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Abstract  Th is paper presents the retro-propagation algorithm for tuning the parameter o f Art ificial Neural Networks 
used by pharmachemical industry. The obtained numerical test results on lubrication and air circuits shown that the proposal 
improves the performance in  terms of number of iterations and reliab ility of the models. BEKER Laboratories production line, 
is a Pharmaceutical production company located at Dar El Beida (Alg iers-Algeria), was kept as the main target of this study. 
After careful inspection, the weakest and the strongest points of the system were identified and the most strategic equipment 
within  the line (the compressor) was taken as the equipment of focus. From this specific point, failure simulat ions are most 
adequate and from this selected target, the designed system will be better positioned for failure detection during the produc-
tion process. The efficiency of this approach is its fast learning, and its accuracy of detecting failure which is of the order of 
10-3. 
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1. Introduction 
Nowadays, the preventive maintenance domain has ten-

dency to become an entire part  in  the market. The industrial 
systems became increasingly complex. For that, it is neces-
sary to permanently supervise them in order to prevent any 
incident, to detect an eventual faulty in the equipment which 
allow a good quality of service. Emerging preventive main-
tenance domain tends to establish itself as the sole market, 
mostly due to the more complex g rowing industrial systems. 
Hence, permanent industrial supervision is becoming more 
and more v ital to maintain competitive p roduction qualities. 

Due to the ease of their implementation and their high re-
liab ility[1-3], the Artificial Neural Networks (ANNs) by 
their nature are most suited for ext remely  nonlinear proc-
esses. Hence, they are quiet often found within the industrial 
monitoring systems[5-6]. 

Herein, we introduce an efficient neuronal approach, 
which was adapted to a pharmachemical industry from 
BEKER Laboratories. The main  task was to determine and 
situate strong and weak points within the production line, 
based on the true data generated by the sensors; which are 
specific to the compressor. Notice that we want to recognize 
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if there is any failu re and also what kind of failure the system 
has. We want to predict the system behavior while it is op-
erating. Once done, this will make the automation of the 
diagnosis process doable[4]. The approach is based on the 
gradient back-propagation multilayer network because of it 
contains one or more hidden layers that can treat strongly 
nonlinear industrial systems, which we cannot treat with 
mathematical approach. Moreover, it  is used for its fast 
learning and for its ability  of generalization and classifica-
tion.    

2. Description of Beker Workshops 
Laboratory 

BEKER Laboratories is a pharmaceutical drugs company, 
established in Algiers Algeria since 2005. The main com-
position structure of this company is as follows: 

Production Line Unit 
Quality Assurance Laboratory 
Research and Development Laboratory 
Workshop Unit. 
Our study was based on the production line structure as 

shown in Fig.1, as it had all the required elements that apply 
to the objective of this paper. Within this production line the 
air compressor constitutes the central unit that feeds all the 
other parts; therefore our focus was mainly  oriented in the 
observation of this unit represented in Fig.1.  
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A. Compressor Operating Principle and its Importance 
The air compressor is a rotary two-stage type with lobes 

coupled with an electric motor[8]. The ambient air is con-
densed by the compressor in two stages; the air enters the 
low pressure zone to be cooled, then it enters the h igh pres-
sure zone. 

The resulting air leaves the compressor with a desired 
pressure equal to 7 bars. This pressure will be distributed via 
piping towards all the machines as shown in Fig.1. The 
availability of the pressure air is synonym of the availab ility 
of the production. If there is any trouble in the pressure cir-
cuit no machine will be functioning. Therefore, the reliab ility 
of the compressor is also synonymous of the preventive 
maintenance quality. For these reasons, the supervision of 
the air compressor is the best strategy to maintain the pro-
duction of the drugs to its optimum.   
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Figure 1  Production Line of BEKER Laboratory  
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Figure 2.  Lubrication Circuit 

3. Air Compressor Model 
The air compressor is composed of two main circuit  

modules; the lubrication circu it part, and the air circuit part. 
For the sake of simplicity the compressor is decomposed in 
two parts, denoted A and B. 

● Part A: Lubrication Circuit, the compressor’s casing 
gear box holds a pressure sensor of type PT45 that takes 
measurements of the oil pressure. In fact, the oil pressure is a 
parameter used as an entry in  the ANN as the indicator of 
faulty in this module. The oil pressure is specific to this 
compressor and varies between 1.5 and 2.7 bars; therefore 
any value out of this range is considered as a faulty of this 

module. The zones of good functioning are denoted by the 
symbol '1', and the zones of faulty are denoted by the symbol 
'-1'. These symbols are considered as the output of the ANN. 
Fig. 2 represents the lubrication circuit. The oil pressure is 
monitored in ordered  to obtain a real t ime measurement of 
the lubrication module. 

● Part B: Air Circuit, in this part we have two pressure 
and three temperature sensors; which means that we do have 
two parameters to monitor. The pressure and the temperature 
readings are the most significant indicators of the break-
downs in the air circu it module. Fig.3 shows the air circu it 
and the positions of the sensors. 

The surveillab ility of this circu it will be based on moni-
toring all these parameters separately. Since each parameter 
is an entry to the ANN, we will have 5 neural networks that 
supervise all those parameters in parallel. 

 
Figure 3.  Air Circuit 

4. Compressor Neuronal Model  
The proposed neural model is based on the gradient 

multi-layer retro-propagation network '1-12-1', containing 
one layer entry with one neuron, one hidden layer with 
twelve neurons and one output layer with a single neuron. 
The optimizat ion of the neural model is perfo rmed at  random 
following these options: 

First, by varying the number of neurons within the hidden 
layer, then by comparing all various architectures. Based on 
this comparative study, which g ives several training tests, we 
obtained this configuration of 12 neurons in the hidden layer. 
This gave a fast convergence and a good result with an error 
of around 10-3 during the training time. W ith this choice we 
were able to avoid the overtraining phenomena as well as the 
local minima. Th is overtraining (over-learning) is avoided in 
a stochastic manner (randomly, notice that the artificial in-
telligence method is stochastic method) i.e. the adequate 
parameters of the ANN are determined after various tests. 
Among the parameter that can be influenced during the test 
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are: the neural number in  the hidden layer, the in itial values 
of weights and biais and the iteration number.   

Second, by stochastically in itializing several t imes the 
weight values, we found that the weight values within an 
interval of[-0.5, 0.5] were better suited for our application. 

Third, we fixed the number of iteration to 1300 which is 
largely sufficient for this applicat ion. 

The training data are data given by the manufacturer and 
are listed in table1 which g ives the specifications of the 
sensors functioning values ranges of the air compressor. 

Table1.  Sensor Functioning Values Ranges of the Air Compressor 

Compressor parameters Min. 
Value 

Ave. 
Value 

Max. 
Value 

Lubrifiante Circuit 
PT45 oil pressure 1.5 bars 2 .5 bars 2.7 bars 

Air Circuit 
PDT02 pressure, air filter 

(ΔP) -0.100bar -0.044bar -0.044bar 

PT29 output air pressure 4 bars 7 bars 7 .3 bars 
TT11 element output tem-

perature (BP) 100 °C 220 °C 225 °C 

TT18 input temperature (HP) 60°C 65°C 75°C 
TT21 element output tem-

perature (HP) 100°C 220°C 225°C 

A.Train ing Principle 
The back-propagation algorithm[7] is there to tune the 

parameters (weight and contour), until reaching the desired 
output values (these values are within the interval[-1, 1]). 
The convergence was obtained far enough to the fixed value 
of iterat ion. 
B.Train ing Parameters Choice  

a- The error (goal): It is the error targeted by the cost 
function. We have settled down for an error in the order of 
10-3. 

b- The iteration number: it is the number for which  the 
algorithm of retro-propagation is executed. It might be that 
the network converges before reaching the predetermined 
number of iterat ions. Or it might as well not converge at all. 

c- The training rate: the performance of the gradient 
retro-propagation algorithm is sensitive to the changes of the 
training rate. If this is very high, the algorithm can become 
unstable, and if it  is too s mall, the algorithm may  take a too 
much time to converge. 

d- Activation Function: we have used the activation 
function the sigmoid type bipolar, nonlinear and increasing, 
it allows us to introduce a threshold and a saturation to limit 
the amplitudes of the network outputs which are be-
tween[-1,1]. 

 
To implement the grad ient retro-propagation training al-

gorithm of the network, we apply the algorithm accord ing to 
following stages: 

Step1: normalized input/output reading values  
Step2: set the cells numbers '1-12-1'.  
Step3: random in itializat ion of the weight and skew val-

ues in the[- 0.5, 0.5] interval. 
Step4: iteration number (NB=1300), training gain  

(g=0.001). 
Step5: erro r calcu lation to be retro-propagated. 
Step6: modification (or adaptation) of the weights and 

skews and go to step4. 
step7: t rain ing results.  
In order to check the detection area of the good and faulty 

operation, we used various values in the training phase de-
fined by the graphs 'test bases'. Fig. 4 and Fig. 5 represent 
respectively the neuronal model and the flow chart of the 
algorithm.   
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Figure 4.  Neural Model 
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Figure 5.  Algorithm Flow Chart 

5. Simulation and Results 
The program was developed under MATLAB 7.0. The 
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obtained results of the lubrication circuit and the air circu it 
are as follows: 
●Part A: Lubrication Circuit  

A-Train ing  
We start with the network train ing simulation for the oil 

pressure lubricat ion circuit. The normal range of the o il 
pressure is[1.5, 2.7] bars, all other values out of this range 
cause an abnormal situation and leads to a faulty. 

Fig.6.1 shows that the convergence is reached around 240 
iterations; this enabled us to say that the network (1-12-1) 
has performed a good train ing according to the desired ob-
jective. 

 
Figure 6.1 Training Simulation Network 

 
Figure 6.2.  Test Base 

b- Simulation of good and faulty operation zones 
After the train ing it  is useful to know if the network 

(1-12-1) is able to recognize faulty for other situations which 
are not known by ANN. We mean to recognize the good and 
faulty operation points, other than those which are given in 
the training phase. Fig. 6.2 shows a test base for other set of 
points other than used in the training phase. The values of the 
basic test graph are between[-1, 1] which reflects a desired 
output of the network. 
●Part B: Air Circuit  

In this part, we will supervise separately the parameters of 

the air circuit. We start with the training phase with some set 
of points than we try other set of values other than those 
given in the train ing and we will proceed with this manner 
for the rest of parameters to be supervised. The air pressure 
filter operation range is[-0.1, -0.044] bar. All values within 
this range are considered to be in normal operation otherwise 
we are in  faulty operation. Fig. 6.1a shows the simulat ion of 
the network training which converges after 10 iterations only. 
Fig. 6.1b shows a test base. The test was carried out with 
other sets of entry. Th is shows that the network is reliab le 
and able to detect the normal and the faulty operation. Thus 
the supervision real time is possible. 

 
Figure 6.1a.  Training Simulation Network  

 
Figure 6.1b.  Test Base 

Pressure Simulation, Output Air of the Compressor  
The operating range of the pressure at the output of the 

compressor is[4, 7.3] bars, Fig. 6.2a shows the simulat ion of 
the network train ing which converges after 20 iterat ions. Fig. 
6.2b shows the test base of the output air of the compressor. 
 Temperature Simulation, Output Low Pressure  

The operating range of the temperature at the output low 
pressure is[100, 225] °C. Fig. 6.3a shows the simulat ion of 
the network training (1-12-1) which converges after 15 it-
erations. Fig. 6.3b shows a test base of the output low pres-
sure. 
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Figure 6.2a.  Training Simulation Network                         Figure 6.2b.  Test Base 

 
Figure 6.3a.  Training Simulation Network                        Figure 6.3b.  Test Base 

 
Figure 6.4a.  Simulation of Drive of the Network                     Figure 6.4b.  Test Base 
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Figure 6.5a.  Training Simulation Network  

 
Figure 6.5b.  Test Base 

 Temperature Simulation, Input High Pressure 
The operating range of the input high pressure is[60, 

75] °C. Fig. 6.4a shows the training simulation network 
(1-12-1) which converges after 10 iterations. Fig. 6.4b shows 
the test base of the temperature at high input pressure. 
 Temperature Simulation, Output High Pressure 

The operating range of the output high pressure is[100, 
225]°C. Fig. 6.5a show the train ing simulation network 
(1-12-1) which converges after 15 iterations. Fig. 6.5b shows 
a test base of the temperature at the output high pressure. 

6. Conclusions 

The used neural approach model of (1-12-1) network al-
lows us to supervise in real time the pharmaceutical BEKER 
Laboratory line production. The train ing simulat ion sets of 

the network shows the following quality results: 
The fast convergence results was showed in the train ing 

graphs where some iterat ions were reached from 10 to 20 for 
the air circuit case and 240 iterat ions.  

The phenomena of on-training and local min ima d id not 
appear. This confirms a satisfactory choice of the parameters 
in the gradient retro-propagation algorithm.  

All the test bases show the desired outputs of the net-
work[-1, 1], therefore the detection of the faulty is guaranty. 

It is not necessary to validate data or results with other 
methods of validation (k-fo ld), we are not in a theoretical or 
ideal case, our applicat ion is useful because we obtain 
valuable results and were verified by the feedback knowl-
edge of the operators on site. From this, we can say that the 
network is able to detect any anomaly in the system by just 
controlling the output of the network. We can supervise any 
anomaly of the controlled parameters of the compressor. 
This facilitates the diagnosis of the machine and at the same 
time enhances the preventive maintenance more effectively. 
The weaknesses of the ANN approach are encountered while 
testing the network optimization. The ANN parameters are 
not fixed at the beginning; they are determined by testing 
(randomly). 
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