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Abstract

The current work is motivated by the so-called Caputo-type modification of the
Hadamard or Caputo Hadamard fractional derivative discussed in [4]. The main aim
of this paper is to study Cauchy problems for a differential equation with a left Caputo
Hadamard fractional derivative in spaces of continuously differentiable functions. The
equivalence of this problem to a nonlinear Volterra type integral equation of the second
kind is shown. On the basis of the obtained results, the existence and uniqueness of
the solution to the considered Cauchy problem is proved by using Banach’s fixed point
theorem. Finally, two examples are provided to explain the applications of the results.
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1 Introduction

Fractional calculus, that is, the theory of derivatives and integrals of fractional non-
integer order, are used in many fields like: mathematics, physics, chemistry, engineering,
and other sciences.

Few years ago, many scholars started making deeper researches on fractional differential
equations. Intensive development of this latter and its applications led to that. (e.g.;
[1, 2, 3, 10, 11, 12]). Many definitions were supplied for the Fractional order differential
operators and many reports on the existence and uniqueness of solutions to differential
equations in the frame of these operators appeared. (see for example [14] and the references
therein).
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J. Hadamard [6] in 1892, introduced a new definition of fractional derivatives and inte-
grals in which he claims:(

J α
a+
g
)
(t) =

1

Γ (α)

∫
.ta

(
ln
t

τ

)α−1

g(τ)
dτ

τ
, (0 < a < t) , Re(α) > 0, (1)

for suitable functions g, where Γ represents gamma function. This is the generalization of
the nth integral(
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g
)
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∫ t
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where n = [Re(α)] + 1 and [Re(α)] means the integer part of Re(α).
The corresponding left-sided Hadamard fractional derivative of order α is defined by(

Dα
a+
g
)
(t) = δn

1
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∫ t

a

(
ln
t
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τ
, α ∈ [n− 1, n) , (3)

where δ = t d
dt . The main difference between Hadamard’s definition and the previous ones

is that the kernel integral contains logarithmic function of arbitrary exponent. The present
paper follows the Caputo-type definition based on the modification of Hadamard fractional
derivatives. This approach is given by the equality,(

cDα
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g
)
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)[
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ln
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We can use the following equivalent representation, which follows from (3) and (4)(
cDα

a+
g
)
(t) =

1

Γ (n− α)

∫ t
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(
log

t

τ

)n−α−1

δng (τ)
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τ
. (5)

The Caputo Hadamard derivative is obtained from the Hadamard derivative by changing
the order of its differential and integral parts. Despite the different requirements on the
function itself, the main difference between the Caputo Hadamard fractional derivative and
the Hadamard fractional derivative is that the Caputo Hadamard derivative of a constant
is zero [4]. The most important advantage of Caputo Hadamard is that it brought a new
definition through which the integer order initial conditions can be defined for fractional
order differential equations in the frame of the Hadamard fractional derivative.

In this article, we extend the approach of Kilbas et al. [10] to fractional Cauchy problems
with a left Caputo Hadamard in spaces of continuously differentiable functions and prove
the existence and uniqueness of solutions to these problems.

To get to our aim, the equivalence of the Cauchy type problems to a nonlinear Volterra
type integral equation of the second kind is first proved. Once that is done, Banach’s fixed
point theorem is applied. By the end, some examples are given to illustrate the obtained
results.

2 Preliminaries

Below, we recall some basic definitions, properties, theorems and lemmas needed in the
rest of this paper.

Let Cn ([a, b] ,R) be the Banach space of all continuously differentiable functions from
[a, b] to R. We will introduce the weighted space Cγ,ln [a, b] , C

n
δ,γ,ln [a, b] and C

α,r
δ,γ,ln [a, b] of

the function g on the finite interval [a, b] .
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Definition 2.1. If α ∈ (n− 1, n] and γ ∈ (0, 1] , then

(1) The space Cγ,ln [a, b] is defined by

Cγ,ln [a, b] =

{
g :

(
ln
t

a

)γ

g(t) ∈ C [a, b]

}
, C0,ln [a, b] = C [a, b] ,

and on this space we define the norm ∥.∥Cγ,ln
by

∥g∥Cγ,ln
=

∥∥∥∥(ln ta
)γ

g(t)

∥∥∥∥
C

= max
t∈[a,b]

∣∣∣∣(ln ta
)γ

g(t)

∣∣∣∣ .
(2) The space Cn

δ,γ,ln [a, b] is defined by

Cn
δ,γ,ln [a, b] =

{
g : δkg ∈ C [a, b] , k = 0, .., n− 1 and δng ∈ Cγ,ln [a, b]

}
,

and on this space we define the norm ∥.∥Cn
δ,γ,ln

by

∥g∥Cn
δ,γ,ln

=

n−1∑
k=0

∥∥δkg∥∥
C
+ ∥δng∥Cγ,ln

, ∥g∥Cn
δ
=

n∑
k=0

max
t∈[a,b]

∣∣δkg(t)∣∣ .
(3) We denote by Cα,r

δ,γ,ln [a, b] the space of functions g given on [a, b] and such that

Cα,r
δ,γ,ln [a, b] =

{
g ∈ Cr

δ [a, b] :
(
cDα

a+
g
)
∈ Cγ,ln [a, b] , r ∈ N

}
,

Cr,r
δ,γ,ln [a, b] = Cr

δ,γ,ln [a, b] .

Property 2.2 ([10]). The fractional integral operators
(
J α
a+

)
satisfy the semigroup

property (
J α
a+
J β
a+
g
)
(t) =

(
J α+β
a+

g
)
(t) , Re(α) > 0, Re(β) > 0.

The fractional derivative operators
(
Dα

a+

)
fullfil the semigroup property(

Dα
a+
J β
a+
g
)
(t) =

(
J β−α
a+

g
)
(t) .

Property 2.3 ([4]). Let Re(α) ≥ 0, n = [Re(α)] + 1 andRe(β) > 0, then

(cDα
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(
ln
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a
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) =
Γ (β)
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(
ln
t
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, Re(β) > n.

On the other hand, for k = 0, 1, .., n− 1,

(cDα
a+

(
ln
t

a

)k

) = 0.

Lemma 2.4 ([4]). Let α ∈ C, n = [Re (α)] + 1, let g (t) ∈ ACn
δ [a, b] or Cn

δ [a, b] , then

(
J α
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(
cDα

a+
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))

(t) = g (t)−
n−1∑
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(
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)
(a)
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(
ln
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.
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Lemma 2.5 ([10]). Let n ∈ N and 0 ≤ γ < 1.The space Cn
δ,γ,ln [a, b] consists of those

and only those functions g which are represented in the form

g (t) =
1

(n− 1)!

∫ t

a

(
ln
t

τ

)n−1

φ (τ)
dτ

τ
+

n−1∑
k=0

dk

(
ln
t

a

)k

,

where φ ∈ Cγ,ln [a, b] and dk (k = 0, 1, ..., n− 1) are arbitrary constants, such that

φ (t) = δng (t) , dk =
δkg (a)

k!
(k = 0, 1, ..., n− 1) .

Lemma 2.6 ([10]). Let 0 < a < b < +∞, Re (α) > 0, and 0 ≤ γ < 1, then

a. If γ > α > 0, then
(
J α
a+

)
is bounded from Cγ,ln [a, b] into Cγ−α,ln [a, b] :∥∥∥J α

a+
g
∥∥∥
Cγ−α,ln

≤ k ∥g∥Cγ,ln
, k =

(
ln
b

a

)Re(α)
Γ (1− γ)

Γ (1 + α− γ)
.

In particular
(
J α
a+

)
is bounded in Cγ,ln [a, b] .

b. If γ ≤ α, then
(
J α
a+

)
is bounded from Cγ,ln [a, b] into C [a, b] :

∥∥∥J α
a+
g
∥∥∥
C
≤ k ∥g∥Cγ,ln

, k =

(
ln
b

a

)Re(α)−γ
Γ (1− γ)

Γ (1 + α− γ)
.

In particular
(
J α
a+

)
is bounded in Cγ,ln [a, b] .

Lemma 2.7 ([10]). The fractional operator
(
J α
a+

)
represents a mapping from C [a, b]

to C [a, b] and ∥∥∥J α
a+
g
∥∥∥
C
≤ 1

Re (α) Γ (α)

(
ln
b

a

)Re(α)

∥g∥C .

Theorem 2.8 (Banach fixed point Theorem, [10]). Let (X, d) be a nonempty complete
metric space, let 0 ≤ w < 1, and let T : X −→ X be a map such that for every x, x̃ ∈ X, the
relation

d (Tx, T x̃) ≤ wd (x, x̃) ,
holds. Then the operator T has a uniquely defined fixed point x∗ ∈ X.

Furthermore, if T k (k ∈ N) is the sequence defined by

T 1 = T, T k = TT k−1 (k ∈ N− {1}) ,

then, for any x0 ∈ X
{
T kx0

}k=∞
k=1

converges to the above fixed point x∗.

Definition 2.9 ([10]). Let l ∈ N, G ⊂ Rl, [a, b] ⊂ R, g : [a, b]×G −→ R be a function
such that, for any (x1, ..., xl) , (x̃1, ..., x̃l) ∈ G, g satisfies generalized Lipschitizian condition:

|g [t, x1, ..., xl]− g [t, x̃, x̃1, ..., x̃l]| ≤ A1 |x1 − x̃1|+ ...+Al |xl − x̃l| , Aj ≥ 0, j = 1, ..., l. (6)

In particular,g satisfies the Lipschitzian condition with respect to the second variable if for
all t ∈ (a, b] and for any x, x̃ ∈ G one has

|g [t, x]− g [t, x̃]| ≤ A |x− x̃| , A > 0. (7)
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3 Nonlinear Cauchy problem

In this section, we present the existence and uniqueness results in the space Cα,r
δ,γ,ln [a, b]

of the Cauchy problem for the nonlinear fractional differential equation in the frame of
Caputo Hadamarad fractional derivative. That is we consider the equation(

CDα
a+
x
)
(t) = h [t, x (t)] , Re (α) > 0, t > a > 0, (8)

subject to the initial conditions(
δkx
)
(a+) = dk, dk ∈ R, k = 0, ..., n− 1, n = [Re(α)] + 1. (9)

The Volterra type integral equation corresponding to problem (8)-(9) is :

x(t) =

n−1∑
j=0

dj
j!

(
ln
t

a

)j

+
1

Γ (α)

∫ t

a

(
ln
t

τ

)α−1

h [τ, x (τ)]
dτ

τ
, a ≤ t ≤ b. (10)

In partuclar, if α = n ∈ N then the problem (8)-(9) is as follows:

(δnx) (t) = h [t, x (t)] , a ≤ t ≤ b,
(
δkx
)
(a+) = dk ∈ R, k = 0, 1, ...n− 1. (11)

The corresponding integral equation to the problem (11) has the form:

x(t) =
n−1∑
j=0

dj
j!

(
ln
t

a

)j

+
(
J n
a+
h
)
(t) , a ≤ t ≤ b. (12)

Firstly, we we have to prove the equivalence of the Cauchy problem to the Volterra
type integral equation in the sense that, if x ∈ Cr

δ [a, b] satisfies one of them, then it also
satisfies the other one.

Theorem 3.1. Let Re (α) > 0, n = [Re(α)] + 1, (0 < a < b < +∞), and 0 ≤ γ < 1 be
such that α ≥ γ. Let G be an open set in R and let h : [a, b]×G −→ R be a function such
that h [t, x] ∈ Cγ,ln [a, b] for any x ∈ Cγ,ln [a, b].

(i) Let r = n− 1 for α /∈ N, if x ∈ Cn−1
δ [a, b] then x satisfies the relations (8) and (9) iff x

satisfies equation (10) .

(ii) Let r = n for α ∈ N, if x ∈ Cn
δ [a, b] then x satisfies the relation (11) if and only if, x

satisfies equation (12) .

Proof. (i) Let α /∈ N, n− 1 < α < n and x ∈ Cn−1
δ [a, b] .

(i.a) Here we prove the necessity. From definition of CDα
a+

and (3) we obtain

CDα
a+
x (t) = (δn)

J n−α
a+

x (τ)− n−1∑
j=0

δjx (a)

j!

(
ln
τ

a

)j (t) .

By hypothesis, h [t, x] ∈ Cγ,ln [a, b] and it follows from (8) that CDα
a+
x (t) ∈ Cγ,ln [a, b] ,

and hence, by applying Lemma 2.5, we haveJ n−α
a+

x (τ)− n−1∑
j=0

δjx (a)

j!

(
ln
t

τ

)j
 (t) ∈ Cn

δ,γ,ln [a, b] .
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By using Lemma 2.4, we obtain

J α
a+

(
CDα

a+
x
)
(t) = x (t)−

n−1∑
j=0

δjx (a)

j!

(
ln
t

a

)j

. (13)

In view of Lemma 2.6-(b) , J α
a+
h [t, x] belongs to the C [a, b] space, Applying

(
J α
a+

)
to

the both sides of (8) and utilizing (13), with respect to the initial conditions (9), we deduce
that there exists a unique solution x ∈ Cn−1

δ [a, b] to equation (10).

(i.b) Let x ∈ Cn−1
δ [a, b] satisfies the equation (10).

– We want to show that x satisfies equation (8) . Applying
(
Dα

a+

)
to both sides of (10) ,

and taking into account (4) , (9) , Property 2.2 and Property 2.3, we get

Dα
a+

x (t)− n−1∑
j=0

δjx (a)

j!

(
ln
t

a

)j
 = Dα

a+

(
1

Γ (α)

∫ t

a

(
ln
t

τ

)α−1

h [τ, x (τ)]
dτ

τ

)
,

then (
CDα

a+
x
)
(t) =

(
Dα

a+

)(
J α
a+
h
)
(t) ≡ h [t, x (t)] .

– Now, we show that x satisfies the initial relations (9). We obtain by differentiation both
sides of (10) that,

δkx (t) =

n−1∑
j=k

dj
(j − k)!

(
ln
t

a

)j−k

+
1

Γ (α− k)

∫ t

a

(
ln
t

τ

)α−k−1

h [τ, x (τ)] dτ.

Changing the variable τ = a

(
t

a

)s

, yieldys

δkx (t) =
n−1∑
j=k

dj
(j − k)!

(
ln
t

a

)j−k

+
1

Γ (α− k)

∫ 1

0

(
ln

t

a
(
t
a

)s
)α−k−1

×h
[
a

(
t

a

)s

, x

(
a

(
t

a

)s)]
a ln

(
t

a

)(
t

a

)s

ds

=
n−1∑
j=k

dj
(j − k)!

(
ln
t

a

)j−k

+

ln

(
t

a

)α−k

Γ (α− k)

∫ 1

0

(1− s)α−k−1
h

[
a

(
t

a

)s

, x

(
a

(
t

a

)s)]
ds.

for k = 0, ..., n− 1. Because α− k > n− 1− k ≥ 0, using the continuity of h, Property
2.3 and Lemma 2.7 we get J α

a+
h [t, x] ∈ C [a, b], and taking a limit as t −→ a+ , we

obtain δkx (a+) = dk.

(ii) For α ∈ N and x (t) ∈ Cn
δ [a, b] be the solution to the Cauchy problem (11).

(ii.a) Firstly, we prove the necessity. Applying
(
J n
a+

)
to both sides of equation (11), using

(4) and Lemma 2.4, we have

J n
a+
δnx (t) = x (t)−

n−1∑
k=0

δkx (a)

k!

(
ln
t

a

)k

= J n
a+
h (t) ,

since δkx (a+) = dk, we arrive at equation (12) and hence the necessity is proved.
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(ii.b) If x ∈ Cn
δ [a, b] satisfies the equation (12), in addition, by term-by-term differentiation

of (12) in the usual sense k times, we get

δkx (t) =
n−1∑
j=k

dj
(j − k)!

(
ln
t

a

)j−k

+
1

(n− k − 1)!

∫ t

a

(
ln
t

τ

)n−k−1

h [τ, x (τ)]
dτ

τ
,

for k = 0, ..., n. Using Property 2.3 , taking the limit as t −→ a+, we obtain δ
kx (a+) =

dk, and δ
nx (t) = h [t, x (t)] . Thus the Theorem 3.1 is proved for α ∈ N.

This completes the proof of the theorem.

Corollary 3.2. Under the hypotheses of Theorem 3.1, with 0 < Re (α) < 1, if
x ∈ Cδ [a, b] then x (t) satisfies the relation(

CDα
a+
x
)
(t) = h [t, x (t)] , t > a > 0, x (a) = d0,

if and only if, x satisfies the equation

x(t) = d0 +
(
J α
a+
h
)
(t) , a ≤ t ≤ b.

The next step is to prove the existence of a unique solution to the Cauchy problem
(8)-(9) in the space of functions Cα,r

δ,γ,ln [a, b] by using the Banach’s fixed point theorem.

Theorem 3.3. Let α > 0, ad n = [ℜ(α)] + 1, 0 ≤ γ < 1 be such that α ≥ γ. Let
G be an open set in R and h : ]a, b] × G −→ C be a function such that, for any x ∈ G,
h [t, x] ∈ Cγ,ln [a, b], x ∈ Cγ,ln [a, b], and the Lipshitz condition (7) holds with respect to the
second variable.

(i) If n−1 < α < n, then there exists a unique solution x to (8)-(9) in the space Cα,n−1
δ,γ,ln [a, b] .

(ii) If α = n, then there exists a unique solution x ∈ Cn
δ,γ,ln [a, b].

Since the problem (8)-(9) and the equation (10) are equivalent, it is enough to prove that
there exists only one solution to (10).

Proof. Here we prove (i) only as (ii) can be proved similarly.

Step 1. First we show that there exists a unique solution x ∈ Cn−1
δ [a, b].

Divide the interval [a, b] into M subdivisions [a, t1] , [t1, t2] , ..., [tM−1, b] such that a <
t1 < t2 < ... < tM−1 < b.

(a) Choose t1 ∈ ]a, b] such that the inequality

w1 = A
n−1∑
k=0

Γ (1− γ)
Γ (α− k − γ + 1)

(
ln
t1
a

)Re(α)−k

< 1, A > 0, (14)

holds. Now we prove that there exists a unique solution x (t) ∈ Cn−1
δ [a, t1] to equation

(10) in the interval [a, t1].
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It is easy to see that Cn−1
δ [a, t1] is a complete metric space equipped with the distance

d (x1, x2) = ∥x1 − x2∥Cn−1
δ [a,t1]

=
n−1∑
k=0

∥∥(δkx1 − δkx2)∥∥C[a,t1]
.

Now, for any x ∈ Cn−1
δ [a, t1] , define operator T as follows

(Tx) (t) ≡ Tx (t) = x0 (t) +
1

Γ (α)

∫ t

a

(
ln
t

τ
)

)α−1

h [τ, x (τ)]
dτ

τ
, (15)

with

x0 (t) =
n−1∑
j=0

dj
j!

(
ln
t

a

)j

. (16)

Transforming the problem (10) into a fixed point problem, x (t) = Tx (t) , where T is
defined by (15). One can see that the fixed points of T are nothing but solutions to problem
(8)-(9) . Applying the Banach contraction mapping, we shall prove that T has a unique fixed
point.

Firstly, we have to show that:
(a.i) if x (t) ∈ Cn−1

δ [a, t1], then (Tx) (t) ∈ Cn−1
δ [a, t1] .

(a.ii) ∀x1, x2 ∈ Cn−1
δ [a, t1] the following inequality holds:

∥Tx1 − Tx2∥Cn−1
δ [a,t1]

≤ w1 ∥x1 − x2∥Cn−1
δ [a,t1]

, 0 < w1 < 1.

(a.i) Let us prove that Tx : Cn−1
δ [a, t1] −→ Cn−1

δ [a, t1] is a continuous operator. Differen-
tiating (15) k (k = 0, ..., n− 1) times, we arrive at the equality

(
δkTx

)
(t) = δkx0 (t) +

1

Γ (α− k)

∫ t

a

(
ln(

t

τ

)α−1−k

h [τ, x (τ)]
dτ

τ
,

with

δkx0 (t) =
n−1∑
j=k

dj
(j − k)!

(
ln
t

a

)j−k

.

It follows that δkx0 (t) ∈ Cδ [a, t1] because x0 (t) might be further decomposed as a finite
sum of functions in Cn−1

δ [a, t1] . When x0 (t) ∈ Cn−1
δ [a, t1] then

∥x0 (t)∥C[a,t1]
≤ ∥x0 (t)∥Cn−1

δ [a,t1]
=

n−1∑
k=1

∥∥(δkx0 (t))∥∥C[a,t1]
+ ∥x0 (t)∥C[a,t1]

.

On the other hand, we can apply Lemma 2.6-(b) with α ≥ γ, and α being replaced by
(α− k) , we have

J α−k
a+

h [τ, x (τ)] (t) ∈ Cδ [a, t1] .

In view of Lemma 2.6 and (7) , for all k = 0, ..., n− 1, we have∥∥∥J α−k
a+

h [τ, x (τ)]
∥∥∥
C[a,t1]

≤ Γ (1− γ)
Γ (1 + α− k − γ)

(
ln
t1
a

)Re(α)−k−γ

∥h [t, x (t)]∥Cγ,ln[a,t1]

≤ A
Γ (1− γ)

Γ (1 + α− k − γ)

(
ln
t1
a

)Re(α)−k−γ

∥x (t)∥Cγ,ln[a,t1]

≤ A
Γ (1− γ)

Γ (1 + α− k − γ)

(
ln
t1
a

)Re(α)−k

∥x (t)∥C[a,t1]
.
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As fractional integrals are bounded in the space of functions continuous in interval [a, t1].
The above implies that Tx (t) belongs to the Cn−1

δ [a, t1] space.

(a.ii) Next, we let x1, x2 ∈ Cn−1
δ [a, t1] the following estimate holds:

∥Tx1 − Tx2∥Cn−1
δ [a,t1]

=
∥∥∥J α

a+
(h [τ, x1 (τ)]− h [τ, x2 (τ)]) (t)

∥∥∥
Cn−1

δ [a,t1]

=
∑n−1

k=0

∥∥∥J α−k
a+

(h [τ, x1 (τ)]− h [τ, x2 (τ)]) (t)
∥∥∥
C[a,t1]

≤
∑n−1

k=0
Γ(1−γ)

Γ(α−k−γ+1)

(
ln t1

a

)Re(α)−k−γ ∥h [τ, x1 (τ)]− h [τ, x2 (τ)]∥Cγ,ln[a,t1]

≤ A
∑n−1

k=0
Γ(1−γ)

Γ(α−k−γ+1)

(
ln t1

a

)Re(α)−k−γ ∥x1 (t)− x2 (t)∥Cγ,ln[a,t1]

≤ A
∑n−1

k=0
Γ(1−γ)

Γ(α−k−γ+1)

(
ln t1

a

)Re(α)−k ∥x1 (t)− x2 (t)∥C[a,t1]

≤ A
∑n−1

k=0
Γ(1−γ)

Γ(α−k−γ+1)

(
ln t1

a

)Re(α)−k ∥x1 (t)− x2 (t)∥Cn−1
δ [a,t1]

.

Thus

∥Tx1 − Tx2∥Cn−1
δ [a,t1]

≤ A
∑n−1

k=0
Γ(1−γ)

Γ(α−k−γ+1)

(
ln t1

a

)Re(α)−k ∥x1 (t)− x2 (t)∥Cn−1
δ [a,t1]

.

The last estimate shows that the operator T is a contraction mapping from Cn−1
δ [a, t1]Ṫhus,

the Banach fixed point theorem implies that there exists a unique function (solution) x∗0 ∈
Cn−1

δ [a, t1] and this given as:

x∗0 = lim
m→+∞

Tmx∗00, (m ∈ N∗) ,

where

(Tmx∗00) (t) = x0 (t) +
1

Γ (α)

∫ t

a

(
ln
t

τ

)α−1

h
[
τ,
(
Tm−1x∗00

)
(τ)
] dτ
τ
,

with x∗00 ∈ Cn−1
δ [a, t1] is an arbitrary starting function.

Let us take x∗00 (t) = x0 (t) when dk ̸= 0 with x0 (t) defined by (16), if we denote by

xm (t) = (Tmx∗00) (t) , (m ∈ N∗) ,

then
lim

m→+∞
∥xm (t)− x∗0 (t)∥Cn−1

δ [a,t1]
= 0.

Now we show that this solution x∗0 (t) is unique. Suppose that there exist two solutions
x∗0 (t) , x̃

∗
0 (t) of equation (10) on [a, t1]. Using Lemma 2.6 and substituting them into (10),

we get

∥x∗0 (t)− x̃∗0 (t)∥Cn−1
δ [a,t1]

≤ A
n−1∑
k=0

Γ (1− γ)
Γ (α− k − γ + 1)

(
ln
t1
a

)Re(α)−k

∥x∗0 (t)− x̃∗0 (t)∥Cn−1
δ [a,t1]

.

This relation yields

A
n−1∑
k=0

Γ (1− γ)
Γ (α− k − γ + 1)

(
ln
t1
a

)Re(α)−k

≥ 1,

which contradicts the assumption (14). Thus there is a unique solution x∗0 (t) ∈ Cn−1
δ [a, t1].
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(b) We prove the existence of an unique solution x (t) ∈ Cn−1
δ [t1, b] . analogously

Further, if we consider the closed interval [t1,b], we can rewrite equation (10) in the form
x (t) = (Tx) (t) where

(Tx) (t) = x01 (t) +
1

Γ (α)

∫ t

t1

(
ln
t

τ

)α−1
h [τ, x (τ)]

τ
dτ, (17)

where x01 (t) defined by

x01 (t) = x0 (t) +
1

Γ (α)

∫ t1

a

(
ln
t

τ

)α−1
h [τ, x (τ)]

τ
dτ,

is a known function.
We note that x01 (t) ∈ Cn−1

δ [t1, b] . Differentiating (17) k (k = 0, ..., n− 1) times, we
arrive at the equality

(
δkTx

)
(t) = δkx01 (t) +

1

Γ (α− k)

∫ t

a

(
ln
t

τ

)α−k−1

h [τ, x (τ)]
dτ

τ
.

It follows that δkx01 (t) ∈ Cδ [t1, b] and J α−k
a+

h [τ, x (τ)] ∈ Cδ [t1, b] thus (Tx) (t) ∈
Cn−1

δ [t1, b] .

(b.i) Choose t2 ∈ ]t1, b] such that the inequality

w2 = A
n−1∑
k=1

Γ (1− γ)
Γ (α− k − γ + 1)

(
ln
t2
t1

)Re(α)−k

< 1,

hold. Let x1, x2 ∈ Cn−1
δ [t1, t2] the following estimate holds:

∥Tx1 − Tx2∥Cn−1
δ [t1,t2]

≤
n−1∑
k=0

∥∥∥J α−k
a+

(h [τ, x1 (τ)]− h [τ, x2 (τ)]) (t)
∥∥∥
C[t1,t2]

≤ A
n∑

k=0

Γ (1− γ)
Γ (α− k + 1)

(
ln
t2
t1

)Re(α)−k

∥x1 (t)− x2 (t)∥Cn−1
δ [t1,t2]

.

Hence Tx is a contraction in Cn−1
δ [t1, t2] .

By Lemma 2.6-(b) and α being replaced by α−k, we obtain that J α−k
t1+ (h [τ, x1 (τ)]− h [τ, x2 (τ)]) is

continuous in [t1, t2]. Then, the Banach fixed point theorem implies that there exists a unique
solution x∗1 ∈ Cn−1

δ [t1, t2] to the equation (10) on the interval [t1, t2] .
Notice that x∗1 (t1) = x∗0 (t1) = x01 (t1) . Further, Theorem 2.8 guarantees that this

solution x∗1 (t) is the limit of the convergent sequence Tmx∗01. Thus, we have

lim
m→+∞

∥Tmx∗01 − x∗1∥Cn−1
δ [t1,t2]

= 0,

with

(Tmx∗01) (t) = x01 (t) +
1

Γ (α)

∫ t

t1

(
ln(

t

τ
)

)α−1

h
[
τ,
(
Tm−1x∗01

)
(τ)
] dτ
τ
, (m ∈ N∗) .
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If x0 (t) ̸= 0 then we can take x∗01 (t) = x0 (t), therefore,

lim
m→+∞

∥xm (t)− x∗1 (t)∥Cn−1
δ [t1,t2]

= 0, xm (t) = (Tmx∗01) (t) .

Now let

x∗ (t) =

{
x∗0 (t) t ∈ [t1, t2] ,
x∗1 (t) t ∈ [a, t1] .

Moreover, since x∗ ∈ Cn−1
δ [a, t1] and x

∗ ∈ Cn−1
δ [t1, t2], we have x∗ ∈ Cn−1

δ [a, t2] , and
hence there is a unique solution x∗ ∈ Cn−1

δ [a, t2] to the equation (10) on the interval [a, t2].

(b.ii) Finally, we prove that a unique solution x (t) ∈ Cn−1
δ [t2, b] exists.

If t2 ̸= b, we choose ti+1 ∈ ]ti, b] such that the relation

wi+1 = A
n−1∑
k=0

Γ (1− γ)
Γ (α− k − γ + 1)

(
ln
ti+1

ti

)Re(α)−k

< 1, i = 2, 3, ...,M, b = tM .

Repeating the above process i times, we also deduce that there exists a unique solution
x∗i ∈ C

n−1
δ [ti, ti+1] given as a limit of a convergent sequence Tmx∗0i i.e.,

lim
m−→+∞

∥Tmx∗0i − x∗i ∥Cn−1
δ [ti,ti+1]

= 0, i = 2, 3, ...,M.

Consequently, the previous relation can be rewritten as

lim
m→+∞

∥xm (t)− x∗ (t)∥Cn−1
δ [a,b] = 0, (18)

with
xm (t) = Tmx∗0i, x

∗
0i (t) = x0 (t) , x

∗ (t) = x∗i (t) , i = 0, 1, ...,M,

and
x∗i (ti+1) = x∗i+1 (ti+1) , [a, b] = ∪ [ti, ti+1] , a = t0 < ... < tM = b.

Step 2. Now we show that
(
CDα

a+
x∗
)
(t) ∈ Cγ,ln [a, b] .

By (8) , (18) and the Lipschitzian condition (7), we have that

lim
m→+∞

∥∥∥(CDα
a+
xm

)
(t)−

(
CDα

a+
x∗
)
(t)
∥∥∥
Cγ,ln[a,b]

= lim
m→+∞

∥h [t, xm (t)]− h [t, x∗ (t)]∥Cγ,ln[a,b]

≤ A lim
m→+∞

∥xm (t)− x∗ (t)∥Cγ,ln[a,b]

≤ A
(
ln b

a

)γ
lim

m→+∞
∥xm (t)− x∗ (t)∥C[a,b]

≤ A
(
ln b

a

)γ
lim

m→+∞
∥xm (t)− x∗ (t)∥Cn−1

δ [a,b] .

It is obvious that the right hand side of the above inequality approaches to zero inde-
pendently, thus

lim
m→+∞

∥∥∥(CDα
a+
xm

)
(t)−

(
CDα

a+
x∗
)
(t)
∥∥∥
Cγ,ln[a,b]

= 0.

By hypothesis,
(
CDα

a+
xm

)
(t) = h [t, xm (t)] and h [t, x (t)] ∈ Cγ,ln [a, b] for x ∈ Cn−1

δ [a, b] ,

we have
(
CDα

a+
x∗
)
(t) ∈ Cγ,ln [a, b] .

Consequently, x∗ ∈ Cα,n−1
δ,γ,ln [a, b] is the unique solution to the problem (8)-(9) .
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Corollary 3.4. Under the hypotheses of Theorem 3.3, with γ = 0, there exists a unique
solution x to the problem (8)-(9) in the space Cα,n−1

δ [a, b] and to the problem (11) in the
space Cn

δ [a, b] .

Proof. The above Corollary can be demonstrated in a similar way to that of Theorem
3.3, using the following inequality

wi+1 = A
n−1∑
k=0

1

Re (α− k) Γ (α− k + 1)

(
ln
ti+1

ti

)Re(α)−k

< 1, i = 0, ...,M, a = t0, b = tM ,

where ti ∈ [a, b] and we observe that T is a contractive mapping when the following inequality
holds, indeed, for any x1, x2 ∈ Cn−1

δ [ti, ti+1]

∥Tx1 − Tx2∥Cn−1
δ [ti,ti+1]

=
∑n−1

k=0

∥∥∥J α−k
ti+ (h [τ, x1 (τ)]− h [τ, x2 (τ)]) (t)

∥∥∥
C[ti,ti+1]

≤
∑n−1

k=0

(
ln

ti+1
ti

)Re(α)−k

Re(α−k)Γ(α−k+1) ∥h [t, x1 (t)]− h [t, x2 (t)]∥C[ti,ti+1]

≤ A
∑n−1

k=0

(
ln

ti+1
ti

)Re(α)−k

Re(α−k)Γ(α−k+1) ∥x1 (t)− x2 (t)∥C[ti,ti+1]

≤ A
∑n−1

k=0

(
ln

ti+1
ti

)Re(α)−k

Re(α−k)Γ(α−k+1) ∥x1 (t)− x2 (t)∥Cn−1
δ [ti,ti+1]

.

4 The Generalized Cauchy type problem

The results in the previous section can be extended to the following equation, which is
more general than (8) :(

cDα
a+
x
)
(t) = h

[
t, x (t) ,

(
cDα1

a+
x
)
(t) , ...,

(
cDαl

a+
x
)
(t)
]
, (19)

with αj ∈ (j − 1, j], j = 1, 2, ..., l, α0 = 0, and
(
cDαj

a+

)
denotes the Caputo Hadamard

operator of order αj .
The initial conditions for (19) are(

δkx
)
(a+) = dk, dk ∈ R (k = 0, ..., n− 1) . (20)

For simplicity, we denote by h [t, φ (t, x)] instead of h
[
t, x (t) ,

(
cDα1

a+
x
)
(t) , ...,

(
cDαl

a+
x
)
(t)
]
.

Similar to the things discussed in the previous, our investigations are based on reducing
the problem (19)-(20) to the Volterra equation

x(t) =
n−1∑
j=0

dj
j!

(
ln
t

a

)j

+
1

Γ (α)

t∫
a

(
ln
t

τ

)α−1

h [τ, φ (τ, x)]
dτ

τ
, (t > a) . (21)

Theorem 4.1. Let α > 0, n = [Re(α)] + 1 and αj ∈ C (j = 0, ..., l) be such that

0 = Re (α0) < Re (α1) < ... < Re (αl) < n− 1. (22)

Let G ∈ Rl+1 be open subsets and let h : (a, b] × G −→ R be a function such that
h [t, x, x1, ..., xl] ∈ Cγ,ln [a, b] for arbitrary x, x1, ..., xl ∈ Cγ,ln [a, b] and the Lipschitz
condition (6) is fulfilled.
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(i) If x ∈ Cα,n−1
δ,γ,ln [a, b], then x holds the relations (19)-(20) if and only if x holds the equation

(21) .

(ii) If 0 < α < 1, then x ∈ Cα
δ,γ,ln [a, b] satisfies the relations(

cDα
a+
x
)
(t) = h [t, φ (t, x)] , x (a+) = d0, d0 ∈ R, (23)

iff x satisfies the equation

x(t) = d0 +
(
J α
a+

)
h [τ, φ (τ, x)] (t) , (t > a) . (24)

Proof. Let α ∈ (n− 1, n] and x ∈ Cn−1
δ [a, b] satisfies the relations (19)-(20) .

(i.a) According to (4) and (19) ,

(
cDα

a+
x
)
(t) =

(
Dα

a+

)[
x (τ)−

n−1∑
k=0

δkx (a)

k!

(
ln
τ

a

)k]
(t) .

We have
(
cDα

a+
x
)
(t) ∈ Cγ,ln [a, b] and hence

δnJ n−α
a+

x (τ)− n−1∑
j=0

δjx (a)

j!

(
ln
τ

a

)j ∈ Cγ,ln [a, b] .

Thus,

J n−α
a+

x (τ)− n−1∑
j=0

δjx (a)

j!

(
ln
τ

a

)j ∈ Cn
δ,γ,ln [a, b] ,

and by Lemma 2.4

(
J α
a+

)(
cDα

a+

)
x (t) = x (t)−

n−1∑
j=1

δjx (a)

(j − 1)!

(
ln
t

a

)j−1

,

Then, from (19) , (20) and the last relation, we obtain

x(t) =
n−1∑
j=0

dj
j!

(
ln
t

a

)j

+
(
J α
a+

)
h [τ, φ (τ, x)] (t) , (t > a) .

That is x ∈ Cn−1
δ [a, b] satisfy the equation (21) .

(i.b) Now we prove the sufficiency. Let x ∈ Cn−1
δ [a, b] satisfies equation (21) .

– From (21) we have

x(t)−
n−1∑
j=0

dj
j!

(
ln
t

a

)j

=
(
J α
a+

)
h
[
τ, x (τ) ,

(
cDα1

a+
x
)
(τ) , ...,

(
cDαl

a+
x
)
(τ)
]
(t) .
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Applying
(
Dα

a+

)
on both sides of this relation, taking into acount the conditions for

h and using Property 2.2, we get

(
Dα

a+

)x(t)− n−1∑
j=0

dj
j!

(
ln
t

a

)j
 =

(
Dα

a+

)(
J α
a+

)
h [τ, φ (τ, x)] (t)

= h [t, φ (t, x)] .

By (4), the left hand of the above expression is
(
cDα

a+

)
and thus(

cDα
a+

)
x (t) = h

[
t, x (t) ,

(
cDα1

a+
x
)
(t) , ...,

(
cDαl

a+
x
)
(t)
]
.

Hence x ∈ Cn−1
δ [a, b] satisfies (19) .

– Applying δk (k = 0, ..., n− 1) to both sides of (21), we have

δkx(t) =
n−1∑
j=k

dj
(j − k)!

(
ln
t

a

)j−k

+
(
δk
) (
J α
a+

)
h [τ, φ (τ, x)] (t) , (t > a) , (25)

Since x ∈ Cn−1
δ [a, b] for any

((
cDα1

a+
x
)
, ...,

(
cDαl

a+
x
))
∈ Rn−1 and α−k > γ−(n− 1) >

0, we have (
J α−k
a+

)
h
[
τ, x (τ) ,

(
cDα1

a+
x
)
(τ) , ...,

(
cDαl

a+
x
)
(τ)
]
∈ C [a, b] . (26)

On the other hand, by Lemma 2.3, we let τ −→ a+ on the both sides of (25) , then we
obtain

δkx(τ)
∣∣
τ=a+

= dk, k = 0, ..., n− 1.

Hence, x satisfying (21) satisfies the initial condition (20). That is x ∈ Cn−1
δ [a, b] satisfies

the Cauchy problem (19)-(20).
Similarly, we prove the second part of the Theorem.

Theorem 4.2. Let α ∈ C, n = [Re(α)] + 1, 0 ≤ γ < 1 be such that γ ≤ α. Let
αj > 0 (j = 1, ..., l) be such that conditions in (22) are satisfied. Let G be an open set in
Rl+1 and let h : (a, b] × G −→ R be a function such that h [t, x, x1, ..., xl] ∈ Cγ,ln [a, b] for
any x, x1, ..., xl ∈ Cγ,ln [a, b] and the Lipschitz condition (6) is fulfilled.

(i) If n− 1 < α < n, then there is a unique solution x to the problem (19)-(20) in the space
Cα,n−1

δ,γ,ln [a, b] .

(ii) If 0 < α < 1, then there is a unique solution x ∈ Cα
δ,γ,ln [a, b] to (19) with the condition

x (a+) = d0 ∈ R.

Proof. By Theorem 4.1 it is sufficient to establish the existence of a unique solution x
∈ Cα,n−1

δ,γ,ln [a, b] to the integral equation (21) .

Step 1. First we show that there exists a unique solution x ∈ Cn−1
δ [a, b].
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(a) We choose t1 ∈ ]a, b] , we prove the existence of a unique solution x ∈ Cn−1
δ [a, t1] , so

that the conditions

w1 =
n−1∑
k=0

l∑
j=0

Aj

(
ln t1

a

)Re(α−αj)−k Γ(1−γ)
Γ(1−γ+α−αj−k) < 1 if γ ≤ α,

holds, and apply the Banach fixed point theorem to prove the existence of a unique
solution x ∈ Cn−1

δ [a, t1] of the integral equation (21) .

We rewrite the equation (21) in the form x (t) = (Tx) (t) , where

(Tx) (t) = x0 (t) +
1

Γ (α)

∫ t

a

(
ln
t

τ

)α−1

h [τ, φ (τ, x)]
dτ

τ
,

with

x0 (t) =
n−1∑
j=0

dj
j!

(
ln
t

a

)j

.

It follows that x0 (t) ∈ Cn−1
δ [a, t1] because x0 (t) my be further decomposed as a finite

sum of functions in Cn−1
δ [a, t1] ,

h [τ, φ (τ, x)] ∈ Cγ,ln [a, b] =⇒ h [τ, φ (τ, x)] ∈ Cγ,ln [a, t1] ,

and, from Lemma 2.6-(b) , we have, using the fact that α > 0 and 0 ≤ γ < 1,

J α
a+
h [τ, φ (τ, x)] ∈ C [a, t1] if γ ≤ α.

Let x ∈ Cn−1
δ [a, t1], by Lemma 2.7, the integral in the right-hand side of (21) also belongs

to Cn−1
δ [a, t1] i.e., J α

a+
h [τ, φ (τ, x)] ∈ Cn−1

δ [a, t1] , and hence Tx ∈ Cn−1
δ [a, t1] , this proves

T is continuous on Cn−1
δ [a, t1].

To show that T is a contraction we have to prove that, for any x1, x2 ∈ Cn−1
δ [a, t1] there

exists w1 > 0 such that

∥Tx1 − Tx2∥Cn−1
δ [a,t1]

≤ w1 ∥x1 − x2∥Cn−1
δ [a,t1]

.

By Lipschitzian condition (6) , Property 2.2 and Lemma 2.4, thus∥∥∥(J α
a+

(
h
[
τ, x1,

cDα1
a+
x1, ...,

cDαl
a+
x1

]
− h

[
τ, x2,

cDα1
a+
x2, ...,

cDαl
a+
x2

]))
(t)
∥∥∥

≤ J α
a+

(∥∥∥h [τ, x1,cDα1
a+
x1, ...,

cDαl
a+
x1

]
− h

[
τ, x2,

cDα1
a+
x2, ...,

cDαl
a+
x2

]∥∥∥) (t)
≤
∑l

j=0Aj

∥∥∥(J α−αj
a+

)
J αj
a+

(
cDαj

a+

)
(x1 − x2)

∥∥∥ (t)
=
(∑l

j=0AjJ
α−αj
a+

∥∥J αj
a+

(
cDαj

a+

)
(x1 − x2)

∥∥) (t)
=
[(∑l

j=0AjJ
α−αj
a+ ∥x1 − x2∥

)
(τ)−

∑nj−1
kj=0

δkj (x1−x2)(a+)
kj !

(
ln t

a

)kj
]
.

By the hypothesis and Lemma 2.4, δkjx1 (a+) = δkj (x2) (a+), kj = 0, ..., nj − 1, nj =
Re (αj) + 1, thus∥∥∥J αj

a+

(
cDαj

a+

)
(x1 − x2) (t)

∥∥∥ =

∥∥∥∥∥∥(x1 − x2) (t)−
nj−1∑
kj=0

δkj (x1 − x2) (a+)
kj !

(
ln
t

a

)kj

∥∥∥∥∥∥
= ∥(x1 − x2) (t)∥
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for arbitrary t ∈ [a, t1] . Thus we may continue our estimation above according to∥∥∥(J α
a+
{h [τ, φ (τ, x1)]− h [τ, φ (τ, x2)]}

)
(t)
∥∥∥ ≤ l∑

j=0

Aj

(
J α−αj
a+

(∥x1 − x2∥)
)
(t) . (27)

Moreover by Lemma 2.6-(b), (27) and by (a.ii) in Theorem 3.3 the following holds, indeed,
for x1, x2 ∈ Cn−1

δ [a, t1]∥∥∥J α
a+

(h [τ, φ (τ, x1)]− h [τ, φ (τ, x2)]) (t)
∥∥∥
Cn−1

δ [a,t1]
≤
∥∥∥∥n−1∑
k=0

J α−k
a+

(h [τ, φ (τ, x1)]− h [τ, φ (τ, x2)]) (t)

∥∥∥∥
Cδ[a,t1]

≤
n−1∑
k=0

l∑
j=0

Aj

(
ln t1

a

)Re(α−αj)−k Γ(1−γ)
Γ(1−γ+α−αj−k) ∥x1 (t)− x2 (t)∥Cn−1

δ [a,t1]
.

We conclude that mapping T satisfies

∥Tx1 − Tx2∥Cn−1
δ [a,t1]

≤ w1 ∥x1 − x2∥′Cn−1
δ [a,t1]

for any functions x1, x2 ∈ Cn−1
δ [a, t1] .Hence, a unique fixed point in space Cn−1

δ [a, t1] exists
and it is explicitly given as a limit of iterations of the mapping T i.e., ∃x∗0 ∈ Cn−1

δ [a, t1]
such that

lim
m→+∞

∥xm (t)− x∗0 (t)∥Cn−1
δ [a,t1]

= 0,

Thus we deduce that a unique solution x∗ (t) ∈ Cn−1
δ [a, b] xists such that

lim
m→+∞

∥xm (t)− x∗ (t)∥Cn−1
δ [a,b] = 0,

where
xm (t) = Tmx∗0i, x

∗
0i (t) = x0 (t) , x

∗ (t) = x∗i (t) , i = 0, 1, ...,M,

and
x∗i (ti+1) = x∗i+1 (ti+1) , [a, b] = ∪ [ti, ti+1] , a = t0 < ... < tM = b.

Step 2. To complete the proof of Theorem 4.2, we show that this unique solution x (t) =
x∗ (t) ∈ Cn−1

δ [a, b] belongs to the space Cα,n−1
δ,γ,ln [a, b]. It is sufficient to prove that(

cDα
a+
x
)
(t) ∈ Cα

δ,γ,ln [a, b]. Using the estimate (27) , we have∥∥∥(cDα
a+
xm

)
(t)−

(
cDα

a+
x∗
)
(t)
∥∥∥
Cγ,ln[a,b]

= ∥h [t, φ (t, xm)]− h [t, φ (t, x∗)]∥Cγ,ln[a,b]

≤
l∑

j=0

Aj

∥∥cDαj
a+ (xm (t)− x∗ (t))

∥∥
Cγ,ln[a,b]

≤
l∑

j=0

Aj

∥∥∥J n−1−αj
a+ δn−1 (xm (t)− x∗ (t))

∥∥∥
Cγ,ln[a,b]

≤
l∑

j=0

Aj

(
ln b

a

)γ ∥∥∥J n−1−αj
a+ δn−1 (xm (t)− x∗ (t))

∥∥∥
C[a,b]

≤
l∑

j=0

Aj
(ln b

a )
γ

Re(n−1−αj)Γ(n−1−αj)

∥∥δn−1 (xm (t)− x∗ (t))
∥∥
C[a,b]

≤
l∑

j=0

Aj
(ln b

a )
γ

Re(n−1−αj)Γ(n−1−αj)
∥xm (t)− x∗ (t)∥Cn−1[a,b] ,
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It is clear that the right hand side of the above inequality approaches to zero indepen-
dently. Hence,

lim
m→+∞

∥∥∥(cDα
a+
xm

)
(t)−

(
cDα

a+
x∗
)
(t)
∥∥∥
Cγ,ln[a,b]

= 0.

Consequently, a unique solution x∗ ∈ Cα,n−1
δ,γ,ln [a, b] of equation (21) exists. The second

part of the theorem can be proved analogously.

Corollary 4.3. Under the hypotheses of Theorem 4.2 with γ = 0. Then there exists a
unique solution x∗ (t) ∈ Cn−1

δ [a, b] to the Cauchy problem (19)-(20) .

Proof. The above Corollary can be demonstrated in a similar way to that of Theorem
4.2, using the following inequality∥∥∥J α

a+
(h [τ, φ (τ, x1)]− h [τ, φ (τ, x2)]) (t)

∥∥∥
C[ti,ti+1]

≤
n−1∑
k=0

l∑
j=0

Aj

(
ln

ti
ti+1

)Re(α−αj)−k

ℜ(α−αj−k)Γ(α−αj−k) ∥x1 (t)− x2 (t)∥C[ti,ti+1]
,

for i = 0, 1, ...,M, a =t0, b = tM , and∥∥∥(cDα
a+
xm

)
(t)−

(
cDα

a+
x∗
)
(t)
∥∥∥
Cγ,ln[a,b]

≤

l∑
j=0

Aj

(
ln b

a

)γ
Re (n− 1− αj) Γ (n− 1− αj)

∥xm (t)− x∗ (t)∥Cn−1[a,b] .

We can derive the corresponding results for the Cauchy problems for linear fractional
equations.

Corollary 4.4. Let α > 0, n = [Re(α)] + 1 and 0 ≤ γ < 1 be such that α ≥ γ. Let
l ∈ N, αj > 0 (j = 1, ..., l) be such that conditions in (22) are satisfied and let dj (t) ∈ C [a, b]
(j = 1, ..., l) and f (t) ∈ Cγ,ln [a, b] .

Then the Cauchy problem for the following linear differential equation of order α

(
cDα

a+
x
)
(t) +

l∑
j=1

dj (t)
(
cDαj

a+
x
)
(t) + d0 (t)x (t) = f (t) (t > a) ,

with the initial conditions (9) has a unique solution x (t) in the space Cα,n−1
δ,γ,ln [a, b] .

In particular, there exists a unique solution x (t) in the space Cα,n−1
δ,γ,ln [a, b] to the Cauchy

problem for the equation with λj ∈ R and βj = 0 (j = 1, ..., l) :

(
cDα

a+
x
)
(t) +

l∑
j=1

λj

(
ln
t

a

)βj (
cDαj

a+
x
)
(t) + λ0

(
ln
t

a

)β0

x (t) = f (t) (t > a) .

Proof. The proof is a direct consequence of Theorem 4.2.
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5 Illustrative Examples

We give here some applications of the above results to Cauchy problems with the Caputo
Hadamard derivative.

Example 5.1. We consider the fractional differential equation of the form

(
cDα

a+
x
)
(t) = λ

(
ln
t

a

)β

[x (t)]
m
; t > a > 0; Re(α) > 0, m > 0; m ̸= 1, (28)

with λ, β ∈ R (λ ̸= 0) , with the initial conditions(
δkx
)
(a+) = 0, k = 0, ..., n− 1. (29)

(a) Suppose that the solution has the folowing form:

x (t) = c

(
ln
t

a

)ν

,

then, this equation has the explicit solution

x (t) =

[
Γ (γ − α+ 1)

λΓ (γ + 1)

] 1
(m−1) (

ln
t

a

)α−γ

, γ =
(β +mα)

(m− 1)
. (30)

Moreover, the condition (29) is satisfied.
Hence x (t) is an eigenfunction if both of γ+1 and γ−α+1 are not equal to 0 or negative

integer. also using Property 2.3 it is easily verified that if the condition

(β + α)

(m− 1)
≥ −1, (31)

holds, this solution x (t) belongs to Cγ [a, b] and to C [a, b] in the respective cases 0 ≤ α and
γ − α ≤ 0.

x (t) ∈ Cγ [a, b] if 0 ≤ γ < 1 and 0 ≤ α,

x (t) ∈ C [a, b] if γ − α ≤ 0.
(32)

The right-hand side of the equation (28) takes the form

h [t, x (t)] =

[
Γ (γ − α+ 1)

λΓ (γ + 1)

] m
(m−1)

(
ln
t

a

)−γ

. (33)

The function h [t, x (t)] ∈ Cγ [a, b] when 0 ≤ γ < 1 and h [t, x (t)] ∈ C [a, b] when γ ≤ 0

h [t, x (t)] ∈ Cγ [a, b] if 0 ≤ γ < 1,

h [t, x (t)] ∈ C [a, b] if γ ≤ 0.
(34)

In accordance with (31) , the following case is possible for the space of the right-hand
side (33) and of the solution (30) :
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1. When α > 0 and

m > 1, −mα ≤ β < m− 1−mα, β ≤ −α,
or
0 < m < 1, m− 1−mα < β ≤ −mα, β ≥ −α.

2. If 0 < α < 1 these conditions take the following forms

m > 1, −mα ≤ β ≤ −α or 0 < m < 1, −α ≤ β ≤ −mα. (35)

3. If α ≥ 1 then

m > 1, −mα ≤ β < m− 1−mα or 0 < m < 1, m− 1−mα < β ≤ −mα. (36)

(b) Now we establish the conditions for the uniqueness of the solution (30) to the above
problem (28)-(29). For this we have to choose the domain G and check when the
Lipschitz condition (7) with the right-hand side of (28) is valid.

We choose the following domain:

G =

{
(t, x) ∈ R2 : 0 < a < t ≤ b, 0 < x < p

(
ln
t

a

)q

, q ∈ R, p > 0

}
. (37)

To prove the Lipschitz condition (7) with

h [t, x (t)] = λ

(
ln
t

a

)β

(x (t))
m
, (38)

we have, for any (t, x1) (t, x2) ∈ G :

|h [t, x1]− h [t, x2]| ≤ |λ|
(
ln
t

a

)β

|xm1 − xm2 | . (39)

By definition (37) , we have

|xm1 − xm2 | < mK

(
ln
t

a

)q

|x1 − x2| , m > 0.

Substituting this estimate into (39) , we obtain

|h [t, x1]− h [t, x2]| ≤ |λ|mK
(
ln
t

a

)β+(m−1)q

|x1 − x2| .

Then the functions h [t, x (t)] fulfil the Lipschitizian condition provided that β+(m− 1) q ≥
0.

Proposition 5.2. Let λ, β ∈ R (λ ̸= 0) andm > 0 (m ̸= 1), γ = (β +mα) \ (m− 1) . Let
G be the domain (37), where q ∈ R is such that β + (m− 1) q ≥ 0.

(i) Let 0 < α < 1, if either of the conditions (35) holds, then the Cauchy problem(
cDα

a+
x
)
(t) = λ

(
ln
t

a

)β

[x (t)]
m

and x (a+) = 0, (40)

has a unique solution x (t) ∈ Cα
δ,γ,ln [a, b] and this solution is given by (30).
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(ii) Let n−1 < α < n (n ∈ N \ {1}) , if either of the conditions (36) holds, then the problem(
cDα

a+
x
)
(t) = λ

(
ln
t

a

)β

[x (t)]
m

and
(
δkx
)
(a+) = 0, k = 0, ..., n− 1, (41)

has a unique solution x (t) ∈ Cα,n−1
δ,γ,ln [a, b] and this solution is given by (30).

Remark 5.3. If β = 0, 0 < Re(α) < 1 then the Lipschitz condition is violated in the
domain (37) . The Cauchy problem (41) admits of two continuous solutions x = 0 and

x (t) =

[
Γ (γ + 1)

Γ (γ + 1− α)

] 1
(m−1)

(
ln
t

a

)γ

, γ =
α

(1−m)
.

Example 5.4. Let us consider the following problem of order α (Re (α) > 0)(
cDα

a+
x
)
(t) = λ

(
ln
t

a

)β

[x (t)]
m
+ c

(
ln
t

a

)ν

, λ, c ∈ R (λ ̸= 0) and ν, β ∈ R. (42)

Then it is verified that the equation (42) has the solution of the form

x (t) = µ

(
ln
t

a

)γ

, γ = (β + α) \ (1−m) . (43)

In this case the right-hand side of 42 takes the form

h [t, x (t)] = (λ+ c)

(
ln
t

a

)(β+αm)\(1−m)

. (44)

Using the same arguments as in the proof of Proposition 5.2 we derive the uniqueness
result for the Cauchy problem 42.

Proposition 5.5. Let λ, β ∈ R (λ ̸= 0) and m > 0 (m ̸= 1), γ = (β +mα) \ (m− 1).
Let G be the domain (37), where q ∈ R is such that β + (m− 1) q ≥ 0. Let ν = −γ and let
the transcendental equation

Γ

(
α+ β

1−m
+ 1− α

)
[λym + c]− Γ

(
α+ β

1−m
+ 1

)
y = 0,

have a unique solution y = µ.

(i) Let 0 < α < 1, if either of the conditions (35) holds, then the Cauchy problem(
cDα

a+
x
)
(t) = λ

(
ln
t

a

)β

[x (t)]
m
+ c

(
ln
t

a

)ν

, x (a+) = 0,

has a unique solution x (t) ∈ Cα
δ,γ,ln [a, b] and this solution is given by (43).

(ii) Let n − 1 < α < n, if either of the conditions (36) holds, then the problem (42)-(29)
has a unique solution x (t) ∈ Cα,n−1

δ,γ,ln [a, b] and this solution is given by (43).
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