλ κλ

⎛ ⎞⎟⎜⎛ ⎞ ⎛ ⎞− + ⎟⎜⎟ ⎟⎜ ⎜⎟⎜⎟ ⎟⎜ ⎜⎟⎟ ⎟⎜⎜ ⎜⎟≤ − ⎟ ⎟⎜ ⎟⎜ ⎜⎟ ⎟⎜ ⎟⎜ ⎜⎛ ⎞⎟ ⎟⎟⎜⎜ ⎜⎟ ⎟⎟⎜⎟ ⎟⎜ ⎜⎟− + −⎜ ⎟⎝ ⎠ ⎝ ⎠⎜ ⎟⎟⎜⎜ ⎟⎜ ⎝ ⎠⎝ ⎠

       (33) 

The matrix in right hand side of the above inequality is positive if 

( )2,

min max
,

1
( ) ( )

2 4

v M M P

v m

K C V
Q P

K
λ κλ

+⎛ ⎞⎟⎜ − >⎟⎜ ⎟⎜⎝ ⎠
                (34) 

Under this condition and using Barballat’s Lemma, we can conclude the asymptotic 
stability of the equilibrium point ( ) ( )1 2, , , 0, 0, 0, 0q q e e = . 

Note that the above stability condition can always be satisfied if matrices vK  and Q  are 
properly selected. In all cases, Q  should be maximized.  

5. SIMULATION RESULTS 

In order to test the validity of our design, we have considered a 6 DOF PUMA 560 robot 
manipulator. The objective of our simulation work is to show that the tracking objective is 
achieved when the robustly estimated velocity vector is used in the tracking control law. 

Due to the complexity of the control system, the control system gains should be carefully 
selected. The controller gains are selected to be high enough such that the tracking 
controller ensures the asymptotic convergence of the tracking error in the case of full state 
information. We have encountered several problems during observer gains tuning and have 
noticed that if the gain matrix L is fixed, increasing matrix Q will give large solutions for 
matrix P, which will cause high gain switching term, and if matrix P is fixed, increasing 
matrix Q will lead to use high observer gain matrix L. In both situations, the system will be 
more sensitive to measurement noise and high frequency unmodeled dynamics. Moreover, 
the observer gains should be selected according to condition (36).  

The obtained results from the MATLAB simulation of the proposed scheme with a 6 
DOF robot manipulator along a trajectory of order 5, and uncertainties/disturbances upper 
bound estimated at 32.5, are shown below.  

Figures 1 show the velocity observation errors of the six axes, where we can see the 
convergence of the error signals and the high frequency oscillations caused by the 
switching term. To solve this problem, we can consider the boundary layer approach to 
eliminate chattering. Figures 2-3 show the position and velocity tracking errors, 
respectively, of the six axes, when the robustly estimated velocity vector is used in the 
tracking control law (29), and the asymptotic convergence is guaranteed. 
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Figure 1. Velocity observation error of : (a) axis 1, (b) axis 2. 
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Figure 2. Velocity observation error of : (a) axis 3, (b) axis 4. 
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Figure 3. Velocity observation error of : (a) axis 5, (b) axis 6. 
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6. CONCLUSION 

In this paper, we have proposed a variable structure observer to the class of rigid robot 
manipulators in order to solve the trajectory tracking problem with only position 
measurements. The considered observer is basically a classical nonlinear observer with an 
additive switching term used to cope with the external disturbances and/or uncertainties. 
The design of the robust observer is based on the assumption that the linear part of the 
nonlinear system is completely observable, the nonlinear function is Lipschitz, and external 
disturbances and/or system uncertainties are upper bounded and satisfy some matching 
conditions. One drawback of this design is that the presence of the switching term causes 
the “chattering”. To solve this problem, the use of a boundary layer is a solution. Another 
solution is to use a continuous term that guarantees the global exponential stability of the 
observation error just as done in [8]. 

The robustly estimated states are then used in a control loop with a trajectory tracking 
control law, which ensures the global asymptotic stability of the system in the full 
information case, that is, both velocity and position vectors are available for feedback. 
Under the assumption that the desired velocity vector is bounded, the extended error vector 
is proved to be globally asymptotically stable, under the condition that the desired velocity 
vector is bounded. Through simulations on a 6-DOF PUMA 560 robot manipulator, we 
have illustrated the feasibility of the designed control system. 
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