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Abstract 

This thesis describes the design process of an FPGA-based sensor-driven 

intelligent controller applied to a dual-axis sun tracking system. Fuzzy 

control based on fuzzy logic theory is used as a solution for the FPGA 

implementation of a digital controller for this industrial application. The 

real-time controller determines when and how much to tune the driving 

motors to minimize the misalignment of the solar panel surface with the sun’s 

incident rays during the day in order to harvest maximum power from the 

solar panel mounted on a tracker. 

To achieve such a digital controller, we developed an FPGA-based 

heterogeneous computing platform with the capability of partitioning the 

overall controller between two concurrent subsystems: (1) a hardware 

subsystem made up of a pair of fuzzy-like PD-type controllers implemented 

on the programmable fabric of the FPGA using the (Very-High Speed 

Integrated Circuit) Hardware Description Language (VHDL), and (2) a 

software subsystem, a soft processor Nios® II-based supervisory control 

system implemented using the system-on-a-programmable (SoPC) approach. 

This hardware/software codesign implemented in a single chip makes the 

connections between the two subsystems work with low power and low 

latency resulting in an optimal efficiency and performance. 
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An experimental structure is constructed in the laboratory. The controller 

allows this structure to perform an approximate three-dimensional 

hemispheroidal rotation to track the sun’s movement during the day to 

improve the overall efficiency of the solar panel. 

Integrating the whole digital controller in a single chip accelerates 

development time while maintaining design flexibility. Moreover, it reduces 

the circuit board costs with a single-chip solution, and simplifies product 

testing.  Compared with traditional design approach using programmed logic 

(microprocessor- microcontroller- and DSP-based systems), the proposed 

solution uses a single low-cost FPGA device while enabling higher degrees of 

flexibility and concurrency. 

The digital controller developed with Altera Quartus II 9.1 sp2 Web 

Edition software development suite tools is simulated and realized on a 

Cyclone-II EP2C35F672C6 FPGA platform to verify its feasibility and 

functionality.   

 Keywords: FPGA; SoPC; Fuzzy logic module; Nios® II; Sun tracker. 
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Résumé 

Cette thèse décrit le processus de conception d'un contrôleur intelligent à base de 

FPGA appliqué à un système de poursuite du soleil à double axe. Le contrôleur a base de 

logique floue détermine en temps réel quand et de combien faudrait-il ajuster les moteurs 

d'entraînement pour minimiser le désalignement de la surface du panneau solaire avec les 

rayons du soleil pendant la journée afin de récolter le maximum de puissance du panneau 

solaire monté sur un suiveur. 

Pour atteindre un tel objectif de commande numérique, nous avons développé une 

plate-forme informatique hétérogène à base de FPGA avec la possibilité de cloisonner le 

contrôleur global entre deux sous-systèmes simultanés: (1) un sous-système de matériel 

informatique constitué d'une paire de logique floue comme régulateurs de type PD mis en 

œuvre sur FPGA en utilisant le langage VHDL, et (2) un système de contrôle de 

surveillance à base II processeur Nios® mis en œuvre en utilisant l’approche SoPC. Cette 

conception matériel / logiciel mise en œuvre dans une seule puce rend les connexions entre 

les deux sous-systèmes fonctionnent avec une faible puissance et de faible latence résultant 

en une efficacité et des performances optimales. 

L’intégration du contrôleur numérique en une seule puce accélère le temps de 

développement tout en maintenant la flexibilité de conception. En outre, il réduit les coûts 

avec une solution mono-puce, et simplifie les tests de produits. Par rapport à l'approche 

traditionnelle de conception utilisant la logique programmée (microprocesseur et 

microcontrôleur et de DSP), la solution proposée utilise un dispositif de FPGA à faible coût 

unique tout en permettant des degrés de flexibilité et de concurrence plus élevés. 

Le contrôleur numérique développé avec le logiciel de développement d’Altera le 

Quartus II Edition 9.1 sp2 est simulé et réalisé sur une plate-forme Cyclone II FPGA 

EP2C35F672C6 pour vérifier sa faisabilité et sa fonctionnalité. 

 

Mots Clés: FPGA; SoPC; Logique Floue; Nios® II; Suiveur. 
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Graphical Abstract 
 
 
 
 

 A brand new methodology to implement intelligent embedded systems using 
SoPC approach 

 Both simulation and physical implementation of the digital controller 

 Implementation in the FPGA functions commonly realized by analog discrete 
components.  

 Partitioning the digital controller between SoPC and non-SoPC simplifies 
design complexity while increasing design flexibility and reusability. 

 The FLC module designed and implemented in VHDL is seamlessly integrated 
in the overall system using SoPC approach 

 The target device on the DE2 board is the Altera EP2C35F672C6 FPGA of 
Cyclone II family 
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1 Introduction 

Since the beginning of the Industrial Revolution, coal, crude oil and natural gas are the 

three forms of fossil fuels mostly used worldwide. These non-renewable sources of energy are 

so called because they have been formed from the organic remains of prehistoric plants 

(plants which grew on earth millions of years ago) and animals and have rotted away over 

million of years and became solids, liquids and gasses. They will run out one day. Fossil fuels 

must be located, excavated and transported before they can be used. These carbon-based fuels 

are employed to feed power plants to produce electrical energy [1]. They must be burned to 

produce electricity. Burning them creates unwanted by-products such carbon dioxide. These 

unwanted by-products pollute the environment (air and water pollutions) and contributes to 

the global warming due to the release of huge amount of greenhouse gasses into the 

atmosphere.  To  minimize  this  major  problem,  there  is  a  need  to  replace  (at  least  partially)  

these fossil fuels with an environment friendly alternative. For a long time, it has been 

thought that the nuclear-based power plants would be the ideal solution for the increased 

demand for electrical energy, ever increasing oil price and environmental concern. It is true 

that nuclear energy has several benefits: absence of airborne pollutants, no greenhouse effect 

and reduction in dependence on oil. However, the accidents of Three Mile Island (1979), 

Tchernobyl (1986) and the recent tragedy of Fuckushima (2011) increased anti-nuclear 
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sentiment. This public awareness pushed several countries to rethink the use of this energy. 

Germany decided to close all of its reactors by 2022, while Italy and others countries halted 

expanding their nuclear power plants.  

2 Renewable Energies 

In the 1970s with the energy crisis, the interest in green power was primarily driven by the 

goal of replacing fossil fuels to reduce the dependence on oil and gas. Nowadays, with 

climate change, ozone layer depletion, global warming etc, the principle goal is the 

preservation of the environment by minimizing carbon-dioxide emissions in the atmosphere.       

There is a wide variety of renewable energies. These energies use resources that are naturally 

replenished on a human timescale and will exist infinitely. The list of these resources, ordered 

by the amount of contribution to the production of electricity, currently includes: hydro, wind, 

biomass, geothermal heat and sunlight. Electricity derived from these energies is considered 

“green” because of the negligible negative impacts on the environment.  

2.1 Hydro source of Energy 

 The contribution from renewable energy sources for electricity production is small 

with the exception of hydro. Over the last 100 years, hydro has been the most mature 

renewable source of electricity around the world. Figure-1.1 (left) depicts a huge energy 

stored in a dam which can be used to generate hydroelectric power. Today, hydro power 

contributes to about 21% of electricity capacity worldwide [2].  

Figure-1.1. (left) A dam to energize a hydroelectric power station. 
            (right) Airflows used to run wind turbines. 
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2.2 Wind Source of Energy 

Wind is the next most popular source of green electricity and the fastest growing 

renewable energy world-wide. Figure-1.1(right) illustrates airflows used to run wind turbines. 

An average of wind speed of 14 miles/hour ( 20 Km/hour) is needed to efficiently convert 

wind energy into electricity. Today, large new wind farms at excellent wind sites generate 

electricity at a cost in the range that is competitive with that of electricity from conventional 

power plants, while offshore areas experience average wind speeds larger than that of land. 

2.3 Biomass Source of Energy 

Wood remains the largest biomass energy source today. Grasses, agricultural crops, or 

other biological materials can be converted to heat, then steam, and then electricity. Biomass 

power is the third largest source of renewable electricity. Figure-1.2 shows biological 

material derived from living, or recently living organisms used to feed a power plant to 

produce electricity. 

2.4 Geothermal Source of Energy 

 Heat contained in the core of the earth can be exploited to produce electricity through 

steam. The geothermal source while this is an abundant source with today’s technology only a 

small fraction can be converted commercially to electricity. Geothermal power plants are 

highly capital intensive because enough steam-supply wells have to be drilled up-front to 

provide the full plant capacity at startup. 

2.5 Solar Energy 

Figure-1.2 Wood chip bio fuel a renewable alternative source of energy 
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Among all renewable energy sources available, solar energy is believed to be the most 

promising source. It is free, secure, pollution-free, available all over the world, and will last 

forever [3, 4].  

 The  sun  creates  its   energy  through  a  thermonuclear  process  that   converts  about 

650,000,000  tons  of  hydrogen  to  helium  every  second  [5]. The process creates heat and 

electromagnetic radiation. The heat remains in the sun and is instrumental in maintaining the 

thermonuclear reaction. The electromagnetic radiation (including visible light, infra-red light, 

and ultra-violet radiation) streams out into space in all directions. Only a very small fraction 

of the total radiation produced reaches the Earth [6]. One of many ways of generating 

electricity  from  solar  energy  is  the  use  of  solar  panels  which  covert  sunlight  into  direct  

electricity (DC) using the photovoltaic effect.  Solar panels are formed out of interconnected 

photovoltaic cells that are arranged in series/parallel fashion. 

A Photovoltaic Cell (PV) or solar cell is a semi-conductor device used to convert 

lights  directly  into  electricity  by  the  photovoltaic  effect.  The  efficiency  and  the  cost  of  the  

photovoltaic  cells  depend  greatly  on  the  material  chosen.  Present  PV  cells  come  into  three  

major categories: Multi-crystalline, Single crystal, and Amorphous, Figure-1.3. 

                

 
 

There are several factors that affect the efficiency (percentage of sun’s energy striking the 

PV cell that is converted into electricity) of the solar panel. The two major ones are: (1) the 

PV cell efficiency and, (2) the intensity of sun rays received on the surface of the solar panel. 

Although  there  is  a  continuous  improvement  in  the  PV  materials  to  enhance  PV  cell  

efficiency, current technology delivers PV cells with an efficiency level ranging from 10 to 

Figure-1.3 (a) Multi-crystalline-based solar panel. (b) Single crystal-based solar panel. 
  (c) Amorphous-based solar panel 

(a) (b) (c) 
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20% (some laboratories reached efficiencies of more than 30% but not yet available 

commercially). Therefore, to lower the per KWh cost, we need to rely on the dimensions of 

the panels and/or the irradiation intensity. Increasing the surface area of the solar panels is not 

a viable solution. It increases investments cost and requires more ground surface. A more 

feasible and economical solution however, is to maximize power extraction from the panel by 

operating the cell arrays at their full potential. This can be achieved by continuously exposing 

the surface of the panel perpendicular to the sun’s rays. This strategy can be accomplished by 

a  sun  tracker,  a  device  onto  which  a  solar  panel  is  fitted  to  track  the  movement  of  the  sun  

across the sky (mimicking sunflower). 

3 Sun Tracker Types  

 The efficiency of a photovoltaic panel depends on the incident angle of the sun rays with 

respect to the surface of the panel. For the solar panel to harvest maximum energy from the 

sun, a high-precision sun tracking system is necessary to track the sun in the sky from early 

morning until late in the afternoon. A sun tracking system is a mechatronic system. It consists 

of the mechanics, electric drives and information technology [7]. The mechanics consists 

mainly of a tracker onto which a solar panel is fitted to track the movement of the sun by 

maintaining the panel surface perpendicular to the sun incident radiations (mimicking 

sunflower). The mechanics provide the necessary torque to change the azimuth and elevation 

positions of the solar panel with respect to the sun, while the controller determines when and 

how much to tune the driving motors to minimize the misalignment of the solar panel surface 

with the sun’s incident rays.     

 Sun trackers are classified according to the number and orientation of their axes. They are 

grouped into single- and dual-axis tracking devices. Single-axis trackers have one degree of 

freedom. They are used to vary the azimuth angle in order to follow the movement of the sun 

East-West during the day with fixed tilt angle. These types of trackers are more suitable in 
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tropical regions. Dual-axis trackers accommodate two degrees of freedom, azimuth and tilt. 

Their axles are typically normal to one another. They have the capability to tune the solar 

panel east-west and north-south and follow the sun’s apparent motion anywhere in the sky. 

Figure 1.4 illustrates the structure of a dual-axis sun tracker. Angle  is an azimuth angle of 

the solar panel and  is a tilt angle.  

Motor  1  changes  the  azimuth  angle  along  the  east-west  direction,  whereas  motor  2  

changes the elevation angle along the north-south direction.    

 

 

 

 

 

4 Sun Tracker Driving Modes 

 There are three methods of tracking: passive, chronological and active. Passive trackers 

use a low boiling point compressed fluid (often Freon) as a means of tilting the solar panel.  

When heated by the solar heat, it creates a gas pressure in the system, the fluid pressure 

increases causing the liquid to move inside the tracker from one side to another allowing 

gravity to rotate the tracker to follow the sun. These trackers do not use motors or control and 

hence do not consume any energy. They are also less precise and therefore, operate with low 

efficiency compared to active trackers. Passive trackers are however, unpractical in cold 

locations. Chronological trackers employ electronic logic to control the actuators to follow the 

sun based on mathematical formulae based on astronomical references with the data of a 

whole one-year sun trajectory to calculate the sun movement in the sky. This data is usually 

Figure 1.4 Structure of a dual-axis sun tracker 
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the current time, day, month and year of a specific geographical location. These trackers are 

also known as open-loop trackers as they do not require any feedback for the controlled 

system. Active trackers also known as closed-loop dynamic trackers on the other hand employ 

motors and gear trains to direct the PV panel as commanded by the controller. They 

commonly use light detecting sensors to provide raw data as inputs to the controller to track in 

real-time the real position of the sun in the sky. They are more reliable than open loop 

trackers. The use of the feedback makes their system response less sensitive to external 

disturbances [8], [9].  

5 Computing Platforms 

At the heart of most embedded control systems is usually a real-time digital controlling 

unit. Nowadays, designers are blessed by the variety of computing platforms they have at 

their disposal to address these controlling units. These latter can be implemented using one or 

a combination of design methodologies [10-11]. There are three major methodologies, namely:  

(i) Dedicated (fixed) digital logic or application-specific integrated circuits or 

ASICs,   

(ii) Software-programmed logic platforms, and  

(iii) Hardware reconfigurable logic platforms.         

5.1 The ASIC Solution 

There is no doubt, of all solutions; dedicated controllers or ASICs provide highest 

performance as they are optimally tailored for particular use. They are great at speed and 

power consumption. Moreover, they have reduced size and cost at high volume. They exhibit 

high  reliability  of  system  operation.  ASICs  present  some  disadvantages.  They  are  fixed  

function integrated circuits, that is, the design is frozen in silicon with no possibility to make 

any change.     
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5.2 Software-Programmed Logic 

For years, digital designers largely relied on general-purpose microprocessors 

microcontrollers, personal computers (PCs), digital signal processors (DSPs) and digital 

signal  controllers  (DSCs)  for  the  design  of  digital  embedded  systems.  Despite  the  large  

number of commercially available off-the-shelf products, designers of embedded systems are 

often challenged to find the exact processor and the appropriate peripherals that will fit their 

needs [12]. Often, designers must make compromises between performance, chip count, 

flexibility, cost and power consumption in their choices. 

Although flexible and able to implement complex algorithms, processor-based solution 

presents some disadvantages. Off-the-shelf processors and peripheral devices have fixed 

hardware, leaving software as the unique alternative to the designer to develop/enhance 

his/her desired application. Moreover, the sequential nature of program execution with these 

processors leads to several orders of magnitude inferior to ASICs in terms of performance, 

silicon area usage and power consumption [10], [13].  

5.3 Reconfigurable Logic or Programmable Hardware 

 In the above modalities, the hardware architecture is settled in the early stage of the design 

cycle making even minor changes affect dramatically the ASIC design, processor selection 

and printed-circuit board (PCB) design. An elegant and cost effective solution is obtained 

when  using  the  reconfigurability  of  the  FPGA.  In  such  computing  platform,  the  system  

hardware needs no longer to be frozen. The processor and peripheral devices as well as the 

target FPGA can all be changed during development time, or migrated to new more 

performant FPGA. 

 With today’s high density FPGAs, the emerging and revolutionary SoPC design 

methodology provides a new paradigm in the design of embedded systems. This methodology 
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allows the integration of embedded processor(s) (hard-core and/or soft-core) with or without 

user defined hardware accelerator blocks tailored to fit the desired application. The 

heterogeneity of this approach allows the co-existence of the embedded microprocessor with 

the FPGA logic in the same chip, taking the benefit of both the microprocessor and the ASIC. 

Partitioning the controller into two main blocks makes the design process easier while 

achieving better performance by avoiding the processor to get bogged down. The embedded 

microprocessor will be used to implement non-timing critical functions, while timing critical 

are best implemented as hardware accelerators in the FPGA fabric. To cope and design 

efficient complex systems with this new paradigm, Altera for example provides sophisticated 

and powerful electronic design automation (EDA) tools; Quartus II and the SoPC builder.          

5.4 Implementation of Fuzzy Controllers 

 Fuzzy systems implementation has been exploited since the mid-1980s and different 

architectures were devised. Naturally, the realization of these controllers will always be 

digital because its algorithm is primarily based on rule inference using the “IF-THEN” 

statements [14]. An efficient and effective implementation should satisfy two main 

requirements:  flexibility  and  performance.  There  exist  two  main  branches  of  fuzzy  systems  

implementations: software and hardware implementations. A third branch can be a 

combination of the first two.  

 Early fuzzy systems were mostly implemented in software by means of general-

purpose microprocessors, and microcontrollers. These implementations are flexible, require 

the least hardware resources and can be developed rapidly. However, the sequential nature of 

execution of these processors may not permit real-time processing.  

 Fuzzy systems hardware implementations can be realized as a dedicated hardware, as 

an  ASICs  or  on  a  reconfigurable  FPGAs.  Hardware  implementations  use  a  certain  level  of  

parallelism and pipelining leading to a very high increase in processing speed. Nowadays, 
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with ceaseless increasing density of FPGAs and the SoPC approach, it is possible to takes 

advantage of both the flexibility of software and the performance of hardware [15]. 

 Several survey and review papers were published to highlight fuzzy systems 

implementations. In [16], the authors reviewed many interesting fuzzy hardware/software 

architectures from a categorical and historical point of view. Recently, in [17],  Bosque et  al  

surveyed fuzzy systems and neural networks with a particular focus on hardware taxonomy 

and highlighted the characteristics of the different applications covering the paradigms done 

over the last two decades.    

6 Structure of the Sun Tracking System 

Figure-1.5 depicts the hardware structure of the FPGA-based intelligent sun tracking 

system. The proposed architecture consists of several units linked together to form an 

integrated autonomous programmable system. These units are partitioned into two major 

modules:  

  (i) The off-chip or on board module, realized on breadboards, is implemented with off-

the-shelf discrete components. It is composed of a panel equipped with a sun finder, used to 

determine the position of the sun in the sky, mounted on an azimuth-elevation dual-axis 

tracker, a signal conditioning circuit, a data acquisition unit built around an analog-to-digital 

converter (ADC), a bidirectional voltage level translator (3.3V-5V) and two unipolar 4-phases 
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1.8° per step bidirectional stepper motors with their power driving circuits. 

(ii) The on-chip module which is the digital controller is implemented onto the FPGA chip 

of the low-cost DE2 board. The digital controller consists of two subsystems: a System-on-a-

Programmable-Chip or SoPC based subsystem built around the Altera Nios® II embedded 

soft core processor and a custom non-SoPC subsystem. The SoPC Builder subsystem includes 

several  functional  blocks  such  as  the  ADC  interface,  the  liquid  crystal  display  or  LCD  

controller, and an interface with the custom logic. It controls and gathers data from the data 

acquisition unit by scheduling and generating the necessary signals to the analog-to-digital 

converter, it performs the necessary data processing, monitoring and control of the external 

actuators. The non-SoPC Builder subsystem consists of several custom hardware components 

developed in VHDL that operates in conjunction with the processor-based system. The core 

system of which is the fuzzy-like PD-type FLC and the stepper motors sequence generator. 

7 Objectives of the Thesis 

This thesis addresses the design process of a FPGA-based fuzzy logic controller (FLC) 

applied to a sensors-driven dual-axis sun tracking system. The digital controller is 

implemented using the SoPC approach. This methodology combines a soft processor core the 

Nios® II, on-chip memory, intellectual property (IP) peripheral components and a user 

defined hardware accelerator components integrated into a single FPGA device, Figure-1.6.  

The approach combines the features of software programming and reconfigurable 

hardware implementations into two inter-related modules: (i) a Nios® II embedded processor-

based subsystem which constitutes the upper layer of the digital controller and (ii) a PD-like 

fuzzy logic module to steer the tracker actuators.  

 The first subsystem provides an ideal platform for microcontroller applications. Its 

mission is to keep track of the data gathered from the sun finder unit by scheduling and 

initiating the signals required by the data acquisition unit. It computes the angular errors and 
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the rates of change of these errors and applies them as crisp inputs to the PD-like fuzzy logic 

module. In addition, the Nios® II subsystem controls the liquid crystal display (LCD) to 

display in real-time the system’s status messages on a two-line LCD, and manipulates the 

general-purpose input-output peripherals. The control program that runs on the Nios® II 

processor is written in assembly language for highest performance and minimal code density. 

The second module, the PD-like fuzzy logic module, which demands more computational 

power, is designed and implemented in the FPGA’s massively parallel logic elements using a 

handcrafted VHDL code as a custom reconfigurable application-specific accelerator 

component to maximize parallel processing. The fuzzy logic module calculates the necessary 

energy by which the system modifies the process in such a way the control objective can be 

obtained. 

The approach allows a processor to co-exist with custom logic in the FPGA fabric, 

provides the flexibility to combine reconfigurable hardware and software based controls to 

achieve a simple and better control of the sun tracker. This hardware/software solution runs 

on  an  Altera  low-cost  Cyclone  II  FPGA,  the  EP2C35,  to  control  the  motion  of  two stepper  

motors used as the mechanical drive system to keep the solar panel surface continuously 

facing the sun during the day. 

Figure-1.6. Pictorial representation of the FPGA-based intelligent  
Dual-axis sun tracking system 
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8 Organization of the Thesis 

This thesis is compiled into 7 chapters including this introduction and followed by 

references used in this work. Chapter 1 introduced the problematic. It also reviewed existing 

computing platforms used to implement digital controllers: processor-based and FPGA-based 

with or without the SoPC technology. 

In chapter 2, a literature review that surveys relevant research works on sun tracking 

systems conducted in the last few decades is presented. Chapter 3 introduces fuzzy set theory 

and fuzzy logic control. Chapter 4 presents background material to highlight the possibilities 

and advantages using the FPGA. It also describes the most versatile and industry-standard 

soft-core processor, the Nios® II as well as the emerging and revolutionary SoPC technology. 

Chapters 5 and 6 constitute the bulk of the thesis. The former describes in details the 

design and implementation of the fuzzy logic module. The latter begin by reviewing the 

merits of the SoPC approach over the off-the-shelf processor and peripheral devices as 

platforms  for  industrial  applications.  It  lays  out  in  detail  the  hardware  and  software  design.  

This chapter also presents the simulation and implementation of the FPGA-based intelligent 

dual-axis sun tracking system. It reports the setup of the simulations and a prototyping real-

time  implementation  of  the  system  which  can  be  seen  as  a  proof-of-concept.  Chapter  7  

concludes the thesis with some discussions and remarks for future research.  

Finally, the thesis terminates with an extensive list of references for additional information 

on the subject. 

Part of the work reported in chapters 1, 5 and 6 has been published in [90]. 
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1  Introduction 

Before diving into the practical of this thesis, a review of literature in the core area will be 

presented  with  the  aim  to  provide  the  reader  with  a  survey  on  active  sun  tracking  systems  

using different types of computing platforms and control strategies, as well as developments 

in FPGA-based designs with or without model-based fuzzy logic control systems. Also, we 

report by whom, when and how. 

Over the past four decades or so, a large number of contributions have been reported in 

seminars and literature showing the increasing interest in the design and implementation of 

sun tracking systems to increase their performances and efficiencies to harvest maximum 

power  from  the  solar  panels  mounted  on  trackers.  Several  control  strategies  as  well  as  

different computing and control platforms have been used and tested to tackle this problem 

[7], [8], [18-66]. These strategies can be categorized into three main classes: open-loop, 

closed-loop and hybrid sun tracking control systems.  

(i) Open-loop control strategies rely on a fixed control algorithm [7],  [8], [18-29]. 

These controllers use mathematical formulae with the data of a whole one-year sun 

trajectory to calculate the sun’s movement in the sky and need not sense the 

sunlight to position the solar panel. This data is usually the current time, day, 

month and year of a specific geographical location. The algorithms do not use any 
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feedback from the controlled system to determine if it has achieved or not the 

desired goal.  

(ii) Closed-loop types of sun tracking systems are based on feedback principles. They 

usually use light sensors such as light dependent resistors (LDRs) to determine the 

position of the sun in the sky with respect to the surface of the solar panel [8], [30-

37]. They are more reliable than open loop type controllers. The use of the 

feedback makes their system response less sensitive to external disturbances.  

(iii) Hybrid implementations, a strategy that combines both open- and closed-loop 

control are also reported in literature [31], [38]. 

There is a large variety of techniques used to implement closed-loop type controllers. 

These range from the On-Off control laws to more advanced techniques based on fuzzy logic 

control including the classical controllers: the Bang-Bang controller, proportional-integral 

(PI), proportional-derivative (PD) and proportional-integral-derivative (PID). 

A myriad of physical implementations of sun tracking strategies are also reported in 

literature. Similar to other industrial applications, these implementations have gone through 

several  stages  of  evolutions.  They  evolved  from the  early  mechanical  designs  to  the  use  of  

discrete analog and digital standard integrated circuits. The general-purpose microprocessor-, 

microcontroller- and DSP-based were the dominant platforms for the implementation and 

realization of control algorithms based on conventional PID and alike, Bang-Bang and fuzzy 

controllers. The use of the FPGA with or without the system-on-programmable-chip approach 

emerged during the last decade.  

2 Open-Loop Tracking Strategies 

An open-loop type controller computes its input into a system using only the current state 

and the algorithm of the system to determine if its input has achieved the desired goal. These 
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types of controllers based on mathematical algorithms/programs provide predefined 

trajectories for the tracking system.  These trajectories can be accurately determined because 

the relative position of the sun can be precisely calculated at any time for any location on the 

earth [7], [18] [19].  

It is in 1975, that McFee [20] presented the first automatic solar tracking system. The 

algorithm used to control the tracker computes the flux density distribution and the total 

received power in a solar power system. Since that time, numerous works using open-loop 

control have been carried out in the design and implementation of algorithms based on 

astronomical formulae. They were used to drive electromechanical actuators to steer single- 

and dual-axis sun tracking systems.  

Semma et  al  [21] were among the first to use  a  microprocessor  as  a  replacement  of  the  

hard-wired logic used in earlier sun trackers to control the motion of a two-axis sun tracking 

system. The controller was based on an active sun tracking approach and allows an array to 

track the sun within five arc-minutes. This resulted in significant improvements in reliability 

via parts screening and packaging and increased the functional capabilities of former basic 

tracking systems.  

In  [22], the authors derived a general formula arguing that it embraces all the possible 

one-axis tracking methods. To derive the formula, they used coordinate transformation 

technique. This consists in transforming the sun’s position vector from earth-center frame to 

earth-surface frame and then to collector-center frame. In doing so, they could resolve it into 

solar azimuth and altitude angles relative to the solar collector making it simpler to the 

controller to determine by how much it should tune the solar collector to minimize the 

misalignment.  

In 2004, Abdallah [23] designed and implemented four electromechanical open-loop solar 

tracking systems: two-axis, one-axis vertical, one-axis east-west, and one-axis north-south in 
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order to investigate the effects of the current, voltage and power characteristics of a flat-plate 

photovoltaic system compared to a fixed one with an inclination of 32° to the south. The 

movement of the tracker was controlled by an algorithm in which the pre-calculated position 

was programmed into a programmable logic controller (PLC). The author claimed that the 

tracking systems increased the electrical powers of the collector by 43.87, 37.53, 34.43 and 

15.69% respectively for the two-axis, one vertical axis, one-axis east-west and one-axis north-

south compared to that of the fixed one.  

In  paper  [24], Grena describes an algorithm for obtaining highly precise values of the 

solar position. Taking the fractional Universal Time (UT), the date, and the difference 

between UT and Terrestrial Time (TT) (longitude, latitude, pressure and temperature) as 

inputs, the algorithm computed the angular position of the earth with respect to the sun in the 

ecliptic plane and then used this angle and the inclination angle of the earth’s rotational axis 

to calculate the position of the sun. 

In reference [25], the authors argued that the open-loop tracking strategies used to 

compute the direction of the solar vector should be both accurate and computationally 

straightforward to minimize the price of the tracking system. They developed an algorithm for 

predicting the solar vector given knowledge of the time and the location. 

In 2004, Reda et al [26] presented a simple step-by-step procedure for implementing a 

solar position algorithm. In this algorithm, the solar zenith, azimuth and incident angles were 

derived using ecliptic longitude and latitude for mean Equinox of data along with other 

information. They reported that the solar zenith and azimuth angles could be calculated with 

uncertainties of 0.0003°. 

In [27] an open-loop control algorithm was developed to control a dual-axis sun tracking 

system. The algorithm implemented into the LOGO-24 RC programmable logic controller 

(PLC) is based on the mathematical definition of surface position. This latter is defined by 
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two angles: the slope of the surface and the surface azimuth angle. The authors used two 

tracking motors, one for the joint rotating about the horizontal north-south axis to adjust the 

slope of the surface and the other motor to rotate the collector about the vertical axis to 

control the surface azimuth angle. A computer software has been developed to calculate the 

optimal positions of the tracking surface during the daylight hours which were divided into 

four identical time intervals. For each interval, the solar and motors speed are defined and 

programmed into the PLC. The authors concluded the gain is considerable with an increase in 

the daily collection of about 41.34° as compared to that of a fixed surface. 

In 2010, Duarte et al [28] presented in an international conference on renewable energies 

the design of a microcontroller-base two-axis solar tracker using solar maps. They employed 

solar maps with the sun coordinates which depend on the time and geographical location.   

Mousazadeh et al [29] and Lee et al [8] reviewed different types of sun-tracking systems. 

They focused on the potential energy gain obtained by the application of both open- and 

closed-loop algorithms. They surveyed some of the most significant proposals of both types 

and discussed their pros and cons. They compared the outcomes of tracking systems with 

fixed-position counterparts. They concluded that solar systems which track the changes in the 

sun’s trajectory over the course of a day collect far greater amount of solar energy. They also 

reported that the most efficient and popular sun-tracking devices was found to be in the form 

of polar-axis and azimuth/elevation types.          

3  Closed-Loop Tracking Strategies 

Closed-loop  types  of  sun  tracking  systems  are  based  on  feedback  control  principles 

[8]. They use the concept of the open-loop for their forward path and feedback loop(s) 

between the system’s output and input. In a closed-loop sun tracking system, light and image 

sensors are in general used to discriminate the sun’s position and the induced signals 
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proportional to the sun light intensity employed as inputs to the controller. These data are 

processed by the controller to automatically achieve and maintain the desired output 

condition.        

Roth  et  al  [30] described the design and construction of an electromechanical automatic 

sun-following system. They used a pyrheliometer to measure direct solar radiation. A four-

quadrant photo detector to sense the position of the sun and two small DC motors to move the 

instrument platform are controlled by a Z80 microprocessor to keep  the  sun’s  image  at  the  

center  of  the  four-quadrant  photo  detectors. The presented tracker can be adapted to work 

with solar cell panels or concentrators. The interesting feature of this system is under cloudy 

conditions, when the sun is not visible; a computing program calculates the position of the sun 

and takes control of the movement, until the detector can sense the sun again. The same 

authors described in [31]  an  improved  version  of  their  sun  tracker.  Although  they  kept  the  

same mechanical base they brought some novelties. The DC motors were replaced by stepper 

motors, the four-quadrant sensor replaced by two sensors and the Z80 computing platform 

was replaced by a microcontroller connected to a PC. The two sensors were used, one for sun 

position information and the other to measure the sun light intensity. The tracker can operate 

in two modes. In the clocked mode of operation, the position of the sun is calculated based on 

the date and time information of its clock. Light position errors are measured during the day 

and stored for later analysis. These data will be used the next day to compute more accurate 

positions of the sun. In the active or sun mode of operation, the tracker uses the data of the 

sun monitor to control the pointing. 

In [32] Kalogirou described the design and construction of a one-axis sun tracking system 

where  the  position  and  status  of  the  sun  are  detected  by  three  LDRs.  One  LDR  is  used  to  

detect the focus state of the collector; another one is responsible of detecting any cloud cover, 

while the third is employed to discriminate daylight. The controller is constructed with 
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standard analog and digital integrated circuits. The actuator used in the tracker to point the 

collector toward the sun is a low-power DC motor with speed-reduction gearbox. The author 

reported that the deviation from the ideal posture is 0.2° and 0.05° with solar radiation of 100 

and 600 Wm-2 respectively.  

Recently, an image-based sun-tracking system was developed by Cheng. D. Lee et al [33]. 

The system consists of a self-design reflecting Cassegrain telescope, a webcam and an 

embedded image processing algorithm to point to the sun. the central coordinates of the sun 

images are calculated then sent to the solar tracker to follow the sun. Authors claimed that 

their tracking system achieved a tracking accuracy of 0.04°.   

In [34] Sefa et al designed and implemented a PC-based one-axis sun tracking system for 

production  of  clean  energy.  The  data  from  the  two  light  sensors  is  collected  by  the  

microcontroller-based data acquisition unit and transmitted serially to the PC for processing 

and storage. Software developed in C language processes the collected data and instructs a 

DC motor to follow the sun during day time. In addition, current, voltage and solar position 

panel are displayed on the PC’s screen.   

In reference [35], A. Konar et al employed a microprocessor to automatically position an 

optimally tilted photovoltaic flat type solar panel for the collection of maximum solar 

irradiation. The azimuth angle of the optimally tilted panel is controlled using one infrared 

light detector. The technique used is similar to “perturb and observe” to determine maximum 

irradiation. The use of step-tracking scheme instead of continuous tracking keeps the motor 

idle for most of the time which results in power saving. The adjustment of the tilt angle is 

done on a monthly basis. They suggested the use of a two-dimensional tracker for an 

automatic tracking. We believe that the use of a second light detector would have not only 

simplified the design but saved energy and motor aging due to continuous rotation in both 

direction of the motor searching for optimal position of the solar collector.           
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Another microprocessor controlled automatic sun tracker is reported in [36]. Two light 

sensors arranged in east-west direction are used to discriminate the position of the sun with 

respect to the solar panel. A DC motor is gear coupled to rotate the panel along the east-west 

direction to keep the panel perpendicular to the sun vector. Attached to the collector are two 

switches used to limit the movement of the panel beyond its maximum angular positions in 

the east and west directions. 

In [37] Saxena et al designed and fabricated a microprocessor-based controller for a dual-

axis sun tracker to follow the sun in azimuth and altitude directions using two stepper motors. 

The system operates in both open- and closed-loop modes. In closed loop mode the sensor 

card  provides  signals  to  the  controller.  In  open-loop  mode,  the  tracker  is  brought  to  a  pre-

calculated position depending on the month and time of the day.  

In general, open-loop control systems are cheaper because they do not require any means to 

gather feedback information such as light sensors. However, they present a major problem as 

they have no error correction capabilities. In addition, a given algorithm is valid for a specific 

location only. Closed-loop systems use sun finding position sensors. They are more reliable 

than open-loop systems. However, they may not have capabilities to track the sun on cloudy 

days.  Hybrid  control  systems  which  consist  of  a  combination  of  open-  and  closed-loop  

strategies are also reported in literature [31],  [38]. In such systems, the closed loop tracking 

strategies are used to check and calibrate the astronomical control system.    

4 FPGA-Based Tracking Strategies 

A FPGA-based digital controller has many advantages compared to processor-based and 

other platform types based controllers. It supports high-speed and concurrent control 

algorithms, provides a higher degree of flexibility and a rapid low-cost manufacturing 

solution. In the last decade, with high density FPGA chips, SoPC-based systems using Nios® 
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II  soft  core  processor  are  being  extensively  used  to  implement  control  algorithms.  This  

reconfigurable computing approach is bringing a major revolution in the design of these 

digital controllers. It allows the co-existence of the microprocessor with the user defined 

hardware accelerators developed in HDL in a single chip instead of the mixed structure 

microprocessor/FPGA [7], [39-48]. This approach is being adopted for its flexibility in 

hardware and software, higher performance, reduced chip count and low cost.  

In [39], Xinhong et al studied the applications of a FPGA development board to intelligent 

solar tracking. Utilizing the Nios II Embedded processor, the authors developed a solar 

tracking system. The two motors are controlled by a fuzzy logic module. The fuzzy controller 

uses five fuzzy rules which reduce significantly the computation complexity in the real-time 

control. The tracking systems can be operated into three modes: balance positioning, manual 

mode and automatic mode. For the balance positioning, they used four mercury switches. In 

the automatic mode, the fuzzy controller processes signals induced by four Cadmium sulphide 

Photoresistors which discriminate the position of the sun in the sky. These signals are 

digitized using four single-channel ADCs. The manual mode is used if the system has a fault 

or needs to be maintained. The results of the experiment yielded more energy than the array as 

a stationary unit. They reported that their system can achieve the maximum illumination and 

energy concentration and cut the cost of electricity by requiring fewer solar panels, therefore, 

it has significance for research and development. 

In [40], the authors aimed to test whether FPGAs are able to achieve better position 

tracking performance than software-based real-time platforms. The comparison was 

conducted be embedding the same fuzzy logic controller (FLC) into a Virtex-II (XC2v1000) 

FPGA from Xilinx and into software-based real-time platform NI CompactRIO-9002 

architectures with the same sampling time. They concluded that the FPGA based FLC 
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exhibits much better performances (up to 16 times in the steady-state error, up to 27 times in 

the overshoot and up to 19.5 times in the settling time) over the software-based FLC. 

In publication [7], the authors dealt with an open-loop two-axis sun tracking for a PV 

system. The tilt- and azimuth-angle trajectories of the tracking system are determined using 

an optimization procedure based on a stochastic search algorithm called Differential 

evolution. In this procedure, the objective function is evaluated by giving the models of 

available solar radiation, tracking system consumption, and the efficiency of solar cells.    

In [41], the authors describe the design of a stand-alone solar tracking system using a 

FPGA. The design is based on astronomical equations to determine the position. 

The basic software of the stand-alone tracking system is made up of (i) an Off-line 

calculations of the sun path equations (developed in C), and (ii) a FPGA with suitable data to 

the driving mechanical system. 

Sun path equation determines the value of altitude and azimuth angles at any time of the 

day. These values are stored as 8-bit words in a ROM. Two look-up tables were used, one for 

the altitude angle and the other for the azimuth. The FPGA is designed to control the address 

allocation  for  the  look  up  tables  stored  in  the  ROMs  for  the  sun  tracking  application.  The  

FPGA code is written in VHDL in Xilinx FPGA. 

In [42], Monmasson et al reviewed the state of the art of FPGA design methodologies 

with a focus on industrial control system applications. They review is followed with a short 

survey on FPGA-based intelligent controllers for modern industrial systems. To illustrate the 

benefits  of  an  FPGA  implementation  using  the  proposed  design  methodology,  two  case  

studies  were  presented.  They   consist   of   the   direct   torque   control   for  induction   motor   

drives  and  the  control  of  a  diesel-driven  synchronous  generator using fuzzy logic. 

In recent years, high density FPGA chips can efficiently integrate a reduced instruction set 

computer (RISC) embedded soft-core processor, ready made intellectual property (IP) 
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peripherals and user defined hardware accelerator modules. A technology termed SoPC. This 

hardware/software co-design combines the software-program executed by the embedded 

processor to implement non-timing crucial repetitive control laws, while timing critical 

intensive-computational functions are best implemented as hardware accelerator modules in 

the FPGA logic. A large number of contributions using SoPC technology in different fields of 

electrical engineering and control are reported in literature [49-54].  

5     Fuzzy Control Tracking Strategies 

Fuzzy control is the application of fuzzy logic to real-world control problems [55]. The first 

fuzzy control application belongs to Mamdani & Assilian where the control of a small steam 

engine is considered [56]. Since  that  time  and  due  to  its  ease  of  use  and  robustness,  fuzzy  

control technology witnessed a wide range of applications in almost all areas. Applications of 

fuzzy control include mechatronic systems (as manufacturing, robotics, automotive, etc), 

nuclear industry, telecommunications, medical services etc. There  are  a  lot  of  contributions  

and reviews that illustrate the use of fuzzy control in industrial applications [55-66]. 

A fuzzy logic computer-controlled sun tracking system is described in [57]. This closed-

loop dual-axis tracking system is driven by two permanent magnet DC motors to provide 

necessary torque to the PV panel. A PC-based basic fuzzy-like P-type controller with 14 fuzzy 

rules was implemented. A data acquisition and a serial communication were implemented. 

Back to 1999, in our opinion, it would have been simpler and more performant to use either 

the parallel port or the Industry Standard Architecture (ISA) bus to interface the sun tracking 

hardware circuitry with the PC. 

In implementing a fuzzy system on a field programmable gate array, McKenna et al [58], 

implemented  a  fuzzy  control  system  in  a  FPGA  to  have  a  control  surface  as  smooth  as  

possible. They used a weighted average approach to minimize the dimension of the look-up 

table (LUT). The approach uses 3 or 4 most significant bits of each input to determine the 
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address for the LUT and to eliminate the rawness, the remaining bits are used to perform the 

weighted average. Simulations were carried on using Matlab to verify the functionality of the 

approach. The authors concluded that even with a large number of inputs, this approach helps 

solve the exponential growth problem and complexity of LUT. The overall controller was 

written in Verilog HDL and implemented in Xilinx 4000 series FPGA chip. 

In [59], Kim presents the design and implementation of a fuzzy logic controller on a FPGA. 

The controller is partitioned in many temporally independent functional modules, and each 

implemented module forms a downloadable hardware object that can reconfigure the FPGA 

chip. The controller was developed using the fuzzy logic controller Automatic 

Implementation System (FADIS) tool. This latter performs various tasks in real-time such as 

automatic VHDL code generation, synthesis, placement & routing and downloading. This 

implementation method was effective in early 2000s when a single FPGA chip cannot fit the 

controller due to the limited size of its capacity.    

Poorani et al [60] advocate an approach to implement a fuzzy logic controller for motion 

control using FPGA. This real-time implementation of the controller for four different types 

of terrains is developed in VHDL and achieved on a Xilinx Spartan 2E board. 

Precup and Hellendoorn [65] presented a survey on recent developments on analysis and 

design of fuzzy control systems focused on industrial applications in the 2000. With a sample 

of 244 references, the authors concluded that this can be viewed as a guarantee that future 

successful applications will be constructed. 

Also an interesting survey on analysis and design methods of model based fuzzy control 

systems is given in [66]. 

This collection of papers is an interesting overview of the active research in the field of 

programmed and reconfigurable hardware in embedded systems altogether with or without the 

use of fuzzy logic control as a control strategy.     
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Chapter 3 
 
 

Fuzzy Logic 
 
 
 
 
 
 

1 Introduction 

 The Oxford English Dictionary defines the word “fuzzy” as “blurred, confused, vague, 

imprecisely defined”. We should disregard this definition and view this word as a technical 

adjective. As reminded by Lotfi. A. Zadeh, fuzzy logic is not fuzzy. Instead, fuzzy logic is a 

precise logic for imprecision and approximate reasoning [67]. 

 Fuzzy logic is viewed as a generalization of multi-valued logic compared to switching 

(Boolean) logic which is a two-valued logic. It deals with degrees of membership and degrees 

of  truth.  Unlike  Boolean  logic  where  variable  can  take  at  any  instant  of  time  a  value  that  

belongs to the set {0, 1}, a fuzzy variable can take a value in the continuum [0, 1] of logic 

values between 0 (completely false) and 1 (completely true). 

 In the literature, there are two kinds of justification for fuzzy systems theory: (i) the real-

world is too complicated for precise descriptions to be obtained; therefore, fuzziness should 

be introduced to obtain reasonable, yet tractable models, (ii) human knowledge is increasingly 

important as we move into the information era [68-70].   

The objective of this chapter is to give an insight into this theory which allows the 

formulation of the human knowledge in a systematic manner and puts it into engineering 

systems when combined with other information such as sensory measurements [69].   
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2 Fuzzy Sets 

Classical set theory deals with distinct and precise boundaries of inclusion. In this theory, 

the membership of elements in a set is assessed in binary terms according to a bivalent 

condition; en element either belongs to or does not belong to the set. 

Let X denote the universe of discourse (or universal set), and x denotes the individual 

elements in X.  A  classical  (crisp)  set  A is defined by a characteristic function µA(x) that 

assigns the values 1 or 0 to each element x, respectively, if x belongs or does not belong to A. 

Formally, a classical set A in X is expressed as: 

  A = {(x,  µA(x)) | x X;   µA(x): X   {0, 1}}  (3.1) 

Fuzzy set theory, however, deals with uncertainty and imprecision. In this theory, the 

concept of characteristic function is extended into a more generalized form known as 

membership function MF. 

While the membership of elements in a crisp set is described by a bivalent condition, the 

membership of elements in a fuzzy set is described by a multivalent condition. That is, the 

MF can take any value between the unit interval [0, 1]. 

Formally, a fuzzy set A in X is expressed as: 

  A = {(x,  µA(x)) | x X;   µA(x): X   [0, 1]}   (3.2) 

Note that curly brackets in equation 3.1 are used to refer to binary value, while square 

brackets in equations 3.2 are used to represent a unit interval. 

Figure 3.1 illustrates a MF for a classical set C and a MF for a fuzzy set F. 

  
 
 
 
 
 
 
 
 
 Figure 3.1 Membership function for crisp and fuzzy sets.  
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2.1 Operations with Fuzzy Sets  
 

This section deals with basic operations with fuzzy sets. In the classical set, its 

membership function assigns a value of either 1 or 0 to each individual in the universe of 

discourse, thereby discriminating between members and non-members of the crisp set under 

consideration [68].  

Consider A and B, two non-empty fuzzy sets in the universe of discourse X. For a given 

element x X, the following function-theoretic operations are defined for A and B on X. 

i. Complement  

The complement of set A denoted by A , is defined as the collection of all elements in the 

universe of discourse that do not reside in the set A. 

In set theoretic form, it is expressed as 

  Aµ (x) = 1 -  Aµ (x)   for all x X       (3.3) 

ii. Union 

The union or t-conorm of A and B is a fuzzy set in X, denoted by A B whose 

membership function is defined as  

 A B = {x | x A V x B} for all x X. 

For the t-conorm operator, we have 

 BAµ (x) = Aµ (x) V Bµ (x)       

     = max { Aµ (x), Bµ (x)}  for all x X.    (3.4) 

iii. Intersection 

The intersection or t-norm of A and B is a fuzzy set A B in X with membership function 

defined as  

 A B = {x | x A  x B} for all x X. 

For the t-norm operator, we have 
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 BAµ (x) = Aµ (x)  Bµ (x)        

     = min { Aµ (x), Bµ (x)}  for all x X.    (3.5) 

Figure 3.2 illustrates graphically these three fundamental fuzzy operations. 

 
 
 
 
 
 
 
 
 
 
 
 
 We used “max” and “min” for union and intersection respectively. To show that the union 

is equivalent to equation 3.4,  we  note  that  max[ Aµ (x), Bµ (x)]  Aµ (x) and max[ Aµ (x), 

Bµ (x)] Bµ (x). If C is any fuzzy set that contains both A and B, then Cµ (x)  Aµ (x) and 

Cµ (x)  Bµ (x). Therefore, Cµ (x)  max[ Aµ (x), Bµ (x)] = BAµ (x). The intersection defined 

by equation 3.5 can be justified in the same manner [69].   

iv. DeMorgan’s Laws 

DeMorgan’s laws stated for classical sets also apply for fuzzy sets. For the given sets A 

and B, we have    

 BA  = A B   

 BA  = A B         (3.6) 

v.  Empty Set 

A fuzzy set A is an empty set labelled , if and only if Aµ (x) = 0 for each x X. 

vi. Excluded Middle and Non-contradiction Laws 

µ (x) 

 x  0 

 B  A 
 1 

µ (x) 
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Figure 3.2 Graphical representation of the a) Complement, b) Union, c) Intersection 
fuzzy operations 
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 In classical set theory every object either belongs or does not belong to the universal 

set. The law of excluded middle, A A  = X  and the law of non-contradiction A A  

= hold. In fuzzy set theory however, these two laws are not valid, equation 3.7. 

 A A  X  

 A A           (3.7) 

Proof 

Let A = 0.5, then we ca, easily demonstrate that  

 A A  = max { Aµ (x), Aµ (x)} 

  = max {0.5, 1-0.5} 

  = 0.5  1 

Similarly, A A  = min { Aµ (x), Aµ (x)} 

  = min {0.5, 1-0.5} 

  = 0.5  0 

Considering equations 3.3 to 3.7, we can conclude that operations on classical sets also 

hold for fuzzy sets except for the excluded middle and non-contradiction laws, [70].   

Figure 3.3 illustrates graphically these two laws. 

 

 
 
 
 
 
  a) Fuzzy A A  X  
 
 
 
2.2 Properties of Fuzzy Sets 

 The properties of classical sets, called crisp sets, also suit for the properties of fuzzy sets. 

Because the membership values of a crisp set are a subset of the interval [0, 1], then, classical 

sets can be thought as a special case of fuzzy sets [70-71].  
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Figure 3.3 Graphical representation of a) Fuzzy A A  X and  
b) Fuzzy A A  . 
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 We will use set notations rather than membership functions in order to make easy 

comparison with classical sets.  

 Consider A, B, and C, three fuzzy sets in a non-empty universe of discourse X. the most 

common properties of fuzzy sets include: 

i. Commutativity 

 The commutativity property of two fuzzy sets using logical operators AND and OR is 

given by 

 BA = AB  

  BA = AB         (3.8) 

ii. Associativity 

 The associativity property using logical operators AND and OR is given by 

 )CB(A = C)BA(  

 )CB(A = C)BA(        (3.9) 

iii. Distributivity 

 The distributivity property of three fuzzy sets using the AND and OR logical operators is 

given by 

 )CB(A = )CA()BA(  

 )CB(A = )CA()BA(       (3.10) 

iv. Idempotency 

 The idempotency property of a fuzzy set A with respect to logical operators AND and OR 

is given by  

 AA = A  

 AA = A          (3.11) 

v. Identity 
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 The identity property of a fuzzy set A with respect to logical operators AND and OR and 

given the empty set  –having all degrees of membership equal to 0, and the universal set X 

having all degrees of membership equal to 1 is defined as: 

  A  = A and XA  = A 

  A  =  and  XA  = X      (3.12) 

vi. Involution 

 The involution property which represents the double negation of a fuzzy set A is given by 

 A  = A          (3.13) 

3  Membership Function 

 A fuzzy membership function (MF) is a graphical representation of a fuzzy set. It defines 

how each point in the input space (universe of discourse) is mapped to a membership value 

(or degree of membership) between 0 and 1. 

 The MF noted Aµ (x) describes the membership value of the element x of the universal set 

X in the fuzzy set A. Figure-3.4 illustrates graphically fuzzy membership functions for speed. 

It plots three fuzzy MFs one for each fuzzy set across the universe of discourse.   

 

 

 

 

 

 

At crisp speed 85, the degree of membership (slow) is 0.0. The degree of membership 

(normal) is 0.75 whereas for (fast) the degree of membership is 0.25. 

 Theoretically, membership functions can have any form of regular or irregular shapes as 

long as they are convenient to be described mathematically [72]. Reasonably, designers adopt 
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Figure-3.4 Fuzzy membership functions for speed 
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regular shaped of known parameterized membership functions such as piece-wise linear 

functions (triangular or trapezoidal) or nonlinear smooth functions such Gaussian, Sigmoidal 

and Bell-shaped membership functions. 

3.1 Piecewise Linear Membership Functions 

 Piecewise linear functions are the simplest from of MFs. Figure-3.5 illustrates a triangular 

and a trapezoidal asymmetric membership functions. 

 

 

 

 

3.1.1  Triangular Membership Function 

A triangular MF is specified by three parameters: its peak (or center) m, left width a>0 and 

right width b>0. It can be described through the equation:  

      

 

 

  

It can also be expressed in a more compact form as: 

  µA(x) = max(min(
m-b
x-b  ,

am
ax ), 0)      (3. 15) 

3.1.2  Trapezoidal Membership Function 

A trapezoidal MF is specified by its tolerance (core) interval [a, b], the left width c and the 

right width d. It is defined by the following equation 
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Figure-3.5 Asymmetric triangular and trapezoidal membership functions    
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3.2 Features of the Membership Function 

The feature of the membership function is defined by three properties. They are: core, support 

and boundary. Figure-3.6 assists in the description of these three properties. 

 

 

 

 

 

3.2.1  Core 

The core of a membership function for a fuzzy set A is defined as the region of the universe of 

discourse that is characterized by complete full membership in the set A, that is: 

 Core(A) = {x  | Aµ (x)  =  1}   for all x X     (3.17) 

3.2.2  Support 

The support of a membership function for a fuzzy set A is the set of points on the universe of 

discourse where the membership grade in A is larger than 0, that is: 

 Supp(A) = {x  | Aµ (x) > 1}  for all x X     (3.18) 

 

3.2.3  Boundary  

The boundaries of a membership function for some fuzzy set A are defined as that region of 

the universe of discourse containing elements that have a nonzero membership but non 

complete membership, that is: 

 Bnd(A) = {x  | 0 < Aµ (x) < 1}  for all x X    (3.19) 

3.2.4  Height  

The height of a fuzzy set A is the peak value reached by the MF, also called supremum. 

Formally, the height is defined as: 
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Figure-3.6 Features of a membership function 
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  Hgt(A) = max { Aµ (x)} = )(sup xµAXx      (3.20) 

3.3 Structure of Membership Functions 
 
 To illustrate the structure of MFs, figure-3.7 depicts  a  graphical  representation  of  the  

linguistic variable Temperature (T) with five partitions.  

 
 
 
 
 
 
 
 

 

 

 The universe of discourse is the range of all possible values applicable to a system 

variable. 

 The label indicates the name used to identify a MF in each region of behaviour. 

 The scope or domain is the width of the MF. It is identified by a range of numerical 

values that correspond to a label. Also, it indicates the range of concepts over which a 

MF is mapped. These sub-divisions of the universe of discourse are usually uniform 

but in certain cases some MFs can accumulate in zones where a more accurate control 

(higher sensitivity) of the controller is desired and sparse elsewhere. 

March [71] noted some interesting points which should be taken into account while defining 

the domain of MFs: 

- Every  point  in  the  universe  of  discourse  should  belong  to  the  domain  of  at  least  

one MF. 

- Two MFs cannot have the same point of maximal meaningfulness 

- When  two  MFs  overlap,  the  sum  of  membership  grades  for  any  point  in  the  

overlap should be  to 1.  
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Figure 3.7 Graphical representation of a fuzzy variable with 5 fuzzy sets 
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- When two MFs overlap, the overlap should not cross the point of maximal 

meaningfulness of either MF. 

Another characteristic to be considered is the subdivision of the universe of discourse. This is 

usually uniform, but in some applications the MFs can be denser in certain zones if higher 

sensitivity of the controller is desired.  

3.4 Number and Degree of Overlapping of Membership Functions 

The  number  of  MFs  for  each  controller  input  as  well  as  the  shape  and  the  overlapping  

degree of the antecedents of the MFs has a strong influence on the characteristic of the fuzzy 

logic controller.  

The larger the number of MFs, the finer the fuzzy partitions of the controller inputs (higher 

resolution) the better the approximation. However, more MFs means a larger number of 

linguistic rules in the rule-base component and hence more computation complexity.  

Moreover, this causes rapid firing of the fuzzy conclusions for changes in the inputs, resulting 

in large output changes, which may cause instability in the system. On the contrary, few MFs, 

result in a coarse fuzzy partitions of the input variables. With a reduced number of rules, the 

controller does not require an intensive computation, it may however, cause a slower response 

of the system and may even fail provide sufficient output control in time to recover for small 

input changes. To date, there is no systematic approach to have an optimal fuzzy partition of 

the fuzzy input/output, a rule of thumb is to have at least three and at most nine MFs for each 

controller input [73].  

The overlapping degree of the antecedents of MFs greatly influences the form of the 

output of the fuzzy logic controller. Small overlapping degrees generate step characteristics, 

whereas higher overlaps between MFs promote higher robustness of the controller and 

generate smoother curves at the output.  

3.5 Linguistic Variables and Linguistic Values 
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 A sensor measures a variable and provides a numerical and precise value to the user. 

Human perception however, evaluates a variable in linguistic terms i.e, in words. In order to 

incorporate human perception into engineering systems in a systematic manner, input and 

output variables of fuzzy logic based control systems are represented by variables that take 

words as values [72]. Just as a variable that takes on a numerical value, for example 123.4, is 

called an algebraic variable, a variable that can take words or sentences in natural or artificial 

languages as its values is called a linguistic variable. These words or sentences, which form a 

term set, are characterized by fuzzy sets defined in the universe of discourse in which the 

variable is defined. A fuzzy partition, then, determines how many fuzzy sets should exist in 

the term set, a number that determines the granularity of the linguistic variable. For example, 

if cold, warm, hot, etc are values of temperature, then temperature is a linguistic variable and 

these words are linguistic terms, values or labels. 

 In control systems, the linguistic variables are usually the error and the rate of change of 

error where a term set is associated to each linguistic variable. The term set is usually 

represented  by  the  linguistic  values  or  labels  {NL,  NM,  NS,  AZ,  PS,  PM,  PL}  where  NL  

means “Negative Large”, NM “Negative Medium”, NS “Negative Small”, AZ “Approximate 

Zero”, PS “Positive Small”, etc. 

 The linguistic variables and the linguistic values provide a mean for the expert to express 

his/her ideas about the decision-making process.  

4 Fuzzy IF THEN Rules 

 Knowledge is the main source of intelligence [72]. In fuzzy control, knowledge is 

expressed by a fuzzy rule-base model where each fuzzy linguistic rule is represented by a 

fuzzy IF-THEN statement. The fuzzy conditional statement is symbolically expressed as:  

   IF < fuzzy proposition > THEN < fuzzy proposition > 

where, a fuzzy proposition can have a value within the interval [0, 1]. 
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 The fuzzy proposition can be either an atomic or a compound proposition. An atomic 

proposition is a single statement such as “IF Speed is Slow THEN… “ . Whereas a compound 

proposition is made up of two or more atomic propositions connected by fuzzy union (OR) or 

intersection (AND) operators such as “IF e is Large AND e is small THEN…”.  

 The  IF-THEN  linguistic  rule  consists  of  two  parts:  the  “antecedent”  (or  premise)  is  the  

block between the IF and THEN constructs whereas the “consequent” (or conclusion) is the 

block following the THEN construct.  

 For example, the Mamdani-type fuzzy IF-THEN rule with multiple conjunctive 

antecedents has the following form: 

  IF x1 is A1 AND x2 is A2 AND  … AND xN is AN THEN y is B  (3.21) 

where xi, i = 1, 2, …, N and y are the input and output linguistic variables of the fuzzy system 

respectively. The Ai’s and B are the linguistic values of the linguistic variables xi’s and y in 

the universes of discourse Xi’s and Y respectively. 

If standard mathematical notation for IF-THEN and AND is used, the above rule can be 

reformulated as follows: 

   A1 (x1)  A2 (x2)  …  AN (xN) => B (y)     (3.22) 

or   µA1  (x1)   µA2 (x2)   
…    µAN (xN)    => µB(y)    (3.23) 

 where         

µA1  (x1)   µA2 (x2)   
…    µAN (xN)  = min { µA1  (x1),   µA2 (x2),  …  ,  µAN (xN)} (3.24) 

5 Properties of Fuzzy Rules 

 The fuzzy rule-base included into the knowledge base of a fuzzy control system consists 

of a set of fuzzy rule list. For the fuzzy system to exhibit excellent performances the set of 

fuzzy rules should cover all the possible situations that the system may face. Moreover, there 

should not be any conflict among the fuzzy rules, while satisfying continuity. In other words, 
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the fuzzy rule list should fulfil the following three characteristics: completeness, consistency, 

and continuity.    

 In  order  to  define  the  above  characteristics,  it  is  desirable  to  consider  a  two-input  one-

output fuzzy control system. The input linguistic variables x1 and x2 are partitioned into N and 

M subspaces respectively, and represented by A1,A2, …, AN and  B1,  B2,  …,  BM on  the  

universe of discourse X. Table 3.1 shows the fuzzy rule list  in the matrix form. The size of 

the rule matrix depends on the number of system’s inputs and the number of fuzzy subspaces 

representing these inputs. In general, the size of the matrix is the product of the fuzzy 

subspaces of the system’s inputs.   

 

 

 

 

 

 

5.1 Completeness 

  A set  of fuzzy IF THEN rules {Ri, i = 1, 2,…, (NxM)} is complete, if for any x  X it 

produces an appropriate output value for any possible combination of input values. 

Formally, completeness can be expressed as 

   (x1, x2): hgt( (x1, x2)) > 0 

where  denotes the output function of crisp inputs x1 and x2. 

5.2 Consistency 

 A set  of fuzzy IF THEN rules is  consistent if  it  does not include any contradictory rule.  

That is, two fuzzy rules with the same antecedent (IF part of rule) have mutually-exclusive 

rule consequents (THEN part of rule), as for example 

x2 y 
B1 B2 B2 B2 … BM 

A1 R1,1 R1,2 R1,3 R1,4 … R1,M 
A2 R2,1 R2,2 R2,3 R2,4 … R2,M 
A3 R3,1 R3,2 R3,3 R3,4 … R3,M 
A4 R4,1 R4,2 R4,3 R4,4 … R4,M 

…
      

     …… 

 

 
 
 

 
 
 
x1 

AN RN,1 RN,2 RN,3 RN,4 … RN,M 
 

Table 3.1 The NxM set of fuzzy if-then rules in matrix form 
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  Ri: IF RPQ THEN C 

  Rj: IF RPQ THEN C 

5.3 Continuity 

 To define continuity we need the notion of fuzzy rule neighbourhood or adjacency. The  

neighbor rules of rule Ri,j are R(i-1),j; Ri,(j-1); Ri,(j+1); R(i+1),j. 

   A set of fuzzy IF THEN rules satisfies continuity if there is no such a pair of  neighboring 

rules whose consequent fuzzy sets have empty intersection (are disjoint). The continuity of 

fuzzy rules provides the continuity of controller output which is a desirable feature in control 

applications.  

 When designing fuzzy logic control systems, completeness, consistency and continuity in 

rule-base must be ensured otherwise, the system may encounter severe problems like 

instability and/or oscillations behaviour [69], [73].  

6 Fuzzy Logic Controller 

 Fuzzy control is based on fuzzy logic. It provides a formal methodology for representing, 

manipulating and implementing a human’s heuristic knowledge, rather than traditional logical 

systems, about how to control a system. The fuzzy logic controller which is an approximate 

reasoning-based controller is a static nonlinear mapping between its inputs and outputs [72]. 

Similar to a conventional controller, from outside, both the input and output values of the FLC 

are crisp values. The input values consist of measured values from the controlled plant or 

some control errors computed from the measured values. 

 Figure 3.8 Shows the  structure  of  a  generic  Mamdani-type  fuzzy  control  system with  n  

inputs xi  Xi where i = 1, 2, … , n and m outputs yi  Yi where i = 1, 2, … , m where the 

crisp sets Xi and Yi are universes of discourse for xi and yi respectively.  

 The fuzzy system is composed of four principle modules: a fuzzification interface, a fuzzy 

knowledge-base, a fuzzy inference mechanism and a defuzzification interface. The processes 
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performed by these modules are executed sequentially. That is, before being processed by the 

inference engine, the real-world (crisp) data inputs must first be fuzzified. Next, the 

defuzzifier takes as inputs the fuzzy conclusions from the inference engine and provides a 

result which will serve as an input to the object of control.    

 

 

 

 

 

 

  

6.1 Fuzzification Interface 

 The first step in the fuzzy inference process is fuzzification. This mathematical encoding 

procedure is performed by the fuzzification interface module. This module transforms the 

crisp inputs applied to the fuzzy logic controller into fuzzy sets. Each crisp input will have its 

proper set of MFs within the universe of discourse set, a set that holds all relevant values that 

the  crisp  input  can  possess.  The  universe  of  discourse  is  partitioned  into  a  number  of  fuzzy  

sets where a MF is associated with each set. In general, the fuzzification interface module 

performs the following functions: 

i- Reads the real-world values of the input state variables, 

ii- Performs a scale mapping that transfers the range of values of input variables into 

the corresponding universe of discourse. 

iii- Takes as inputs these scaled data and convert them into suitable linguistic format 

by means of MFs used to quantify linguistic terms. 

6.2 Fuzzy Knowledge-Base 

 FLC                                              
 

x 
 

Fuzzifier 
Interface 

Fuzzy 
 Inference 

Engine 

Fuzzified 
Inputs 

y 

 
Database 

 
Rule Base 

 

Defuzzifier 
Interface 

Knowledge Base 

Input 
MFs Fuzzy 

Conclusions 

Output 
MFs 

Figure-3.8. Structure of a generic Mamdani type fuzzy logic controller. 
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 The fuzzy knowledge base encapsulates the human expert knowledge. This critical 

module for the performance of the fuzzy logic controller has two sections: a database and a 

rule base.  

 The database provides the necessary definitions for the fuzzification module, the rule base 

component and the defuzzification interface module. It contains the MFs of the input and 

output linguistic variables and the fuzzy sets used in the fuzzy rules. In addition, the database 

includes fuzzy set definitions as well as other data (normalization/denormalization scaling 

factors, processing periods, etc) which are required during the inference process. 

 The rule base of the controller is actually a list of fuzzy conditional IF-THEN statements 

that quantify the actions a human expert would take to achieve a good control.  

6.3  Fuzzy Inference Mechanism 

 The fuzzy inference engine is the kernel of the FLC. This crucial module emulates the 

human expert’s decision-making about how to best achieve a desired control strategy of the 

plant. It employs the linguistic rules provided by the rule-base component included in the 

knowledge base module and the relevant fuzzified state variable inputs of the controlled 

system to infer the fuzzy control actions for the controlled object. The combination of this 

engine and the knowledge base constitutes the process of fuzzy reasoning system of a FLC. 

 The management of the fuzzy linguistic rules and the relevant fuzzified state variable 

inputs to obtain the fuzzy control actions is one of the most important concerns in fuzzy 

control systems. It  is  the inference mechanism. This latter consists of two sub-functions: (1) 

fuzzy implication, and (2) aggregation of fuzzy conclusions. 

6.3.1  Fuzzy Implication 

     Irrelevant of what the form and number of fuzzy rules we may have in the rule-base, the 

main concern is how to interpret the meaning of each rule. That is, the process to determine 
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the influence produced by the antecedent part of the fuzzy rule on the conclusion part of the 

rule. This procedure is known as the fuzzy implication. 

 There are many possible ways to define these implications. Two of the most commonly 

used in control applications are: (1) the min(.), (known as Mamdani’s fuzzy implication) 

which truncates the consequent’s membership function and, (2) the algebraic-product (known 

as the Larsen’s fuzzy implication) which scales it.  

 In order to illustrate these two fuzzy implication types, we consider a fuzzy system with 

two inputs x1 and x2 and a single output y is described by a set of linguistic IF-THEN rules in 

the Mamdani’s form 

 Ri:  IF x1 is i
1A  AND x2 is i

2A  THEN y is iB  for i= 1, 2,…, n (3.25) 

where is i
1A  and i

2A  are the fuzzy sets representing the i-th antecedent membership function 

pairs and the iB  is the fuzzy set representing the i-th conclusion. 

For the i-th rule, the fuzzy implication function is given by  

  iRµ (x1, x2; y) = Ii ( iA
µ

1
(x1), iA

µ
2
(x2))  for i= 1, 2, …, n  (3.26) 

where Ii is an implication function. 

i- The Mamdani’s implication is defined by the min(.) operator as: 

iBµ (y) = min ( iA
µ

1
(x1), iA

µ
2
(x2)) for i= 1, 2, …, n  (3.27) 

ii- The Larsen’s implication is defined by the product operator as: 

iBµ (y) = iA
µ

1
(x1) * iA

µ
2
(x2)   for i= 1, 2, …, n  (3.28) 

6.3.2  Aggregation of Fuzzy Conclusions 

Aggregation is the process of combining into a single fuzzy set the results of the fuzzy 

rules obtained during the fuzzy implication phase. In fuzzy control, the individual rule-based 

inference engine is usually used to compute the contribution of each activated (fired) rule. The 

individual rules can be aggregated into a variety of ways. The most commonly used 
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aggregation operators are the maximum, the sum and the probalistic sum. Out of these three 

operators, the best-known in literature and most frequently applied is the maximum. When 

combined with the min(.) or product fuzzy implication operators, yields the well known Max-

Min also known as the Mamdani‘s inference method or the Max-Prod or the Larsen’s 

inference method. 

In the Max-Min inference, the membership functions of the fuzzy sets of the consequents 

are limited to the degree of truth and in turn combined into a single fuzzy set by forming a 

maximum, equation 3.29. 

aggrBµ (y) = 
i

max [min [ iA
µ

1
(x1), iA

µ
2
(x2)]] for i= 1, 2, …, n (3.29) 

 In the Max-Prod however, the membership functions of the fuzzy sets of the consequents 

are multiplied with the degree of truth of the condition and then combined, equation 3.30. 

aggrBµ (y) = 
i

max [ iA
µ

1
(x1) * iA

µ
2
(x2)]   for i= 1, 2,…, n (3.30) 

 Equations 3.27, 3.28, 3.29 and 3.30 are graphically represented in Figure-3.29. In this 

figure each fuzzy rule antecedent and inference are shown in a separate line. The aggregation 

Figure-3.9. Graphical representations of the Max-Min and Max-Prod inference  
     methods of two rules of a two inputs system two with crisp inputs. 
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of the consequents fuzzy sets are also shown vertically for both Max-Min and Max-Prod 

operators. The symbols 1
1A and 1

2A refer to the first and second fuzzy antecedent of the first 

fuzzy rule, while the symbol 1B refers to the fuzzy consequent of the first rule. Similarly, the 

symbols 2
1A and 2

2A refer to the first and second antecedent of the second rule, and the symbol 

2B refers to the fuzzy consequent of rule 2.  

 In the min(.) fuzzy implication, the inferred output of each rule is a fuzzy set chosen from 

the minimum firing strength, whereas the Max-Min inference is the fuzzy union of the 

resulting fuzzy conclusions, column 3. Graphically, the union of these two membership 

functions is the outer envelop of the two shapes.   

 In the product fuzzy implication, the inferred output of each rule is a fuzzy set scaled 

down by its firing strength via algebraic product, whereas the Max-Prod inference is also the 

fuzzy union of the resulting fuzzy conclusions of the fuzzy implications, column 4. 

6.4 Defuzzification Interface 

 Defuzzification is the final step in the fuzzy logic program. Although it is a part of the 

fuzzy controller, the sole reason of this module is to provide an interface between the fuzzy 

set domain and the real world crisp domain. 

 This mathematical decoding procedure is a mapping of fuzzy set actions, defined over an 

output universe of discourse, implied by the fuzzy inference engine, into a space of non-fuzzy 

actions. In this context, the resulting crisp value should provide the best representation of the 

information inferred by the inference module. 

 Assume we have the result in Figure-3.10 at the end of the fuzzy inference procedure. 
 
 
 
 
 
 
 
 
 

 

µ 

y 

- 1 

Figure-3.10 Example of defuzzification for two-rule fuzzy inference 
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 In this figure, the shaded area represents the fuzzy action result. The purpose of the 

defuzzification module is to obtain a crisp value (represented by a dot in the figure) from the 

fuzzy result. 

 There exist different defuzzification techniques proposed in the literature for defuzzifying 

a fuzzy set described by a membership function. These techniques can be classified into two 

principle groups based on their technical and structural characteristics [74]. They are: maxima 

methods and distribution methods. Some of the most common defuzzifying techniques from 

both classes will be described and graphically represented in the following sections. 

6.4.1  Maxima Methods 

 The maxima methods have the common property that they select an element from the core 

of a fuzzy set as defuzzification value. The strength of maxima methods is their simplicity and 

speed of execution because they require passing through values of the core only. 

 The process consists in choosing the fuzzy set with the highest membership. The 

remaining    fuzzy sets are ignored and hence their information is lost. These defuzzifying 

methods are not well suited in fuzzy logic controllers because they cannot guarantee the 

continuity of the controller [72]. Maxima techniques can be classified as the first, the last or 

the median maxima. These give rise to the following defuzzification techniques: 

i- First of maxima (FOM) 

ii- Last of maxima (LOM) 

iii- Middle of maxima (MOM) 

6.4.1.1  First Of Maxima (FOM) 

    The FOM, also called the left most maximum, method uses the union of the fuzzy sets and 

takes the smallest value of the domain with the maximum membership degree, which is 

expressed as: 
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  y* = inf { y Y |  )y(µB  = hgt(B)} = min core(B)   (3.31) 

where hgt(B) is the highest membership of B. 

6.4.1.2  Last Of Maxima (LOM) 

Similarly, the LOM, also called the right most maximum, method uses the union of the fuzzy 

sets and takes the greatest value of the domain with the maximum membership degree, which 

is expressed as: 

  y* = sup { y Y |  )y(µB  = hgt(B)} = max core(B)  (3.32) 

where inf denotes infimum  (greatest lower bound) and the sup denotes supremum (least 

upper bound).  

6.4.1.5   Middle Of Maxima (MOM) 

 The middle of maxima is taken as the average of the above two values. The MOM is 

expressed as  

  MOM (B) = 
2

core(B)max   core(B) min     (3.33) 

These three defuzzifying methods are illustrated in Figure-3.11.  

 

 

 

 

 
 
 
 
6.4.2  Distribution Methods 

The main characteristic of this group of methods is that the output fuzzy set MF is treated as a 

distribution for which the average value is evaluated. Among the many methods using this 

structural concept, we can list: 

Figure-3.11. First, Middle and Last of Maxima defuzzification methods 
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i- Max-membership method 

ii- Weighted average method 

iii- Mean-max  

iv- Center of Gravity COG 

v- Center of Gravity for Singleton (COGS) 

6.4.2.1  Max-Membership Defuzzifying Method 

 The Max-membership method is also known as the height method. The crisp value is 

obtained by considering the peak value of the fuzzy output function. This method is described 

by the following expression: 

  *)y(µB   )y(µB   for all y Y      (3.34) 
 
where y* is the defuzzified value as illustrated in Figure-3.12.  
 
  
 
 
 
 
 
 
 
6.4.2.2  Weighted Average Method 

 This method is restricted to symmetrical output membership functions only. It is described 

by the expression: 

   y* =   
)y(µ
y  )y(µ 

cB

ccB      (3.35) 

 
where  denotes the algebraic sum and yc is the centroid of each symmetrical membership 

function. Figure-3.13 Illustrates this defuzzification method. 

 
 

 

 

Figure-3.12. Max-membership defuzzification method  
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Figure-3.13 Weighted average defuzzification method 
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6.4.2.3  Center of Gravity (COG) 

This is the most prevalent and physically appealing of all the defuzzification methods 

[70]. This method uses the same technique employed to calculate the center of gravity of 

mass.  The  defuzzified  value  is  determined  as  the  abscissa  of  the  centroid  of  the  single  

geometric shape representing the fuzzy output action of the fuzzy system. The centroid 

divides the area under the membership function into two areas of equal size, Figure-3.10. 

The center of gravity defuzzified method in the discrete form is defined as:   

  COGy =   M

1i
iB

i
M

1i
iB

)y(µ

y)y(µ 
 for i = 1, 2, …, M   (3.36) 

where COGy is the centroid of the area which is the defuzzified value of the combined 

overlapped conclusion fuzzy sets of fired rules, M is the number of rules, iy is the centroid of 

the area under the membership function Bµ and )y(µ iB is the membership value of iy . 

Although less convenient for hardware implementation because it requires a large number 

of  multipliers  as  well  as  the  fact  of  passing  through the  whole  universe  of  discourse  of  the  

output variable, nevertheless, its continuity and the smoothness of changes of defuzzified 

values makes it a convenient choice in fuzzy controllers.  

6.4.2.4  Center of Gravity for Singleton (COGS) 

 Center of gravity for singleton or COGS defuzzification method is the most widely 

applied in industry [75]. It has similar smoothness properties of the COG method but it is 

simple and has relatively good computational complexity.  

 A rule of a singleton fuzzy system has the following form: 

 Ri: IF x1 = i
1A AND x2 = i

2A  AND … AND xM = i
MA  THEN y = si (3.37) 
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where si is a real value called the singleton of rule i. It determines the position of the output 

membership function of each rule which is a singleton.    

 The computation of the control signal value simplifies to a weighted sum since the output 

MFs do not overlap. 

 The crisp output value is calculated using the expression of equation (3.38). Singletons is  

are weighted by fuzzy output membership iµ  for M such outputs, normalized to a degree of 

truth of 1. 

   COGSy =   M

1i
ii

i
M

1i
ii

)s(µ

s)s(µ 
 for i = 1, 2, …, M  (3.38) 

 
where COGSy denotes the result of defuzzification, M denotes the number of singletons, is  is 

the position of the output singleton i on the output variable universe of discourse and )s(µ ii  

denotes the degree of truth of rule i according to the fuzzy implication. 
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1 Introduction  

FPGAs are at the leading edge of each new technology node. They are one of the largest 

growing segments of the semiconductor industry. An FPGA is a semiconductor device. At the 

highest level, it is a highly configurable silicon chip. This digital integrated circuit (IC) is 

designed to be electrically configured by the customer after manufacturing to become almost 

any customized digital system.  

FPGAs belong to a large family of field programmable devices (FPDs). The three main 

categories  of  FPDs  are:  simple  programmable  logic  devices  (SPLDs),  complex  PLDs  

(CPLDs), and FPGAs. FPDs have grown from being used as simple “glue logic” to provide 

programmable connectivity (such as address decoding, bus extender, etc) between major 

components to today’s FPGAs where complete multi-processing system designs can be 

implemented on a single chip.  

The  purpose  of  this  chapter  is  to  give  an  insight  to  the  reader  of  the  challenges  to  

implementing digital controllers with FPGAs. It describes a new paradigm which consists of 

integrating the microprocessor and the FPGA architecture into a single device. In section two, 

we relate a brief historical perspective of programmable logic. Section three deals with the 

architecture of FPGAs. The last section is dedicated to the emerging technology the SoPC 

along with one of the most versatile and industry-standard processor from Altera’s FPGA 

design, the Nios® II soft core processor.          



 

  
 

52 

FPGA Technology Chapter 4 
 

2     History and Evolution of Programmable Logic devices 

The  origins  of  the  contemporary  FPGA  are  tied  to  the  development  of  the  first  silicon  

chip invented in the early 1960s by Jack Kilby and Robert Noyce. This showed that it is 

possible to integrate components on a single block of semiconductor material, hence the name 

integrated circuit or IC [76]. 

 The process of designing digital hardware has changed dramatically over the past five 

decades. In the 1960s-1970s and prior the invention of programmable logic, designer of 

digital logic systems used standard logic devices, the popular Texas Instruments 74xx series 

of Small Scale Integration and Medium Scale Integration (SSI and MSI) Transistor Transistor 

Logic (TTL) and the CMOS 4000 series to load printed circuit boards (PCBs). It was the era 

of hard-wired logic, where the principal concern was to create a design with as few chips as 

possible in order to reduce cost and minimize board area. Moreover, it necessitated the 

manufacture of a large number of device types requiring shelves full of data books just to 

describe them. It also required the designer to design with current device inventory in mind. 

 Starting from the mid-1970 however, a series of PROM-based ICs were introduced with 

the idea to have programmable hardware. This concept provided a new way of implementing 

logic functions. Although the first programmable hardware was the programmable read only 

memory (PROM), it is in 1975 that Ron Cline from Signetics introduced the first truly 

programmable logic device (PLD), the programmable logic array or PLA. The PLA is a two-

programmable planes device. These two planes provided any combination of “AND” and 

“OR” gates as well as sharing of AND terms across multiple ORs. This architecture was very 

flexible but at that time (10 µm technology) made the device relatively slow and hard to 

configure because of the limited software tools [77]. To overcome the weaknesses of both the 

PLA  and  the  PROM,  Monolithic  Memories  Inc  (MMI)  developed  the  programmable array 

logic or PAL. This device has a programmable AND array feeding a fixed OR array. 
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Registered  and  non-registered  PALs  were  available.  The  combinational  PALs  were  used  to  

implement Boolean logic functions and could replace a handful of 74xx ICs while registered 

PALs allowed the implementation of finite state machines. The PAL was a success compared 

to the PLA and PROM. In literature,  PROMs, PLAs and PALs are commonly called simple 

programmable logic devices or SPLDs.         

 The advancement in semiconductor technology and the idea of extending the SPLD 

further produced a device with higher capacity, the complex PLD or  CPLD.  The  general  

architecture of a generic CPLD is depicted in Figure-4.1. It includes an array of blocks called 

logic array blocks (LABs), a programmable interconnect array or PIA and general-purpose 

input-output pins. The PIA is capable of connecting any LAB input or output to any other 

LAB. Also, the inputs and outputs of the chip connect directly to the PIA and to LABs.  

 

 

 

 

 

 

 

 

 

 

 CPLDs brought a new dimension to programmable logic because of the large amount of 

logic that could fit in a single chip. In theory, we could keep adding logic array blocks to a 

CPLD to continue the increase of the available logic. However, the extra routing required in 

the programmable interconnect array for routing between all these logic blocks increases 
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Figure-4.1 Generic structure of a CPLD 
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exponentially until the amount of routing fabric overtakes the amount of the actual logic.  

 At the end of 1984, instead of surrounding the PIA with logic blocks, Xilinx co-founder 

Ross Freeman and Bernard Vondershmitt came up with a new arrangement. They reorganized 

the logic blocks named configurable logic blocks (CLBs)  as  a  two-dimensional  array  of  

CLBs. These blocks can be interconnected via horizontal and vertical routing channels, 

similar to the streets in a large city. The first commercially viable FPGA in is born. It is the 

XC2064. It contains 64 CLBs and surrounded by 58 general-purpose input-output blocks or 

IOBs. The first FPGA has the equivalent of 2000-ASIC-gate (i.e., 2-input NAND). 

3  Architecture of FPGAs 

Figure-4.2 depicts the architecture of the early FPGA which is a regular array of 

programmable logic blocks and programmable interconnect matrix. It comprises 

programmable logic units that Xilinx calls a configurable logic blocks (CLBs) and what 

Altera refers to as logic array blocks (LABs) that can be used to realize different digital 

functions. These logic units are surrounded by a configurable ring of general-purpose I/O pins 

named input-output elements IOEs by Altera and input-output blocks, IOBs by Xilinx. The 

FPGA also includes programmable interconnect to allow different blocks to be connected 

together. In the remaining of this chapter, we will deal with Altera FPGAs and notations.      
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Figure-4.2 Generic structure of an early FPGA 
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3.1  Logic Element 

 The core block in the Altera low cost cyclone device family of FPGAs is the logic element 

(LE). LEs are compact and provide advanced features with efficient logic usage [78]. Figure-

3.3 illustrates a typical block diagram of a LE structure. The LE features a 4-input look-up 

table (LUT), the carry chain connection and a programmable register (or flip flop). The LUT 

is a function generator that can implement any function of four variables of a combinational 

logic in an FPGA. It is internally implemented as a set of 2:1 multiplexers functioning as a 

24:1 multiplexer. Multiplexer inputs are programmable, while select lines are the inputs of the 

implemented functions. The sequential part of the LE comes from the programmable register, 

which can be configured as a D, T, or JK flip-flop. The carry chain logic is required to link 

the LE to other LEs. It also supports both register packing and feedback.       

 

 

 

 

 

 

 

3.2  Logic Array Block 

Moving one level higher in the hierarchy, we have the logic array block or LAB. The 

LAB consists of 10 to 16 LEs, LAB control signals, LE carry chain, register chain and local 

interconnect. Figure-3.4 depicts block diagram of a Cyclone II LAB.  

 The local interconnect transfers signals between LEs in the same LAB. Register chain 

connections transfer the output of one LE’s register to the adjacent LE’s register within a 

LAB [78]. The LAB local interconnect is driven by column and row interconnects and  
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Figure-4.3 Block diagram of the Altera logic element 
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LE outputs within the same LAB. 

3.3  Adaptive Logic Module 

 In the high performance FPGAs such as the Stratix family, Altera extended the concept of 

the LE to lead to the so-called adaptive logic module or ALM. The ALM provides advanced 

features with efficient logic usage and is completely backward-compatible. Each LAB in the 

Stratix-III and above is composed of 10 such ALMs that can be configured to implement 

logic functions, arithmetic functions, and register functions.   

Figure-4.5 illustrates the high-level block diagram of the Altera Stratix-V ALM [79]. 

Each ALM contains an 8-input LUT which can be fractured into several possible 

configurations including two completely independent 4-input LUTs, or a 3-input and 5-input 

LUTs or a 6-input and 6-input LUTs where 4 of them are common to both LUTs. The ALM 

also includes two dedicated embedded full adders for fast arithmetic/carry chain and four 

dedicated registers (flip-flops) for the implementation of sequential functions. 

Figure-4.4 Block diagram of a Cyclone II LAB [78] 
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3.4  Integrated Functional Blocks 

  Early FPGAs were a homogenous sea of logic elements, I/Os and interconnects. Modern 

FPGA devices are heterogeneous. Only 40% of the area of an FPGA is a logic fabric, the rest 

of the chip contains an unprecedented level resources: configurable embedded SRAM, high-

speed transceivers, high-speed I/Os, embedded multiplier blocks and even embedded hard 

core processors. 

3.4.1  Embedded RAM Blocks 

 A lot of applications require the use of memory. Today’s FPGAs include relatively large 

chunks of embedded RAM. These devices might contain anywhere between tens to hundreds 

of these RAM blocks. Figure-4.6 shows an M4K RAM block of used in the Cyclone family 

of FPGAs. Each M4K block can implement various types of memory, including true dual-

port, simple dual-port, and single-port RAM, ROM, and first-in first-out (FIFO) buffers. The 

R4, C4, and direct link interconnect from adjacent LABs drive the M4K block local 

interconnect.  The  M4K  blocks  can  communicate  with  LABs  on  either  the  left  or  right  side  

Figure-4.5 High-level block diagram of the Altera Stratix-V ALM [79] 
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through these row resources or with LAB columns on either the right or left with the column 

resources. Up to 16 direct links input connections to the M4K block are possible from the left 

adjacent LAB and another 16 possible from the right adjacent LAB. 

 

  

  

 

 

 

 

 

 

 

3.4.2  Embedded Multiplier Blocks 

 Multiplication  operations  are  required  by  a  lot  of  applications.  Time  execution  of  these  

operations is inherently long if implemented by connecting a large number of programmable 

logic blocks together using schematic capture of HDL. For this reason modern FPGA devices 

incorporate special hardwired multiplier blocks optimized for multiplier-intensive digital 

signal processing (DSP) functions, such as finite impulse response (FIR) filters, fast Fourier 

transform (FFT) functions, and discrete cosine transform (DCT) functions. These blocks are 

often located close to embedded RAM blocks. Figure-4.7 depicts  the  architecture  of  an  

embedded multiplier block contained in the Cyclone family of FPGAs. 

 The embedded multiplier consists of the multiplier block, the input and output registers 

and input and output interfaces. Control signals are provided to control the representation of 

the operands. The latter can be either signed or unsigned operands. The embedded multiplier 

Figure-4.6 An M4K RAM embedded memory block in a Cyclone FPGA [78] 
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block can be used as an 18-bit or 9-bit multiplier. In 18-bit multiplier, it supports a single 18 x 

18 multiplier, in 9-bit configuration, it can support two 9 x 9 independent multipliers.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure-4.8 shows the embedded multiplier routing interface. The R4, C4, and direct link 

interconnect from adjacent LABs drive the embedded multiplier row interface interconnects. 

The embedded multipliers can communicate with LABs on either the left or right side through 

these  row  resources  or  with  LAB  columns  on  either  the  right  or  left  with  the  column  

Figure-4.7 Architecture of an embedded multiplier block in a Cyclone FPGA [78] 

Figure-4.8 Architecture of an embedded multiplier block in a Cyclone FPGA [78] 
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resources. 

3.4.3  Gigabit Transceivers 

 Today’s high-end FPGAs include special hard-wired gigabit transceiver blocks. They 

operate at incredibly high speeds allowing them to transmit and receive billions of bits of data 

per second. 

3.4.4  Embedded Processor Cores 

 The  majority  of  designs  make  use  of  microprocessors  in  one  way  or  another.  Until  

recently, these appeared as discrete standard off-the-shelf devices on the circuit board. 

Starting mid-2000, a new semiconductor process allowed major vendors of FPGAs to offer 

high-end FPGA devices with embedded hard processors along side with the FPGA fabric. 

Altera Corp offers mid-range Arria V SoC and low-cost Cyclone V SoC FPGA devices with 

integrated dual-core ARM® (Advanced RISC (Reduced Instruction Set Computer) Machine) 

Cortex™-A9 MPCore™ processor operating at 1.05 GHz and 925 MHz respectively. These 

SoCs FPGA integrate an ARM-based hard processor system (HPS) consisting of processor, 

peripheral, and memory interface with the FPGA fabric using a high-bandwidth interconnect 

backbone. The high-end and highest bandwidth FPGA devices (100 Gbps), the Stratix 10, 

includes a 64-bit quad-core ARM Cortex™-A53 processor in its 14 nm FPGA fabric [80]. 

Xilinx [81] also has integrated hard core processors in its FPGA devices. The high-end 

Virtex-4 (and above) and the mid-range Kintex family of FPGA include one or two IBM 

PowerPC 405 or 440 32/64-bit processor cores, whereas the Zynq-7000 (lastest of Xilinx) all 

programmable SoC integrates a dual-core ARM® Cortex™-A9 processor.  

 Today, it makes sense to move all of the tasks used to be performed by the external 

microprocessor into the internal core [82]. This provides a number of advantages the least of 

which are reduced cost, and reduced circuit board while improving performance and 

maximizing reliability.     
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4 FPGA Programming Technologies 

Three technologies are nowadays available for implementing reconfigurable FPGAs. 

These are defined based on the way the routing between logic elements is configured. They 

are: SRAM-, Flash- and Antifuse-based FPGAs. 

4.1        SRAM-Based FPGA 

 The dominant type of FPGA devices is SRAM-based. This type is at the forefront of 

FPGA technology, all large FPGAs are use this technology. Static memory cells are 

distributed throughout the FPGA fabric to provide configurability. These memory cells (an 

array of latches) is used to program interconnect and look up table (LUT) function levels. 

Their major advantage is that new design ideas can be quickly implemented and tested. The 

main downside is their volatility. Whenever the device is powered-off, the array of latches is 

cleared losing the configuration of the design (bit-stream information) mapped into the FPGA 

chip. Therefore, a back up battery is required when power is removed from the system, or the 

programming information must be stored in a non-volatile media so that the FPGA can be 

configured at power-on. In general, an electrically erasable programmable read only memory 

(EEPROM) or flash memory device is used for this purpose.  

4.2        Antifuse-Based FPGA 

 Antifuse programming technology is one-time programmable (OTP), that is, it cannot be 

used for prototyping. Moreover, unlike SRAM-based FPGAs which are configured on site, 

antifuse-based FPGAs are configured off-line using a special device programmer. Antifuse 

are non volatile. This feature is of particular interest in some applications such as military and 

aerospace because of high radiation tolerance. This type of FPGA is only fabricated by 

Microsemi (previously Actel). 

4.3        Flash-Based FPGA  

 Flash-based FPGAs use non-volatile memory cells to provide configurability. Their main 
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advantage is they do not require an external non-volatile memory to hold the configuration 

information  of  the  design.  The  major  downside  of  this  technology  is  the  relatively  smaller  

density of integration, that is, flash cells are much larger than SRAM cells. They are also used 

in military and aerospace because of high radiation tolerance. 

5  Applications of FPGAs 

 Nowadays, FPGA devices are everywhere. They are widely used in both research and 

industry. They provide market solutions and are key elements in a broad range of application 

areas. In military applications FPGAs are found in radar and sonar as well as in secure 

communications. Modern high definition video camera and displays integrate FPGA in their 

circuitry. FPGA devices are widely used in industry. We can find them in motor/motion 

control, smart energy, machine vision, medical imaging and industrial Ethernet.  

 Another area of application of FPGA devices is application-specific integrated circuit 

(ASIC) and application specific standard product (ASSP) prototyping. Because the FPGA 

platforms provide a faster, smoother path to delivering an end working product, they are used 

in the verification of both register transfer level (RTL) and initial software development of 

ASIC and ASSP devices. This standard practice not only provides the opportunity to have a 

hardware platform early in the design cycle, it also decreases development time and reduces 

the risk of silicon failure.    

6    The Nios® II and SoPC Builder 

6.1 The Nios® II Processor 

 The Netware Input-Output Subsystem, Nios® II, is the Altera’s flagship intellectual 

property (IP) second generation soft-core processor. It is a 32-bit embedded processor 

designed and optimized for the use in FPGA designs targeting Altera’s mainstream FPGA 

families [83-84]. 
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 It is a general-purpose pipelined scalar Reduced Instruction Set Computer (RISC) and 

features Harvard memory architecture (separate instruction and data buses). This load-store 

processor core features a full 32-bit data path, instruction word, and address space with 

integer only arithmetic logic unit. 

 The processor has 32 general-purpose registers with a MIPS-ISA-like (Microprocessor 

without Interlocking Pipe Stages – Instruction Set Architecture) instruction format. The 

arithmetic and logic operations are performed on operands in the general purpose registers. 

Nios® II processor uses a memory-mapped scheme for accessing memory and peripherals, 

where each component is assigned a unique set of memory addresses in which byte addresses 

in a 32-bit word are assigned in little-endian style.  The architecture of the processor has 32 

internal hardware interrupts and can support external interrupt controller interface for more 

interrupt sources. 

 The Nios® II is a soft-core processor. It is a hardware description language (VHDL or 

Verilog) model of a specific microprocessor customized as an intellectual property (IP) core. 

It can be instantiated and synthesized for an Altera’s FPGA target using the Quartus II 

software development suite tools. Unlike a “hard" core processor which is implemented in 

dedicated silicon of the FPGA; a soft-core processor is targeted onto the FPGA’s fabric logic 

elements.  

 The Nios ® II processor comes in three variants cores to trade FPGA area and power 

Figure-4.9 The 3 flavors of the Nios® II soft core processor [79]. 
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consumption for speed of execution. These flavors are: fast, standard and economy, Figure-

4.9. Each core version modifies the number of pipeline stages, cache memories for data and 

instructions, number of cycles per instruction, addressable memory space, and hardware or 

software implementation of multiplication and division operations and so on.    

i-  The fast version (Nios® II/f) is designed for performance-critical applications at 

the expense of core size. It includes separate optional instruction and data caches, 

where caches are implemented in the FPGA memory blocks. It employs a 6-stage 

pipeline to achieve maximum DMIPS/MHz. This high performance variant 

provides optional hardware multiply, divide, and shift options to improve 

arithmetic performance. It executes one instruction per cycle. When the memory 

management unit  (MMU) is present,  the processor can access up to 4 GBytes of 

memory. 

 To  give  the  processor  a  fast  access  to  the  on-chip  memory,  the  Nios® II  fast  

core architecture provides optional tightly-coupled memory interface arrangements 

(memory connected directly to the processor) for both instructions and data. When 

the tightly-coupled memory is present, its access bypasses cache memory. 

ii- The standard core version (Nios® II/s) is optimized for medium-performance and 

cost-sensitive applications. It employs a 5-stage pipeline. Unlike the fast version, 

the standard has an instruction cache, but no data cache. 

iii- The economy variant (Nios® II/e) is designed with the smallest possible logic 

utilization of FPGA. It is not pipelined (one stage) and contains no cache. It has a 

limited feature set, and many settings are not available when this version is 

selected, Figure-4.9. The economy variant executes at most one instruction per six 

clock cycles. The major advantage of this core is it is licence free while the /f and 

/s versions require a $500/year licence. 
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While the performance and size are different, the three flavours share the same native 

instruction set. 

6.2   The SoPC Builder 

 The SoPC Builder is a system integration tool included as part of the Altera’s Quartus II 

software development tool environment. It is a powerful tool to construct microprocessor-

based systems on an FPGA. It streamlines the process of integrating blocks of intellectual 

properties (IPs) and accelerates development of system-on-a-programmable-chip designs 

compared to traditional, manual integration methods. The SoPC platform also allows the 

integration of custom I/O peripherals and hardware accelerators into a system. The designer is 

responsible for the development of hardware as well as the software.  

 The tool consists of two major parts: a graphical user interface or GUI and a system 

generator program [85]. Figure-4.10 depicts a screenshot of a SoPC builder system. The 

menu on the left side is the library of available IP cores from which the designer picks up the 

desired components required by the design. This library includes: the Nios® II soft core 

processor, microcontroller peripherals such as interval time and general-purpose I/O interface. 

The SoPC Builder library contains serial communication components such as the universal 

asynchronous receiver transmitter (UART) and the serial peripheral interface (SPI). It also 

provides a variety of controllers to interface with off-chip devices such as SDRAM controller 

and flash memory interface.     

 The central part, the contents page, is where the system is built. The construction of the 

system is accomplished by means of a drag-and-drop style. The GUI is used to select and 

customize  system  components  from  a  rich  set  of  pre-made  SoPC  Builder  components.  The  

required components are dragged and parameterized in the contents page. The connections 

panel column shows a graphical representation of how the components are interconnected.  
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Finally, the beginning and end of the memory addresses of the various components used in 

the  in  the  design  are  shown  under  Base  and  End  columns  on  the  right  side  of  the  SoPC  

Builder  GUI  window.  The  addresses  of  all  the  slave  components  can  be  assigned  either  

manually or automatically generated by the SoPC builder generator. 

 The system interconnect fabric or SIF for memory-mapped interfaces is a high-bandwidth 

interconnect  structure  for  connecting  components  that  use  the  Avalon  ®   Memory-Mapped  

(Avalon-MM) interface. The system interconnect fabric consumes less logic, provides greater 

flexibility, and higher throughput than a typical shared system bus. Figure-4.11 shows  a  

simplified diagram of the system interconnect fabric in an example memory-mapped system 

with multiple masters. The SIF logic provides the following functions: Address Decoding, 

Datapath Multiplexing, Wait State Insertion, Pipelined Read Transfers, Dynamic Bus Sizing, 

Arbitration for Multi-master Systems, Arbiter Details, Interrupts and Reset Distribution [85]. 

 

 

 

Figure-4.10 Screenshot of a SoPC Builder system 
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Figure-4.11 System interconnect fabric with multiple mastering components [85] 
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1 Introduction 

Sun is permanently changing its position in the sky. Everyday, it moves from east to west 

between sunrise and sunset; the azimuth movement. It also, moves from north to south 

throughout the course of the year; the elevation movement. Because the energy extracted from 

the  PV panel  is  at  its  maximum when the  surface  of  the  solar  panel  is  perpendicular  to  the  

sun’s rays, then an ideal tracking system should maintain a solar panel accurately pointing 

towards the sun, compensating for both changes in the azimuth and elevation angles of the 

sun with respect to the panel throughout the day. It  is  desirable to develop a control system 

based on fuzzy logic methodology to fulfill these requirements.     

Fuzzy control is based on fuzzy logic which is close in spirit to human thinking and 

natural language [86]. It provides a convenient way to build the control strategy by requiring 

only  qualitative  knowledge  for  the  behavior  of  the  control  system. In recent years, fuzzy 

control is used to enhance control engineering solutions. It brought high promising 

alternatives to conventional controllers by providing higher degree of robustness (immunity to 

external disturbance) and by achieving better performances (short rise-time, small overshoot) 

over linear controllers [87]. Fuzzy controllers revolutionized the field of control engineering 

by  their  ability  to  perform  process  control  by  the  utilization  of  human  knowledge,  thus  

enabling solutions to control problems for which mathematical models may not exist, or may 

be too difficult or computationally too expensive to construct [88].   
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2 Structure of the Fuzzy Logic Module 

  The high-level fuzzy logic module consists of two independent fuzzy-like PD-type 

controllers;  one  to  steer  the  azimuth  angle  and  one  to  steer  the  tilt  (elevation)  angle  of  the  

dual-axis sun tracker. The module controls the two stepper motors used as mechanical 

actuators to position the solar panel’s surface perpendicular to the sun intensity vector to 

harness maximum energy from the sun. Figure-5.1 shows the high-level structure of the dual-

axis sun tracking fuzzy logic module.  

  The reason behind the use of the fuzzy-like PD-type controller is driven by the fact this 

controller has a simple control structure compared to the proportional-integral-derivative 

(PID) type gives better sensitivity and increases the overall stability of the closed loop system. 

Also, the fuzzy-like PD-type controller reliably predicts large overshoots and adds damping to 

the overall closed loop system making it an excellent solution in position control [89]. 

 

 

 

 

 

 

 

 

 

 

 

3 Fuzzy Logic Controller Design Flow 

 Most works in fuzzy control use the error and the rate of change of error as input variables 

Figure 5.1 Operational block diagram of the intelligent dual-axis sun tracking fuzzy logic module 
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regardless of the complexity of controlled plants [72].  

 Figure-5.2 depicts the sun tracking fuzzy logic module with errors and rate of change of 

errors generator. The crisp data discriminating the position of the sun in the sky with respect 

to the panel’s surface are measured by the data acquisition unit via the ADC interface. The 

state variables inputs are the angular error EEW (ENS) defined as the voltage differences 

between the signals corresponding to irradiances received on each pair of sensors and its rate 

of error change cEEW (cENS). The commonly used approach to obtain these quantities is the 

use of differential amplifiers and differentiators. In this work these quantities are computed in 

software  using  the  digital  error  and  rate  of  change  of  error  generator  which  is  implemented  

onto the FPGA resources. This approach does not make use of any extra analog components. 

It is thereby, more accurate, reliable and cost effective. The evaluation of the angular errors 

and their rates of change are given by Equations 5.1 through 5.4, [90]. 

 )k(V_LDR  - (k)V_LDR   (k)E WEEW      (5.1) 

 )k(V_LDR  - (k)V_LDR   (k)E SNNS      (5.2) 

 )1k(E - )k(E   (k))(E   (k)cE EWEWEWEW     (5.3) 

 )1k(E - )k(E   (k))(E   (k)cE NSNSNSNS     (5.4) 

where  (k)V_LDRi is the digital equivalent value of the sunlight irradiance received on LDRi 

and )k(Ei and )1k(Ei are respectively the present and previously measured errors at a one 

second (1-sec) sampling time. 
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Figure-5.2 Sun tracking fuzzy logic module with errors and rate of change of errors generator 
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 The fuzzy logic controller design flow consists of the following steps: 

-  Identify the input state variables and the ranges spanned by each variable. 

- Identify the output variables and the ranges spanned by each one. 

- Choose appropriate scaling factor for the input variables in order to normalize the variables 

to the [0, 1] or [-1, 1] interval. 

- The shapes of membership functions have to be fixed. 

- The number of membership functions and their locations on the universe of discourse has to 

be determined for every input state variable. 

- Assign a linguistic label to each membership function 

- Create the degree of fuzzy membership function for each variable 

- Construct the rule base 

- Use fuzzy approximate reasoning to infer the output contributed from each rule.  

- Aggregate the fuzzy outputs recommended by each rule. 

- Apply defuzzification to form a crisp output 

- Choose appropriate post-processing to suite the crisp output of defuzzification module into 

actual inputs for the process.     

4 The Azimuth Fuzzy Logic Controller 

 The state variable inputs of the azimuth fuzzy-like PD-type controller are the angular error 

EEW and its rate of change of error cEEW.  The universe of discourse for the azimuth angular 

error is defined as the maximum deviation from the optimal position of the solar panel with 

respect to sun rays. Figure-5.3 illustrates  the  sun  vector  hitting  a  solar  panel.  The  incident  

angle  is  zero when sun rays are normal to the solar panel’s surface.  This angle can range 

from -90° at sunrise to +90° at sunset.  

 

 +90°   -90°   West East 

Figure-5.3 Incident angle of sunrays with solar panel surface 
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4.1 Input/Output Membership Functions 

The azimuth error, EEW and the rate-of-change of azimuth error, cEEW are fuzzily 

partitioned in seven fuzzy sets with triangle-like membership functions distributed in the 

interval EEW  [-90°, +90°] and cEEW [-90°/sec, +90°/sec] respectively. 

We used seven discrete levels to provide an adequate resolution for the azimuth angle due 

to its sensitivity. The size, shape and labels of the membership functions representing the two 

input variables are illustrated in Figure-5.4 (a) and (b). 

The input variables are quantified into fuzzy sets defined by linguistic labels: Negative 

large (NL), Negative Medium (NM), Negative Small (NS), Approximate Zero (AZ), Positive 

Small (PS), Positive Medium (PM) and Positive Large (PL). 
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The  membership  functions  representing  the  input  values  degree  of  truth  for  each  set  are  

triangular functions with sufficient overlap provided for neighbor fuzzy sets. At any point of 

the universe of discourse, only two fuzzy sets will have non-zero degree of membership. 

This overlapping permits a smooth mapping of the system and reduces the computation 

complexity. We used asymmetrical MFs with coarse resolution for large errors and fine 

resolution in the vicinity of the origin (desired posture of the solar panel) [86]. Since most of 

the action rules operate at the center of the universe of discourse, the scope of the “AZ” 

membership function is made narrow. This headband of the controller is set to 3.6° which is 

a  multiple  of  the  stepper  motor’s  step  angle.  All  the  MFs  are  however,  symmetrical  for  

positive and negative values of the state variables.   

The values of the x-axis of the membership functions of the error and rate of change of 

error state variable inputs are quantized by a biased (a bias of $80) 8-bit words ($00-$FF). 

The bias hexadecimal 80 ($80) is for the zero. Values less than $80 are for negative 

deviations and values greater than $80 are for positive deviations. The y-axis representing the 

grade or degree of membership (DoM) is scaled as an 8-bit unsigned value $00 to $FF [90]. 

The control output signal of the fuzzy-like PD-type controller is the number of steps 

applied to the azimuth stepper motor phases computed by the fuzzy inference engine. It is 

characterized by seven singleton membership functions over the interval [-16, +16] with the 

Figure-5.4 (a) MFs of the angular error EEW in degrees. (b) MFs of cEEW in degrees/sec 
(c) Singleton membership functions of the output variable ‘U’ in number of steps. 
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support values equal to 1. The seven singletons defined by the seven linguistic terms: FW fast 

westward,  MW  medium  westward,  SW  slow  westward,  H  hold,  SE  slow  eastward,  ME  

medium eastward, and FE fast eastward as depicted in Figure-5.4 (c) [90].    

4.2 Construction of Rule Base 

The derivation of the control rules is heuristic and relies on the qualitative knowledge for 

the behaviour of the process to control. 

The fuzzy rules are derived in such a way that the deviation (azimuth angular error) from 

the desired posture can be minimized to achieve the control objective [86]. 

The general equation of the proportional-derivative (PD)-type controller is given by 

 u(k) = kp e(k) + kd e(k)       (5.5) 

where kp and kd are the proportional and differential gain coefficients, e is the error, e is the 

change of error. 

The fuzzy-like PD-type FLC consists of rules of the form 

 Ri:  IF EEW is i
1A  AND cEEW is i

2A  THEN u is iB     for i= 1,…, 7 (5.6) 

 

 

 

 

 

 

 

 

 

 

cEEW : Rate of change of error 
u 

PL PM PS AZ NS NM NL 
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PL  FE 42 FE FE FE ME SE    H  49 

Table-5.1 The 7x7 fuzzy rule-base matrix used in the fuzzy-like PD-type FLC for the 
vertical pivot shaft (east-West) 
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where is i
1A  and i

2A  are the linguistic values representing the i-th antecedent pairs and the iB  

is the fuzzy set representing the i-th conclusion. 

Since both state variable inputs have seven MFs, then the total number of non-conflicting 

fuzzy if-then rules is 7x7 = 49. 

Table-5.1 summarizes these rules for the azimuth angle fuzzy-like PD type FLC in a 

matrix form. The control rules are best visualized as a 2-dimentional matrix structure where 

the most left column and the top row contain the fuzzy sets of the two antecedents EEW and 

cEEW respectively. The fuzzy sets of the output control action are shown in the body of the 

matrix.  

The matrix can be partitioned into several subgroups. The central part of which for 

example describes the situation where the azimuth angular error and its rate of change are 

both either small or null, i.e., the misalignment is very small. Therefore, the control action to 

correct this error should be null (H) or small in magnitude ((+) or (-)). In the situation where 

the panel surface is too far from the desire posture (negative large or positive large), then, if 

the rate of change of error is of the same sign, fast control action is provided ((+++) or (---))   

to position the panel. The latter situations are illustrated by the upper right and lower left 

corners. Referring to the rule base matrix, the physical meanings of some rules are described 

below.  

Rule 7:  IF EEW is NL AND cEEW is NL THEN u is FW 

The statement “angular error is negative large” represents the situation where LDRW receives 

significantly more sunlight than LDRE, and “change in error (cEEW) is negative large” can 

represent the situation where the tracker is moving eastward. Therefore, to track the sun, the 

controller must apply a large control action “fast westward” to move the tracker westward. 

Rule 25:  IF EEW is AZ AND cEEW is AZ THEN u is H 

This rule describes the situation the deviation is within the fuzzy AZ zone, and in the presence 
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of a rate of change of error within the same zone, then, the controller holds current situation, 

meaning that the sun is tracked. 

Rule 32:  IF EEW is PS AND cEEW is AZ THEN u is SE 

The statement “if azimuth error is positive small AND change in error is nearly zero” 

represents the situation where the solar panel is slightly misaligned eastward and since the 

change in error is nearly zero, then the controller should move the panel slightly estward, 

“slow eastward”.  

Rule 49:  IF EEW is PL AND cEEW is NL THEN u is H 

This  rule  quantifies  the  situation  where  the  panel  is  misaligned  with  the  eastern  LDR 

receiving more sunlight than the western one. And because, the rate of change of the error is 

large and of opposite sign, then, it is not necessary to apply any action, the tracker will end up 

tracking the sun (self-correcting situation).  

The matrix presents noticeable features. It has a skew symmetric property, that is, the 

eastward  linguistic  values  (SE,  ME  and  FE)  of  the  control  action  are  placed  below  the  

diagonal whereas the westward linguistic values (SW, MW and FW) are above the diagonal 

with a hold control action placed along the diagonal (H). Another feature of this matrix is that, 

in either direction, the number of steps to be applied for the actuators increases with 

increasing distance from the diagonal.  

The parameters characterizing the azimuth FLC are as follows: 

1. Number of inputs:   2 

2. Antecedent MFs   seven triangular per fuzzy set 

3. Output    1 

4. Consequent MFs   seven singletons 

5. Maximum number of rules  49 

6. Inference method   max-min 

7. Defuzzification   COGS 
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5 The Elevation Fuzzy Logic Controller 

The second FLC adjusts the tilt angle of the tracker. It runs in parallel with the azimuth 

angle controller. The inputs to this fuzzy controller are the elevation deviation or ENS and the 

rate of change of error cENS. The output is the control action that drives the second stepper 

motor. 

The declination angle is the angle made by the line joining the centers of the sun and the 

earth with its projection on the equatorial plane and it varies from -23.45° to +23.45°. 

Because the change is on seasonal basis only, we provided a smaller number of quantization 

level by partitioning the [-23.45°, +23.45°] universe of discourse using five triangle shaped 

MFs. The linguistic terms used are: NL, NS, AZ, PS and PL. The driving force has five 

singleton MFs: FN, SN, H, SS, and FS. 

 Figure-5.5 depicts the graphical representation of the MFs of the elevation error and 

its rate of change. 
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Table-5.2 summarizes these rules for the elevation angle fuzzy-like PD type FLC in a 

matrix form. The control rules are best visualized as a 2-dimentional matrix structure where 

the most left column and the top row indicate the fuzzy sets of the two antecedents ENS and 

cENS respectively.  The  fuzzy  sets  of  the  output  control  action  are  shown in  the  body of  the  

matrix. 

 

 

 

 

 

 

 

Similar to the rule base matrix of the azimuth fuzzy controller, the rule base of the 

elevation fuzzy controller also exhibits a skew symmetric property, that is, the northward 

linguistic values (SN and FN) of the control action are placed below the diagonal whereas the 

southward  linguistic  values  (SS  and  FS)  are  above  the  diagonal  with  a  hold  control  action  

placed along the diagonal (H).  Another feature of this matrix is  that,  in either direction, the 

number of steps to be applied for the actuators increases with increasing distance from the 

diagonal.  

cENS : Rate of change of error
NS 

PL PS AZ NS NL 

NL H SS  FS FS FS 

NS SN H SS FS FS 

AZ FN SN H SS FS 

PS FN FN SN H SS E N
S :

 e
rr

or
 

PL  FN FN FN SN H 

Steps 
8 2 2 8 0 

FS 
-- 

SS 
  - H 

SN 
+ 

FN 
++ 

+ ¯ 
(c) 

FS   : Fast Southward  
SS   : Slow Southward  
H          : Hold 
SN    : Slow Northward  
FN    : Fast Northward 

Figure-5.5  (a) MFs of the angular error ENS in degrees. (b) MFs of cENS in degrees/sec 
(c) Singleton membership functions of the output variable ‘U’ in number of steps. 

 

Table-5.2 The 5x5 fuzzy rule-base matrix used in the fuzzy-like PD-type FLC for the 
horizontal pivot shaft (North-South) 

1 5 

25 21 
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1  Introduction 

This chapter describes the proof-of-concept implementation of the FPGA-based fuzzy 

logic  controlled  dual-axis  sun  tracking  system  on  an  Altera  low-cost  Cyclone  II  device.  It  

details  how  to  use  the  Quartus  II  software  development  suite  tools  and  the  Altera  Monitor  

Program (AMP) software tool to design and build the application. The implementation 

integrates  the  SoPC  Builder  system  with  the  Nios®-II  soft  core  processor  and  a  non-SoPC  

custom hardware accelerator developed in VHDL all into a single chip. Melding these two 

technologies creates a news level of customization in embedded system design. This 

heterogeneous approach provides a variety of benefits including. With its higher level of 

integration, this approach reduces overall system cost and reduces board size. In addition, it 

increases the flexibility of both the software and hardware designs.      

 Figure-6.1(a) illustrates a classical microprocessor-based system. It consists of a board 

with a number of discrete off-the-shelf components including a processor (central processing 

unit or CPU), a plentiful I/O peripherals (to support different I/O standards), a read-write 

memory (RAM), a flash memory, some dedicated logic hardware accelerators and an FPGA 

or some sort of PLD to glue together all these components. 

 The circuit board required for such a system should be quite large to contain all these 

chips. This increases the design cost and complexity while reducing speed and reliability. 

With the availability of multi million-gate FPGA devices, complex intellectual property (IP) 
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cores  and  soft  core  processors  such  as  the  Altera  Nios® II,  it  is  possible  to  contain  a  CPU,  

I/Os, the dedicated custom hardware accelerator and the RAM all in a single FPGA chip, 

Figure-6.1(b). The only component that we cannot put into the FPGA is the flash memory. 

 

 

 

 

 

  Integrating these devices on the same piece of silicon reduces cost and saves board space, 

while it increases reliability and enhances anonymity and secrecy. Also, because the signals 

between different components now reside on the same die, communication between them 

consumes substantially less power. In addition, this integrated solution results in a 

substantially higher bandwidth and lower latency compared to the former one.          

2  FPGA Hardware Design Flow (SoPC Approach)  

 Designing and implementing embedded systems at system level targeting a 

programmable logic platform such as the FPGA is impossible without sophisticated computer 

aided design (CAD) tools. To cope with these complexities, Altera provides a Quartus II 

software  development  tool  which  includes  a  SoPC  Builder  system  integration  tool  to  allow  

designers to synthesize, simulate, program and debug their designs and build embedded 

systems on Altera’s FPGA [91]. The remaining of this section, discusses the complete 

hardware/software  design  flow  for  creating  a  SoPC  Builder  system  with  a  custom  logic  

hardware accelerator (relevant details will be presented in forthcoming sections). Figure-6.2. 

illustrates the FPGA hardware development design flow when using the SoPC approach.  

Figure 6.1 Typical microprocessor-based system, (left) traditional method, (right) SoPC approach. 
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 The  design  flow  for  any  Altera  FPGA-based  system  using  SoPC  approach  starts  by  

creating an FPGA project in Quartus II (window 1) [92], [93]. From within Quartus II project, 

we launch the SoPC Builder (window 2), a tool to build the desired embedded subsystem in 

the SoPC Builder with a Nios® II processor to program in the FPGA. The SoPC Builder fits 

in the design phase with which we can build an embedded system without having to develop 

any RTL coding. Instead, we use it in a drag-and-drop style Graphical User Interface (GUI) to 

add and parameterize the Nios® II soft core processor, memory and any other IP blocks 

required by the application (window 3). 

 Next, the Nios® II-based hardware system is generated by the SoPC Builder. The SoPC 

Builder  produces  an  HDL code  file  of  the  design.  It  also  always  generates  a  Block  Symbol  

File for the top level system in case we plane to use the schematic capture design approach. In 

this design flow, the generated Block Symbol File is integrated as a module in the Quartus II 

project as indicated in window-4. We may add some custom logic hardware developed in 

1 

2 

3 

4 

5 

6 

Figure-6.2. FPGA-Based Hardware/Software Design Flow using SoPC Approach 
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HDL or using schematic capture as non-SoPC Builder logic and interconnect it with the 

Nios® II-based system. Next, we use Quartus II software to assign FPGA pin locations for the 

input/output signals. A successful compilation of the project produces a programmable file, 

the SRAM Object File (.sof), a file that determines the state of every programmable logic 

element inside the FPGA. When the .sof file is downloaded using the Quartus II programmer 

software, the FPGA on the development board is configured with the SoPC system hardware 

(both  the  Nios®  II-based  subsystem  and  the  custom  core  components).  At  this  stage,  it  is  

possible to perform a functional simulation (window-5).  

 The last step in the design flow is the development of the software program that we can 

download and run on the Nios® II processor. In this work, Altera Monitor Program utility is 

used to create in assembly language the firmware, compile, download and run the application 

software program on the Nios® II (window 6).   

3  Implementation of the Intelligent Sun Tracking Controller 

 Figure-6.3 depicts the conceptual top-level fuzzy control based dual-axis sun tracking 

digital controller block diagram implemented in the Cyclone II FPGA using the System-on-a-

Programmable-Chip methodology. To reduce the complexity of the design process, the 

structure of the hardware is partitioned into two subsystems: (i) an on-chip hardware module 

implemented on the FPGA of the DE2 board. It encompasses the SoPC Builder system and 

the non-SoPC modules. The SoPC Builder module includes the Nios® II based system with 

all  required  peripherals  and  memory  block.  The  non-SoPC system consists  of  custom clock  

divider, a hardware accelerator the fuzzy logic module and the sequence generator all 

developed in handcrafted VHDL and implemented on the FPGA fabric. (ii) An off-chip 

hardware module implemented on a protoboard using discrete off-the-shelf analog and digital 

components. It includes the sensing and data acquisition unit, the bidirectional voltage level 

translator and the motor driving unit to energize the actuators. 
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3.1  Off-Chip Hardware Module 

 Figur-6.4 illustrates the off-chip hardware functional block diagram. This diagram is 

made up of a set of pipelined units. These units are implemented onto the protoboard using 

commercial off-the-shelf discrete analog and digital components.  

3.1.1  Sun Finder Unit 

 The main idea behind the design of a sensor-driven active sun tracking system is the use of 

a sun finder to locate the sun in the sky to position the solar panel normal to the sun’s incident  
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Figure-6.3 The overall fuzzy control based dual-axis sun tracking system block 
diagram implemented in the Cyclone II FPGA. 
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rays. This unit is composed of four similar Light Dependent Resistors (LDRs) as photo 

sensors mounted fixed on a four sided solar panel frame. Samples of the sun light intensity 

falling  on  the  surface  of  the  panel  are  captured  by  theses  sensors  to  determine  the  

instantaneous position of the panel’s surface with respect to the sun’s light vector. 

 We used the MKY-76C59 LDR which has a light resistance of 10-20 K  and a dark 

resistance of 2 M . The LDRs, installed in positions to gather accurate signals, are divided 

into two pairs. A pair positioned along the horizontal axis (LDRE and LDRW)  to control the 

angle of azimuth and the second positioned along the vertical axis (LDRN and LDRS) to 

control the angle of elevation. This electronic system is used to notify the deviations (angular 

errors) from the desired posture of the solar panel to the control system. 

 The sensors are arranged in such a way that when the sun is shining normal to the solar 

panel,  they all  absorb the same amount of light and hence produce the same current.  As the 

sun moves, one or more LDRs will be partially shaded and will not generate the same amount 

of current. The differential signals of a pair of LDRs are given by Equations 6.1 and 6.2, 

  WEEW V_LDR  - V_LDR  E                    (6.1) 

 SNNS V_LDR  - V_LDR  E        (6.2) 
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Figure-6.4 The Off-Chip hardware functional block diagram 
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where the voltages EEW and  ENS represent the angular errors of the azimuth and elevation 

angles respectively and V_LDRi a voltage proportional to the intensity of light received by 

LDRi. These errors are employed by the tracking controller to adjust the solar panel in order 

to minimize these angular errors.  

 For example, when EEW is  positive,  it  means  that  the  eastern  LDRE is receiving more 

sunlight than the western LDRW.  Therefore,  the  actuator  driving  the  vertical  pivot  shaft 

should rotate the solar panel eastward. Similarly, when ENS is negative the horizontal axis 

driving actuator should rotate the panel southward. When the two errors  are  null  the  sun  is  

perfectly tracked. 

3.1.2  Data Acquisition Unit 

 The sensing and data acquisition unit is the key requirement for the sun tracking system. It 

provides the raw data to the processing unit. The real-time azimuth and elevation data are read 

in via the analog-to-digital converter (ADC). These data are the sunlight intensity degrees 

falling on the solar panel and sensed by the four LDRs. 

 A signal transformation circuit made up of a voltage divider and an operational 

amplifier used as a unit gain buffer (to avoid loading effect) converts the “induced” resistance 

value of the LDR into a voltage in the range 0 to 5 volts. This linear relationship between the 

intensity of light and voltage values is suitable for the ADC. The LDR outputs are first 

digitized by the converter before they are transferred through an input port to the Nios® II 

based system. Figure-6.5 illustrates the circuit diagram of the sensing and data acquisition 

unit interfaced to the Nios® II system via the ADC interface. 

 The ADC chip used in the system to digitize the detectors’ analog inputs is the National 

ADC0808 a commercial low-cost converter. It is an 8-bit resolution successive-approximation 

converter. The ADC0808 device has eight input channels allowing it to monitor up to eight-
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analog input signals. This eight-channel converter has a built-in 8-to-1 analog multiplexer 

where any one channel can be selected using three select input lines.  

 In the ADC0808, Vref(+) and Vref(-) are the reference voltage inputs. The values of these 

voltages dictate the dynamic range of the analog input voltage and determine the step size 

given by: 

 Step size = [Vref(+) - Vref(-)] / 2n 

where n is the number of bits. If Vref(+) is connected to +5 V and Vref(-) is grounded , then the 

step size is 5 V/256 = 19.53 mV. 

 The ADC0808 is not self-clocked, a clock signal must be provided from an external 

source to the clock input pin. The frequency of this latter determines the conversion time. 

When clocked with a 1 MHz, the analog to digital conversion is performed in less than 

100µsec.  During  the  conversion  time,  the  value  of  the  analog  signal  is  kept  constant  by  the  

built-in sample and hold circuit [94],[95].  

 The four analog signals representing the “induced” voltages which are proportional to 
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the light intensity falling on the four LDRs are sequentially captured and converted by a 

single parallel multiple channels ADC. The processor begins by selecting the desired channel 

of the ADC to which is associated one of the four light sensors. The address of this channel is 

latched on the rising edge of the ALE_ST pulse,  while the conversion begins on the falling 

edge of the pulse. The processor keeps pooling for the end-of-conversion. Once the 

conversion is completed, (signaled by a change in the EOC signal), the data byte is read from 

the ADC’s output register and saves it into one of the Nios® II registers.  

 The Nios® II-based system asserts the address of the next input channel and starts the 

conversion. This process is repeated to digitize the four data. Figure-6.6 shows the flowchart 
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Figure-6.6. Flow chart for the data acquisition subroutine 
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of the data acquisition subroutine implemented and executed by the Nios® II-based system. 

 The use of a single multi-channel ADC to scan the several analog signals is a better 

alternative to using a dedicated single-channel ADC per channel which would lead to higher 

cost, bigger board size and more power consumption. 

3.1.3  Bidirectional Voltage Level Translation Unit 

 Because the FPGA I/O pins are supplied with 3.3V and the voltage range used by the off-

chip discrete components is 0-5V, a bidirectional 3.3V-5V voltage level translation unit is 

inserted between the DE2’s expansion header and the data acquisition and power drive units. 

This unit is implemented using TTL low-power Schottkey and low-voltage TTL compatible 

logic families.  

3.1.4  Motors Driving Unit 

 The 332-082 unipolar 4-phase, bidirectional stepper motors are employed as the main 

actuators to tune the sun tracker horizontal and vertical axels. Because tracking requires a 

high degree of accuracy, stepper motors are the most suitable for this application. Moreover, 

stepper motors are preferred over other type of motors because they have several advantages: 

no brushes, low cost, and high torque at a low speed. They also possess the holding torque, a 

characteristic that allows the stepper motor to hold its current position when it is not tuned, 

thus, eliminating the need to incorporate braking devices.  

 The stepper motor requires that its stator windings be energized in a programmed 

sequence to cause it to spin in a given direction and with a required speed. Figure-6.7(a) 

depicts the motors driver power stage unit used to energize the two stepper motors. This unit 

uses an array of eight BDX53 Darlington transistors (four transistors per stepper motor). The 

BDX53 is a silicon Epitaxial-Base NPN power transistor in a monolithic Darlington 

configuration mounted in Jedec TO-220 plastic package used to amplify the current level to 

accommodate the motor requirements.    
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This transistor is provided with a snubbing diode for inductive surge. It features a 

Collector-Emitter Sustaining Voltage of 100V and a Collector Current of 8A which large 

enough to drive our stepper motors. . 

 In  order  to  avoid  any  direct  “ohmic”  connections  between the  low power  digital  circuit  

operating from 5V direct current and the power circuit with higher currents, an array of eight 

4n35 optocouplers  is  used  as  a  bridge  between the  FPGA user  I/O terminals  and  the  power  

stage circuit. This type of optocoupler uses a Gallium-Arsenide- Light Emitting Diode (LED) 

as  an  optical  transmitter  and  a  phototransistor  as  an  optical  receiver.  The  use  of  a  beam  of  

light to transmit data across a transparent barrier achieves an excellent isolation.    

 Figure-6.7(b) shows one branch of the power driving circuit. The input to the driver is one 

of the sequencer’s outputs. A ‘1’ on this output means that the corresponding stepper motor’s 

winding should be energized. This ‘1’ will drive the opto-coupler’s LED ON driving the 

coupled transistor into saturation. The resulting emitter current builds enough voltage across 

the 100  to saturate the switching power transistor providing a ground level to one terminal of 

the winding, whereas the other terminal is permanently connected to the positive supply.      

Figure-6.7(a) The motor driver power stage unit to energize the two actuators  
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3.2  On-Chip Hardware Module 

 The On-chip module is the bulk of the hardware system. This module consists of two 

main  parts:  a  SoPC  Builder  subsystem  and  an  non-SoPC  Builder  subsystem.  The  former  is  

built around the Nios® II embedded soft processor, the latter is developed in handcrafted 

VHDL as hardware accelerators. The overall module is implemented and ran on the Altera 

Cyclone II EP2C35 low-cost FPGA clocked at 50 MHz and features a 33,216 LEs, 35 

hardware multipliers, 4 phase-locked loops (PLLs) and up to 475 user I/O pins. Figure-6.8. 

illustrates the overall on-chip hardware module. 

 

3.2.1        On-Chip non-SoPC Builder Subsystem 

This subsystem operates concurrently with the SoPC Builder subsystem to enhance 

performance and reduces system complexity. It is made up of several units, all of which are 

developed in VHDL. 

3.2.1.1     The clock divider module 
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 The clock divider module developed in VHDL, takes as input the 50 MHz master clock of 

the DE2 board. It generates two clock signals: a 1 MHz clock signal suitable to trigger the 

ADC and a 12 Hz, clock signal to trigger the stepper motors drive sequencers. Figure-6.9 

illustrates the VHDL code to produce the required clock signals out of the DE2 board master 

clock. 

 

 

 

 

 

 

 

 

 

 

 

 

3.2.1.2   Implementation of the Fuzzy Logic Module 

 The fuzzy logic controller module described in chapter 5 is a custom hardware accelerator 

developed in VHDL is interfaced to the Nios® II based system. Custom components designed 

for intensive computation tasks are generally implemented in the FPGA fabric. The designer 

can integrate these components “inside” or “outside” the SoPC Builder system. When 

integrated “inside” the SoPC Builder system, it communicates with the other modules and the 

processor through the Avalon Memory-Mapped interface. On the other hand, the custom 

library ieee; 
use ieee.std_logic_1164.all; 
use ieee.std_logic_unsigned.all; 
 
entity Clk_Divider is 
port(clk: in std_logic; 
clk1,  clk_ADC: out std_logic); 
end Clk_Divider; 
 
architecture behavioral of Clk_Divider is 
signal state1: std_logic_vector(5 downto 0); 
signal state2: std_logic_vector(26 downto 0); 
begin 
  ADC: process(clk) 
 begin 
  if clk'event and clk = '1' then 
   if state1 = 49 then state1 <= "000000"; 
   else state1 <= state1 + 1; 
   end if; 
  end if; 
  end process ADC; 
  SM:  process(clk) 
 begin 
  if clk'event and clk = '1' then 
   state2 <= state2 + 1; 
  end if; 
  end process SM; 
 clk_ADC <= state1(5); 
 clk1    <= state2(22); 
end behavioral; 
 

Figure 6.9 VHDL code of the clock divider custom hardware module 
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component can exist within the FPGA alongside the Nios® II based system, that is, “outside” 

the SoPC Builder system. In this case, it can interact with the processor and other components 

through parallel input-output interface adapters. The latter approach has the advantage of 

having both custom cores and the Nios® processor execute concurrently, enhancing system 

response. The purpose of having a processor co-exist with conventional digital logic 

components is to provide flexibility of combining software and hardware based control in one 

chip. Figure-6.10 depicts the synthesized schematic view of the fuzzy logic module in the 

Quartus II register transfer level (RTL) Viewer tool.    

 

 

 

 

 

 

 

 

3.2.1.3  Stepper Motor Sequence Generator 

The stepper motor requires that its stator windings be energized in a programmed 

sequence to generate a rotating magnetic field inside the motor, and the rotor will obediently 

follow it. For the motor to develop higher torque, it is desirable to apply a full-step sequence 

to its windings which involves powering two windings at one time. Figure-6.11 shows a 

unipolar stepper motor windings and the full-step drive sequence. 

Figure 6.10 A detailed view of the fuzzy logic module in Quartus II and the RTL Viewer 
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Figure-6.12 depicts  the  VHDL  finite  state  machine  implementation  of  the  full-step  driving  

sequence. 

 

 

 

 

 

 

 

 

 

 

Figure 6.12 VHDL code for a stepper motor full-step sequence generator. 

Figure 6.11 Unipolar stepper motor windings and full-step sequence. 
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3.2.2  On-Chip SoPC Builder Subsystem 

The  architecture  of  the  SoPC  Builder  subsystem  built  around  a  Nios®  II  soft  processor  

resembles that of a typical microprocessor-based system with the difference that it presents a 

set of peripherals tailored specifically for the application as well as the integration of special 

hardware accelerators that interact with the rest of the system. Traditionally, in a typical 

microprocessor-based system, the data is transferred using a shared bus, a collection of wires 

conveying  address  data  and  control  signals  to  connect  the  processor  with  the  remaining  

components  of  the  system.  Because  the  information  (data  and  control)  use  the  same  bus,  it  

becomes a bottleneck as the amount of information transfer increases. This degradation is 

accentuated when the I/O peripherals are mapped as memory-mapped I/Os, since these I/Os 

share the same bus with memory modules [96].     

 In  the  SoPC  builder  system,  the  components  are  interconnected  by  means  of  an  

interconnection network, the Avalon system interconnect fabric or SIF. This is the backbone 

of  any  SoPC Builder  system.  The  Avalon  SIF,  generated  by  the  SoPC Builder  provides  the  

necessary addresses and data paths to make memory-mapped connections between master and 

slave devices. 

At the heart of the SoPC architecture sits a 32-bit processor which communicates with the 

other components through the Avalon SIF interface. It is the brain of the system and has 

several roles. It manages the data acquisition unit and calculates the crisp data input for the 

fuzzy logic controller module. It initializes and drives the LCD controller to display in real-

time on the two-line LCD the sun tracking system’s status. It communicates with the host 

computer via the USB Blaster interface, Figure-6.8. 

 The use of a microprocessor always calls for memory where the instructions and data are 

stored. The embedded memory blocks in the FPGA are used to provide an on-chip RAM for 

the processor. The Cyclone II EP2C35 FPGA includes 105, M4K RAM Blocks leading to 
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483,840 total RAM bits. The Join Test Action Group Universal Asynchronous 

Receiver/Transmitter (JTAG-UART) interface is used to provide a Universal Serial Bus 

(USB) link between the FPGA platform and the host computer. This circuitry and the 

associated software are called the USB-Blaster [92]. 

 We also added a system ID peripheral. This component provides the SoPC Builder system 

with a unique identifier and therefore, safeguards it against any accidental downloading 

software compiled for a different Nios® II system.  To drive the 16x2 character liquid crystal 

display (LCD) peripheral, we used a SoPC Builder LCD controller component.  

The ADC interface module includes several parallel input-output peripherals tailored to 

accommodate different signals of the off-chip data acquisition unit. This later unit constructed 

around a low-cost multiple-channel analog-to-digital converter is used to sample the current 

position of the sun in the sky via four light dependent resistors (LDRs). The dark blue blocks: 

the clock divider and the FLC and the stepper motor sequence generator are the custom 

hardware logic blocks.    

3.2.3  Building the Embedded System in the SoPC Builder 

 The SoPC Builder, part of the Quartus II software, is a powerful hardware generation tool. 

It streamlines the process of integrating blocks of IPs and accelerates development of system-

on-a-programmable-chip designs compared to traditional, manual integration methods. The 

tool was introduced by Altera to design systems at block level. It consists of two major parts: 

a graphical user interface or GUI and a system generator program [93].  

 Figure-6.13 shows a screenshot of the sun tracking controller optimized in an FPGA. The 

GUI consists of several parts. The window on the left side is the library of available pre-made 

IP cores (including the flagship Nios® II soft core processor) from which the designer picks 

up the desired components required by the application.   
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Figure-6.13 SoPC-based intelligent sun tracking controller optimized in an FPGA. 
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 We construct the embedded SoPC Builder system in the Avalon framework. The 

construction of the system is accomplished by means of a drag-and-drop style. The required 

components are dragged and parameterized in the contents page (the central window). The 

“Module Name” and “Description” columns show the names and interfaces of the configured 

intellectual property (IP) cores used in the application. The “connections” column in Figure-

6.13 is the interconnect logic.  

 Finally, the beginning and end of the memory addresses of the various components used 

in  the  design  are  shown under  “Base”  and  “End”  columns.  Because  the  Nios® II  processor  

maps the I/O peripherals as memory-mapped I/O, then the 32-bit address space is assigned to 

both the memory component and to the I/O peripherals. In general, to avoid any conflicts for 

all these memory-mapped components, it is more convenient to automatically assign these 

unique base addresses. 

 The ADC interface is implemented with four parallel input-output interface adapters 

(PIOs) of different dimensions. They are: 

ADC: The first PIO configured as an 8-bit input port to route the digital data from the  

  converter to the processor when the conversion is completed. 

Channel_Select: The second PIO tailored as a 2-bit output port. This output port drives the 

  two least significant address lines of the converter to select any one of   

  the four channels. 

Start_Conversion: The third PIO is a 1-bit output port. The processor outputs a positive 

  pulse through this port to accomplish two functions. It latches the address of the  

  selected channel on the positive edge of the pulse and starts the conversion on the 

  negative edge of the pulse. 

EOC: This last PIO is specified as a 1-bit input port. It is used to route the end-of-conversion 

  output signal of the analog-to-digital converter to be polled by the microprocessor. 
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 The FLC interface also consists of four PIOs. All four are configured as 8-bit parallel 

output ports. PIOs labeled Error_EW and cError_EW are used for to supply the crisp values 

representing the azimuth angular error and its rate of change as inputs to the azimuth fuzzy-

like PD controller. Similarly, PIOs labeled Error_NS and cError_NS are used to apply the 

crisp values representing the elevation angular error and its rate of change as inputs to the 

elevation fuzzy-like PD controller. 

 As in any microprocessor-based system, we provided a 32-Kbyte of on-chip RAM to store 

the firmware code to run the Nios® II processor. 

3.2.4  Integrating the SoPC and non-SoPC Builder Subsystems in Quartus II Project 

Once the required blocks are added and their parameters specified, the memory-map of 

the Nios® II based system is automatically generated by the SoPC Builder using Auto-Assign 

Base Addresses. Finally, the SoPC Builder generator program generates the system 

interconnect fabric and many other output files.  

The SoPC Builder generates a graphical Block Symbol File (.bsf) module (a 

representation of the top-level SoPC Builder system). This block includes the Nios® II core, 

all peripheral and memory blocks, and the SIF. This symbol is instantiated in the Quartus II 

project. Figure-6.14 shows the top-level schematic for the FPGA-Based FLC design process 

for a dual-axis sun tracking system. The large symbol in the Quartus II Block Diagram File 

(.bdf) project labeled “Nios_II_Based_System” is the SoPC Builder system. 

We add the custom logic hardware accelerator external to the Nios® II which consists of 

the fuzzy logic control module with the stepper motors sequence generator block labeled 

“FLC” and the clock divider block labeled “Clk_Divider”.  

The input, output, and bi-directional connectors are then added and named. The EP2C35 

FPGA target device is selected, the pins assigned and the project file compiled.  
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Figure-6.14 Top-Level schematic for the FPGA-Based FLC design process for a dual-axis sun tracking system 
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Upon successful compilation, the FPGA is ready to be configured with the generated bit 

stream, a SRAM Object File (.sof) file using the Quartus II Programmer. 

3.2.5  Firmware Development  

Having built, configured the required hardware and downloaded it in the FPGA device, 

we need to develop the application firmware program to make it run. In order to develop our 

software code in assembly language (which runs much faster and uses much less memory 

space compared to that of a similar program written in a high level language),  we used the 

Altera Monitor Program (AMP) development tool. This tool allows the user to assemble, 

compile and debug the Nios® II assembly language software program, then download it onto 

the FPGA to run the Nios® II processor. Figure-6.15 depicts a PC running Quartus II and 

Altera Monitor Program graphical user interface. 

The assembly language code we developed performs the following operations in an infinite 

loop: 

i- Sequentially gathers raw data from light sensors in digital format. 

ii- Computes the angular errors and their rates of error change 

Figure-6.15. PC running Quartus II and Altera Monitor Program software 
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iii- Feeds the PD-like FLC with the computed data 

iv- Displays system’ status on the LCD to provide feedback to the user 

v- Enters into a delay loop, a time during which the FLC determines the action to be 

carried on to position the solar panel at its optimal posture. 

vi- Repeat. 

4 Real-Time Experiment 

The overall apparatus of the prototyping platform built in the laboratory for testing and 

verifying the intelligent dual-axis sun tracking system is illustrated in Figure-6.16. (a), (b). It 

depicts both the off-chip hardware system on the protoboards and the on-chip 

hardware/software co-design system on the FPGA board (DE2). The FPGA containing the 

hardware implementation of the digital controller controls the off-chip hardware circuitry via 

the board’s expansion header. The expansion header provides general-purpose input/output 

(GPIO)  pins.  These  GPIOs  are  directly  connected  to  the  FPGA  device.  It  is  also  linked  by  

means of the USB Blaster mechanism to the PC running Altera monitor program and Quartus 

II software develepment suite tools. The remaining parts of the prototype consists of a dual-

axis tracker platform with a sun finder. 
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Figure-6.16. (a).  Hardware setup of the FPGA-based intelligent dual-axis sun 
tracking system. 

PC Running 
Quartus II 



 

  
 

103 

Hardware/Software Codesign Implementation Chapter 6 

 

 

 

 

 

 

 

 

 

6.4.1  Operational Cycle Time 

The time interval of the operational cycle is 1-sec. Figure-6.17 depicts the operational 

cycle  time.  The  cycle  begins  with  the  acquisition  of  the  raw  data  from  the  sensors  via  the  

analog-to-digital converter. This raw data, which represent the position of the sun in the sky 

with respect to the surface of the solar panel, is processed by the Nios® II based system to 

calculate the angular errors and the rates of change of these errors to be used by the fuzzy 

controller module as crisp data inputs. Using these computed data, the fuzzy control module 

evaluates and determines by how much the solar panel needs to be tuned to minimize its 

misalignment with respect to the current position of the sun in the sky. These three functions 

are performed in 0.1 sec. 

Also, based on the result of this data manipulation, the Nios® II based system provides the 

user with the current state of the tracking system by displaying appropriate messages on the 

LCD of the FPGA platform. 

The next stage is the solar panel mechanical adjustment for which we allowed 0.168 sec 

time interval. During this time interval, the stepper motors may be held idle or rotated by 2, 8 

or  16  steps  in  the  appropriate  direction  depending  on  the  current  position  of  the  panel  with  

respect to the optimal posture. 

Figure-6.16. (b).  Hardware setup of the FPGA-based intelligent dual-axis sun 
tracking system. 
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Since the smallest number of steps is 2 which lasts 0.168 sec, we used a clock signal with 

a frequency of 1/0.084 = 11.94 Hz. For the 8 and 16 steps, we used clock signals with 

frequencies of 47.68 Hz and 95.36 Hz respectively. The remaining time interval is reserved 

for the solar panel to stabilize before the operational cycle repeats. 

 

 

 

 

4.2  Simulation 

 Figure-6.18 illustrates a computer simulation timing diagram in the Quartus II simulator. 

This window shows the tracking performance and the effectiveness of the proposed 

controller. We applied several combinations of stimuli coded in hexadecimal for the errors 

and rates of change of errors and observed the output responses expressed as binary 

sequences. We notice the response on both driving motors as expected by the tracker.  

In the time interval 0 – 1.33 µsec, the azimuth error is $3B (NL) and its rate of change is $2C 

(NL). The motor should rotate fast westward. Whereas in the interval 1.33 µsec – 2.61 µsec, 

the azimuth error is NL but its rate of change is (PS), therefore, to align the panel the motor 

should be rotated at medium speed westward.  

 At 4.48 µsec, the simulation window exhibits a case where the sun is tracked. In this case, 

the azimuth error is NL and its rate of change is PL. The controller need not apply any action. 

The panel will be aligned normal to the sunlight rays.  
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Figure-6.17 The operational cycle time 
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Figure-6.18 Behavioral simulation window in the Quartus II simulator 
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Chapter 7 

 

 

Conclusions 
 

 

In this thesis, we presented the design, simulation and implementation processes of a 

customized FPGA-based (SoPC approach) applied to an intelligent sensor-driven dual-axis 

sun tracking system in order to maximize power extraction from the solar panel. The goal of 

using fuzzy control technology is to put human knowledge into engineering systems in a 

systematic and efficient order. We designed our system with several considerations in mind: 

autonomy, execution speed and cost, and design complexity. In this regard, the intelligent 

controller is developed on an FPGA-based heterogeneous computing platform where the 

overall controller is partitioned between two concurrent modules.  

1- A fuzzy control module, as a hardware accelerator, implemented on the FPGA fabric 

using VHDL is utilized to control the steering motors according to the deviation from 

the desired (optimal) posture of the solar panel. 

2- A Nios® II based system to acquire the raw data, compute the state variables of the 

controller and displays in real-time the status of the overall system. 

 This hardware/software codesign implementation exploits the simplicity of the 

microprocessor and the massively parallel architecture of the FPGA. This methodology 

provides a high degree of flexibility in both hardware and software compared to classical 
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computing platforms. Other reasons why this approach is interesting: It works. It can be 

applicable to almost all fields. 

The SoPC approach has several advantages:  

(1) It allows the use of the exact number of peripherals needed and the 

parameterization of the peripherals to respond to the application.  

(2)  The reconfigurability nature of the FPGA and the short development cycle makes 

it possible to perform modifications of any component of the system at any stage 

of the implementation.  

(3) To prevent from obsolescence, the design can be migrated into another larger and 

more performant FPGA that does not exist yet.  

(4) The ability to integrate an entire system on a single chip at a lower cost compared 

to the use of off-the-shelf discrete components (MCU, DSP, ASSP, etc) solutions.  

(5) The capability to off-load the computation-intensive functions from the software 

application running on the soft processor and to implement them as hardware 

accelerators in the FPGA fabric using VHDL or another design entry.  

A common practice to obtain the inputs for the FLC is the use of differential amplifiers and 

differentiators, in this work these parameters are computed within the FPGA using a digital 

processing unit. This design greatly enhances system reliability and reduces chip count. 

Moreover, the robustness of the FLC allows the use of cheaper sensors and low resolution 

ADCs resulting in reduced implementation cost. 

Further works 

There are at least two possible directions to work on the way to improve further system 

performance, design simplicity and flexibility. 

(i) Integrating the fuzzy control module as an intellectual property (IP) component 

with Avalon interface and connect it to the Avalon Memory Mapped interface. 
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(ii) Add custom instructions to the soft-core processor instruction set.  

The use of the Nios® II software build tools (SBT) for eclipse to develop the application 

software code in C, will further improve design productivity and lessen design complexity. 

For extremely high speed applications, it is possible to sample all analog data 

simultaneously using several high speed ADCs, a performance that cannot be achieved with 

either the microcontroller of the DSP. 

In the next generation of FPGAs, where ADCs will be built into the fabric of the FPGA, 

the proposed computing platform will be more efficient in terms of hardware resources, 

power consumption and control performance when compared with the standard MCU, DSP 

solutions.  

It is believed that with the significant advancements in materials and technologies 

combined to the growing awareness concerning environmental problems, renewable energies 

and solar in particular (with more than 60% annual average growth rate for the past five 

years) are the future.   
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