Abstract

Let P be a finite poset and H (P) be the hypergraph whose vertices are the points of P and whose edges are the maximal intervals in P. We study the domatic number d (G (P)) and the total domatic number $d_t(G (P))$ of the 2-section graph G (P) of H (P). For the subset P_{I, u} of P induced by consecutive levels $U_{i = I}^{u} N_i$ of P, we give exact values of d (G (P_{I, u})) when P is the chain product C_{n1} × C_{n2}. According to the values of I, u, n₁, n₂, the maximal domatic partition is exhibited. Moreover, we give some exact values or lower bounds for d (G (P * Q)) and d_t (G (P_{I, u})), when * is the direct sum, the linear sum or the Cartesian product. Finally we show that the domatic number and the total domatic number problems in this class of graphs are NP-complete