
-2015-

People’s Democratic Republic of Algeria
Ministry of Higher Education and Scientific Research

University M’Hamed BOUGARA – Boumerdes

Institute of Electrical and Electronic Engineering

Department of Electronics

Thesis Presented in Partial Fulfilment of the Requirements of the Degree of

Doctorate
In Electrical and Electronic Engineering

Entitled

By
BENZEKRI Azzouz

Before the examining board composed of

AKSAS Rabia Professor, ENP President
AZRAR Arab Professor, UMBB Supervisor cccc
LARBES Chérif Professor, ENP Examiner
DAHIMENE Abdelhakim MCA, UMBB Examiner

FPGA-Based Intelligent Dual-Axis
Solar Tracking Control System

 Acknowledgments Acknowledgments

i

Acknowledgments

I express my sincere gratitude to my supervisor Professor Arab

AZRAR for allowing me to conduct this research under his auspices

despite his busy agenda. I am especially grateful for his

confidence, the freedom he gave me to do this work, his assistance,

support and encouragements throughout the course of this work.

I am deeply grateful to Professor Rabia. AKSAS for agreeing to chair

the jury. My warmest thanks go to Professor Cherif. LARBES and

Dr Abdelhakim DAHIMENE for accepting to participate in the

defense of this thesis.

I am grateful to Amira for her support and kindness.

Abstract Abstract

ii

Abstract

This thesis describes the design process of an FPGA-based sensor-driven

intelligent controller applied to a dual-axis sun tracking system. Fuzzy

control based on fuzzy logic theory is used as a solution for the FPGA

implementation of a digital controller for this industrial application. The

real-time controller determines when and how much to tune the driving

motors to minimize the misalignment of the solar panel surface with the sun’s

incident rays during the day in order to harvest maximum power from the

solar panel mounted on a tracker.

To achieve such a digital controller, we developed an FPGA-based

heterogeneous computing platform with the capability of partitioning the

overall controller between two concurrent subsystems: (1) a hardware

subsystem made up of a pair of fuzzy-like PD-type controllers implemented

on the programmable fabric of the FPGA using the (Very-High Speed

Integrated Circuit) Hardware Description Language (VHDL), and (2) a

software subsystem, a soft processor Nios® II-based supervisory control

system implemented using the system-on-a-programmable (SoPC) approach.

This hardware/software codesign implemented in a single chip makes the

connections between the two subsystems work with low power and low

latency resulting in an optimal efficiency and performance.

Abstract Abstract

iii

An experimental structure is constructed in the laboratory. The controller

allows this structure to perform an approximate three-dimensional

hemispheroidal rotation to track the sun’s movement during the day to

improve the overall efficiency of the solar panel.

Integrating the whole digital controller in a single chip accelerates

development time while maintaining design flexibility. Moreover, it reduces

the circuit board costs with a single-chip solution, and simplifies product

testing. Compared with traditional design approach using programmed logic

(microprocessor- microcontroller- and DSP-based systems), the proposed

solution uses a single low-cost FPGA device while enabling higher degrees of

flexibility and concurrency.

The digital controller developed with Altera Quartus II 9.1 sp2 Web

Edition software development suite tools is simulated and realized on a

Cyclone-II EP2C35F672C6 FPGA platform to verify its feasibility and

functionality.

 Keywords: FPGA; SoPC; Fuzzy logic module; Nios® II; Sun tracker.

Abstract Abstract

iv

)FPGA (.

 .

)FPGA (

: (1)

)FPGA(VHDL (2) «Nios® II »

)SoPC. ()Quartus II (

)Altera (

.

)FPGA()Cyclone II EP2C35)

.

 Nios® II SoPC FPGA :

Résumé Résumé

iv

Résumé

Cette thèse décrit le processus de conception d'un contrôleur intelligent à base de

FPGA appliqué à un système de poursuite du soleil à double axe. Le contrôleur a base de

logique floue détermine en temps réel quand et de combien faudrait-il ajuster les moteurs

d'entraînement pour minimiser le désalignement de la surface du panneau solaire avec les

rayons du soleil pendant la journée afin de récolter le maximum de puissance du panneau

solaire monté sur un suiveur.

Pour atteindre un tel objectif de commande numérique, nous avons développé une

plate-forme informatique hétérogène à base de FPGA avec la possibilité de cloisonner le

contrôleur global entre deux sous-systèmes simultanés: (1) un sous-système de matériel

informatique constitué d'une paire de logique floue comme régulateurs de type PD mis en

œuvre sur FPGA en utilisant le langage VHDL, et (2) un système de contrôle de

surveillance à base II processeur Nios® mis en œuvre en utilisant l’approche SoPC. Cette

conception matériel / logiciel mise en œuvre dans une seule puce rend les connexions entre

les deux sous-systèmes fonctionnent avec une faible puissance et de faible latence résultant

en une efficacité et des performances optimales.

L’intégration du contrôleur numérique en une seule puce accélère le temps de

développement tout en maintenant la flexibilité de conception. En outre, il réduit les coûts

avec une solution mono-puce, et simplifie les tests de produits. Par rapport à l'approche

traditionnelle de conception utilisant la logique programmée (microprocesseur et

microcontrôleur et de DSP), la solution proposée utilise un dispositif de FPGA à faible coût

unique tout en permettant des degrés de flexibilité et de concurrence plus élevés.

Le contrôleur numérique développé avec le logiciel de développement d’Altera le

Quartus II Edition 9.1 sp2 est simulé et réalisé sur une plate-forme Cyclone II FPGA

EP2C35F672C6 pour vérifier sa faisabilité et sa fonctionnalité.

Mots Clés: FPGA; SoPC; Logique Floue; Nios® II; Suiveur.

 v

Graphical Abstract

 A brand new methodology to implement intelligent embedded systems using
SoPC approach

 Both simulation and physical implementation of the digital controller

 Implementation in the FPGA functions commonly realized by analog discrete
components.

 Partitioning the digital controller between SoPC and non-SoPC simplifies
design complexity while increasing design flexibility and reusability.

 The FLC module designed and implemented in VHDL is seamlessly integrated
in the overall system using SoPC approach

 The target device on the DE2 board is the Altera EP2C35F672C6 FPGA of
Cyclone II family

Table of Contents Table of Contents

 vi

Table of Contents

Acknowledgement…………………………………………………………………....i

Abstract……………………………………………………………………………....ii

Graphical Abstract……………...…………………………………………………....v

Table of Contents…………………………………………...vi

List of Figures……………………………………………………………………..…xi

List of Tables………………………………………………………………………..xiv

List of Abbreviations………………………………………………………………..xiv

Chapter 1 Introduction_____________________________________

1 Introduction………………………………………………………………….1

 2 Renewable Energies………………………………………………………....2

 2.1 Hydro source of Energy……………………………………………....2

 2.2 Wind Source of Energy………………………………………………3

 2.3 Biomass Source of Energy…………………………………………...3

 2.4 Geothermal Source of Energy………………………………………..3

 2.5 Solar Energy………………………………………………………….3

3 Sun Tracker Types …………………………………………………………5

4 Sun Tracker Driving Modes……………………………………………….6

5 Computing Platforms………………………………………………………7

5.1 ASIC Solution………………………………………………………..7

5.2 Software-Programmed Logic………………………………………...8

5.3 Reconfigurable Logic or Programmable Hardware………………….8

Table of Contents Table of Contents

 vii

5.4 Implementation of Fuzzy Controllers…………….………………….9

6 Structure of the Sun Tracking System………………..…………………..10

7 Objectives of the Thesis…………………………………………………....11

8 Organization of the Thesis………………………………………………...13

Chapter 2 Literature Review________________________________

 1 Introduction………………………………………………………………....14

 2 Open Loop Tracking Strategies….…………………………………….…..15

3 Closed Loop Tracking Strategies….………….…………………….….…..18

4 FPGA Based Tracking Strategies….……………………………….….…..21

5 Fuzzy Control Tracking Strategies….…………………………….….…...24

Chapter 3 Fuzzy Logic_____________________________________

 1 Introduction………………………………………………………………...26

 2 Fuzzy Sets……..…………………………………………………………….27

 2.1 Operations with Fuzzy Sets………………………………………….28

 2.2 Properties of Fuzzy Sets………………………..................................30

 3 Membership Functions…………………………………………………......32

 3.1 Piecewise Linear Membership Function……………….....................33

 3.1.1 Triangular Membership Function…….………..........................33

 3.1.2 Trapezoidal Membership Function………….............................33

 3.2 Features of the Membership Function……….....................................34

 3.2.1 Core…………………………………… ………………………34

 3.2.2 Support…..….………………………………... ………………34

 3.2.3 Boundary..……..……………………………………………….34

 3.2.4 Height…..……..…..34

 3.3 Structure of Membership Functions…………………………………35

Table of Contents Table of Contents

 viii

 3.4 Number and Degree of Overlapping of Membership Functions…….36

 3.5 Linguistic Variables and Values……………......................................36

 4 Fuzzy IF-THEN Rules……………………………………………… …...….37

 5 Properties of Fuzzy Rules………………………………………...................38

 5.1 Completeness………………………………………………………..39

 5.2 Consistency………………………………………………………….39

 5.3 Continuity…………………………………………………………....40

 6 Fuzzy Logic Controller……………...…...40

 6.1 Fuzzification Interface………………………………........................ 41

6.2 Fuzzy Knowledge Base……………………………...........................41

 6.3 Fuzzy Inference Mechanism…………………………………………42

 6.3.1 Fuzzy Implication…………………….......................................42

 6.3.2 Aggregation of Fuzzy Conclusions……………………….........43

 6.4 Defuzzification Interface………………...45

 6.4.1 Maxima Methods..46

 6.4.1.1 First of Maxima (FOM)……………………………...46

 6.4.1.2 Last of Maxima (LOM)……………………………....47

 6.4.1.3 Middle of Maxima (MOM)…………………………..47

 6.4.2 Distribution Methods…………………………………………..47

 6.4.2.1 Max-Membership Method……………….……….......48

 6.4.2.2 Weighted Average Method……………….…..............48

 6.4.2.3 Center of Gravity (COG)…………… ……….………49

 6.4.2.4 Center of Gravity for Singleton (COGS)……. ….…...49

Chapter 4 FPGA Technology_______________________________

1 Introduction………………………………………………………………..51

2 History and Evolution of Programmable Logic devices…………………52

3 Architecture of FPGAs…………………………………………………….54

 3.1 Logic Element……………………………………………………….55

 3.2 Logic Array Block…………………………………………………...55

Table of Contents Table of Contents

 ix

 3.3 Adaptive Logic Module……………………………………………..56

. 3.4 Integrated Functional Blocks…………………………..……………57

 3.4.1 Embedded RAM Blocks………………………………………57

 3.4.2 Embedded Multiplier Blocks………………………………….58

 3.4.3 Gigabit Transceivers………………………………………......60

 3.4.4 Embedded Processor Cores……………………………………60

4 FPGA Programming Technologies……………………………………….……..61

 4.1 SRAM-Based FPGA……………………………………………..….61

 4.2 Antifuse-Based FPGA……………….…………………………….. .61

 4.3 Flash-Based FPGA…………………...……………………………. .61

5 Applications of FPGAs………………………………..….……………………...62

6 The Nios® II and SoPC Builder…………………………………………………62

 6.1 The Nios® II Processor……………………………………………...62

 6.2 The SoPC Builder…………………………………………………....65

Chapter 5 Design of the Fuzzy Logic Module__________________

1 Introduction………………………………………………………………...68

2 Structure of the Fuzzy Logic Module…………………………………......69

3 Fuzzy Logic Controller Design Flow……………………………………...69

 4 The Azimuth Fuzzy Logic Controller…………………………………….71

4.1 Input/Output Membership Functions………………………………..72

4.2 Construction of Rule Base…………………………………………..74

5 The Elevation Fuzzy Logic Controller……………………………………77

Chapter 6 Hardware/Software Codesign Implementation_________

 1 Introduction………………………………………………………………...79

 2 FPGA Hardware Design Flow (SoPC Approach)………… …………….80

 3 Implementation of the Intelligent Sun Tracking Controller…………….82

Table of Contents Table of Contents

 x

 3.1 Off-Chip Hardware Module……………………………….………...83

3.1.1 Sun Finder Unit………………………………………..............83

 3.1.2 Data Acquisition Unit…………………………………………85

3.1.3 Bidirectional Voltage Level Translation Unit……………… ..88

3.1.4 Motors Driving Unit…………………………………………..88

3.2 On-Chip Hardware Module………………………………………….91

3.2.1 On-Chip non-SoPC Builder Subsystem……………………….91

3.2.1.1 The clock divider module…………………………....91

3.2.1.2 Implementation of the Fuzzy Logic Module...……....92

3.2.1.3 Stepper Motor Sequence Generator………………….93

 3.2.2 On-chip SoPC Builder Subsystem………………….………....95

 3.2.3 Building the Embedded System in the SoPC Builder……..….96

3.2.4 Integrating the SoPC and non-SoPC Builder…………………..

Subsystems in Quartus II Project…………………………….99

3.2.5 Firmware Development……..…………………………….. ...101

4 Real-Time Experiment……………………………………………………102

4.1 Operational Cycle Time…………………………………………….103

4.2 Simulation…………………………………………………………..104

Chapter 7 Conclusions………………………………………………………106

References……………………………………………………………………………….109

List of Figures List of Figures

xi

List of Figures

Figure-1.1 (left) A dam to energize a hydroelectric power station. (right) Airflows……..

 used to run wind turbines……………………………………………………...2

Figure-1.2 Wood chip bio fuel a renewable alternative source of energy…………………3

Figure-1.3 (a) Multi-crystalline-based solar panel. (b) Single crystal-based solar panel.

 (c) Amorphous-based solar panel……………………………………………....4

Figure 1.4 Structure of a dual-axis sun tracker…………………………………………….6

Figure-1.5 High-level representation of the FPGA-based intelligent dual-axis sun

tracking system………………………………………………………………..10

Figure-1.6 Pictorial representation of the FPGA-based intelligent dual-axis sun…………

 Tracking system……..………………………………………………………...12

Figure-3.1 Membership function for crisp and fuzzy sets………………………………..27

Figure-3.2 Graphical representation of complement, union and intersection ……………

 of fuzzy operations…………………………………………………………....29

Figure-3.3 Graphical representation of fuzzy union and intersection…………………….30

Figure-3.4 Fuzzy membership function for speed………………………………………..32

Figure-3.5 Asymmetric triangular and trapezoidal membership functions…………….…33

Figure-3.6 Features of a membership function…………………………………………...34

Figure-3.7 Graphical representation of a fuzzy variable with 5 fuzzy sets……………….35

Figure-3.8 Structure of a generic Mamdani type Fuzzy Logic Controller…………….….41

Figure-3.9 Graphical representation of Max-Min and Max-Prod inference………………

List of Figures List of Figures

xii

 methods with crisp inputs with two inputs and two rules………………….…44

Figure-3.10 Example of defuzzification for two-rule fuzzy inference…………………….45

Figure-3.11 First, Last and Middle of maxima defuzzification methods………………….47

Figure-3.12 Max-membership defuzzification method……………………………………48

Figure-3.13 Weighted average defuzzification method…………………………………...48

Figure-4.1 Generic structure of a CPLD…………………………………………………53

Figure-4.2 Generic structure of an early FPGA………………………………………….54

Figure-4.3 Block diagram of the Altera logic element…………………………………...55

Figure-4.4 Block diagram of a Cyclone II LAB [78]…………………………………….56

Figure-4.5 High-level block diagram of the Altera Stratix-V ALM [79]…………….…..57

Figure-4.6 An M4K RAM embedded memory block in a Cyclone FPGA [78]…………58

Figure-4.7 Architecture of an embedded multiplier block in a Cyclone FPGA [78]…….59

Figure-4.8 Architecture of an embedded multiplier block in a Cyclone FPGA [78]…….59

Figure-4.9 The 3 flavors of the Nios® II soft core processor [79]………………….……63

Figure-4.10 Screenshot of a SoPC Builder system………………………………………...66

Figure-4.11 System interconnect fabric with multiple mastering components [85]………67

Figure 5.1 Operational block diagram of the intelligent dual-axis sun tracking …………

fuzzy logic module……………………………………………………………69

Figure-5.2 Sun tracking fuzzy logic module with errors and rate of change of error……..

 Generator……………………………………………………………………..70

Figure-5.3 Incident angle of sunrays with solar panel surface……………………………71

Figure-5.4 (a) MFs of the angular error EEW in degrees. (b) MFs of cEEW …………….

in degrees/sec (c) Singleton membership functions of the output…………..

variable ‘U’ in number of steps………………………………………………73

Figure-5.5 (a) MFs of the angular error ENS in degrees. (b) MFs of cENS………………..

 in degrees/sec (c) Singleton membership functions of the output …………..

List of Figures List of Figures

xiii

variable ‘U’ in number of steps………………………………………………78

Figure-6.1 A Typical microprocessor-based system, (left) traditional method…………..

 (right) SoPC approach………………………………………………………...80

Figure-6.2 FPGA-Based Hardware/Software Design Flow using SoPC Approach….…..81

Figure-6.3 The overall fuzzy control based dual-axis sun tracking system ……………..

 block diagram implemented in the Cyclone II FPGA.………………………..83

Figure-6.4 The Off-Chip hardware functional block diagram……………………………84

Figure-6.5 Circuit diagram of the sensing and data acquisition unit..……........................86

Figure-6.6 Flow chart for the data acquisition subroutine…………………………….….87

Figure-6.7 The motor driver power stage unit to energize the two actuators ……………89

Figure-6.7b One branch (out of 8) of the driver power stage unit………...……………….90

Figure-6.8 The On-Chip hardware module ………………………………….…………...91

Figure-6.9 VHDL code of the clock divider custom hardware module…………….…….92

Figure-6.10 Detailed view of the FL module in Quartus II and the RTL Viewer… ……....93

Figure-6.11 Unipolar stepper motor windings and full-step sequence……………. ……....94

Figure-6.12 VHDL code for a stepper motor full-step sequence generator……….………94

Figure-6.13 SoPC-based intelligent sun tracking controller optimized in an FPGA……....97

Figure-6.14 Top-Level schematic for the FPGA-Based FLC design process for a……….

dual-axis sun tracking system ………………………………………………100

Figure-6.15 PC running Quartus II and Altera Monitor Program software……................101

Figure-6.16 Hardware setup of the FPGA Based intelligent dual-axis………………………

sun tracking systems………………………………………………………...102

Figure-6.17 The operational cycle time …………………………………………….……104

Figure-6.18 Behavioral simulation window in the Quartus II simulator…………………105

List of Tables List of Tables

xiv

List of Tables

Table 3.1 The NxM set of fuzzy if-then rules in matrix form……………………..…….

Table-5.1 The 7x7 fuzzy rule-base matrix used in the fuzzy-like PD-type………………

FLC for the vertical pivot shaft (east-West)…………………………………..

Table-5.2 The 5x5 fuzzy rule-base matrix used in the fuzzy-like PD-type …………….

FLC for the horizontal pivot shaft (North-South)……………………………

39

74

78

List of Tables List of Tables

xv

List of Abbreviations

ADC Analog to Digital Converter
ALE Address Latch Enable
ALM Adaptive Logic Module
AMP Altera Monitor Program
ARM Advanced RISC (Reduced Instruction Set Computer) Machine
ASIC Application Specific Integrated Circuit
ASSP Application Specific Standard Product
CLB Configurable Logic Block
CMOS Complementary Metal Oxide Semiconductor
COG Center of Gravity
COGS Center of Gravity for Singleton
CPLD Complex Programmable Logic Device
DCT Discrete Cosine Transform
DMIPS Dhrystone Million Instructions Per Second
DOM Degree of Membership
DSC Digital Signal Controller
DSP Digital Signal Processor
EOC End of Conversion
EEPROM Electrically Erasable Programmable Read Only Memory
EPROM Erasable Programmable Read Only Memory
FFT Fast Fourier Transform
FIFO First IN First OUT
FIR Finite Impulse Response
FLC Fuzzy Logic Controller
FOM First Of Maximum
FPD Field Programmable Device
FPGA Field Programmable Gate Array
GPIO General Purpose Input/Output
GUI Graphical User Interface
HDL Hardware Description Language
HPS Hard Processor System
IBM International Business Machine
IC Integrated Circuit
IOB Input Output Block
IOE Input Output Element
IP Intellectual Property
JTAG Joint Test Action Group
LAB Logic Array Block
LCD Liquid Crystal Display

List of Tables List of Tables

xvi

LDR Light Dependent Resistor
LE Logic Element
LOM Last of Maxima
LUT Look Up Table
MCU Micro Controlling Unit
MF Membership Function
MIPS-ISA Microprocessor without Interlocking Pipe Stages – Instruction Set

Architecture
MMI Monolithic Memories Inc
MMU Memory Management Unit
MOM Middle of Maxima
MSI Medium Scale Integration
NIOS Netware Input-Output Subsystem
OTP One-Time Programmable
PAL Programmable Array Logic
PC Personal Computer
PCB Printed Circuit Board
PD Proportional Derivative
PI Proportional Integral
PIA Programmable Interconnect Array
PID Proportional Integral Derivative
PLA Programmable Logic Array
PLD Programmable Logic Device
PROM Programmable Read Only Memory
RAM Random Access Memory
RISC Reduced Instruction Set Computer
ROM Read Only Memory
RTL Register Transfer Logic
SDRAM Synchronous Dynamic Random Access Memory
SoC System on Chip
SoPC System on Programmable Chip
SPI Serial Peripheral Interface
SPLD Simple Programmable Logic Device
SRAM Static Random Access Memory
SSI Small Scale Integration
TTL Transistor Transistor Logic
UART Universal Asynchronous Receiver Transmitter
USB Universal Serial Bus
VHDL (Very High Speed Integrated Circuit) Hardware Description Language

1

Introduction Chapter One

Chapter 1

Introduction

1 Introduction

Since the beginning of the Industrial Revolution, coal, crude oil and natural gas are the

three forms of fossil fuels mostly used worldwide. These non-renewable sources of energy are

so called because they have been formed from the organic remains of prehistoric plants

(plants which grew on earth millions of years ago) and animals and have rotted away over

million of years and became solids, liquids and gasses. They will run out one day. Fossil fuels

must be located, excavated and transported before they can be used. These carbon-based fuels

are employed to feed power plants to produce electrical energy [1]. They must be burned to

produce electricity. Burning them creates unwanted by-products such carbon dioxide. These

unwanted by-products pollute the environment (air and water pollutions) and contributes to

the global warming due to the release of huge amount of greenhouse gasses into the

atmosphere. To minimize this major problem, there is a need to replace (at least partially)

these fossil fuels with an environment friendly alternative. For a long time, it has been

thought that the nuclear-based power plants would be the ideal solution for the increased

demand for electrical energy, ever increasing oil price and environmental concern. It is true

that nuclear energy has several benefits: absence of airborne pollutants, no greenhouse effect

and reduction in dependence on oil. However, the accidents of Three Mile Island (1979),

Tchernobyl (1986) and the recent tragedy of Fuckushima (2011) increased anti-nuclear

2

Introduction Chapter One

sentiment. This public awareness pushed several countries to rethink the use of this energy.

Germany decided to close all of its reactors by 2022, while Italy and others countries halted

expanding their nuclear power plants.

2 Renewable Energies

In the 1970s with the energy crisis, the interest in green power was primarily driven by the

goal of replacing fossil fuels to reduce the dependence on oil and gas. Nowadays, with

climate change, ozone layer depletion, global warming etc, the principle goal is the

preservation of the environment by minimizing carbon-dioxide emissions in the atmosphere.

There is a wide variety of renewable energies. These energies use resources that are naturally

replenished on a human timescale and will exist infinitely. The list of these resources, ordered

by the amount of contribution to the production of electricity, currently includes: hydro, wind,

biomass, geothermal heat and sunlight. Electricity derived from these energies is considered

“green” because of the negligible negative impacts on the environment.

2.1 Hydro source of Energy

 The contribution from renewable energy sources for electricity production is small

with the exception of hydro. Over the last 100 years, hydro has been the most mature

renewable source of electricity around the world. Figure-1.1 (left) depicts a huge energy

stored in a dam which can be used to generate hydroelectric power. Today, hydro power

contributes to about 21% of electricity capacity worldwide [2].

Figure-1.1. (left) A dam to energize a hydroelectric power station.
 (right) Airflows used to run wind turbines.

3

Introduction Chapter One

2.2 Wind Source of Energy

Wind is the next most popular source of green electricity and the fastest growing

renewable energy world-wide. Figure-1.1(right) illustrates airflows used to run wind turbines.

An average of wind speed of 14 miles/hour (20 Km/hour) is needed to efficiently convert

wind energy into electricity. Today, large new wind farms at excellent wind sites generate

electricity at a cost in the range that is competitive with that of electricity from conventional

power plants, while offshore areas experience average wind speeds larger than that of land.

2.3 Biomass Source of Energy

Wood remains the largest biomass energy source today. Grasses, agricultural crops, or

other biological materials can be converted to heat, then steam, and then electricity. Biomass

power is the third largest source of renewable electricity. Figure-1.2 shows biological

material derived from living, or recently living organisms used to feed a power plant to

produce electricity.

2.4 Geothermal Source of Energy

 Heat contained in the core of the earth can be exploited to produce electricity through

steam. The geothermal source while this is an abundant source with today’s technology only a

small fraction can be converted commercially to electricity. Geothermal power plants are

highly capital intensive because enough steam-supply wells have to be drilled up-front to

provide the full plant capacity at startup.

2.5 Solar Energy

Figure-1.2 Wood chip bio fuel a renewable alternative source of energy

4

Introduction Chapter One

Among all renewable energy sources available, solar energy is believed to be the most

promising source. It is free, secure, pollution-free, available all over the world, and will last

forever [3, 4].

 The sun creates its energy through a thermonuclear process that converts about

650,000,000 tons of hydrogen to helium every second [5]. The process creates heat and

electromagnetic radiation. The heat remains in the sun and is instrumental in maintaining the

thermonuclear reaction. The electromagnetic radiation (including visible light, infra-red light,

and ultra-violet radiation) streams out into space in all directions. Only a very small fraction

of the total radiation produced reaches the Earth [6]. One of many ways of generating

electricity from solar energy is the use of solar panels which covert sunlight into direct

electricity (DC) using the photovoltaic effect. Solar panels are formed out of interconnected

photovoltaic cells that are arranged in series/parallel fashion.

A Photovoltaic Cell (PV) or solar cell is a semi-conductor device used to convert

lights directly into electricity by the photovoltaic effect. The efficiency and the cost of the

photovoltaic cells depend greatly on the material chosen. Present PV cells come into three

major categories: Multi-crystalline, Single crystal, and Amorphous, Figure-1.3.

There are several factors that affect the efficiency (percentage of sun’s energy striking the

PV cell that is converted into electricity) of the solar panel. The two major ones are: (1) the

PV cell efficiency and, (2) the intensity of sun rays received on the surface of the solar panel.

Although there is a continuous improvement in the PV materials to enhance PV cell

efficiency, current technology delivers PV cells with an efficiency level ranging from 10 to

Figure-1.3 (a) Multi-crystalline-based solar panel. (b) Single crystal-based solar panel.
 (c) Amorphous-based solar panel

(a) (b) (c)

5

Introduction Chapter One

20% (some laboratories reached efficiencies of more than 30% but not yet available

commercially). Therefore, to lower the per KWh cost, we need to rely on the dimensions of

the panels and/or the irradiation intensity. Increasing the surface area of the solar panels is not

a viable solution. It increases investments cost and requires more ground surface. A more

feasible and economical solution however, is to maximize power extraction from the panel by

operating the cell arrays at their full potential. This can be achieved by continuously exposing

the surface of the panel perpendicular to the sun’s rays. This strategy can be accomplished by

a sun tracker, a device onto which a solar panel is fitted to track the movement of the sun

across the sky (mimicking sunflower).

3 Sun Tracker Types

 The efficiency of a photovoltaic panel depends on the incident angle of the sun rays with

respect to the surface of the panel. For the solar panel to harvest maximum energy from the

sun, a high-precision sun tracking system is necessary to track the sun in the sky from early

morning until late in the afternoon. A sun tracking system is a mechatronic system. It consists

of the mechanics, electric drives and information technology [7]. The mechanics consists

mainly of a tracker onto which a solar panel is fitted to track the movement of the sun by

maintaining the panel surface perpendicular to the sun incident radiations (mimicking

sunflower). The mechanics provide the necessary torque to change the azimuth and elevation

positions of the solar panel with respect to the sun, while the controller determines when and

how much to tune the driving motors to minimize the misalignment of the solar panel surface

with the sun’s incident rays.

 Sun trackers are classified according to the number and orientation of their axes. They are

grouped into single- and dual-axis tracking devices. Single-axis trackers have one degree of

freedom. They are used to vary the azimuth angle in order to follow the movement of the sun

East-West during the day with fixed tilt angle. These types of trackers are more suitable in

6

Introduction Chapter One

tropical regions. Dual-axis trackers accommodate two degrees of freedom, azimuth and tilt.

Their axles are typically normal to one another. They have the capability to tune the solar

panel east-west and north-south and follow the sun’s apparent motion anywhere in the sky.

Figure 1.4 illustrates the structure of a dual-axis sun tracker. Angle is an azimuth angle of

the solar panel and is a tilt angle.

Motor 1 changes the azimuth angle along the east-west direction, whereas motor 2

changes the elevation angle along the north-south direction.

4 Sun Tracker Driving Modes

 There are three methods of tracking: passive, chronological and active. Passive trackers

use a low boiling point compressed fluid (often Freon) as a means of tilting the solar panel.

When heated by the solar heat, it creates a gas pressure in the system, the fluid pressure

increases causing the liquid to move inside the tracker from one side to another allowing

gravity to rotate the tracker to follow the sun. These trackers do not use motors or control and

hence do not consume any energy. They are also less precise and therefore, operate with low

efficiency compared to active trackers. Passive trackers are however, unpractical in cold

locations. Chronological trackers employ electronic logic to control the actuators to follow the

sun based on mathematical formulae based on astronomical references with the data of a

whole one-year sun trajectory to calculate the sun movement in the sky. This data is usually

Figure 1.4 Structure of a dual-axis sun tracker

Azimuth
angle

Tilt
angle

E W

N

S

Motor 1

Motor 2

7

Introduction Chapter One

the current time, day, month and year of a specific geographical location. These trackers are

also known as open-loop trackers as they do not require any feedback for the controlled

system. Active trackers also known as closed-loop dynamic trackers on the other hand employ

motors and gear trains to direct the PV panel as commanded by the controller. They

commonly use light detecting sensors to provide raw data as inputs to the controller to track in

real-time the real position of the sun in the sky. They are more reliable than open loop

trackers. The use of the feedback makes their system response less sensitive to external

disturbances [8], [9].

5 Computing Platforms

At the heart of most embedded control systems is usually a real-time digital controlling

unit. Nowadays, designers are blessed by the variety of computing platforms they have at

their disposal to address these controlling units. These latter can be implemented using one or

a combination of design methodologies [10-11]. There are three major methodologies, namely:

(i) Dedicated (fixed) digital logic or application-specific integrated circuits or

ASICs,

(ii) Software-programmed logic platforms, and

(iii) Hardware reconfigurable logic platforms.

5.1 The ASIC Solution

There is no doubt, of all solutions; dedicated controllers or ASICs provide highest

performance as they are optimally tailored for particular use. They are great at speed and

power consumption. Moreover, they have reduced size and cost at high volume. They exhibit

high reliability of system operation. ASICs present some disadvantages. They are fixed

function integrated circuits, that is, the design is frozen in silicon with no possibility to make

any change.

8

Introduction Chapter One

5.2 Software-Programmed Logic

For years, digital designers largely relied on general-purpose microprocessors

microcontrollers, personal computers (PCs), digital signal processors (DSPs) and digital

signal controllers (DSCs) for the design of digital embedded systems. Despite the large

number of commercially available off-the-shelf products, designers of embedded systems are

often challenged to find the exact processor and the appropriate peripherals that will fit their

needs [12]. Often, designers must make compromises between performance, chip count,

flexibility, cost and power consumption in their choices.

Although flexible and able to implement complex algorithms, processor-based solution

presents some disadvantages. Off-the-shelf processors and peripheral devices have fixed

hardware, leaving software as the unique alternative to the designer to develop/enhance

his/her desired application. Moreover, the sequential nature of program execution with these

processors leads to several orders of magnitude inferior to ASICs in terms of performance,

silicon area usage and power consumption [10], [13].

5.3 Reconfigurable Logic or Programmable Hardware

 In the above modalities, the hardware architecture is settled in the early stage of the design

cycle making even minor changes affect dramatically the ASIC design, processor selection

and printed-circuit board (PCB) design. An elegant and cost effective solution is obtained

when using the reconfigurability of the FPGA. In such computing platform, the system

hardware needs no longer to be frozen. The processor and peripheral devices as well as the

target FPGA can all be changed during development time, or migrated to new more

performant FPGA.

 With today’s high density FPGAs, the emerging and revolutionary SoPC design

methodology provides a new paradigm in the design of embedded systems. This methodology

9

Introduction Chapter One

allows the integration of embedded processor(s) (hard-core and/or soft-core) with or without

user defined hardware accelerator blocks tailored to fit the desired application. The

heterogeneity of this approach allows the co-existence of the embedded microprocessor with

the FPGA logic in the same chip, taking the benefit of both the microprocessor and the ASIC.

Partitioning the controller into two main blocks makes the design process easier while

achieving better performance by avoiding the processor to get bogged down. The embedded

microprocessor will be used to implement non-timing critical functions, while timing critical

are best implemented as hardware accelerators in the FPGA fabric. To cope and design

efficient complex systems with this new paradigm, Altera for example provides sophisticated

and powerful electronic design automation (EDA) tools; Quartus II and the SoPC builder.

5.4 Implementation of Fuzzy Controllers

 Fuzzy systems implementation has been exploited since the mid-1980s and different

architectures were devised. Naturally, the realization of these controllers will always be

digital because its algorithm is primarily based on rule inference using the “IF-THEN”

statements [14]. An efficient and effective implementation should satisfy two main

requirements: flexibility and performance. There exist two main branches of fuzzy systems

implementations: software and hardware implementations. A third branch can be a

combination of the first two.

 Early fuzzy systems were mostly implemented in software by means of general-

purpose microprocessors, and microcontrollers. These implementations are flexible, require

the least hardware resources and can be developed rapidly. However, the sequential nature of

execution of these processors may not permit real-time processing.

 Fuzzy systems hardware implementations can be realized as a dedicated hardware, as

an ASICs or on a reconfigurable FPGAs. Hardware implementations use a certain level of

parallelism and pipelining leading to a very high increase in processing speed. Nowadays,

10

Introduction Chapter One

with ceaseless increasing density of FPGAs and the SoPC approach, it is possible to takes

advantage of both the flexibility of software and the performance of hardware [15].

 Several survey and review papers were published to highlight fuzzy systems

implementations. In [16], the authors reviewed many interesting fuzzy hardware/software

architectures from a categorical and historical point of view. Recently, in [17], Bosque et al

surveyed fuzzy systems and neural networks with a particular focus on hardware taxonomy

and highlighted the characteristics of the different applications covering the paradigms done

over the last two decades.

6 Structure of the Sun Tracking System

Figure-1.5 depicts the hardware structure of the FPGA-based intelligent sun tracking

system. The proposed architecture consists of several units linked together to form an

integrated autonomous programmable system. These units are partitioned into two major

modules:

 (i) The off-chip or on board module, realized on breadboards, is implemented with off-

the-shelf discrete components. It is composed of a panel equipped with a sun finder, used to

determine the position of the sun in the sky, mounted on an azimuth-elevation dual-axis

tracker, a signal conditioning circuit, a data acquisition unit built around an analog-to-digital

converter (ADC), a bidirectional voltage level translator (3.3V-5V) and two unipolar 4-phases

USB
Blaster

 Cyclone II EP2C35 FPGA

A
va

lo
n-

M
M

 I
nt

er
co

nn
ec

t
Fa

br
ic

 Nios® II
Processor

 JTAG
UART LCD

 On-Chip

 Sys ID
 PIO

Nios® II Based Subsystem

PIO

M

S
S

S

S

S
S

Sun Tracking Control Board

 Signal
Conditioning

Unit

Sun Finder

 Clock Divider
And

Glue Logic

F.L.C

 Stepper Motors
Sequences
Generator

Custom Logic Data Acquisition
and Level

Scaling Unit

 LCD
16x2 Screen

 Power
Driving
Stage

Figure-1.5 High-level representation of the FPGA-based intelligent dual-axis sun tracking system

11

Introduction Chapter One

1.8° per step bidirectional stepper motors with their power driving circuits.

(ii) The on-chip module which is the digital controller is implemented onto the FPGA chip

of the low-cost DE2 board. The digital controller consists of two subsystems: a System-on-a-

Programmable-Chip or SoPC based subsystem built around the Altera Nios® II embedded

soft core processor and a custom non-SoPC subsystem. The SoPC Builder subsystem includes

several functional blocks such as the ADC interface, the liquid crystal display or LCD

controller, and an interface with the custom logic. It controls and gathers data from the data

acquisition unit by scheduling and generating the necessary signals to the analog-to-digital

converter, it performs the necessary data processing, monitoring and control of the external

actuators. The non-SoPC Builder subsystem consists of several custom hardware components

developed in VHDL that operates in conjunction with the processor-based system. The core

system of which is the fuzzy-like PD-type FLC and the stepper motors sequence generator.

7 Objectives of the Thesis

This thesis addresses the design process of a FPGA-based fuzzy logic controller (FLC)

applied to a sensors-driven dual-axis sun tracking system. The digital controller is

implemented using the SoPC approach. This methodology combines a soft processor core the

Nios® II, on-chip memory, intellectual property (IP) peripheral components and a user

defined hardware accelerator components integrated into a single FPGA device, Figure-1.6.

The approach combines the features of software programming and reconfigurable

hardware implementations into two inter-related modules: (i) a Nios® II embedded processor-

based subsystem which constitutes the upper layer of the digital controller and (ii) a PD-like

fuzzy logic module to steer the tracker actuators.

 The first subsystem provides an ideal platform for microcontroller applications. Its

mission is to keep track of the data gathered from the sun finder unit by scheduling and

initiating the signals required by the data acquisition unit. It computes the angular errors and

12

Introduction Chapter One

the rates of change of these errors and applies them as crisp inputs to the PD-like fuzzy logic

module. In addition, the Nios® II subsystem controls the liquid crystal display (LCD) to

display in real-time the system’s status messages on a two-line LCD, and manipulates the

general-purpose input-output peripherals. The control program that runs on the Nios® II

processor is written in assembly language for highest performance and minimal code density.

The second module, the PD-like fuzzy logic module, which demands more computational

power, is designed and implemented in the FPGA’s massively parallel logic elements using a

handcrafted VHDL code as a custom reconfigurable application-specific accelerator

component to maximize parallel processing. The fuzzy logic module calculates the necessary

energy by which the system modifies the process in such a way the control objective can be

obtained.

The approach allows a processor to co-exist with custom logic in the FPGA fabric,

provides the flexibility to combine reconfigurable hardware and software based controls to

achieve a simple and better control of the sun tracker. This hardware/software solution runs

on an Altera low-cost Cyclone II FPGA, the EP2C35, to control the motion of two stepper

motors used as the mechanical drive system to keep the solar panel surface continuously

facing the sun during the day.

Figure-1.6. Pictorial representation of the FPGA-based intelligent
Dual-axis sun tracking system

Expansion Header
and voltage level

translator Unit

Power Drive
 Unit

Opto-Isolation
Unit

Data Acquisition
Unit

PC Running
Quartus II and

Nios II IDE

FPGA unit

Panel mounted on
a dual-axis tracker

13

Introduction Chapter One

8 Organization of the Thesis

This thesis is compiled into 7 chapters including this introduction and followed by

references used in this work. Chapter 1 introduced the problematic. It also reviewed existing

computing platforms used to implement digital controllers: processor-based and FPGA-based

with or without the SoPC technology.

In chapter 2, a literature review that surveys relevant research works on sun tracking

systems conducted in the last few decades is presented. Chapter 3 introduces fuzzy set theory

and fuzzy logic control. Chapter 4 presents background material to highlight the possibilities

and advantages using the FPGA. It also describes the most versatile and industry-standard

soft-core processor, the Nios® II as well as the emerging and revolutionary SoPC technology.

Chapters 5 and 6 constitute the bulk of the thesis. The former describes in details the

design and implementation of the fuzzy logic module. The latter begin by reviewing the

merits of the SoPC approach over the off-the-shelf processor and peripheral devices as

platforms for industrial applications. It lays out in detail the hardware and software design.

This chapter also presents the simulation and implementation of the FPGA-based intelligent

dual-axis sun tracking system. It reports the setup of the simulations and a prototyping real-

time implementation of the system which can be seen as a proof-of-concept. Chapter 7

concludes the thesis with some discussions and remarks for future research.

Finally, the thesis terminates with an extensive list of references for additional information

on the subject.

Part of the work reported in chapters 1, 5 and 6 has been published in [90].

14

Literature Review Chapter 2

Chapter 2

Literature Review

1 Introduction

Before diving into the practical of this thesis, a review of literature in the core area will be

presented with the aim to provide the reader with a survey on active sun tracking systems

using different types of computing platforms and control strategies, as well as developments

in FPGA-based designs with or without model-based fuzzy logic control systems. Also, we

report by whom, when and how.

Over the past four decades or so, a large number of contributions have been reported in

seminars and literature showing the increasing interest in the design and implementation of

sun tracking systems to increase their performances and efficiencies to harvest maximum

power from the solar panels mounted on trackers. Several control strategies as well as

different computing and control platforms have been used and tested to tackle this problem

[7], [8], [18-66]. These strategies can be categorized into three main classes: open-loop,

closed-loop and hybrid sun tracking control systems.

(i) Open-loop control strategies rely on a fixed control algorithm [7], [8], [18-29].

These controllers use mathematical formulae with the data of a whole one-year sun

trajectory to calculate the sun’s movement in the sky and need not sense the

sunlight to position the solar panel. This data is usually the current time, day,

month and year of a specific geographical location. The algorithms do not use any

15

Literature Review Chapter 2

feedback from the controlled system to determine if it has achieved or not the

desired goal.

(ii) Closed-loop types of sun tracking systems are based on feedback principles. They

usually use light sensors such as light dependent resistors (LDRs) to determine the

position of the sun in the sky with respect to the surface of the solar panel [8], [30-

37]. They are more reliable than open loop type controllers. The use of the

feedback makes their system response less sensitive to external disturbances.

(iii) Hybrid implementations, a strategy that combines both open- and closed-loop

control are also reported in literature [31], [38].

There is a large variety of techniques used to implement closed-loop type controllers.

These range from the On-Off control laws to more advanced techniques based on fuzzy logic

control including the classical controllers: the Bang-Bang controller, proportional-integral

(PI), proportional-derivative (PD) and proportional-integral-derivative (PID).

A myriad of physical implementations of sun tracking strategies are also reported in

literature. Similar to other industrial applications, these implementations have gone through

several stages of evolutions. They evolved from the early mechanical designs to the use of

discrete analog and digital standard integrated circuits. The general-purpose microprocessor-,

microcontroller- and DSP-based were the dominant platforms for the implementation and

realization of control algorithms based on conventional PID and alike, Bang-Bang and fuzzy

controllers. The use of the FPGA with or without the system-on-programmable-chip approach

emerged during the last decade.

2 Open-Loop Tracking Strategies

An open-loop type controller computes its input into a system using only the current state

and the algorithm of the system to determine if its input has achieved the desired goal. These

16

Literature Review Chapter 2

types of controllers based on mathematical algorithms/programs provide predefined

trajectories for the tracking system. These trajectories can be accurately determined because

the relative position of the sun can be precisely calculated at any time for any location on the

earth [7], [18] [19].

It is in 1975, that McFee [20] presented the first automatic solar tracking system. The

algorithm used to control the tracker computes the flux density distribution and the total

received power in a solar power system. Since that time, numerous works using open-loop

control have been carried out in the design and implementation of algorithms based on

astronomical formulae. They were used to drive electromechanical actuators to steer single-

and dual-axis sun tracking systems.

Semma et al [21] were among the first to use a microprocessor as a replacement of the

hard-wired logic used in earlier sun trackers to control the motion of a two-axis sun tracking

system. The controller was based on an active sun tracking approach and allows an array to

track the sun within five arc-minutes. This resulted in significant improvements in reliability

via parts screening and packaging and increased the functional capabilities of former basic

tracking systems.

In [22], the authors derived a general formula arguing that it embraces all the possible

one-axis tracking methods. To derive the formula, they used coordinate transformation

technique. This consists in transforming the sun’s position vector from earth-center frame to

earth-surface frame and then to collector-center frame. In doing so, they could resolve it into

solar azimuth and altitude angles relative to the solar collector making it simpler to the

controller to determine by how much it should tune the solar collector to minimize the

misalignment.

In 2004, Abdallah [23] designed and implemented four electromechanical open-loop solar

tracking systems: two-axis, one-axis vertical, one-axis east-west, and one-axis north-south in

17

Literature Review Chapter 2

order to investigate the effects of the current, voltage and power characteristics of a flat-plate

photovoltaic system compared to a fixed one with an inclination of 32° to the south. The

movement of the tracker was controlled by an algorithm in which the pre-calculated position

was programmed into a programmable logic controller (PLC). The author claimed that the

tracking systems increased the electrical powers of the collector by 43.87, 37.53, 34.43 and

15.69% respectively for the two-axis, one vertical axis, one-axis east-west and one-axis north-

south compared to that of the fixed one.

In paper [24], Grena describes an algorithm for obtaining highly precise values of the

solar position. Taking the fractional Universal Time (UT), the date, and the difference

between UT and Terrestrial Time (TT) (longitude, latitude, pressure and temperature) as

inputs, the algorithm computed the angular position of the earth with respect to the sun in the

ecliptic plane and then used this angle and the inclination angle of the earth’s rotational axis

to calculate the position of the sun.

In reference [25], the authors argued that the open-loop tracking strategies used to

compute the direction of the solar vector should be both accurate and computationally

straightforward to minimize the price of the tracking system. They developed an algorithm for

predicting the solar vector given knowledge of the time and the location.

In 2004, Reda et al [26] presented a simple step-by-step procedure for implementing a

solar position algorithm. In this algorithm, the solar zenith, azimuth and incident angles were

derived using ecliptic longitude and latitude for mean Equinox of data along with other

information. They reported that the solar zenith and azimuth angles could be calculated with

uncertainties of 0.0003°.

In [27] an open-loop control algorithm was developed to control a dual-axis sun tracking

system. The algorithm implemented into the LOGO-24 RC programmable logic controller

(PLC) is based on the mathematical definition of surface position. This latter is defined by

18

Literature Review Chapter 2

two angles: the slope of the surface and the surface azimuth angle. The authors used two

tracking motors, one for the joint rotating about the horizontal north-south axis to adjust the

slope of the surface and the other motor to rotate the collector about the vertical axis to

control the surface azimuth angle. A computer software has been developed to calculate the

optimal positions of the tracking surface during the daylight hours which were divided into

four identical time intervals. For each interval, the solar and motors speed are defined and

programmed into the PLC. The authors concluded the gain is considerable with an increase in

the daily collection of about 41.34° as compared to that of a fixed surface.

In 2010, Duarte et al [28] presented in an international conference on renewable energies

the design of a microcontroller-base two-axis solar tracker using solar maps. They employed

solar maps with the sun coordinates which depend on the time and geographical location.

Mousazadeh et al [29] and Lee et al [8] reviewed different types of sun-tracking systems.

They focused on the potential energy gain obtained by the application of both open- and

closed-loop algorithms. They surveyed some of the most significant proposals of both types

and discussed their pros and cons. They compared the outcomes of tracking systems with

fixed-position counterparts. They concluded that solar systems which track the changes in the

sun’s trajectory over the course of a day collect far greater amount of solar energy. They also

reported that the most efficient and popular sun-tracking devices was found to be in the form

of polar-axis and azimuth/elevation types.

3 Closed-Loop Tracking Strategies

Closed-loop types of sun tracking systems are based on feedback control principles

[8]. They use the concept of the open-loop for their forward path and feedback loop(s)

between the system’s output and input. In a closed-loop sun tracking system, light and image

sensors are in general used to discriminate the sun’s position and the induced signals

19

Literature Review Chapter 2

proportional to the sun light intensity employed as inputs to the controller. These data are

processed by the controller to automatically achieve and maintain the desired output

condition.

Roth et al [30] described the design and construction of an electromechanical automatic

sun-following system. They used a pyrheliometer to measure direct solar radiation. A four-

quadrant photo detector to sense the position of the sun and two small DC motors to move the

instrument platform are controlled by a Z80 microprocessor to keep the sun’s image at the

center of the four-quadrant photo detectors. The presented tracker can be adapted to work

with solar cell panels or concentrators. The interesting feature of this system is under cloudy

conditions, when the sun is not visible; a computing program calculates the position of the sun

and takes control of the movement, until the detector can sense the sun again. The same

authors described in [31] an improved version of their sun tracker. Although they kept the

same mechanical base they brought some novelties. The DC motors were replaced by stepper

motors, the four-quadrant sensor replaced by two sensors and the Z80 computing platform

was replaced by a microcontroller connected to a PC. The two sensors were used, one for sun

position information and the other to measure the sun light intensity. The tracker can operate

in two modes. In the clocked mode of operation, the position of the sun is calculated based on

the date and time information of its clock. Light position errors are measured during the day

and stored for later analysis. These data will be used the next day to compute more accurate

positions of the sun. In the active or sun mode of operation, the tracker uses the data of the

sun monitor to control the pointing.

In [32] Kalogirou described the design and construction of a one-axis sun tracking system

where the position and status of the sun are detected by three LDRs. One LDR is used to

detect the focus state of the collector; another one is responsible of detecting any cloud cover,

while the third is employed to discriminate daylight. The controller is constructed with

20

Literature Review Chapter 2

standard analog and digital integrated circuits. The actuator used in the tracker to point the

collector toward the sun is a low-power DC motor with speed-reduction gearbox. The author

reported that the deviation from the ideal posture is 0.2° and 0.05° with solar radiation of 100

and 600 Wm-2 respectively.

Recently, an image-based sun-tracking system was developed by Cheng. D. Lee et al [33].

The system consists of a self-design reflecting Cassegrain telescope, a webcam and an

embedded image processing algorithm to point to the sun. the central coordinates of the sun

images are calculated then sent to the solar tracker to follow the sun. Authors claimed that

their tracking system achieved a tracking accuracy of 0.04°.

In [34] Sefa et al designed and implemented a PC-based one-axis sun tracking system for

production of clean energy. The data from the two light sensors is collected by the

microcontroller-based data acquisition unit and transmitted serially to the PC for processing

and storage. Software developed in C language processes the collected data and instructs a

DC motor to follow the sun during day time. In addition, current, voltage and solar position

panel are displayed on the PC’s screen.

In reference [35], A. Konar et al employed a microprocessor to automatically position an

optimally tilted photovoltaic flat type solar panel for the collection of maximum solar

irradiation. The azimuth angle of the optimally tilted panel is controlled using one infrared

light detector. The technique used is similar to “perturb and observe” to determine maximum

irradiation. The use of step-tracking scheme instead of continuous tracking keeps the motor

idle for most of the time which results in power saving. The adjustment of the tilt angle is

done on a monthly basis. They suggested the use of a two-dimensional tracker for an

automatic tracking. We believe that the use of a second light detector would have not only

simplified the design but saved energy and motor aging due to continuous rotation in both

direction of the motor searching for optimal position of the solar collector.

21

Literature Review Chapter 2

Another microprocessor controlled automatic sun tracker is reported in [36]. Two light

sensors arranged in east-west direction are used to discriminate the position of the sun with

respect to the solar panel. A DC motor is gear coupled to rotate the panel along the east-west

direction to keep the panel perpendicular to the sun vector. Attached to the collector are two

switches used to limit the movement of the panel beyond its maximum angular positions in

the east and west directions.

In [37] Saxena et al designed and fabricated a microprocessor-based controller for a dual-

axis sun tracker to follow the sun in azimuth and altitude directions using two stepper motors.

The system operates in both open- and closed-loop modes. In closed loop mode the sensor

card provides signals to the controller. In open-loop mode, the tracker is brought to a pre-

calculated position depending on the month and time of the day.

In general, open-loop control systems are cheaper because they do not require any means to

gather feedback information such as light sensors. However, they present a major problem as

they have no error correction capabilities. In addition, a given algorithm is valid for a specific

location only. Closed-loop systems use sun finding position sensors. They are more reliable

than open-loop systems. However, they may not have capabilities to track the sun on cloudy

days. Hybrid control systems which consist of a combination of open- and closed-loop

strategies are also reported in literature [31], [38]. In such systems, the closed loop tracking

strategies are used to check and calibrate the astronomical control system.

4 FPGA-Based Tracking Strategies

A FPGA-based digital controller has many advantages compared to processor-based and

other platform types based controllers. It supports high-speed and concurrent control

algorithms, provides a higher degree of flexibility and a rapid low-cost manufacturing

solution. In the last decade, with high density FPGA chips, SoPC-based systems using Nios®

22

Literature Review Chapter 2

II soft core processor are being extensively used to implement control algorithms. This

reconfigurable computing approach is bringing a major revolution in the design of these

digital controllers. It allows the co-existence of the microprocessor with the user defined

hardware accelerators developed in HDL in a single chip instead of the mixed structure

microprocessor/FPGA [7], [39-48]. This approach is being adopted for its flexibility in

hardware and software, higher performance, reduced chip count and low cost.

In [39], Xinhong et al studied the applications of a FPGA development board to intelligent

solar tracking. Utilizing the Nios II Embedded processor, the authors developed a solar

tracking system. The two motors are controlled by a fuzzy logic module. The fuzzy controller

uses five fuzzy rules which reduce significantly the computation complexity in the real-time

control. The tracking systems can be operated into three modes: balance positioning, manual

mode and automatic mode. For the balance positioning, they used four mercury switches. In

the automatic mode, the fuzzy controller processes signals induced by four Cadmium sulphide

Photoresistors which discriminate the position of the sun in the sky. These signals are

digitized using four single-channel ADCs. The manual mode is used if the system has a fault

or needs to be maintained. The results of the experiment yielded more energy than the array as

a stationary unit. They reported that their system can achieve the maximum illumination and

energy concentration and cut the cost of electricity by requiring fewer solar panels, therefore,

it has significance for research and development.

In [40], the authors aimed to test whether FPGAs are able to achieve better position

tracking performance than software-based real-time platforms. The comparison was

conducted be embedding the same fuzzy logic controller (FLC) into a Virtex-II (XC2v1000)

FPGA from Xilinx and into software-based real-time platform NI CompactRIO-9002

architectures with the same sampling time. They concluded that the FPGA based FLC

23

Literature Review Chapter 2

exhibits much better performances (up to 16 times in the steady-state error, up to 27 times in

the overshoot and up to 19.5 times in the settling time) over the software-based FLC.

In publication [7], the authors dealt with an open-loop two-axis sun tracking for a PV

system. The tilt- and azimuth-angle trajectories of the tracking system are determined using

an optimization procedure based on a stochastic search algorithm called Differential

evolution. In this procedure, the objective function is evaluated by giving the models of

available solar radiation, tracking system consumption, and the efficiency of solar cells.

In [41], the authors describe the design of a stand-alone solar tracking system using a

FPGA. The design is based on astronomical equations to determine the position.

The basic software of the stand-alone tracking system is made up of (i) an Off-line

calculations of the sun path equations (developed in C), and (ii) a FPGA with suitable data to

the driving mechanical system.

Sun path equation determines the value of altitude and azimuth angles at any time of the

day. These values are stored as 8-bit words in a ROM. Two look-up tables were used, one for

the altitude angle and the other for the azimuth. The FPGA is designed to control the address

allocation for the look up tables stored in the ROMs for the sun tracking application. The

FPGA code is written in VHDL in Xilinx FPGA.

In [42], Monmasson et al reviewed the state of the art of FPGA design methodologies

with a focus on industrial control system applications. They review is followed with a short

survey on FPGA-based intelligent controllers for modern industrial systems. To illustrate the

benefits of an FPGA implementation using the proposed design methodology, two case

studies were presented. They consist of the direct torque control for induction motor

drives and the control of a diesel-driven synchronous generator using fuzzy logic.

In recent years, high density FPGA chips can efficiently integrate a reduced instruction set

computer (RISC) embedded soft-core processor, ready made intellectual property (IP)

24

Literature Review Chapter 2

peripherals and user defined hardware accelerator modules. A technology termed SoPC. This

hardware/software co-design combines the software-program executed by the embedded

processor to implement non-timing crucial repetitive control laws, while timing critical

intensive-computational functions are best implemented as hardware accelerator modules in

the FPGA logic. A large number of contributions using SoPC technology in different fields of

electrical engineering and control are reported in literature [49-54].

5 Fuzzy Control Tracking Strategies

Fuzzy control is the application of fuzzy logic to real-world control problems [55]. The first

fuzzy control application belongs to Mamdani & Assilian where the control of a small steam

engine is considered [56]. Since that time and due to its ease of use and robustness, fuzzy

control technology witnessed a wide range of applications in almost all areas. Applications of

fuzzy control include mechatronic systems (as manufacturing, robotics, automotive, etc),

nuclear industry, telecommunications, medical services etc. There are a lot of contributions

and reviews that illustrate the use of fuzzy control in industrial applications [55-66].

A fuzzy logic computer-controlled sun tracking system is described in [57]. This closed-

loop dual-axis tracking system is driven by two permanent magnet DC motors to provide

necessary torque to the PV panel. A PC-based basic fuzzy-like P-type controller with 14 fuzzy

rules was implemented. A data acquisition and a serial communication were implemented.

Back to 1999, in our opinion, it would have been simpler and more performant to use either

the parallel port or the Industry Standard Architecture (ISA) bus to interface the sun tracking

hardware circuitry with the PC.

In implementing a fuzzy system on a field programmable gate array, McKenna et al [58],

implemented a fuzzy control system in a FPGA to have a control surface as smooth as

possible. They used a weighted average approach to minimize the dimension of the look-up

table (LUT). The approach uses 3 or 4 most significant bits of each input to determine the

25

Literature Review Chapter 2

address for the LUT and to eliminate the rawness, the remaining bits are used to perform the

weighted average. Simulations were carried on using Matlab to verify the functionality of the

approach. The authors concluded that even with a large number of inputs, this approach helps

solve the exponential growth problem and complexity of LUT. The overall controller was

written in Verilog HDL and implemented in Xilinx 4000 series FPGA chip.

In [59], Kim presents the design and implementation of a fuzzy logic controller on a FPGA.

The controller is partitioned in many temporally independent functional modules, and each

implemented module forms a downloadable hardware object that can reconfigure the FPGA

chip. The controller was developed using the fuzzy logic controller Automatic

Implementation System (FADIS) tool. This latter performs various tasks in real-time such as

automatic VHDL code generation, synthesis, placement & routing and downloading. This

implementation method was effective in early 2000s when a single FPGA chip cannot fit the

controller due to the limited size of its capacity.

Poorani et al [60] advocate an approach to implement a fuzzy logic controller for motion

control using FPGA. This real-time implementation of the controller for four different types

of terrains is developed in VHDL and achieved on a Xilinx Spartan 2E board.

Precup and Hellendoorn [65] presented a survey on recent developments on analysis and

design of fuzzy control systems focused on industrial applications in the 2000. With a sample

of 244 references, the authors concluded that this can be viewed as a guarantee that future

successful applications will be constructed.

Also an interesting survey on analysis and design methods of model based fuzzy control

systems is given in [66].

This collection of papers is an interesting overview of the active research in the field of

programmed and reconfigurable hardware in embedded systems altogether with or without the

use of fuzzy logic control as a control strategy.

26

Chapter 3

Fuzzy Logic

1 Introduction

 The Oxford English Dictionary defines the word “fuzzy” as “blurred, confused, vague,

imprecisely defined”. We should disregard this definition and view this word as a technical

adjective. As reminded by Lotfi. A. Zadeh, fuzzy logic is not fuzzy. Instead, fuzzy logic is a

precise logic for imprecision and approximate reasoning [67].

 Fuzzy logic is viewed as a generalization of multi-valued logic compared to switching

(Boolean) logic which is a two-valued logic. It deals with degrees of membership and degrees

of truth. Unlike Boolean logic where variable can take at any instant of time a value that

belongs to the set {0, 1}, a fuzzy variable can take a value in the continuum [0, 1] of logic

values between 0 (completely false) and 1 (completely true).

 In the literature, there are two kinds of justification for fuzzy systems theory: (i) the real-

world is too complicated for precise descriptions to be obtained; therefore, fuzziness should

be introduced to obtain reasonable, yet tractable models, (ii) human knowledge is increasingly

important as we move into the information era [68-70].

The objective of this chapter is to give an insight into this theory which allows the

formulation of the human knowledge in a systematic manner and puts it into engineering

systems when combined with other information such as sensory measurements [69].

Fuzzy Logic Chapter 3

27

2 Fuzzy Sets

Classical set theory deals with distinct and precise boundaries of inclusion. In this theory,

the membership of elements in a set is assessed in binary terms according to a bivalent

condition; en element either belongs to or does not belong to the set.

Let X denote the universe of discourse (or universal set), and x denotes the individual

elements in X. A classical (crisp) set A is defined by a characteristic function µA(x) that

assigns the values 1 or 0 to each element x, respectively, if x belongs or does not belong to A.

Formally, a classical set A in X is expressed as:

 A = {(x, µA(x)) | x X; µA(x): X {0, 1}} (3.1)

Fuzzy set theory, however, deals with uncertainty and imprecision. In this theory, the

concept of characteristic function is extended into a more generalized form known as

membership function MF.

While the membership of elements in a crisp set is described by a bivalent condition, the

membership of elements in a fuzzy set is described by a multivalent condition. That is, the

MF can take any value between the unit interval [0, 1].

Formally, a fuzzy set A in X is expressed as:

 A = {(x, µA(x)) | x X; µA(x): X [0, 1]} (3.2)

Note that curly brackets in equation 3.1 are used to refer to binary value, while square

brackets in equations 3.2 are used to represent a unit interval.

Figure 3.1 illustrates a MF for a classical set C and a MF for a fuzzy set F.

 Figure 3.1 Membership function for crisp and fuzzy sets.

F C

µF(x) µC(x)

 x

µ
1

0

Fuzzy Logic Chapter 3

28

2.1 Operations with Fuzzy Sets

This section deals with basic operations with fuzzy sets. In the classical set, its

membership function assigns a value of either 1 or 0 to each individual in the universe of

discourse, thereby discriminating between members and non-members of the crisp set under

consideration [68].

Consider A and B, two non-empty fuzzy sets in the universe of discourse X. For a given

element x X, the following function-theoretic operations are defined for A and B on X.

i. Complement

The complement of set A denoted by A , is defined as the collection of all elements in the

universe of discourse that do not reside in the set A.

In set theoretic form, it is expressed as

 Aµ (x) = 1 - Aµ (x) for all x X (3.3)

ii. Union

The union or t-conorm of A and B is a fuzzy set in X, denoted by A B whose

membership function is defined as

 A B = {x | x A V x B} for all x X.

For the t-conorm operator, we have

 BAµ (x) = Aµ (x) V Bµ (x)

 = max { Aµ (x), Bµ (x)} for all x X. (3.4)

iii. Intersection

The intersection or t-norm of A and B is a fuzzy set A B in X with membership function

defined as

 A B = {x | x A x B} for all x X.

For the t-norm operator, we have

Fuzzy Logic Chapter 3

29

 BAµ (x) = Aµ (x) Bµ (x)

 = min { Aµ (x), Bµ (x)} for all x X. (3.5)

Figure 3.2 illustrates graphically these three fundamental fuzzy operations.

 We used “max” and “min” for union and intersection respectively. To show that the union

is equivalent to equation 3.4, we note that max[Aµ (x), Bµ (x)] Aµ (x) and max[Aµ (x),

Bµ (x)] Bµ (x). If C is any fuzzy set that contains both A and B, then Cµ (x) Aµ (x) and

Cµ (x) Bµ (x). Therefore, Cµ (x) max[Aµ (x), Bµ (x)] = BAµ (x). The intersection defined

by equation 3.5 can be justified in the same manner [69].

iv. DeMorgan’s Laws

DeMorgan’s laws stated for classical sets also apply for fuzzy sets. For the given sets A

and B, we have

 BA = A B

 BA = A B (3.6)

v. Empty Set

A fuzzy set A is an empty set labelled , if and only if Aµ (x) = 0 for each x X.

vi. Excluded Middle and Non-contradiction Laws

µ (x)

 x 0

 B A
 1

µ (x)

 x 0

 B A 1

µ (x)

 x 0

 1 A
A

Figure 3.2 Graphical representation of the a) Complement, b) Union, c) Intersection
fuzzy operations

(c) (a) (b)

Fuzzy Logic Chapter 3

30

 In classical set theory every object either belongs or does not belong to the universal

set. The law of excluded middle, A A = X and the law of non-contradiction A A

= hold. In fuzzy set theory however, these two laws are not valid, equation 3.7.

 A A X

 A A (3.7)

Proof

Let A = 0.5, then we ca, easily demonstrate that

 A A = max { Aµ (x), Aµ (x)}

 = max {0.5, 1-0.5}

 = 0.5 1

Similarly, A A = min { Aµ (x), Aµ (x)}

 = min {0.5, 1-0.5}

 = 0.5 0

Considering equations 3.3 to 3.7, we can conclude that operations on classical sets also

hold for fuzzy sets except for the excluded middle and non-contradiction laws, [70].

Figure 3.3 illustrates graphically these two laws.

 a) Fuzzy A A X

2.2 Properties of Fuzzy Sets

 The properties of classical sets, called crisp sets, also suit for the properties of fuzzy sets.

Because the membership values of a crisp set are a subset of the interval [0, 1], then, classical

sets can be thought as a special case of fuzzy sets [70-71].

µ (x)

 x 0

 1 A
A

 b) Fuzzy A A , law of contradiction

µ (x)

 x 0

 1 A
A

Figure 3.3 Graphical representation of a) Fuzzy A A X and
b) Fuzzy A A .

Fuzzy Logic Chapter 3

31

 We will use set notations rather than membership functions in order to make easy

comparison with classical sets.

 Consider A, B, and C, three fuzzy sets in a non-empty universe of discourse X. the most

common properties of fuzzy sets include:

i. Commutativity

 The commutativity property of two fuzzy sets using logical operators AND and OR is

given by

 BA = AB

 BA = AB (3.8)

ii. Associativity

 The associativity property using logical operators AND and OR is given by

)CB(A = C)BA(

)CB(A = C)BA((3.9)

iii. Distributivity

 The distributivity property of three fuzzy sets using the AND and OR logical operators is

given by

)CB(A =)CA()BA(

)CB(A =)CA()BA((3.10)

iv. Idempotency

 The idempotency property of a fuzzy set A with respect to logical operators AND and OR

is given by

 AA = A

 AA = A (3.11)

v. Identity

Fuzzy Logic Chapter 3

32

 The identity property of a fuzzy set A with respect to logical operators AND and OR and

given the empty set –having all degrees of membership equal to 0, and the universal set X

having all degrees of membership equal to 1 is defined as:

 A = A and XA = A

 A = and XA = X (3.12)

vi. Involution

 The involution property which represents the double negation of a fuzzy set A is given by

 A = A (3.13)

3 Membership Function

 A fuzzy membership function (MF) is a graphical representation of a fuzzy set. It defines

how each point in the input space (universe of discourse) is mapped to a membership value

(or degree of membership) between 0 and 1.

 The MF noted Aµ (x) describes the membership value of the element x of the universal set

X in the fuzzy set A. Figure-3.4 illustrates graphically fuzzy membership functions for speed.

It plots three fuzzy MFs one for each fuzzy set across the universe of discourse.

At crisp speed 85, the degree of membership (slow) is 0.0. The degree of membership

(normal) is 0.75 whereas for (fast) the degree of membership is 0.25.

 Theoretically, membership functions can have any form of regular or irregular shapes as

long as they are convenient to be described mathematically [72]. Reasonably, designers adopt

Normal Fast Slow

80 100 60 85

1.0
0.75

0.25

0
speed

µ

Degree
Of

Membership

Figure-3.4 Fuzzy membership functions for speed

Fuzzy Logic Chapter 3

33

regular shaped of known parameterized membership functions such as piece-wise linear

functions (triangular or trapezoidal) or nonlinear smooth functions such Gaussian, Sigmoidal

and Bell-shaped membership functions.

3.1 Piecewise Linear Membership Functions

 Piecewise linear functions are the simplest from of MFs. Figure-3.5 illustrates a triangular

and a trapezoidal asymmetric membership functions.

3.1.1 Triangular Membership Function

A triangular MF is specified by three parameters: its peak (or center) m, left width a>0 and

right width b>0. It can be described through the equation:

It can also be expressed in a more compact form as:

 µA(x) = max(min(
m-b
x-b ,

am
ax), 0) (3. 15)

3.1.2 Trapezoidal Membership Function

A trapezoidal MF is specified by its tolerance (core) interval [a, b], the left width c and the

right width d. It is defined by the following equation

a b m X

µ
1

0

µ

b a c d X

1

0

 0 x a

am
ax a x m

mb
xb m x b

 0 x b (3.14)

µA(x) =

ca
cx c x a

1 a x b

bd
xd b x d

 0 otherwise (3.16)

µA(x) =

Figure-3.5 Asymmetric triangular and trapezoidal membership functions
(b) (a)

Fuzzy Logic Chapter 3

34

3.2 Features of the Membership Function

The feature of the membership function is defined by three properties. They are: core, support

and boundary. Figure-3.6 assists in the description of these three properties.

3.2.1 Core

The core of a membership function for a fuzzy set A is defined as the region of the universe of

discourse that is characterized by complete full membership in the set A, that is:

 Core(A) = {x | Aµ (x) = 1} for all x X (3.17)

3.2.2 Support

The support of a membership function for a fuzzy set A is the set of points on the universe of

discourse where the membership grade in A is larger than 0, that is:

 Supp(A) = {x | Aµ (x) > 1} for all x X (3.18)

3.2.3 Boundary

The boundaries of a membership function for some fuzzy set A are defined as that region of

the universe of discourse containing elements that have a nonzero membership but non

complete membership, that is:

 Bnd(A) = {x | 0 < Aµ (x) < 1} for all x X (3.19)

3.2.4 Height

The height of a fuzzy set A is the peak value reached by the MF, also called supremum.

Formally, the height is defined as:

Core

Boundary

Support

Figure-3.6 Features of a membership function

Boundary

1

µ(x)

x

Fuzzy Logic Chapter 3

35

 Hgt(A) = max { Aµ (x)} =)(sup xµAXx (3.20)

3.3 Structure of Membership Functions

 To illustrate the structure of MFs, figure-3.7 depicts a graphical representation of the

linguistic variable Temperature (T) with five partitions.

 The universe of discourse is the range of all possible values applicable to a system

variable.

 The label indicates the name used to identify a MF in each region of behaviour.

 The scope or domain is the width of the MF. It is identified by a range of numerical

values that correspond to a label. Also, it indicates the range of concepts over which a

MF is mapped. These sub-divisions of the universe of discourse are usually uniform

but in certain cases some MFs can accumulate in zones where a more accurate control

(higher sensitivity) of the controller is desired and sparse elsewhere.

March [71] noted some interesting points which should be taken into account while defining

the domain of MFs:

- Every point in the universe of discourse should belong to the domain of at least

one MF.

- Two MFs cannot have the same point of maximal meaningfulness

- When two MFs overlap, the sum of membership grades for any point in the

overlap should be to 1.

Scope
10 20 30 40 0

Universe of Discourse

1

0

hot warm normal cool cold

T°

Figure 3.7 Graphical representation of a fuzzy variable with 5 fuzzy sets

Fuzzy Logic Chapter 3

36

- When two MFs overlap, the overlap should not cross the point of maximal

meaningfulness of either MF.

Another characteristic to be considered is the subdivision of the universe of discourse. This is

usually uniform, but in some applications the MFs can be denser in certain zones if higher

sensitivity of the controller is desired.

3.4 Number and Degree of Overlapping of Membership Functions

The number of MFs for each controller input as well as the shape and the overlapping

degree of the antecedents of the MFs has a strong influence on the characteristic of the fuzzy

logic controller.

The larger the number of MFs, the finer the fuzzy partitions of the controller inputs (higher

resolution) the better the approximation. However, more MFs means a larger number of

linguistic rules in the rule-base component and hence more computation complexity.

Moreover, this causes rapid firing of the fuzzy conclusions for changes in the inputs, resulting

in large output changes, which may cause instability in the system. On the contrary, few MFs,

result in a coarse fuzzy partitions of the input variables. With a reduced number of rules, the

controller does not require an intensive computation, it may however, cause a slower response

of the system and may even fail provide sufficient output control in time to recover for small

input changes. To date, there is no systematic approach to have an optimal fuzzy partition of

the fuzzy input/output, a rule of thumb is to have at least three and at most nine MFs for each

controller input [73].

The overlapping degree of the antecedents of MFs greatly influences the form of the

output of the fuzzy logic controller. Small overlapping degrees generate step characteristics,

whereas higher overlaps between MFs promote higher robustness of the controller and

generate smoother curves at the output.

3.5 Linguistic Variables and Linguistic Values

Fuzzy Logic Chapter 3

37

 A sensor measures a variable and provides a numerical and precise value to the user.

Human perception however, evaluates a variable in linguistic terms i.e, in words. In order to

incorporate human perception into engineering systems in a systematic manner, input and

output variables of fuzzy logic based control systems are represented by variables that take

words as values [72]. Just as a variable that takes on a numerical value, for example 123.4, is

called an algebraic variable, a variable that can take words or sentences in natural or artificial

languages as its values is called a linguistic variable. These words or sentences, which form a

term set, are characterized by fuzzy sets defined in the universe of discourse in which the

variable is defined. A fuzzy partition, then, determines how many fuzzy sets should exist in

the term set, a number that determines the granularity of the linguistic variable. For example,

if cold, warm, hot, etc are values of temperature, then temperature is a linguistic variable and

these words are linguistic terms, values or labels.

 In control systems, the linguistic variables are usually the error and the rate of change of

error where a term set is associated to each linguistic variable. The term set is usually

represented by the linguistic values or labels {NL, NM, NS, AZ, PS, PM, PL} where NL

means “Negative Large”, NM “Negative Medium”, NS “Negative Small”, AZ “Approximate

Zero”, PS “Positive Small”, etc.

 The linguistic variables and the linguistic values provide a mean for the expert to express

his/her ideas about the decision-making process.

4 Fuzzy IF THEN Rules

 Knowledge is the main source of intelligence [72]. In fuzzy control, knowledge is

expressed by a fuzzy rule-base model where each fuzzy linguistic rule is represented by a

fuzzy IF-THEN statement. The fuzzy conditional statement is symbolically expressed as:

 IF < fuzzy proposition > THEN < fuzzy proposition >

where, a fuzzy proposition can have a value within the interval [0, 1].

Fuzzy Logic Chapter 3

38

 The fuzzy proposition can be either an atomic or a compound proposition. An atomic

proposition is a single statement such as “IF Speed is Slow THEN… “ . Whereas a compound

proposition is made up of two or more atomic propositions connected by fuzzy union (OR) or

intersection (AND) operators such as “IF e is Large AND e is small THEN…”.

 The IF-THEN linguistic rule consists of two parts: the “antecedent” (or premise) is the

block between the IF and THEN constructs whereas the “consequent” (or conclusion) is the

block following the THEN construct.

 For example, the Mamdani-type fuzzy IF-THEN rule with multiple conjunctive

antecedents has the following form:

 IF x1 is A1 AND x2 is A2 AND … AND xN is AN THEN y is B (3.21)

where xi, i = 1, 2, …, N and y are the input and output linguistic variables of the fuzzy system

respectively. The Ai’s and B are the linguistic values of the linguistic variables xi’s and y in

the universes of discourse Xi’s and Y respectively.

If standard mathematical notation for IF-THEN and AND is used, the above rule can be

reformulated as follows:

 A1 (x1) A2 (x2) … AN (xN) => B (y) (3.22)

or µA1 (x1) µA2 (x2)
… µAN (xN) => µB(y) (3.23)

 where

µA1 (x1) µA2 (x2)
… µAN (xN) = min { µA1 (x1), µA2 (x2), … , µAN (xN)} (3.24)

5 Properties of Fuzzy Rules

 The fuzzy rule-base included into the knowledge base of a fuzzy control system consists

of a set of fuzzy rule list. For the fuzzy system to exhibit excellent performances the set of

fuzzy rules should cover all the possible situations that the system may face. Moreover, there

should not be any conflict among the fuzzy rules, while satisfying continuity. In other words,

Fuzzy Logic Chapter 3

39

the fuzzy rule list should fulfil the following three characteristics: completeness, consistency,

and continuity.

 In order to define the above characteristics, it is desirable to consider a two-input one-

output fuzzy control system. The input linguistic variables x1 and x2 are partitioned into N and

M subspaces respectively, and represented by A1,A2, …, AN and B1, B2, …, BM on the

universe of discourse X. Table 3.1 shows the fuzzy rule list in the matrix form. The size of

the rule matrix depends on the number of system’s inputs and the number of fuzzy subspaces

representing these inputs. In general, the size of the matrix is the product of the fuzzy

subspaces of the system’s inputs.

5.1 Completeness

 A set of fuzzy IF THEN rules {Ri, i = 1, 2,…, (NxM)} is complete, if for any x X it

produces an appropriate output value for any possible combination of input values.

Formally, completeness can be expressed as

 (x1, x2): hgt((x1, x2)) > 0

where denotes the output function of crisp inputs x1 and x2.

5.2 Consistency

 A set of fuzzy IF THEN rules is consistent if it does not include any contradictory rule.

That is, two fuzzy rules with the same antecedent (IF part of rule) have mutually-exclusive

rule consequents (THEN part of rule), as for example

x2 y
B1 B2 B2 B2 … BM

A1 R1,1 R1,2 R1,3 R1,4 … R1,M
A2 R2,1 R2,2 R2,3 R2,4 … R2,M
A3 R3,1 R3,2 R3,3 R3,4 … R3,M
A4 R4,1 R4,2 R4,3 R4,4 … R4,M

…

 ……

x1

AN RN,1 RN,2 RN,3 RN,4 … RN,M

Table 3.1 The NxM set of fuzzy if-then rules in matrix form

Fuzzy Logic Chapter 3

40

 Ri: IF RPQ THEN C

 Rj: IF RPQ THEN C

5.3 Continuity

 To define continuity we need the notion of fuzzy rule neighbourhood or adjacency. The

neighbor rules of rule Ri,j are R(i-1),j; Ri,(j-1); Ri,(j+1); R(i+1),j.

 A set of fuzzy IF THEN rules satisfies continuity if there is no such a pair of neighboring

rules whose consequent fuzzy sets have empty intersection (are disjoint). The continuity of

fuzzy rules provides the continuity of controller output which is a desirable feature in control

applications.

 When designing fuzzy logic control systems, completeness, consistency and continuity in

rule-base must be ensured otherwise, the system may encounter severe problems like

instability and/or oscillations behaviour [69], [73].

6 Fuzzy Logic Controller

 Fuzzy control is based on fuzzy logic. It provides a formal methodology for representing,

manipulating and implementing a human’s heuristic knowledge, rather than traditional logical

systems, about how to control a system. The fuzzy logic controller which is an approximate

reasoning-based controller is a static nonlinear mapping between its inputs and outputs [72].

Similar to a conventional controller, from outside, both the input and output values of the FLC

are crisp values. The input values consist of measured values from the controlled plant or

some control errors computed from the measured values.

 Figure 3.8 Shows the structure of a generic Mamdani-type fuzzy control system with n

inputs xi Xi where i = 1, 2, … , n and m outputs yi Yi where i = 1, 2, … , m where the

crisp sets Xi and Yi are universes of discourse for xi and yi respectively.

 The fuzzy system is composed of four principle modules: a fuzzification interface, a fuzzy

knowledge-base, a fuzzy inference mechanism and a defuzzification interface. The processes

Fuzzy Logic Chapter 3

41

performed by these modules are executed sequentially. That is, before being processed by the

inference engine, the real-world (crisp) data inputs must first be fuzzified. Next, the

defuzzifier takes as inputs the fuzzy conclusions from the inference engine and provides a

result which will serve as an input to the object of control.

6.1 Fuzzification Interface

 The first step in the fuzzy inference process is fuzzification. This mathematical encoding

procedure is performed by the fuzzification interface module. This module transforms the

crisp inputs applied to the fuzzy logic controller into fuzzy sets. Each crisp input will have its

proper set of MFs within the universe of discourse set, a set that holds all relevant values that

the crisp input can possess. The universe of discourse is partitioned into a number of fuzzy

sets where a MF is associated with each set. In general, the fuzzification interface module

performs the following functions:

i- Reads the real-world values of the input state variables,

ii- Performs a scale mapping that transfers the range of values of input variables into

the corresponding universe of discourse.

iii- Takes as inputs these scaled data and convert them into suitable linguistic format

by means of MFs used to quantify linguistic terms.

6.2 Fuzzy Knowledge-Base

 FLC

x

Fuzzifier
Interface

Fuzzy
 Inference

Engine

Fuzzified
Inputs

y

Database

Rule Base

Defuzzifier
Interface

Knowledge Base

Input
MFs Fuzzy

Conclusions

Output
MFs

Figure-3.8. Structure of a generic Mamdani type fuzzy logic controller.

m n

Fuzzy Logic Chapter 3

42

 The fuzzy knowledge base encapsulates the human expert knowledge. This critical

module for the performance of the fuzzy logic controller has two sections: a database and a

rule base.

 The database provides the necessary definitions for the fuzzification module, the rule base

component and the defuzzification interface module. It contains the MFs of the input and

output linguistic variables and the fuzzy sets used in the fuzzy rules. In addition, the database

includes fuzzy set definitions as well as other data (normalization/denormalization scaling

factors, processing periods, etc) which are required during the inference process.

 The rule base of the controller is actually a list of fuzzy conditional IF-THEN statements

that quantify the actions a human expert would take to achieve a good control.

6.3 Fuzzy Inference Mechanism

 The fuzzy inference engine is the kernel of the FLC. This crucial module emulates the

human expert’s decision-making about how to best achieve a desired control strategy of the

plant. It employs the linguistic rules provided by the rule-base component included in the

knowledge base module and the relevant fuzzified state variable inputs of the controlled

system to infer the fuzzy control actions for the controlled object. The combination of this

engine and the knowledge base constitutes the process of fuzzy reasoning system of a FLC.

 The management of the fuzzy linguistic rules and the relevant fuzzified state variable

inputs to obtain the fuzzy control actions is one of the most important concerns in fuzzy

control systems. It is the inference mechanism. This latter consists of two sub-functions: (1)

fuzzy implication, and (2) aggregation of fuzzy conclusions.

6.3.1 Fuzzy Implication

 Irrelevant of what the form and number of fuzzy rules we may have in the rule-base, the

main concern is how to interpret the meaning of each rule. That is, the process to determine

Fuzzy Logic Chapter 3

43

the influence produced by the antecedent part of the fuzzy rule on the conclusion part of the

rule. This procedure is known as the fuzzy implication.

 There are many possible ways to define these implications. Two of the most commonly

used in control applications are: (1) the min(.), (known as Mamdani’s fuzzy implication)

which truncates the consequent’s membership function and, (2) the algebraic-product (known

as the Larsen’s fuzzy implication) which scales it.

 In order to illustrate these two fuzzy implication types, we consider a fuzzy system with

two inputs x1 and x2 and a single output y is described by a set of linguistic IF-THEN rules in

the Mamdani’s form

 Ri: IF x1 is i
1A AND x2 is i

2A THEN y is iB for i= 1, 2,…, n (3.25)

where is i
1A and i

2A are the fuzzy sets representing the i-th antecedent membership function

pairs and the iB is the fuzzy set representing the i-th conclusion.

For the i-th rule, the fuzzy implication function is given by

 iRµ (x1, x2; y) = Ii (iA
µ

1
(x1), iA

µ
2
(x2)) for i= 1, 2, …, n (3.26)

where Ii is an implication function.

i- The Mamdani’s implication is defined by the min(.) operator as:

iBµ (y) = min (iA
µ

1
(x1), iA

µ
2
(x2)) for i= 1, 2, …, n (3.27)

ii- The Larsen’s implication is defined by the product operator as:

iBµ (y) = iA
µ

1
(x1) * iA

µ
2
(x2) for i= 1, 2, …, n (3.28)

6.3.2 Aggregation of Fuzzy Conclusions

Aggregation is the process of combining into a single fuzzy set the results of the fuzzy

rules obtained during the fuzzy implication phase. In fuzzy control, the individual rule-based

inference engine is usually used to compute the contribution of each activated (fired) rule. The

individual rules can be aggregated into a variety of ways. The most commonly used

Fuzzy Logic Chapter 3

44

aggregation operators are the maximum, the sum and the probalistic sum. Out of these three

operators, the best-known in literature and most frequently applied is the maximum. When

combined with the min(.) or product fuzzy implication operators, yields the well known Max-

Min also known as the Mamdani‘s inference method or the Max-Prod or the Larsen’s

inference method.

In the Max-Min inference, the membership functions of the fuzzy sets of the consequents

are limited to the degree of truth and in turn combined into a single fuzzy set by forming a

maximum, equation 3.29.

aggrBµ (y) =
i

max [min [iA
µ

1
(x1), iA

µ
2
(x2)]] for i= 1, 2, …, n (3.29)

 In the Max-Prod however, the membership functions of the fuzzy sets of the consequents

are multiplied with the degree of truth of the condition and then combined, equation 3.30.

aggrBµ (y) =
i

max [iA
µ

1
(x1) * iA

µ
2
(x2)] for i= 1, 2,…, n (3.30)

 Equations 3.27, 3.28, 3.29 and 3.30 are graphically represented in Figure-3.29. In this

figure each fuzzy rule antecedent and inference are shown in a separate line. The aggregation

Figure-3.9. Graphical representations of the Max-Min and Max-Prod inference
 methods of two rules of a two inputs system two with crisp inputs.

Rule 1

Rule 2

1
1A 1

2A

2
2A 2

1A

1B 1B

2B 2B

y

µ

µ

µ

µ

µ

µ

µ

µ

x1

x1

x2

x2
µ µ

y

y

y

y y

Antecedent MFs

Max-Min Max-Prod

Product

Product

Min

Min

Consequent MFs

Fuzzy Logic Chapter 3

45

of the consequents fuzzy sets are also shown vertically for both Max-Min and Max-Prod

operators. The symbols 1
1A and 1

2A refer to the first and second fuzzy antecedent of the first

fuzzy rule, while the symbol 1B refers to the fuzzy consequent of the first rule. Similarly, the

symbols 2
1A and 2

2A refer to the first and second antecedent of the second rule, and the symbol

2B refers to the fuzzy consequent of rule 2.

 In the min(.) fuzzy implication, the inferred output of each rule is a fuzzy set chosen from

the minimum firing strength, whereas the Max-Min inference is the fuzzy union of the

resulting fuzzy conclusions, column 3. Graphically, the union of these two membership

functions is the outer envelop of the two shapes.

 In the product fuzzy implication, the inferred output of each rule is a fuzzy set scaled

down by its firing strength via algebraic product, whereas the Max-Prod inference is also the

fuzzy union of the resulting fuzzy conclusions of the fuzzy implications, column 4.

6.4 Defuzzification Interface

 Defuzzification is the final step in the fuzzy logic program. Although it is a part of the

fuzzy controller, the sole reason of this module is to provide an interface between the fuzzy

set domain and the real world crisp domain.

 This mathematical decoding procedure is a mapping of fuzzy set actions, defined over an

output universe of discourse, implied by the fuzzy inference engine, into a space of non-fuzzy

actions. In this context, the resulting crisp value should provide the best representation of the

information inferred by the inference module.

 Assume we have the result in Figure-3.10 at the end of the fuzzy inference procedure.

µ

y

- 1

Figure-3.10 Example of defuzzification for two-rule fuzzy inference

Fuzzy Logic Chapter 3

46

 In this figure, the shaded area represents the fuzzy action result. The purpose of the

defuzzification module is to obtain a crisp value (represented by a dot in the figure) from the

fuzzy result.

 There exist different defuzzification techniques proposed in the literature for defuzzifying

a fuzzy set described by a membership function. These techniques can be classified into two

principle groups based on their technical and structural characteristics [74]. They are: maxima

methods and distribution methods. Some of the most common defuzzifying techniques from

both classes will be described and graphically represented in the following sections.

6.4.1 Maxima Methods

 The maxima methods have the common property that they select an element from the core

of a fuzzy set as defuzzification value. The strength of maxima methods is their simplicity and

speed of execution because they require passing through values of the core only.

 The process consists in choosing the fuzzy set with the highest membership. The

remaining fuzzy sets are ignored and hence their information is lost. These defuzzifying

methods are not well suited in fuzzy logic controllers because they cannot guarantee the

continuity of the controller [72]. Maxima techniques can be classified as the first, the last or

the median maxima. These give rise to the following defuzzification techniques:

i- First of maxima (FOM)

ii- Last of maxima (LOM)

iii- Middle of maxima (MOM)

6.4.1.1 First Of Maxima (FOM)

 The FOM, also called the left most maximum, method uses the union of the fuzzy sets and

takes the smallest value of the domain with the maximum membership degree, which is

expressed as:

Fuzzy Logic Chapter 3

47

 y* = inf { y Y |)y(µB = hgt(B)} = min core(B) (3.31)

where hgt(B) is the highest membership of B.

6.4.1.2 Last Of Maxima (LOM)

Similarly, the LOM, also called the right most maximum, method uses the union of the fuzzy

sets and takes the greatest value of the domain with the maximum membership degree, which

is expressed as:

 y* = sup { y Y |)y(µB = hgt(B)} = max core(B) (3.32)

where inf denotes infimum (greatest lower bound) and the sup denotes supremum (least

upper bound).

6.4.1.5 Middle Of Maxima (MOM)

 The middle of maxima is taken as the average of the above two values. The MOM is

expressed as

 MOM (B) =
2

core(B)max core(B) min (3.33)

These three defuzzifying methods are illustrated in Figure-3.11.

6.4.2 Distribution Methods

The main characteristic of this group of methods is that the output fuzzy set MF is treated as a

distribution for which the average value is evaluated. Among the many methods using this

structural concept, we can list:

Figure-3.11. First, Middle and Last of Maxima defuzzification methods

y

µ
FOM

MOM
LOM µmax

Fuzzy Logic Chapter 3

48

i- Max-membership method

ii- Weighted average method

iii- Mean-max

iv- Center of Gravity COG

v- Center of Gravity for Singleton (COGS)

6.4.2.1 Max-Membership Defuzzifying Method

 The Max-membership method is also known as the height method. The crisp value is

obtained by considering the peak value of the fuzzy output function. This method is described

by the following expression:

 *)y(µB)y(µB for all y Y (3.34)

where y* is the defuzzified value as illustrated in Figure-3.12.

6.4.2.2 Weighted Average Method

 This method is restricted to symmetrical output membership functions only. It is described

by the expression:

 y* =
)y(µ
y)y(µ

cB

ccB (3.35)

where denotes the algebraic sum and yc is the centroid of each symmetrical membership

function. Figure-3.13 Illustrates this defuzzification method.

Figure-3.12. Max-membership defuzzification method

y

µ

y*

Figure-3.13 Weighted average defuzzification method

y

µ

a b

Fuzzy Logic Chapter 3

49

6.4.2.3 Center of Gravity (COG)

This is the most prevalent and physically appealing of all the defuzzification methods

[70]. This method uses the same technique employed to calculate the center of gravity of

mass. The defuzzified value is determined as the abscissa of the centroid of the single

geometric shape representing the fuzzy output action of the fuzzy system. The centroid

divides the area under the membership function into two areas of equal size, Figure-3.10.

The center of gravity defuzzified method in the discrete form is defined as:

 COGy = M

1i
iB

i
M

1i
iB

)y(µ

y)y(µ
 for i = 1, 2, …, M (3.36)

where COGy is the centroid of the area which is the defuzzified value of the combined

overlapped conclusion fuzzy sets of fired rules, M is the number of rules, iy is the centroid of

the area under the membership function Bµ and)y(µ iB is the membership value of iy .

Although less convenient for hardware implementation because it requires a large number

of multipliers as well as the fact of passing through the whole universe of discourse of the

output variable, nevertheless, its continuity and the smoothness of changes of defuzzified

values makes it a convenient choice in fuzzy controllers.

6.4.2.4 Center of Gravity for Singleton (COGS)

 Center of gravity for singleton or COGS defuzzification method is the most widely

applied in industry [75]. It has similar smoothness properties of the COG method but it is

simple and has relatively good computational complexity.

 A rule of a singleton fuzzy system has the following form:

 Ri: IF x1 = i
1A AND x2 = i

2A AND … AND xM = i
MA THEN y = si (3.37)

Fuzzy Logic Chapter 3

50

where si is a real value called the singleton of rule i. It determines the position of the output

membership function of each rule which is a singleton.

 The computation of the control signal value simplifies to a weighted sum since the output

MFs do not overlap.

 The crisp output value is calculated using the expression of equation (3.38). Singletons is

are weighted by fuzzy output membership iµ for M such outputs, normalized to a degree of

truth of 1.

 COGSy = M

1i
ii

i
M

1i
ii

)s(µ

s)s(µ
 for i = 1, 2, …, M (3.38)

where COGSy denotes the result of defuzzification, M denotes the number of singletons, is is

the position of the output singleton i on the output variable universe of discourse and)s(µ ii

denotes the degree of truth of rule i according to the fuzzy implication.

Fuzzy Logic Chapter 3

51

FPGA Technology Chapter 4

Chapter 4

FPGA Technology

1 Introduction

FPGAs are at the leading edge of each new technology node. They are one of the largest

growing segments of the semiconductor industry. An FPGA is a semiconductor device. At the

highest level, it is a highly configurable silicon chip. This digital integrated circuit (IC) is

designed to be electrically configured by the customer after manufacturing to become almost

any customized digital system.

FPGAs belong to a large family of field programmable devices (FPDs). The three main

categories of FPDs are: simple programmable logic devices (SPLDs), complex PLDs

(CPLDs), and FPGAs. FPDs have grown from being used as simple “glue logic” to provide

programmable connectivity (such as address decoding, bus extender, etc) between major

components to today’s FPGAs where complete multi-processing system designs can be

implemented on a single chip.

The purpose of this chapter is to give an insight to the reader of the challenges to

implementing digital controllers with FPGAs. It describes a new paradigm which consists of

integrating the microprocessor and the FPGA architecture into a single device. In section two,

we relate a brief historical perspective of programmable logic. Section three deals with the

architecture of FPGAs. The last section is dedicated to the emerging technology the SoPC

along with one of the most versatile and industry-standard processor from Altera’s FPGA

design, the Nios® II soft core processor.

52

FPGA Technology Chapter 4

2 History and Evolution of Programmable Logic devices

The origins of the contemporary FPGA are tied to the development of the first silicon

chip invented in the early 1960s by Jack Kilby and Robert Noyce. This showed that it is

possible to integrate components on a single block of semiconductor material, hence the name

integrated circuit or IC [76].

 The process of designing digital hardware has changed dramatically over the past five

decades. In the 1960s-1970s and prior the invention of programmable logic, designer of

digital logic systems used standard logic devices, the popular Texas Instruments 74xx series

of Small Scale Integration and Medium Scale Integration (SSI and MSI) Transistor Transistor

Logic (TTL) and the CMOS 4000 series to load printed circuit boards (PCBs). It was the era

of hard-wired logic, where the principal concern was to create a design with as few chips as

possible in order to reduce cost and minimize board area. Moreover, it necessitated the

manufacture of a large number of device types requiring shelves full of data books just to

describe them. It also required the designer to design with current device inventory in mind.

 Starting from the mid-1970 however, a series of PROM-based ICs were introduced with

the idea to have programmable hardware. This concept provided a new way of implementing

logic functions. Although the first programmable hardware was the programmable read only

memory (PROM), it is in 1975 that Ron Cline from Signetics introduced the first truly

programmable logic device (PLD), the programmable logic array or PLA. The PLA is a two-

programmable planes device. These two planes provided any combination of “AND” and

“OR” gates as well as sharing of AND terms across multiple ORs. This architecture was very

flexible but at that time (10 µm technology) made the device relatively slow and hard to

configure because of the limited software tools [77]. To overcome the weaknesses of both the

PLA and the PROM, Monolithic Memories Inc (MMI) developed the programmable array

logic or PAL. This device has a programmable AND array feeding a fixed OR array.

53

FPGA Technology Chapter 4

Registered and non-registered PALs were available. The combinational PALs were used to

implement Boolean logic functions and could replace a handful of 74xx ICs while registered

PALs allowed the implementation of finite state machines. The PAL was a success compared

to the PLA and PROM. In literature, PROMs, PLAs and PALs are commonly called simple

programmable logic devices or SPLDs.

 The advancement in semiconductor technology and the idea of extending the SPLD

further produced a device with higher capacity, the complex PLD or CPLD. The general

architecture of a generic CPLD is depicted in Figure-4.1. It includes an array of blocks called

logic array blocks (LABs), a programmable interconnect array or PIA and general-purpose

input-output pins. The PIA is capable of connecting any LAB input or output to any other

LAB. Also, the inputs and outputs of the chip connect directly to the PIA and to LABs.

 CPLDs brought a new dimension to programmable logic because of the large amount of

logic that could fit in a single chip. In theory, we could keep adding logic array blocks to a

CPLD to continue the increase of the available logic. However, the extra routing required in

the programmable interconnect array for routing between all these logic blocks increases

PIA

I/O
 C

on
tr

ol
 a

nd
 P

in
s

I/O
 C

on
tr

ol
 a

nd
 P

in
s

Figure-4.1 Generic structure of a CPLD

Logic
Array
Block

Logic
Array
Block

Logic
Array
Block

Logic
Array
Block

Logic
Array
Block

Logic
Array
Block

54

FPGA Technology Chapter 4

exponentially until the amount of routing fabric overtakes the amount of the actual logic.

 At the end of 1984, instead of surrounding the PIA with logic blocks, Xilinx co-founder

Ross Freeman and Bernard Vondershmitt came up with a new arrangement. They reorganized

the logic blocks named configurable logic blocks (CLBs) as a two-dimensional array of

CLBs. These blocks can be interconnected via horizontal and vertical routing channels,

similar to the streets in a large city. The first commercially viable FPGA in is born. It is the

XC2064. It contains 64 CLBs and surrounded by 58 general-purpose input-output blocks or

IOBs. The first FPGA has the equivalent of 2000-ASIC-gate (i.e., 2-input NAND).

3 Architecture of FPGAs

Figure-4.2 depicts the architecture of the early FPGA which is a regular array of

programmable logic blocks and programmable interconnect matrix. It comprises

programmable logic units that Xilinx calls a configurable logic blocks (CLBs) and what

Altera refers to as logic array blocks (LABs) that can be used to realize different digital

functions. These logic units are surrounded by a configurable ring of general-purpose I/O pins

named input-output elements IOEs by Altera and input-output blocks, IOBs by Xilinx. The

FPGA also includes programmable interconnect to allow different blocks to be connected

together. In the remaining of this chapter, we will deal with Altera FPGAs and notations.

IOE or IOB

LAB or CLB

Interconnect
Wires and Switches

Figure-4.2 Generic structure of an early FPGA

55

FPGA Technology Chapter 4

3.1 Logic Element

 The core block in the Altera low cost cyclone device family of FPGAs is the logic element

(LE). LEs are compact and provide advanced features with efficient logic usage [78]. Figure-

3.3 illustrates a typical block diagram of a LE structure. The LE features a 4-input look-up

table (LUT), the carry chain connection and a programmable register (or flip flop). The LUT

is a function generator that can implement any function of four variables of a combinational

logic in an FPGA. It is internally implemented as a set of 2:1 multiplexers functioning as a

24:1 multiplexer. Multiplexer inputs are programmable, while select lines are the inputs of the

implemented functions. The sequential part of the LE comes from the programmable register,

which can be configured as a D, T, or JK flip-flop. The carry chain logic is required to link

the LE to other LEs. It also supports both register packing and feedback.

3.2 Logic Array Block

Moving one level higher in the hierarchy, we have the logic array block or LAB. The

LAB consists of 10 to 16 LEs, LAB control signals, LE carry chain, register chain and local

interconnect. Figure-3.4 depicts block diagram of a Cyclone II LAB.

 The local interconnect transfers signals between LEs in the same LAB. Register chain

connections transfer the output of one LE’s register to the adjacent LE’s register within a

LAB [78]. The LAB local interconnect is driven by column and row interconnects and

4-input
LUT

Carry
Chain

Mux
FF

Figure-4.3 Block diagram of the Altera logic element

56

FPGA Technology Chapter 4

LE outputs within the same LAB.

3.3 Adaptive Logic Module

 In the high performance FPGAs such as the Stratix family, Altera extended the concept of

the LE to lead to the so-called adaptive logic module or ALM. The ALM provides advanced

features with efficient logic usage and is completely backward-compatible. Each LAB in the

Stratix-III and above is composed of 10 such ALMs that can be configured to implement

logic functions, arithmetic functions, and register functions.

Figure-4.5 illustrates the high-level block diagram of the Altera Stratix-V ALM [79].

Each ALM contains an 8-input LUT which can be fractured into several possible

configurations including two completely independent 4-input LUTs, or a 3-input and 5-input

LUTs or a 6-input and 6-input LUTs where 4 of them are common to both LUTs. The ALM

also includes two dedicated embedded full adders for fast arithmetic/carry chain and four

dedicated registers (flip-flops) for the implementation of sequential functions.

Figure-4.4 Block diagram of a Cyclone II LAB [78]

LEs

57

FPGA Technology Chapter 4

3.4 Integrated Functional Blocks

 Early FPGAs were a homogenous sea of logic elements, I/Os and interconnects. Modern

FPGA devices are heterogeneous. Only 40% of the area of an FPGA is a logic fabric, the rest

of the chip contains an unprecedented level resources: configurable embedded SRAM, high-

speed transceivers, high-speed I/Os, embedded multiplier blocks and even embedded hard

core processors.

3.4.1 Embedded RAM Blocks

 A lot of applications require the use of memory. Today’s FPGAs include relatively large

chunks of embedded RAM. These devices might contain anywhere between tens to hundreds

of these RAM blocks. Figure-4.6 shows an M4K RAM block of used in the Cyclone family

of FPGAs. Each M4K block can implement various types of memory, including true dual-

port, simple dual-port, and single-port RAM, ROM, and first-in first-out (FIFO) buffers. The

R4, C4, and direct link interconnect from adjacent LABs drive the M4K block local

interconnect. The M4K blocks can communicate with LABs on either the left or right side

Figure-4.5 High-level block diagram of the Altera Stratix-V ALM [79]

58

FPGA Technology Chapter 4

through these row resources or with LAB columns on either the right or left with the column

resources. Up to 16 direct links input connections to the M4K block are possible from the left

adjacent LAB and another 16 possible from the right adjacent LAB.

3.4.2 Embedded Multiplier Blocks

 Multiplication operations are required by a lot of applications. Time execution of these

operations is inherently long if implemented by connecting a large number of programmable

logic blocks together using schematic capture of HDL. For this reason modern FPGA devices

incorporate special hardwired multiplier blocks optimized for multiplier-intensive digital

signal processing (DSP) functions, such as finite impulse response (FIR) filters, fast Fourier

transform (FFT) functions, and discrete cosine transform (DCT) functions. These blocks are

often located close to embedded RAM blocks. Figure-4.7 depicts the architecture of an

embedded multiplier block contained in the Cyclone family of FPGAs.

 The embedded multiplier consists of the multiplier block, the input and output registers

and input and output interfaces. Control signals are provided to control the representation of

the operands. The latter can be either signed or unsigned operands. The embedded multiplier

Figure-4.6 An M4K RAM embedded memory block in a Cyclone FPGA [78]

59

FPGA Technology Chapter 4

block can be used as an 18-bit or 9-bit multiplier. In 18-bit multiplier, it supports a single 18 x

18 multiplier, in 9-bit configuration, it can support two 9 x 9 independent multipliers.

 Figure-4.8 shows the embedded multiplier routing interface. The R4, C4, and direct link

interconnect from adjacent LABs drive the embedded multiplier row interface interconnects.

The embedded multipliers can communicate with LABs on either the left or right side through

these row resources or with LAB columns on either the right or left with the column

Figure-4.7 Architecture of an embedded multiplier block in a Cyclone FPGA [78]

Figure-4.8 Architecture of an embedded multiplier block in a Cyclone FPGA [78]

60

FPGA Technology Chapter 4

resources.

3.4.3 Gigabit Transceivers

 Today’s high-end FPGAs include special hard-wired gigabit transceiver blocks. They

operate at incredibly high speeds allowing them to transmit and receive billions of bits of data

per second.

3.4.4 Embedded Processor Cores

 The majority of designs make use of microprocessors in one way or another. Until

recently, these appeared as discrete standard off-the-shelf devices on the circuit board.

Starting mid-2000, a new semiconductor process allowed major vendors of FPGAs to offer

high-end FPGA devices with embedded hard processors along side with the FPGA fabric.

Altera Corp offers mid-range Arria V SoC and low-cost Cyclone V SoC FPGA devices with

integrated dual-core ARM® (Advanced RISC (Reduced Instruction Set Computer) Machine)

Cortex™-A9 MPCore™ processor operating at 1.05 GHz and 925 MHz respectively. These

SoCs FPGA integrate an ARM-based hard processor system (HPS) consisting of processor,

peripheral, and memory interface with the FPGA fabric using a high-bandwidth interconnect

backbone. The high-end and highest bandwidth FPGA devices (100 Gbps), the Stratix 10,

includes a 64-bit quad-core ARM Cortex™-A53 processor in its 14 nm FPGA fabric [80].

Xilinx [81] also has integrated hard core processors in its FPGA devices. The high-end

Virtex-4 (and above) and the mid-range Kintex family of FPGA include one or two IBM

PowerPC 405 or 440 32/64-bit processor cores, whereas the Zynq-7000 (lastest of Xilinx) all

programmable SoC integrates a dual-core ARM® Cortex™-A9 processor.

 Today, it makes sense to move all of the tasks used to be performed by the external

microprocessor into the internal core [82]. This provides a number of advantages the least of

which are reduced cost, and reduced circuit board while improving performance and

maximizing reliability.

61

FPGA Technology Chapter 4

4 FPGA Programming Technologies

Three technologies are nowadays available for implementing reconfigurable FPGAs.

These are defined based on the way the routing between logic elements is configured. They

are: SRAM-, Flash- and Antifuse-based FPGAs.

4.1 SRAM-Based FPGA

 The dominant type of FPGA devices is SRAM-based. This type is at the forefront of

FPGA technology, all large FPGAs are use this technology. Static memory cells are

distributed throughout the FPGA fabric to provide configurability. These memory cells (an

array of latches) is used to program interconnect and look up table (LUT) function levels.

Their major advantage is that new design ideas can be quickly implemented and tested. The

main downside is their volatility. Whenever the device is powered-off, the array of latches is

cleared losing the configuration of the design (bit-stream information) mapped into the FPGA

chip. Therefore, a back up battery is required when power is removed from the system, or the

programming information must be stored in a non-volatile media so that the FPGA can be

configured at power-on. In general, an electrically erasable programmable read only memory

(EEPROM) or flash memory device is used for this purpose.

4.2 Antifuse-Based FPGA

 Antifuse programming technology is one-time programmable (OTP), that is, it cannot be

used for prototyping. Moreover, unlike SRAM-based FPGAs which are configured on site,

antifuse-based FPGAs are configured off-line using a special device programmer. Antifuse

are non volatile. This feature is of particular interest in some applications such as military and

aerospace because of high radiation tolerance. This type of FPGA is only fabricated by

Microsemi (previously Actel).

4.3 Flash-Based FPGA

 Flash-based FPGAs use non-volatile memory cells to provide configurability. Their main

62

FPGA Technology Chapter 4

advantage is they do not require an external non-volatile memory to hold the configuration

information of the design. The major downside of this technology is the relatively smaller

density of integration, that is, flash cells are much larger than SRAM cells. They are also used

in military and aerospace because of high radiation tolerance.

5 Applications of FPGAs

 Nowadays, FPGA devices are everywhere. They are widely used in both research and

industry. They provide market solutions and are key elements in a broad range of application

areas. In military applications FPGAs are found in radar and sonar as well as in secure

communications. Modern high definition video camera and displays integrate FPGA in their

circuitry. FPGA devices are widely used in industry. We can find them in motor/motion

control, smart energy, machine vision, medical imaging and industrial Ethernet.

 Another area of application of FPGA devices is application-specific integrated circuit

(ASIC) and application specific standard product (ASSP) prototyping. Because the FPGA

platforms provide a faster, smoother path to delivering an end working product, they are used

in the verification of both register transfer level (RTL) and initial software development of

ASIC and ASSP devices. This standard practice not only provides the opportunity to have a

hardware platform early in the design cycle, it also decreases development time and reduces

the risk of silicon failure.

6 The Nios® II and SoPC Builder

6.1 The Nios® II Processor

 The Netware Input-Output Subsystem, Nios® II, is the Altera’s flagship intellectual

property (IP) second generation soft-core processor. It is a 32-bit embedded processor

designed and optimized for the use in FPGA designs targeting Altera’s mainstream FPGA

families [83-84].

63

FPGA Technology Chapter 4

 It is a general-purpose pipelined scalar Reduced Instruction Set Computer (RISC) and

features Harvard memory architecture (separate instruction and data buses). This load-store

processor core features a full 32-bit data path, instruction word, and address space with

integer only arithmetic logic unit.

 The processor has 32 general-purpose registers with a MIPS-ISA-like (Microprocessor

without Interlocking Pipe Stages – Instruction Set Architecture) instruction format. The

arithmetic and logic operations are performed on operands in the general purpose registers.

Nios® II processor uses a memory-mapped scheme for accessing memory and peripherals,

where each component is assigned a unique set of memory addresses in which byte addresses

in a 32-bit word are assigned in little-endian style. The architecture of the processor has 32

internal hardware interrupts and can support external interrupt controller interface for more

interrupt sources.

 The Nios® II is a soft-core processor. It is a hardware description language (VHDL or

Verilog) model of a specific microprocessor customized as an intellectual property (IP) core.

It can be instantiated and synthesized for an Altera’s FPGA target using the Quartus II

software development suite tools. Unlike a “hard" core processor which is implemented in

dedicated silicon of the FPGA; a soft-core processor is targeted onto the FPGA’s fabric logic

elements.

 The Nios ® II processor comes in three variants cores to trade FPGA area and power

Figure-4.9 The 3 flavors of the Nios® II soft core processor [79].

64

FPGA Technology Chapter 4

consumption for speed of execution. These flavors are: fast, standard and economy, Figure-

4.9. Each core version modifies the number of pipeline stages, cache memories for data and

instructions, number of cycles per instruction, addressable memory space, and hardware or

software implementation of multiplication and division operations and so on.

i- The fast version (Nios® II/f) is designed for performance-critical applications at

the expense of core size. It includes separate optional instruction and data caches,

where caches are implemented in the FPGA memory blocks. It employs a 6-stage

pipeline to achieve maximum DMIPS/MHz. This high performance variant

provides optional hardware multiply, divide, and shift options to improve

arithmetic performance. It executes one instruction per cycle. When the memory

management unit (MMU) is present, the processor can access up to 4 GBytes of

memory.

 To give the processor a fast access to the on-chip memory, the Nios® II fast

core architecture provides optional tightly-coupled memory interface arrangements

(memory connected directly to the processor) for both instructions and data. When

the tightly-coupled memory is present, its access bypasses cache memory.

ii- The standard core version (Nios® II/s) is optimized for medium-performance and

cost-sensitive applications. It employs a 5-stage pipeline. Unlike the fast version,

the standard has an instruction cache, but no data cache.

iii- The economy variant (Nios® II/e) is designed with the smallest possible logic

utilization of FPGA. It is not pipelined (one stage) and contains no cache. It has a

limited feature set, and many settings are not available when this version is

selected, Figure-4.9. The economy variant executes at most one instruction per six

clock cycles. The major advantage of this core is it is licence free while the /f and

/s versions require a $500/year licence.

65

FPGA Technology Chapter 4

While the performance and size are different, the three flavours share the same native

instruction set.

6.2 The SoPC Builder

 The SoPC Builder is a system integration tool included as part of the Altera’s Quartus II

software development tool environment. It is a powerful tool to construct microprocessor-

based systems on an FPGA. It streamlines the process of integrating blocks of intellectual

properties (IPs) and accelerates development of system-on-a-programmable-chip designs

compared to traditional, manual integration methods. The SoPC platform also allows the

integration of custom I/O peripherals and hardware accelerators into a system. The designer is

responsible for the development of hardware as well as the software.

 The tool consists of two major parts: a graphical user interface or GUI and a system

generator program [85]. Figure-4.10 depicts a screenshot of a SoPC builder system. The

menu on the left side is the library of available IP cores from which the designer picks up the

desired components required by the design. This library includes: the Nios® II soft core

processor, microcontroller peripherals such as interval time and general-purpose I/O interface.

The SoPC Builder library contains serial communication components such as the universal

asynchronous receiver transmitter (UART) and the serial peripheral interface (SPI). It also

provides a variety of controllers to interface with off-chip devices such as SDRAM controller

and flash memory interface.

 The central part, the contents page, is where the system is built. The construction of the

system is accomplished by means of a drag-and-drop style. The GUI is used to select and

customize system components from a rich set of pre-made SoPC Builder components. The

required components are dragged and parameterized in the contents page. The connections

panel column shows a graphical representation of how the components are interconnected.

66

FPGA Technology Chapter 4

Finally, the beginning and end of the memory addresses of the various components used in

the in the design are shown under Base and End columns on the right side of the SoPC

Builder GUI window. The addresses of all the slave components can be assigned either

manually or automatically generated by the SoPC builder generator.

 The system interconnect fabric or SIF for memory-mapped interfaces is a high-bandwidth

interconnect structure for connecting components that use the Avalon ® Memory-Mapped

(Avalon-MM) interface. The system interconnect fabric consumes less logic, provides greater

flexibility, and higher throughput than a typical shared system bus. Figure-4.11 shows a

simplified diagram of the system interconnect fabric in an example memory-mapped system

with multiple masters. The SIF logic provides the following functions: Address Decoding,

Datapath Multiplexing, Wait State Insertion, Pipelined Read Transfers, Dynamic Bus Sizing,

Arbitration for Multi-master Systems, Arbiter Details, Interrupts and Reset Distribution [85].

Figure-4.10 Screenshot of a SoPC Builder system

67

FPGA Technology Chapter 4

Figure-4.11 System interconnect fabric with multiple mastering components [85]

68

Design of the Fuzzy Logic Module

Chapter 5

Chapter 5

Design of the Fuzzy Logic Module

1 Introduction

Sun is permanently changing its position in the sky. Everyday, it moves from east to west

between sunrise and sunset; the azimuth movement. It also, moves from north to south

throughout the course of the year; the elevation movement. Because the energy extracted from

the PV panel is at its maximum when the surface of the solar panel is perpendicular to the

sun’s rays, then an ideal tracking system should maintain a solar panel accurately pointing

towards the sun, compensating for both changes in the azimuth and elevation angles of the

sun with respect to the panel throughout the day. It is desirable to develop a control system

based on fuzzy logic methodology to fulfill these requirements.

Fuzzy control is based on fuzzy logic which is close in spirit to human thinking and

natural language [86]. It provides a convenient way to build the control strategy by requiring

only qualitative knowledge for the behavior of the control system. In recent years, fuzzy

control is used to enhance control engineering solutions. It brought high promising

alternatives to conventional controllers by providing higher degree of robustness (immunity to

external disturbance) and by achieving better performances (short rise-time, small overshoot)

over linear controllers [87]. Fuzzy controllers revolutionized the field of control engineering

by their ability to perform process control by the utilization of human knowledge, thus

enabling solutions to control problems for which mathematical models may not exist, or may

be too difficult or computationally too expensive to construct [88].

69

Design of the Fuzzy Logic Module

Chapter 5

2 Structure of the Fuzzy Logic Module

 The high-level fuzzy logic module consists of two independent fuzzy-like PD-type

controllers; one to steer the azimuth angle and one to steer the tilt (elevation) angle of the

dual-axis sun tracker. The module controls the two stepper motors used as mechanical

actuators to position the solar panel’s surface perpendicular to the sun intensity vector to

harness maximum energy from the sun. Figure-5.1 shows the high-level structure of the dual-

axis sun tracking fuzzy logic module.

 The reason behind the use of the fuzzy-like PD-type controller is driven by the fact this

controller has a simple control structure compared to the proportional-integral-derivative

(PID) type gives better sensitivity and increases the overall stability of the closed loop system.

Also, the fuzzy-like PD-type controller reliably predicts large overshoots and adds damping to

the overall closed loop system making it an excellent solution in position control [89].

3 Fuzzy Logic Controller Design Flow

 Most works in fuzzy control use the error and the rate of change of error as input variables

Figure 5.1 Operational block diagram of the intelligent dual-axis sun tracking fuzzy logic module

EW
Stepper
Motor

Sequence
Generator

NS

Stepper
Motor

Sequence
Generator

EEW

cEEW

cENS

ENS

Fuzzification
Interfaces

Inference
Engines

Defuzzification
Interfaces

Crisp
Outputs

70

Design of the Fuzzy Logic Module

Chapter 5

regardless of the complexity of controlled plants [72].

 Figure-5.2 depicts the sun tracking fuzzy logic module with errors and rate of change of

errors generator. The crisp data discriminating the position of the sun in the sky with respect

to the panel’s surface are measured by the data acquisition unit via the ADC interface. The

state variables inputs are the angular error EEW (ENS) defined as the voltage differences

between the signals corresponding to irradiances received on each pair of sensors and its rate

of error change cEEW (cENS). The commonly used approach to obtain these quantities is the

use of differential amplifiers and differentiators. In this work these quantities are computed in

software using the digital error and rate of change of error generator which is implemented

onto the FPGA resources. This approach does not make use of any extra analog components.

It is thereby, more accurate, reliable and cost effective. The evaluation of the angular errors

and their rates of change are given by Equations 5.1 through 5.4, [90].

)k(V_LDR - (k)V_LDR (k)E WEEW (5.1)

)k(V_LDR - (k)V_LDR (k)E SNNS (5.2)

)1k(E -)k(E (k))(E (k)cE EWEWEWEW (5.3)

)1k(E -)k(E (k))(E (k)cE NSNSNSNS (5.4)

where (k)V_LDRi is the digital equivalent value of the sunlight irradiance received on LDRi

and)k(Ei and)1k(Ei are respectively the present and previously measured errors at a one

second (1-sec) sampling time.

 FPGA

1-z-1

EEW

cEEW

ENS

cENS

1-z-1

 +

 -

FLC

Fuzzifier
Interface

Fuzzy
 Inference

Mechanism

Input
Fuzzy Sets SM_EW

 SM_NS

Database

Rule Base

Defuzzifier
Interface

Knowledge Base

Input
MFs

Fuzzy
Conclusions

Output
MFs

A
D

C
 I

nt
er

fa
ce

Data_Reg N

Data_Reg S

8

2

EOC

ST/ALE

Data

Clk

Data_Reg E

Data_Reg W

Ch_Sel

+

 -

Figure-5.2 Sun tracking fuzzy logic module with errors and rate of change of errors generator

71

Design of the Fuzzy Logic Module

Chapter 5

 The fuzzy logic controller design flow consists of the following steps:

- Identify the input state variables and the ranges spanned by each variable.

- Identify the output variables and the ranges spanned by each one.

- Choose appropriate scaling factor for the input variables in order to normalize the variables

to the [0, 1] or [-1, 1] interval.

- The shapes of membership functions have to be fixed.

- The number of membership functions and their locations on the universe of discourse has to

be determined for every input state variable.

- Assign a linguistic label to each membership function

- Create the degree of fuzzy membership function for each variable

- Construct the rule base

- Use fuzzy approximate reasoning to infer the output contributed from each rule.

- Aggregate the fuzzy outputs recommended by each rule.

- Apply defuzzification to form a crisp output

- Choose appropriate post-processing to suite the crisp output of defuzzification module into

actual inputs for the process.

4 The Azimuth Fuzzy Logic Controller

 The state variable inputs of the azimuth fuzzy-like PD-type controller are the angular error

EEW and its rate of change of error cEEW. The universe of discourse for the azimuth angular

error is defined as the maximum deviation from the optimal position of the solar panel with

respect to sun rays. Figure-5.3 illustrates the sun vector hitting a solar panel. The incident

angle is zero when sun rays are normal to the solar panel’s surface. This angle can range

from -90° at sunrise to +90° at sunset.

 +90° -90° West East

Figure-5.3 Incident angle of sunrays with solar panel surface

72

Design of the Fuzzy Logic Module

Chapter 5

4.1 Input/Output Membership Functions

The azimuth error, EEW and the rate-of-change of azimuth error, cEEW are fuzzily

partitioned in seven fuzzy sets with triangle-like membership functions distributed in the

interval EEW [-90°, +90°] and cEEW [-90°/sec, +90°/sec] respectively.

We used seven discrete levels to provide an adequate resolution for the azimuth angle due

to its sensitivity. The size, shape and labels of the membership functions representing the two

input variables are illustrated in Figure-5.4 (a) and (b).

The input variables are quantified into fuzzy sets defined by linguistic labels: Negative

large (NL), Negative Medium (NM), Negative Small (NS), Approximate Zero (AZ), Positive

Small (PS), Positive Medium (PM) and Positive Large (PL).

$00 $4D $75 $80 $B3 $8B

NL NM PL NS AZ PS PM

0° -90° 36° 7.2° -90° -7.2° -36°

$FF

Degrees

µE

$FF

$00

(a)

Sec
Degrees

$00 $4D $75 $80 $B3 $8B

NL NM PL NS AZ PS PM

 -90° 36° 7.2° -90° -7.2° -36°

$FF

µcE

$FF

$00

(b)

73

Design of the Fuzzy Logic Module

Chapter 5

The membership functions representing the input values degree of truth for each set are

triangular functions with sufficient overlap provided for neighbor fuzzy sets. At any point of

the universe of discourse, only two fuzzy sets will have non-zero degree of membership.

This overlapping permits a smooth mapping of the system and reduces the computation

complexity. We used asymmetrical MFs with coarse resolution for large errors and fine

resolution in the vicinity of the origin (desired posture of the solar panel) [86]. Since most of

the action rules operate at the center of the universe of discourse, the scope of the “AZ”

membership function is made narrow. This headband of the controller is set to 3.6° which is

a multiple of the stepper motor’s step angle. All the MFs are however, symmetrical for

positive and negative values of the state variables.

The values of the x-axis of the membership functions of the error and rate of change of

error state variable inputs are quantized by a biased (a bias of $80) 8-bit words ($00-$FF).

The bias hexadecimal 80 ($80) is for the zero. Values less than $80 are for negative

deviations and values greater than $80 are for positive deviations. The y-axis representing the

grade or degree of membership (DoM) is scaled as an 8-bit unsigned value $00 to $FF [90].

The control output signal of the fuzzy-like PD-type controller is the number of steps

applied to the azimuth stepper motor phases computed by the fuzzy inference engine. It is

characterized by seven singleton membership functions over the interval [-16, +16] with the

Figure-5.4 (a) MFs of the angular error EEW in degrees. (b) MFs of cEEW in degrees/sec
(c) Singleton membership functions of the output variable ‘U’ in number of steps.

16 4 2 2 4 16 0

FW

MW
--

FE
+++

SW
 - H

SE
+

ME
++

+ ¯
Steps

(c) FW : Fast Westward H : Hold
MW : Medium Westward SE : Slow Eastward
SW : Slow Westward ME : Medium Eastward
 FE : Fast Eastward

74

Design of the Fuzzy Logic Module

Chapter 5

support values equal to 1. The seven singletons defined by the seven linguistic terms: FW fast

westward, MW medium westward, SW slow westward, H hold, SE slow eastward, ME

medium eastward, and FE fast eastward as depicted in Figure-5.4 (c) [90].

4.2 Construction of Rule Base

The derivation of the control rules is heuristic and relies on the qualitative knowledge for

the behaviour of the process to control.

The fuzzy rules are derived in such a way that the deviation (azimuth angular error) from

the desired posture can be minimized to achieve the control objective [86].

The general equation of the proportional-derivative (PD)-type controller is given by

 u(k) = kp e(k) + kd e(k) (5.5)

where kp and kd are the proportional and differential gain coefficients, e is the error, e is the

change of error.

The fuzzy-like PD-type FLC consists of rules of the form

 Ri: IF EEW is i
1A AND cEEW is i

2A THEN u is iB for i= 1,…, 7 (5.6)

cEEW : Rate of change of error
u

PL PM PS AZ NS NM NL

NL H 1 SW MW FW FW FW FW 7

NM SE H SW MW FW FW FW

NS ME SE H SW MW FW FW

AZ FE ME SE H SW MW FW

PS FE FE ME SE H SW MW

PM FE FE FE ME SE H SW

E
EW

 :
er

ro
r

PL FE 42 FE FE FE ME SE H 49

Table-5.1 The 7x7 fuzzy rule-base matrix used in the fuzzy-like PD-type FLC for the
vertical pivot shaft (east-West)

75

Design of the Fuzzy Logic Module

Chapter 5

where is i
1A and i

2A are the linguistic values representing the i-th antecedent pairs and the iB

is the fuzzy set representing the i-th conclusion.

Since both state variable inputs have seven MFs, then the total number of non-conflicting

fuzzy if-then rules is 7x7 = 49.

Table-5.1 summarizes these rules for the azimuth angle fuzzy-like PD type FLC in a

matrix form. The control rules are best visualized as a 2-dimentional matrix structure where

the most left column and the top row contain the fuzzy sets of the two antecedents EEW and

cEEW respectively. The fuzzy sets of the output control action are shown in the body of the

matrix.

The matrix can be partitioned into several subgroups. The central part of which for

example describes the situation where the azimuth angular error and its rate of change are

both either small or null, i.e., the misalignment is very small. Therefore, the control action to

correct this error should be null (H) or small in magnitude ((+) or (-)). In the situation where

the panel surface is too far from the desire posture (negative large or positive large), then, if

the rate of change of error is of the same sign, fast control action is provided ((+++) or (---))

to position the panel. The latter situations are illustrated by the upper right and lower left

corners. Referring to the rule base matrix, the physical meanings of some rules are described

below.

Rule 7: IF EEW is NL AND cEEW is NL THEN u is FW

The statement “angular error is negative large” represents the situation where LDRW receives

significantly more sunlight than LDRE, and “change in error (cEEW) is negative large” can

represent the situation where the tracker is moving eastward. Therefore, to track the sun, the

controller must apply a large control action “fast westward” to move the tracker westward.

Rule 25: IF EEW is AZ AND cEEW is AZ THEN u is H

This rule describes the situation the deviation is within the fuzzy AZ zone, and in the presence

76

Design of the Fuzzy Logic Module

Chapter 5

of a rate of change of error within the same zone, then, the controller holds current situation,

meaning that the sun is tracked.

Rule 32: IF EEW is PS AND cEEW is AZ THEN u is SE

The statement “if azimuth error is positive small AND change in error is nearly zero”

represents the situation where the solar panel is slightly misaligned eastward and since the

change in error is nearly zero, then the controller should move the panel slightly estward,

“slow eastward”.

Rule 49: IF EEW is PL AND cEEW is NL THEN u is H

This rule quantifies the situation where the panel is misaligned with the eastern LDR

receiving more sunlight than the western one. And because, the rate of change of the error is

large and of opposite sign, then, it is not necessary to apply any action, the tracker will end up

tracking the sun (self-correcting situation).

The matrix presents noticeable features. It has a skew symmetric property, that is, the

eastward linguistic values (SE, ME and FE) of the control action are placed below the

diagonal whereas the westward linguistic values (SW, MW and FW) are above the diagonal

with a hold control action placed along the diagonal (H). Another feature of this matrix is that,

in either direction, the number of steps to be applied for the actuators increases with

increasing distance from the diagonal.

The parameters characterizing the azimuth FLC are as follows:

1. Number of inputs: 2

2. Antecedent MFs seven triangular per fuzzy set

3. Output 1

4. Consequent MFs seven singletons

5. Maximum number of rules 49

6. Inference method max-min

7. Defuzzification COGS

77

Design of the Fuzzy Logic Module

Chapter 5

5 The Elevation Fuzzy Logic Controller

The second FLC adjusts the tilt angle of the tracker. It runs in parallel with the azimuth

angle controller. The inputs to this fuzzy controller are the elevation deviation or ENS and the

rate of change of error cENS. The output is the control action that drives the second stepper

motor.

The declination angle is the angle made by the line joining the centers of the sun and the

earth with its projection on the equatorial plane and it varies from -23.45° to +23.45°.

Because the change is on seasonal basis only, we provided a smaller number of quantization

level by partitioning the [-23.45°, +23.45°] universe of discourse using five triangle shaped

MFs. The linguistic terms used are: NL, NS, AZ, PS and PL. The driving force has five

singleton MFs: FN, SN, H, SS, and FS.

 Figure-5.5 depicts the graphical representation of the MFs of the elevation error and

its rate of change.

(a)
$00 $75 $80 $FF $8B

NL NS AZ PS PL

0° 25.2° 7.2° -7.2° -25.2° Degrees

µE

$FF

$00
¯ +

(b)
$00 $75 $80 $FF $8B

NL NS AZ PS PL

0° 25.2° 7.2° -7.2° -25.2° Degrees/sec

µcE

$FF

$00 +
¯

78

Design of the Fuzzy Logic Module

Chapter 5

Table-5.2 summarizes these rules for the elevation angle fuzzy-like PD type FLC in a

matrix form. The control rules are best visualized as a 2-dimentional matrix structure where

the most left column and the top row indicate the fuzzy sets of the two antecedents ENS and

cENS respectively. The fuzzy sets of the output control action are shown in the body of the

matrix.

Similar to the rule base matrix of the azimuth fuzzy controller, the rule base of the

elevation fuzzy controller also exhibits a skew symmetric property, that is, the northward

linguistic values (SN and FN) of the control action are placed below the diagonal whereas the

southward linguistic values (SS and FS) are above the diagonal with a hold control action

placed along the diagonal (H). Another feature of this matrix is that, in either direction, the

number of steps to be applied for the actuators increases with increasing distance from the

diagonal.

cENS : Rate of change of error
NS

PL PS AZ NS NL

NL H SS FS FS FS

NS SN H SS FS FS

AZ FN SN H SS FS

PS FN FN SN H SS E N
S :

 e
rr

or

PL FN FN FN SN H

Steps
8 2 2 8 0

FS
--

SS
 - H

SN
+

FN
++

+ ¯
(c)

FS : Fast Southward
SS : Slow Southward
H : Hold
SN : Slow Northward
FN : Fast Northward

Figure-5.5 (a) MFs of the angular error ENS in degrees. (b) MFs of cENS in degrees/sec
(c) Singleton membership functions of the output variable ‘U’ in number of steps.

Table-5.2 The 5x5 fuzzy rule-base matrix used in the fuzzy-like PD-type FLC for the
horizontal pivot shaft (North-South)

1 5

25 21

79

Hardware/Software Codesign Implementation Chapter 6

Chapter 6

Hardware/Software Codesign Implementation

1 Introduction

This chapter describes the proof-of-concept implementation of the FPGA-based fuzzy

logic controlled dual-axis sun tracking system on an Altera low-cost Cyclone II device. It

details how to use the Quartus II software development suite tools and the Altera Monitor

Program (AMP) software tool to design and build the application. The implementation

integrates the SoPC Builder system with the Nios®-II soft core processor and a non-SoPC

custom hardware accelerator developed in VHDL all into a single chip. Melding these two

technologies creates a news level of customization in embedded system design. This

heterogeneous approach provides a variety of benefits including. With its higher level of

integration, this approach reduces overall system cost and reduces board size. In addition, it

increases the flexibility of both the software and hardware designs.

 Figure-6.1(a) illustrates a classical microprocessor-based system. It consists of a board

with a number of discrete off-the-shelf components including a processor (central processing

unit or CPU), a plentiful I/O peripherals (to support different I/O standards), a read-write

memory (RAM), a flash memory, some dedicated logic hardware accelerators and an FPGA

or some sort of PLD to glue together all these components.

 The circuit board required for such a system should be quite large to contain all these

chips. This increases the design cost and complexity while reducing speed and reliability.

With the availability of multi million-gate FPGA devices, complex intellectual property (IP)

80

Hardware/Software Codesign Implementation Chapter 6

cores and soft core processors such as the Altera Nios® II, it is possible to contain a CPU,

I/Os, the dedicated custom hardware accelerator and the RAM all in a single FPGA chip,

Figure-6.1(b). The only component that we cannot put into the FPGA is the flash memory.

 Integrating these devices on the same piece of silicon reduces cost and saves board space,

while it increases reliability and enhances anonymity and secrecy. Also, because the signals

between different components now reside on the same die, communication between them

consumes substantially less power. In addition, this integrated solution results in a

substantially higher bandwidth and lower latency compared to the former one.

2 FPGA Hardware Design Flow (SoPC Approach)

 Designing and implementing embedded systems at system level targeting a

programmable logic platform such as the FPGA is impossible without sophisticated computer

aided design (CAD) tools. To cope with these complexities, Altera provides a Quartus II

software development tool which includes a SoPC Builder system integration tool to allow

designers to synthesize, simulate, program and debug their designs and build embedded

systems on Altera’s FPGA [91]. The remaining of this section, discusses the complete

hardware/software design flow for creating a SoPC Builder system with a custom logic

hardware accelerator (relevant details will be presented in forthcoming sections). Figure-6.2.

illustrates the FPGA hardware development design flow when using the SoPC approach.

Figure 6.1 Typical microprocessor-based system, (left) traditional method, (right) SoPC approach.

Processor Flash

SRAM

Custom
Logic

Hardware

FPGA

I/O

I/O

I/O

I/O
FPGA

Flash

81

Hardware/Software Codesign Implementation Chapter 6

 The design flow for any Altera FPGA-based system using SoPC approach starts by

creating an FPGA project in Quartus II (window 1) [92], [93]. From within Quartus II project,

we launch the SoPC Builder (window 2), a tool to build the desired embedded subsystem in

the SoPC Builder with a Nios® II processor to program in the FPGA. The SoPC Builder fits

in the design phase with which we can build an embedded system without having to develop

any RTL coding. Instead, we use it in a drag-and-drop style Graphical User Interface (GUI) to

add and parameterize the Nios® II soft core processor, memory and any other IP blocks

required by the application (window 3).

 Next, the Nios® II-based hardware system is generated by the SoPC Builder. The SoPC

Builder produces an HDL code file of the design. It also always generates a Block Symbol

File for the top level system in case we plane to use the schematic capture design approach. In

this design flow, the generated Block Symbol File is integrated as a module in the Quartus II

project as indicated in window-4. We may add some custom logic hardware developed in

1

2

3

4

5

6

Figure-6.2. FPGA-Based Hardware/Software Design Flow using SoPC Approach

82

Hardware/Software Codesign Implementation Chapter 6

HDL or using schematic capture as non-SoPC Builder logic and interconnect it with the

Nios® II-based system. Next, we use Quartus II software to assign FPGA pin locations for the

input/output signals. A successful compilation of the project produces a programmable file,

the SRAM Object File (.sof), a file that determines the state of every programmable logic

element inside the FPGA. When the .sof file is downloaded using the Quartus II programmer

software, the FPGA on the development board is configured with the SoPC system hardware

(both the Nios® II-based subsystem and the custom core components). At this stage, it is

possible to perform a functional simulation (window-5).

 The last step in the design flow is the development of the software program that we can

download and run on the Nios® II processor. In this work, Altera Monitor Program utility is

used to create in assembly language the firmware, compile, download and run the application

software program on the Nios® II (window 6).

3 Implementation of the Intelligent Sun Tracking Controller

 Figure-6.3 depicts the conceptual top-level fuzzy control based dual-axis sun tracking

digital controller block diagram implemented in the Cyclone II FPGA using the System-on-a-

Programmable-Chip methodology. To reduce the complexity of the design process, the

structure of the hardware is partitioned into two subsystems: (i) an on-chip hardware module

implemented on the FPGA of the DE2 board. It encompasses the SoPC Builder system and

the non-SoPC modules. The SoPC Builder module includes the Nios® II based system with

all required peripherals and memory block. The non-SoPC system consists of custom clock

divider, a hardware accelerator the fuzzy logic module and the sequence generator all

developed in handcrafted VHDL and implemented on the FPGA fabric. (ii) An off-chip

hardware module implemented on a protoboard using discrete off-the-shelf analog and digital

components. It includes the sensing and data acquisition unit, the bidirectional voltage level

translator and the motor driving unit to energize the actuators.

83

Hardware/Software Codesign Implementation Chapter 6

3.1 Off-Chip Hardware Module

 Figur-6.4 illustrates the off-chip hardware functional block diagram. This diagram is

made up of a set of pipelined units. These units are implemented onto the protoboard using

commercial off-the-shelf discrete analog and digital components.

3.1.1 Sun Finder Unit

 The main idea behind the design of a sensor-driven active sun tracking system is the use of

a sun finder to locate the sun in the sky to position the solar panel normal to the sun’s incident

16x2
 Character LCD

Bidirectional Voltage Level Translator (3.3V-5V)

USB-Blaster
Interface

Avalon-MM System Interconnect Fabric (SIF)

JTAG
 UART

Clock
Divider

Cyclone II FPGA

Sys ID

 LCD
Controller

S

Nios® II
Processor

M

On-Chip
Memory

S S S

 ADC Interface
S

FLC Interface

FLC and Sequence
Generator

Sensing and
Data

Acquisition Unit

Motors Power
Driving

Unit

S

M Master

Slave

On-Chip SoPC

On-Chip Non-SoPC
Subsystem

Off-Chip Subsystem

S

Figure-6.3 The overall fuzzy control based dual-axis sun tracking system block
diagram implemented in the Cyclone II FPGA.

DE2 Board

Expansion Headers

Off-Chip
Board

84

Hardware/Software Codesign Implementation Chapter 6

rays. This unit is composed of four similar Light Dependent Resistors (LDRs) as photo

sensors mounted fixed on a four sided solar panel frame. Samples of the sun light intensity

falling on the surface of the panel are captured by theses sensors to determine the

instantaneous position of the panel’s surface with respect to the sun’s light vector.

 We used the MKY-76C59 LDR which has a light resistance of 10-20 K and a dark

resistance of 2 M . The LDRs, installed in positions to gather accurate signals, are divided

into two pairs. A pair positioned along the horizontal axis (LDRE and LDRW) to control the

angle of azimuth and the second positioned along the vertical axis (LDRN and LDRS) to

control the angle of elevation. This electronic system is used to notify the deviations (angular

errors) from the desired posture of the solar panel to the control system.

 The sensors are arranged in such a way that when the sun is shining normal to the solar

panel, they all absorb the same amount of light and hence produce the same current. As the

sun moves, one or more LDRs will be partially shaded and will not generate the same amount

of current. The differential signals of a pair of LDRs are given by Equations 6.1 and 6.2,

 WEEW V_LDR - V_LDR E (6.1)

 SNNS V_LDR - V_LDR E (6.2)

FPGA
Platform

Bi-
Directional

Voltage
Level

Translator

Data
Acquisition

Unit

Sun Finder
Unit

Power Stage
Unit

Stepper
Motors

Figure-6.4 The Off-Chip hardware functional block diagram

85

Hardware/Software Codesign Implementation Chapter 6

where the voltages EEW and ENS represent the angular errors of the azimuth and elevation

angles respectively and V_LDRi a voltage proportional to the intensity of light received by

LDRi. These errors are employed by the tracking controller to adjust the solar panel in order

to minimize these angular errors.

 For example, when EEW is positive, it means that the eastern LDRE is receiving more

sunlight than the western LDRW. Therefore, the actuator driving the vertical pivot shaft

should rotate the solar panel eastward. Similarly, when ENS is negative the horizontal axis

driving actuator should rotate the panel southward. When the two errors are null the sun is

perfectly tracked.

3.1.2 Data Acquisition Unit

 The sensing and data acquisition unit is the key requirement for the sun tracking system. It

provides the raw data to the processing unit. The real-time azimuth and elevation data are read

in via the analog-to-digital converter (ADC). These data are the sunlight intensity degrees

falling on the solar panel and sensed by the four LDRs.

 A signal transformation circuit made up of a voltage divider and an operational

amplifier used as a unit gain buffer (to avoid loading effect) converts the “induced” resistance

value of the LDR into a voltage in the range 0 to 5 volts. This linear relationship between the

intensity of light and voltage values is suitable for the ADC. The LDR outputs are first

digitized by the converter before they are transferred through an input port to the Nios® II

based system. Figure-6.5 illustrates the circuit diagram of the sensing and data acquisition

unit interfaced to the Nios® II system via the ADC interface.

 The ADC chip used in the system to digitize the detectors’ analog inputs is the National

ADC0808 a commercial low-cost converter. It is an 8-bit resolution successive-approximation

converter. The ADC0808 device has eight input channels allowing it to monitor up to eight-

86

Hardware/Software Codesign Implementation Chapter 6

analog input signals. This eight-channel converter has a built-in 8-to-1 analog multiplexer

where any one channel can be selected using three select input lines.

 In the ADC0808, Vref(+) and Vref(-) are the reference voltage inputs. The values of these

voltages dictate the dynamic range of the analog input voltage and determine the step size

given by:

 Step size = [Vref(+) - Vref(-)] / 2n

where n is the number of bits. If Vref(+) is connected to +5 V and Vref(-) is grounded , then the

step size is 5 V/256 = 19.53 mV.

 The ADC0808 is not self-clocked, a clock signal must be provided from an external

source to the clock input pin. The frequency of this latter determines the conversion time.

When clocked with a 1 MHz, the analog to digital conversion is performed in less than

100µsec. During the conversion time, the value of the analog signal is kept constant by the

built-in sample and hold circuit [94],[95].

 The four analog signals representing the “induced” voltages which are proportional to

A
D

C
 In

te
rf

ac
e

+5V

 +
-

LDRS

0

3

1

2

8

2

EOC

Ch_Sel

B
id

ire
ct

io
na

l V
ol

ta
ge

 L
ev

el

Tr
an

sl
at

io
n

ST/ALE

8

2

Data

Clk

+5V

 +
-

LDRE

4K7

4K7

+5V

 +
-

LDRN

4K7

+5V

 +
-

LDRW

4K7
ADC

Figure-6.5 Circuit diagram of the sensing and data acquisition unit

Vref+

Vref-

FPGA

87

Hardware/Software Codesign Implementation Chapter 6

the light intensity falling on the four LDRs are sequentially captured and converted by a

single parallel multiple channels ADC. The processor begins by selecting the desired channel

of the ADC to which is associated one of the four light sensors. The address of this channel is

latched on the rising edge of the ALE_ST pulse, while the conversion begins on the falling

edge of the pulse. The processor keeps pooling for the end-of-conversion. Once the

conversion is completed, (signaled by a change in the EOC signal), the data byte is read from

the ADC’s output register and saves it into one of the Nios® II registers.

 The Nios® II-based system asserts the address of the next input channel and starts the

conversion. This process is repeated to digitize the four data. Figure-6.6 shows the flowchart

Start

Select desired analog input
channel

Is conversion
Over?

Yes

No

Figure-6.6. Flow chart for the data acquisition subroutine

Latch address and start
conversion

Read E.O.C

Save data byte

Is it the 4th
data?

Return

No

Yes

88

Hardware/Software Codesign Implementation Chapter 6

of the data acquisition subroutine implemented and executed by the Nios® II-based system.

 The use of a single multi-channel ADC to scan the several analog signals is a better

alternative to using a dedicated single-channel ADC per channel which would lead to higher

cost, bigger board size and more power consumption.

3.1.3 Bidirectional Voltage Level Translation Unit

 Because the FPGA I/O pins are supplied with 3.3V and the voltage range used by the off-

chip discrete components is 0-5V, a bidirectional 3.3V-5V voltage level translation unit is

inserted between the DE2’s expansion header and the data acquisition and power drive units.

This unit is implemented using TTL low-power Schottkey and low-voltage TTL compatible

logic families.

3.1.4 Motors Driving Unit

 The 332-082 unipolar 4-phase, bidirectional stepper motors are employed as the main

actuators to tune the sun tracker horizontal and vertical axels. Because tracking requires a

high degree of accuracy, stepper motors are the most suitable for this application. Moreover,

stepper motors are preferred over other type of motors because they have several advantages:

no brushes, low cost, and high torque at a low speed. They also possess the holding torque, a

characteristic that allows the stepper motor to hold its current position when it is not tuned,

thus, eliminating the need to incorporate braking devices.

 The stepper motor requires that its stator windings be energized in a programmed

sequence to cause it to spin in a given direction and with a required speed. Figure-6.7(a)

depicts the motors driver power stage unit used to energize the two stepper motors. This unit

uses an array of eight BDX53 Darlington transistors (four transistors per stepper motor). The

BDX53 is a silicon Epitaxial-Base NPN power transistor in a monolithic Darlington

configuration mounted in Jedec TO-220 plastic package used to amplify the current level to

accommodate the motor requirements.

89

Hardware/Software Codesign Implementation Chapter 6

This transistor is provided with a snubbing diode for inductive surge. It features a

Collector-Emitter Sustaining Voltage of 100V and a Collector Current of 8A which large

enough to drive our stepper motors. .

 In order to avoid any direct “ohmic” connections between the low power digital circuit

operating from 5V direct current and the power circuit with higher currents, an array of eight

4n35 optocouplers is used as a bridge between the FPGA user I/O terminals and the power

stage circuit. This type of optocoupler uses a Gallium-Arsenide- Light Emitting Diode (LED)

as an optical transmitter and a phototransistor as an optical receiver. The use of a beam of

light to transmit data across a transparent barrier achieves an excellent isolation.

 Figure-6.7(b) shows one branch of the power driving circuit. The input to the driver is one

of the sequencer’s outputs. A ‘1’ on this output means that the corresponding stepper motor’s

winding should be energized. This ‘1’ will drive the opto-coupler’s LED ON driving the

coupled transistor into saturation. The resulting emitter current builds enough voltage across

the 100 to saturate the switching power transistor providing a ground level to one terminal of

the winding, whereas the other terminal is permanently connected to the positive supply.

Figure-6.7(a) The motor driver power stage unit to energize the two actuators

B
id

ire
ct

io
na

l V
ol

ta
ge

 L
ev

el
 T

ra
ns

la
to

r

Ex
pa

ns
io

n
H

ea
de

r J
P1

FP

G
A

 U
se

r I
/O

 P
in

s

Transistor
Array

Resistor
Array

Opto-Coupler
Array

8: 4n35 8: 1K 8: BDX53B
1.8° Stepper

Motor

90

Hardware/Software Codesign Implementation Chapter 6

 1K

47

100

1K

+V
From sequence

generator

Figure-6.7 (b). One branch (out of 8) of the driver power stage unit

Supply
+V

91

Hardware/Software Codesign Implementation Chapter 6

3.2 On-Chip Hardware Module

 The On-chip module is the bulk of the hardware system. This module consists of two

main parts: a SoPC Builder subsystem and an non-SoPC Builder subsystem. The former is

built around the Nios® II embedded soft processor, the latter is developed in handcrafted

VHDL as hardware accelerators. The overall module is implemented and ran on the Altera

Cyclone II EP2C35 low-cost FPGA clocked at 50 MHz and features a 33,216 LEs, 35

hardware multipliers, 4 phase-locked loops (PLLs) and up to 475 user I/O pins. Figure-6.8.

illustrates the overall on-chip hardware module.

3.2.1 On-Chip non-SoPC Builder Subsystem

This subsystem operates concurrently with the SoPC Builder subsystem to enhance

performance and reduces system complexity. It is made up of several units, all of which are

developed in VHDL.

3.2.1.1 The clock divider module

16x2
 Character LCD

USB-Blaster
Interface

Avalon-MM System Interconnect Fabric (SIF)

JTAG
 UART

Clock
Divider

Cyclone II FPGA

Sys ID

 LCD
Controller

S

Nios® II
Processor

M

On-Chip
Memory

S S S

 ADC Interface
S

FLC Interface

FLC and Sequence
Generator

S

M Master

Slave

SoPC Builder
Subsystem

non-SoPC Builder
Subsystem

S

Figure-6.8 The On-Chip hardware module

92

Hardware/Software Codesign Implementation Chapter 6

 The clock divider module developed in VHDL, takes as input the 50 MHz master clock of

the DE2 board. It generates two clock signals: a 1 MHz clock signal suitable to trigger the

ADC and a 12 Hz, clock signal to trigger the stepper motors drive sequencers. Figure-6.9

illustrates the VHDL code to produce the required clock signals out of the DE2 board master

clock.

3.2.1.2 Implementation of the Fuzzy Logic Module

 The fuzzy logic controller module described in chapter 5 is a custom hardware accelerator

developed in VHDL is interfaced to the Nios® II based system. Custom components designed

for intensive computation tasks are generally implemented in the FPGA fabric. The designer

can integrate these components “inside” or “outside” the SoPC Builder system. When

integrated “inside” the SoPC Builder system, it communicates with the other modules and the

processor through the Avalon Memory-Mapped interface. On the other hand, the custom

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity Clk_Divider is
port(clk: in std_logic;
clk1, clk_ADC: out std_logic);
end Clk_Divider;

architecture behavioral of Clk_Divider is
signal state1: std_logic_vector(5 downto 0);
signal state2: std_logic_vector(26 downto 0);
begin
 ADC: process(clk)
 begin
 if clk'event and clk = '1' then
 if state1 = 49 then state1 <= "000000";
 else state1 <= state1 + 1;
 end if;
 end if;
 end process ADC;
 SM: process(clk)
 begin
 if clk'event and clk = '1' then
 state2 <= state2 + 1;
 end if;
 end process SM;
 clk_ADC <= state1(5);
 clk1 <= state2(22);
end behavioral;

Figure 6.9 VHDL code of the clock divider custom hardware module

93

Hardware/Software Codesign Implementation Chapter 6

component can exist within the FPGA alongside the Nios® II based system, that is, “outside”

the SoPC Builder system. In this case, it can interact with the processor and other components

through parallel input-output interface adapters. The latter approach has the advantage of

having both custom cores and the Nios® processor execute concurrently, enhancing system

response. The purpose of having a processor co-exist with conventional digital logic

components is to provide flexibility of combining software and hardware based control in one

chip. Figure-6.10 depicts the synthesized schematic view of the fuzzy logic module in the

Quartus II register transfer level (RTL) Viewer tool.

3.2.1.3 Stepper Motor Sequence Generator

The stepper motor requires that its stator windings be energized in a programmed

sequence to generate a rotating magnetic field inside the motor, and the rotor will obediently

follow it. For the motor to develop higher torque, it is desirable to apply a full-step sequence

to its windings which involves powering two windings at one time. Figure-6.11 shows a

unipolar stepper motor windings and the full-step drive sequence.

Figure 6.10 A detailed view of the fuzzy logic module in Quartus II and the RTL Viewer

94

Hardware/Software Codesign Implementation Chapter 6

Figure-6.12 depicts the VHDL finite state machine implementation of the full-step driving

sequence.

Figure 6.12 VHDL code for a stepper motor full-step sequence generator.

Figure 6.11 Unipolar stepper motor windings and full-step sequence.

95

Hardware/Software Codesign Implementation Chapter 6

3.2.2 On-Chip SoPC Builder Subsystem

The architecture of the SoPC Builder subsystem built around a Nios® II soft processor

resembles that of a typical microprocessor-based system with the difference that it presents a

set of peripherals tailored specifically for the application as well as the integration of special

hardware accelerators that interact with the rest of the system. Traditionally, in a typical

microprocessor-based system, the data is transferred using a shared bus, a collection of wires

conveying address data and control signals to connect the processor with the remaining

components of the system. Because the information (data and control) use the same bus, it

becomes a bottleneck as the amount of information transfer increases. This degradation is

accentuated when the I/O peripherals are mapped as memory-mapped I/Os, since these I/Os

share the same bus with memory modules [96].

 In the SoPC builder system, the components are interconnected by means of an

interconnection network, the Avalon system interconnect fabric or SIF. This is the backbone

of any SoPC Builder system. The Avalon SIF, generated by the SoPC Builder provides the

necessary addresses and data paths to make memory-mapped connections between master and

slave devices.

At the heart of the SoPC architecture sits a 32-bit processor which communicates with the

other components through the Avalon SIF interface. It is the brain of the system and has

several roles. It manages the data acquisition unit and calculates the crisp data input for the

fuzzy logic controller module. It initializes and drives the LCD controller to display in real-

time on the two-line LCD the sun tracking system’s status. It communicates with the host

computer via the USB Blaster interface, Figure-6.8.

 The use of a microprocessor always calls for memory where the instructions and data are

stored. The embedded memory blocks in the FPGA are used to provide an on-chip RAM for

the processor. The Cyclone II EP2C35 FPGA includes 105, M4K RAM Blocks leading to

96

Hardware/Software Codesign Implementation Chapter 6

483,840 total RAM bits. The Join Test Action Group Universal Asynchronous

Receiver/Transmitter (JTAG-UART) interface is used to provide a Universal Serial Bus

(USB) link between the FPGA platform and the host computer. This circuitry and the

associated software are called the USB-Blaster [92].

 We also added a system ID peripheral. This component provides the SoPC Builder system

with a unique identifier and therefore, safeguards it against any accidental downloading

software compiled for a different Nios® II system. To drive the 16x2 character liquid crystal

display (LCD) peripheral, we used a SoPC Builder LCD controller component.

The ADC interface module includes several parallel input-output peripherals tailored to

accommodate different signals of the off-chip data acquisition unit. This later unit constructed

around a low-cost multiple-channel analog-to-digital converter is used to sample the current

position of the sun in the sky via four light dependent resistors (LDRs). The dark blue blocks:

the clock divider and the FLC and the stepper motor sequence generator are the custom

hardware logic blocks.

3.2.3 Building the Embedded System in the SoPC Builder

 The SoPC Builder, part of the Quartus II software, is a powerful hardware generation tool.

It streamlines the process of integrating blocks of IPs and accelerates development of system-

on-a-programmable-chip designs compared to traditional, manual integration methods. The

tool was introduced by Altera to design systems at block level. It consists of two major parts:

a graphical user interface or GUI and a system generator program [93].

 Figure-6.13 shows a screenshot of the sun tracking controller optimized in an FPGA. The

GUI consists of several parts. The window on the left side is the library of available pre-made

IP cores (including the flagship Nios® II soft core processor) from which the designer picks

up the desired components required by the application.

97

Figure-6.13 SoPC-based intelligent sun tracking controller optimized in an FPGA.

98

Hardware/Software Codesign Implementation Chapter 6

 We construct the embedded SoPC Builder system in the Avalon framework. The

construction of the system is accomplished by means of a drag-and-drop style. The required

components are dragged and parameterized in the contents page (the central window). The

“Module Name” and “Description” columns show the names and interfaces of the configured

intellectual property (IP) cores used in the application. The “connections” column in Figure-

6.13 is the interconnect logic.

 Finally, the beginning and end of the memory addresses of the various components used

in the design are shown under “Base” and “End” columns. Because the Nios® II processor

maps the I/O peripherals as memory-mapped I/O, then the 32-bit address space is assigned to

both the memory component and to the I/O peripherals. In general, to avoid any conflicts for

all these memory-mapped components, it is more convenient to automatically assign these

unique base addresses.

 The ADC interface is implemented with four parallel input-output interface adapters

(PIOs) of different dimensions. They are:

ADC: The first PIO configured as an 8-bit input port to route the digital data from the

 converter to the processor when the conversion is completed.

Channel_Select: The second PIO tailored as a 2-bit output port. This output port drives the

 two least significant address lines of the converter to select any one of

 the four channels.

Start_Conversion: The third PIO is a 1-bit output port. The processor outputs a positive

 pulse through this port to accomplish two functions. It latches the address of the

 selected channel on the positive edge of the pulse and starts the conversion on the

 negative edge of the pulse.

EOC: This last PIO is specified as a 1-bit input port. It is used to route the end-of-conversion

 output signal of the analog-to-digital converter to be polled by the microprocessor.

99

Hardware/Software Codesign Implementation Chapter 6

 The FLC interface also consists of four PIOs. All four are configured as 8-bit parallel

output ports. PIOs labeled Error_EW and cError_EW are used for to supply the crisp values

representing the azimuth angular error and its rate of change as inputs to the azimuth fuzzy-

like PD controller. Similarly, PIOs labeled Error_NS and cError_NS are used to apply the

crisp values representing the elevation angular error and its rate of change as inputs to the

elevation fuzzy-like PD controller.

 As in any microprocessor-based system, we provided a 32-Kbyte of on-chip RAM to store

the firmware code to run the Nios® II processor.

3.2.4 Integrating the SoPC and non-SoPC Builder Subsystems in Quartus II Project

Once the required blocks are added and their parameters specified, the memory-map of

the Nios® II based system is automatically generated by the SoPC Builder using Auto-Assign

Base Addresses. Finally, the SoPC Builder generator program generates the system

interconnect fabric and many other output files.

The SoPC Builder generates a graphical Block Symbol File (.bsf) module (a

representation of the top-level SoPC Builder system). This block includes the Nios® II core,

all peripheral and memory blocks, and the SIF. This symbol is instantiated in the Quartus II

project. Figure-6.14 shows the top-level schematic for the FPGA-Based FLC design process

for a dual-axis sun tracking system. The large symbol in the Quartus II Block Diagram File

(.bdf) project labeled “Nios_II_Based_System” is the SoPC Builder system.

We add the custom logic hardware accelerator external to the Nios® II which consists of

the fuzzy logic control module with the stepper motors sequence generator block labeled

“FLC” and the clock divider block labeled “Clk_Divider”.

The input, output, and bi-directional connectors are then added and named. The EP2C35

FPGA target device is selected, the pins assigned and the project file compiled.

100

Figure-6.14 Top-Level schematic for the FPGA-Based FLC design process for a dual-axis sun tracking system

101

Hardware/Software Codesign Implementation Chapter 6

Upon successful compilation, the FPGA is ready to be configured with the generated bit

stream, a SRAM Object File (.sof) file using the Quartus II Programmer.

3.2.5 Firmware Development

Having built, configured the required hardware and downloaded it in the FPGA device,

we need to develop the application firmware program to make it run. In order to develop our

software code in assembly language (which runs much faster and uses much less memory

space compared to that of a similar program written in a high level language), we used the

Altera Monitor Program (AMP) development tool. This tool allows the user to assemble,

compile and debug the Nios® II assembly language software program, then download it onto

the FPGA to run the Nios® II processor. Figure-6.15 depicts a PC running Quartus II and

Altera Monitor Program graphical user interface.

The assembly language code we developed performs the following operations in an infinite

loop:

i- Sequentially gathers raw data from light sensors in digital format.

ii- Computes the angular errors and their rates of error change

Figure-6.15. PC running Quartus II and Altera Monitor Program software

102

Hardware/Software Codesign Implementation Chapter 6

iii- Feeds the PD-like FLC with the computed data

iv- Displays system’ status on the LCD to provide feedback to the user

v- Enters into a delay loop, a time during which the FLC determines the action to be

carried on to position the solar panel at its optimal posture.

vi- Repeat.

4 Real-Time Experiment

The overall apparatus of the prototyping platform built in the laboratory for testing and

verifying the intelligent dual-axis sun tracking system is illustrated in Figure-6.16. (a), (b). It

depicts both the off-chip hardware system on the protoboards and the on-chip

hardware/software co-design system on the FPGA board (DE2). The FPGA containing the

hardware implementation of the digital controller controls the off-chip hardware circuitry via

the board’s expansion header. The expansion header provides general-purpose input/output

(GPIO) pins. These GPIOs are directly connected to the FPGA device. It is also linked by

means of the USB Blaster mechanism to the PC running Altera monitor program and Quartus

II software develepment suite tools. The remaining parts of the prototype consists of a dual-

axis tracker platform with a sun finder.

Elevation Axis

Azimuth Pivot

DE2 Board

Figure-6.16. (a). Hardware setup of the FPGA-based intelligent dual-axis sun
tracking system.

PC Running
Quartus II

103

Hardware/Software Codesign Implementation Chapter 6

6.4.1 Operational Cycle Time

The time interval of the operational cycle is 1-sec. Figure-6.17 depicts the operational

cycle time. The cycle begins with the acquisition of the raw data from the sensors via the

analog-to-digital converter. This raw data, which represent the position of the sun in the sky

with respect to the surface of the solar panel, is processed by the Nios® II based system to

calculate the angular errors and the rates of change of these errors to be used by the fuzzy

controller module as crisp data inputs. Using these computed data, the fuzzy control module

evaluates and determines by how much the solar panel needs to be tuned to minimize its

misalignment with respect to the current position of the sun in the sky. These three functions

are performed in 0.1 sec.

Also, based on the result of this data manipulation, the Nios® II based system provides the

user with the current state of the tracking system by displaying appropriate messages on the

LCD of the FPGA platform.

The next stage is the solar panel mechanical adjustment for which we allowed 0.168 sec

time interval. During this time interval, the stepper motors may be held idle or rotated by 2, 8

or 16 steps in the appropriate direction depending on the current position of the panel with

respect to the optimal posture.

Figure-6.16. (b). Hardware setup of the FPGA-based intelligent dual-axis sun
tracking system.

104

Hardware/Software Codesign Implementation Chapter 6

Since the smallest number of steps is 2 which lasts 0.168 sec, we used a clock signal with

a frequency of 1/0.084 = 11.94 Hz. For the 8 and 16 steps, we used clock signals with

frequencies of 47.68 Hz and 95.36 Hz respectively. The remaining time interval is reserved

for the solar panel to stabilize before the operational cycle repeats.

4.2 Simulation

 Figure-6.18 illustrates a computer simulation timing diagram in the Quartus II simulator.

This window shows the tracking performance and the effectiveness of the proposed

controller. We applied several combinations of stimuli coded in hexadecimal for the errors

and rates of change of errors and observed the output responses expressed as binary

sequences. We notice the response on both driving motors as expected by the tracker.

In the time interval 0 – 1.33 µsec, the azimuth error is $3B (NL) and its rate of change is $2C

(NL). The motor should rotate fast westward. Whereas in the interval 1.33 µsec – 2.61 µsec,

the azimuth error is NL but its rate of change is (PS), therefore, to align the panel the motor

should be rotated at medium speed westward.

 At 4.48 µsec, the simulation window exhibits a case where the sun is tracked. In this case,

the azimuth error is NL and its rate of change is PL. The controller need not apply any action.

The panel will be aligned normal to the sunlight rays.

Solar Panel Adjustment
System

Stabilization

D
at

a

A
cq

ui
sit

io
n

D
at

a

Pr
oc

es
si

ng

FL
C

Ev

al
ua

tio
n

0.100 sec 0.168 sec 0.732 sec

Figure-6.17 The operational cycle time

105

Figure-6.18 Behavioral simulation window in the Quartus II simulator

106

Conclusions Chapter 7

Chapter 7

Conclusions

In this thesis, we presented the design, simulation and implementation processes of a

customized FPGA-based (SoPC approach) applied to an intelligent sensor-driven dual-axis

sun tracking system in order to maximize power extraction from the solar panel. The goal of

using fuzzy control technology is to put human knowledge into engineering systems in a

systematic and efficient order. We designed our system with several considerations in mind:

autonomy, execution speed and cost, and design complexity. In this regard, the intelligent

controller is developed on an FPGA-based heterogeneous computing platform where the

overall controller is partitioned between two concurrent modules.

1- A fuzzy control module, as a hardware accelerator, implemented on the FPGA fabric

using VHDL is utilized to control the steering motors according to the deviation from

the desired (optimal) posture of the solar panel.

2- A Nios® II based system to acquire the raw data, compute the state variables of the

controller and displays in real-time the status of the overall system.

 This hardware/software codesign implementation exploits the simplicity of the

microprocessor and the massively parallel architecture of the FPGA. This methodology

provides a high degree of flexibility in both hardware and software compared to classical

107

Conclusions Chapter 7

computing platforms. Other reasons why this approach is interesting: It works. It can be

applicable to almost all fields.

The SoPC approach has several advantages:

(1) It allows the use of the exact number of peripherals needed and the

parameterization of the peripherals to respond to the application.

(2) The reconfigurability nature of the FPGA and the short development cycle makes

it possible to perform modifications of any component of the system at any stage

of the implementation.

(3) To prevent from obsolescence, the design can be migrated into another larger and

more performant FPGA that does not exist yet.

(4) The ability to integrate an entire system on a single chip at a lower cost compared

to the use of off-the-shelf discrete components (MCU, DSP, ASSP, etc) solutions.

(5) The capability to off-load the computation-intensive functions from the software

application running on the soft processor and to implement them as hardware

accelerators in the FPGA fabric using VHDL or another design entry.

A common practice to obtain the inputs for the FLC is the use of differential amplifiers and

differentiators, in this work these parameters are computed within the FPGA using a digital

processing unit. This design greatly enhances system reliability and reduces chip count.

Moreover, the robustness of the FLC allows the use of cheaper sensors and low resolution

ADCs resulting in reduced implementation cost.

Further works

There are at least two possible directions to work on the way to improve further system

performance, design simplicity and flexibility.

(i) Integrating the fuzzy control module as an intellectual property (IP) component

with Avalon interface and connect it to the Avalon Memory Mapped interface.

108

Conclusions Chapter 7

(ii) Add custom instructions to the soft-core processor instruction set.

The use of the Nios® II software build tools (SBT) for eclipse to develop the application

software code in C, will further improve design productivity and lessen design complexity.

For extremely high speed applications, it is possible to sample all analog data

simultaneously using several high speed ADCs, a performance that cannot be achieved with

either the microcontroller of the DSP.

In the next generation of FPGAs, where ADCs will be built into the fabric of the FPGA,

the proposed computing platform will be more efficient in terms of hardware resources,

power consumption and control performance when compared with the standard MCU, DSP

solutions.

It is believed that with the significant advancements in materials and technologies

combined to the growing awareness concerning environmental problems, renewable energies

and solar in particular (with more than 60% annual average growth rate for the past five

years) are the future.

109

References References

References

[1] Z. Sen, “Solar energy in progress and future research trends.” Progress in Energy and

Combustion Science, 30, pp. 367-416, 2004.

[2] Saifur. Rahman, “Green Power. Where is it and where can we find it?” IEEE Power &

Energy magazine, Jan/Feb 2003. pp. 30-37.

[3] P. Fornasiero, M. Graziani, Renewable Resources and Renewable Energy: A Global

Challenge, 2nd Edition, Taylor & Francis, 2006.

[4] H. Scheer, The Solar Economy: Renewable Energy for a Sustainable Global Future,

Earthscan, 2004.

[5] AIA Research Corporation; “Solar Dwelling Design Concepts”. Washington, DC: U.S.

Government Printing Office, 1976.

[6] Y. Goswami, F. Kreith, and J. Kreder, “Principle of solar engineering,” in

Fundamentals of Solar Radiation, Philadephia, PA: Taylor & Francis, 1999.

[7] S. Seme, G. Stumberger, and J. Vorsic, “Maximum ef ciency trajectories of a two-

axis sun tracking system determined considering tracking system consumption”, IEEE

Trans. On Power Electronics, Vol. 26, No. 4, April 2011. pp. 1280-1290.

[8] C.Y. Lee, P. C. Chou, C. M. Chiang, and C.F. Lin, “Sun tracking systems: a review.”

Sensors. 9, pp. 3875-3890, 2009.

[9] K-K. Chong, C-W. Wong, F-L. Siaw, T-K. Yew, S-S Ng, M-S. Liang, Y-S. Lim and

S-L. Lau, “Integration of an On-Axis General Sun-Tracking Formula in the Algorithm

of an Open-Loop Sun-Tracking System”. Sensors, 9, pp. 7849-7865, 2009.

[10] R. Woods, J. McAllister, G. Lightbody and Ying Yi, FPGA-based Implementation of

signal processing systems, John Wiley & Sons, Ltd. 2008.

[11] Ian Grout, Digital Systems Design with FPGAs and CPLDs, 2008, Elsevier Ltd. ISBN-

13: 978-0-7506-8397-5

110

References References

[12] Altera, “Optimize system flexibility by integrating custom microprocessors into

FPGAs,” wp-aab090805-1.1, Fev-2006.

 Available online at www.altera.com/literature/wp/wp-aab0900805.pdf

[13] Zekai Sen , “Solar energy in progress and future research trends”, Progress in Energy

and Combustion Science 30, 2004, pp. 367–416.

[14] T. Fazel, S. Zainal and M. A. Shahrin, “FPGA implementation of a single-input fuzzy

logic controller for boost converter with the absence of an external analog-to-Digital

converter.” IEEE Trans. On. Ind. Electronics, Vol.59, No.2, pp.1208-1217. Feb 2012.

[15] Yi Fu, L. Howard and M.E. Kaye, “Hardware/Software codesign for a fuzzy

autonomous road-following system.” IEEE Trans. On Systems, Man, and Cyber,

Vol.40, No.6, pp. 690-696. Nov-2010.

[16] A. H. Zavala and O. C. Nieto, “Fuzzy Hardware: a retrospective and analysis,” IEEE

Trans. On Fuzzy Systems, Vol.20, No. 4, August 2012. pp. 623-635.

[17] G. Bosque, I. del Campo and J. Echanobe, “Fuzzy systems, neural networks and

neuro-fuzzy systems: A vision on their hardware implementation and platforms over

two decades” Engineering App of Arti cial Intelligence 32, 2014, pp.283–331.

[18] A. Merlaud, M. De Mazière, C. Hermans, and A. Cornet, “Equations for solar

tracking.” Sensors. 12, pp.4074-4090, 2009.

[19] A. B. Sproul, “Derivation of the solar geometric relationships using vector analysis.”

Renewable Energy. Vol. 32, No. 7, pp. 1187-05, 2007.

[20] R. H. McFee, “Power collection reduction by mirror surface nonflatness and

tracking error for a central receiver solar power system”. Appl. Opt. 1975, 14, pp.

1493-1502.

[21] R.P. Semma, and M.S. Imamura, "Sun tracking controller for multi-kW photovoltaic

concentrator system.", In Proceedings of the 3rd International Photovoltaic Sol

Energy Conf, Cannes, France, Oct. pp. 27-31, 1980.

[22] K.K. Chong and C.W. Wong, “General formula for on-axis sun-tracking system and

its application in improving tracking accuracy of solar collector,” Solar Energy 83,

2009, pp. 298–305

111

References References

[23] S. Abdallah, “The effect of using sun tracking systems on the voltage-current

characteristics and power generation of flat plate photovoltaics.” Energ. Conversion.

Manage. 2004, 45, pp. 1671-1679.

[24] R. Grena, “An algorithm for the computation of the solar position.” Solar Energy. Vol.

82, No. 5, pp. 462-470, 2008.

[25] M. Blanco-Muriel, D.C. Alarcon-Padilla, T. Lopez-Moratalla, and M. Lara-Coira,

“Computing the solar vector.” Solar Energy. Vol. 70, No. 5. pp. 431-441, 2001.

[26] I. Reda, and A. Andreas, “Solar position algorithm for solar radiation applications,”

Solar Energy. Vol. 76, No. 5, pp. 577-589. 2004.

[27] S. Abdallah and S. Nijmeh, “Two axes sun tracking system with PLC control.” Energy

Conversion and Management 45, 2004, pp. 1931–1939.

[28] F. Duarte, P. D. Gaspar, and L. C. Gonçalves, “Two-axis solar tracker based on solar

maps, controlled by a low-power microcontroller.” Proc. of the International

Conference on Renewable Energies and Power Quality. (ICREPQ’10). Granada.

Spain. March 23-25, 2010.

[29] H. Mousazadeh, A. Keyhani, A. Javadi, H. Mobli, K. Abrinia, and A. Sharifi, “A

review of principle and sun-tracking methods for maximizing solar systems output.”

Renewable and Sustainable Energy Reviews. 13, pp. 1800-1818, 2009.

[30] P. Roth, A. Georgiev and H. Boudinov, “ Design and construction of a system for sun-

tracking.” Renewable Energy, 2004. 29, pp. 393-402.

[31] P. Roth, A. Georgiev and H. Boudinov, “ Cheap two axis sun following device.”

Energy Conversion and Management, 2005; 46: pp. 1179–1192.

[32] S.A. Kalogirou, “Design and construction of a one-axis sun-tracking.” Solar Energy,

1996, 57(6), pp. 465–469.

[33] Cheng-Dar Lee, Hong-Cheng Huang, Hong-Yih Yeh, “The Development of Sun-

Tracking System Using Image Processing.” Sensors 2013, 13, pp. 5448-5459.

[34] I. Sefa, M. Demirtas, and I. Colak, “Application of one-axis sun tracking system.”

Energy Conversion and Management, 2009. 50(11), pp. 2709-2718.

112

References References

[35] A. Konar, and A. K. Mandal, “Microprocessor based automatic sun tracker.” IEE

Proc. Sci., Meas. Technol., Vol. 138, No. 4, 1991

[36] B. Koyuncu, and K. Balasubramanian, “A microprocessor controlled automatic sun

tracker.” IEEE Trans. Consumer Electron. Vol. 37, No. 4, 1991.

[37] A.K. Saxena, and V.K. Dutta, “A versatile microprocessor based controller for solar

tracking.” IEEE. Conf. Vol. 2, pp.21-25, 1990.

[38] F.R Rubio, M.G. Ortega, F. Gordillo, and M. Lopez-Martinez, “Application of new

control strategy for sun tracking.” Energy. Conversion. And. Management. Vol. 48,

No. 7, July. 2007, pp. 2174-2184.

[39] Z. Xinhong, W. Zongxian, and Y. Zhengda, “Intelligent solar tracking control system

implemented on an FPGA.” Nios II Embedded Processor Design Contest-Outstanding

Designs. 2007.

[40] M. P. Soares dos Santos and J.A.F. Ferreira, “Novel intelligent real-time position

tracking system using FPGA and fuzzy logic.” ISA Transactions: the Journal of

Automation. 53, pp. 402–414. 2014.

[41] F.M. Al-Naima and B.R. Al-Taee, “An FPGA based stand-alone solar tracking

system.” 2010 IEEE Inter. Conf. Energy and Exhibition (EnergyCon), pp. 513 – 518.

[42] E. Monmasson, and M.N. Cirstea, “FPGA design methodology for industrial control

systems – a review.” IEEE Trans. on Industrial Electronics, 2007;54(4), pp. 1824-42.

[43] Chun-Fei Hsu, Pei-Yu Lee and Chih-Hu Wang, “Design of an FPGA-based fuzzy

sliding-mode controller for light tracking systems.” International Conference on

Machine Learning and Cybernetics (ICMLC), 2010, pp. 2782 – 2787.

[44] S. Cheng, P. Zhao, H. Hongkun, Ji Qianqian and Wei Xu, “An improved design of

photo-voltaic solar tracking system based on FPGA.” 2010 Inter. Conf. on Artificial

Intelligence and Computational Intelligence (AICI), 2010, pp. 267- 271.

[45] W. Aiping, F. Qingqing and L. Yonghua, ”Development of multi-axis stepper motion

control system based on nios II.” 2nd Inter. Conf. on Mechanic Automation and

Control Engineering (MACE), pp. 1230-1232. 2011.

[46] R. Sharma, G. Singh and M. Kaur, “Development of FPGA-based dual axis solar

tracking system.” Am. Trans. on Eng. & Appl. Sci. Vol 2, No.4, pp. 253-267. 2013.

113

References References

Online available at http://TuEngr.com/ATEAS/V02/253-267.pdf.

[47] Qingyi Gu, T. Takaki, and I. Ishii, “Fast FPGA-Based Multiobject Feature

Extraction”, IEEE Trans. On. Circuits and Systems for Video Technology, Vol. 23, No.

1, Jan 2013, pp. 30-45.

[48] N. A. Ali, S. I. Md Salim, R. Abd Rahim, S. A. Anas, Z. M. Noh, and S. I. Samsudin,

“PWM controller design of a hexapod robot using FPGA,” IEEE Inter. Conf. on

Control System, Computing and Eng. 29 Nov-1 Dec. 2013, Penang, Malaysia.

 [49] He-Jin Liu, Ke-Jun Li, Wei-Jen Lee, Hongxia Gao, and Ying Sun, “Development of

frequency variable inverter based on SOPC and Nios II.”, IEEE Trans. On Industry

Appl. Vol. 49, No. 5, Sept/Oct, 2013, pp. 2237-2243.

[50] Chih-Min Lin, Ming-Hung Lin, and Chun-Wen Chen, “SoPC-Based Adaptive PID Control

System Design for Magnetic Levitation System”, IEEE Systems Journal, Vol. 5, No. 2,

June 2011 pp. 278-287

[51] Hsu-Chih Huang, “SoPC-based parallel ACO algorithm and its application to optimal

motion controller design for intelligent omnidirectional mobile robots”, IEEE Trans.

On. Industrial Informatics, Vol. 9, No. 4, pp. 1828-1835. Nov 2013.

 [52] Chih-Min Lin, Yu-Lin Liu, and Hsin-Yi Li, “SoPC-Based function-link cerebellar

model articulation control system design for magnetic ball levitation systems”, IEEE

Trans. On. Industrial. Electronics, Vol. 61, No. 8, August 2014, pp. 4265-4273.

[53] H. Sun, Y. Zhang, Z. Wu and J. Xue, “The detecting robot based on SOPC”,

Proceedings of IEEE Inter. Conf. on Mechatronics and Automation August 3 - 6,

2014, Tianjin, China.

[54] H. Chen, F. Xu and Y. Xi “Field programmable gate array/system on a programmable

chip-based implementation of model predictive controller,” IET Control Theory Appl.,

2012, Vol. 6, Iss. 8, pp. 1055–1063.

[55] M. Sugeno, “Fuzzy control: Principles, practice and perspectives,” IEEE Inter. Conf.

on Fuzzy Systems, 1992.

[56] E.H. Mamdani, S. Assilian, “An experiment in linguistic synthesis with a fuzzy logic

controller.” Int. J. Man-Machine Studies. 8, pp. 1-13, 1975.

114

References References

[57] H.A. Yousef, “Design and implementation of a fuzzy logic computer-controlled sun

tracking system.” Proceeding of the IEEE Inter. Symposium on Industrial Electronics.

Bled, Slovenia, Vol. 3, 1999.

[58] M. McKenna and B. M. Wilamowski, “Implementing a fuzzy system on a field

programmable gate array,” Inter. Joint Conf. on Neural Networks, Proceedings.

IJCNN, Vol.1, 2001.

[59] Daijin Kim, “An implementation of fuzzy logic controller on the reconfigurable FPGA

system,” IEEE Trans. on industrial electronics. Vol. 47, No. 3, 2000. pp. 703-715.

[60] S. Poorani, T.V.S. Urmila Priya, K. U. Kumar and S. Renganarayanan, “FPGA based

fuzzy logic controller for electric vehicle,” Journal of The Institution of Engineers,

Singapore Vol. 45 Issue 5, 2005.

[61] Zhou Yan and Zhu Jiaxing, “Application of fuzzy logic control approach in a

microcontroller-based sun tracking system.” WASE Inter. Conf. on Information Eng.

(ICIE), 2010, pp. 161-164.

[62] C-H. Huang, M-R. Lee, B-R. Shih, F-Z. Cai, R. Kang and M-H. Hsieh, ”Application

of intelligent sun tracking system with fuzzy chip controller,” Inter. Symposium on

Computer, Consumer and Control, (IS3C), 2014, pp. 43-46.

[63] N. Al-Rousan, M. Al-Rousan and A. Shareiah, “A fuzzy logic model of a tracking

system for solar panels in northern Jordan based on experimental data,” Inter. Conf. on

Renewable Energy Research and Appl. (ICRERA), 2012. pp. 1-6.

[64] E. Ataei, R. Afshari, M.A. Pourmina, and M.R. Karimian, “Design and construction of

a fuzzy logic dual axis solar tracker based on DSP,” 2nd Inter. Conf. on Control, Instr.

and Automation (ICCIA), 2011. pp. 185-189.

[65] R-E. Precup and H. Hellendoorn, “A survey on industrial applications of fuzzy

control.” Computers in Industry, 62. 2011. pp. 213–226.

[66] Gang Feng, “A Survey on analysis and design of model-based fuzzy control systems,”

IEEE Trans. On Fuzzy Systems, Vol. 14, No. 5, October-2006. pp. 676-697.

[67] Lotfi. A. Zadeh, “Is there a need for fuzzy logic?”, Information sciences, an Inter.

Journal, 178, 2008, pp. 2751-2779.

115

References References

[68] S. N. Sivanandam, S. Sumathi and S. N. Deepa, Book Introduction to fuzzy logic using

MATLAB, Springer-Verlag Berlin Heidelberg, 2007.

[69] Li-Xin Wang, A Course in Fuzzy Systems and Control, Prentice-Hall International,

Inc. 1997.

[70] J. Ross. Timothy, Fuzzy Logic with Engineering Applications 2nd Ed, John Wiley &

Sons, Ltd, 2004.

[71] C. Grosan and A. Abraham, Intelligent Systems: A Modern Approach, Springer-Verlag

Berlin Heidelberg, 2011.

[72] Nazmul Siddique, Intelligent Control: A Hybrid Approach Based on Fuzzy Logic,

Neural Networks and Genetic Algorithms, Springer International Publishing

Switzerland, 2014.

[73] A. Zilouchian and M. Jamshidi, Intelligent Control Systems Using Soft Computing

Methodologies, CRC Press LLC, 2001.

[74] Werner Van Leekwijck, and Etienne E. Kerre, “Defuzzification: criteria and

classification”, Fuzzy Sets and Systems 108, 1999, pp.159-178

[75] Oliver Nelles, Nonlinear system identification: from classical approaches to neural

networks and fuzzy models, Springer-Verlag, 2001.

[76] R. Woods, J. McAllister, G. Lightbody and Ying Yi, FPGA-based Implementation of

signal processing systems, John Wiley & Sons, Ltd. 2008.

[77] N. Mehta, Programmable Logic design, June 2006, Xilinx.

[78] www.altera.com/literature/hb/cyc2_cii5v1.pdf

[79] www.altera.com/literature/hb/stx5_51002.pdf

[80] www.altera.com/literature/br/br-soc-fpga.pdf

[81] www.xilinx.com/support/documentation/user_guides/ug585-Zynq-7000-TRM.pdf

[82] C. MaxField, FPGAs world class Designs, 2009, Elsevier. ISBN: 978-1-8561-7-621-7.

[83] Nios® II Processor Reference Handbook; Altera Corp: San Jose, CA, USA, 2011.

[84] R. Dubey, Introduction to Embedded System Design Using Field Programmable Gate

Arrays. Springer-Verlag, 2009.

116

References References

[85] www.altera.com/literature/ug/ug_sopc_builder.pdf v.2010

[86] C. C. Lee., “Fuzzy logic in control systems: fuzzy logic controller –Parts I & II. IEEE

Trans. Syst., Man Cybern. 20, pp.404-433. 1990.

[87] N. Sepehri, T. Corbert and P. D. Lawrence, “Fuzzy position control of hydraulic

robots with valve deadbands”, Mechatronics Elsevier Vol. 5, No. 6, pp623-643, 1995.

[88] Eva Volna, Introduction to soft computing, 1st Ed, 2013, eva Volna & bookboon.com.

[89] I.S. Akkizidis, G.N. Roberts, P. Ridao, and J. Batlle, “Designing a Fuzzy-like PD

controller for an underwater robot” Ctrl Engineering Practice 11, pp.471–480, 2003.

[90] A. Benzekri and A. Azrar, “FPGA-Based Design Process of a Fuzzy Logic Controller

for a Dual-Axis Sun Tracking System”, Arab J Sci Eng, August, 2014, pp. 6109–6123.

[91] J.G. Tong, I.D.L. Andersan, and M.A.S. Khalid, “Soft-core processors for embedded

systems”. 18th Int. Conf. on Microelectronics. pp. 170-173, 2006.

[92] http://www.altera.com/literature/ug/ug_embedded_ip.pdf

[93] http://www.altera.com/literature/ug/ug_sopc_builder.pdf

[94] A. Benzeki and L. Refoufi, “Design and implementation of a microprocessor-based

interrupt-driven control for an irrigation system”, in Proceedings of the 1st IEEE Inter.

Conf. on E-Learning in Industrial Electronics. Hammamat, Tunisia, Dec-2006.

[95] A. Benzekri, K. Meghriche and L. Refoufi, “PC-Based automation of a multi-mode

control for an irrigation system”, International Symposium on Industrial Embedded

Systems, 2007, SIES’07, Lisboa, Portugal.

[96] Pong P. Chu, Embedded SoPC design with Nios II processor and VHDL examples,

John Wiley & Sons, Inc. 2011.

