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We report theoretical and numerical results on bifurcations in thermal instability for a
viscoelastic fluid saturating a porous square cavity heated from below. The modified
Darcy law based on the Oldroyd-B model was used for modeling the momentum
equation. In addition to Rayleigh number ℜ, two more dimensionless parameters
are introduced, namely, the relaxation time λ1 and the retardation time λ2. Temporal
stability analysis showed that the first bifurcation from the conductive state may be
either oscillatory for sufficiently elastic fluids or stationary for weakly elastic fluids.
The dynamics associated with the nonlinear interaction between the two kinds of
instabilities is first analyzed in the framework of a weakly nonlinear theory. For
sufficiently elastic fluids, analytical expressions of the nonlinear threshold above
which a second hysteretic bifurcation from oscillatory to stationary convective pattern
are derived and found to agree with two-dimensional numerical simulations of the
full equations. Computations performed with high Rayleigh number indicated that
the system exhibits a third transition from steady single-cell convection to oscillatory
multi-cellular flows. Moreover, we found that an intermittent oscillation regime may
exist with steady state before the emergence of the secondary Hopf bifurcation. For
weakly elastic fluids, we determined a second critical value ℜOsc

2 (λ1, λ2) above
which a Hopf bifurcation from steady convective pattern to oscillatory convection
occurs. The well known limit ofℜOsc

2 (λ1 = 0, λ2 = 0) = 390 for Newtonian fluids is
recovered, while the fluid elasticity is found to delay the onset of the Hopf bifurcation.
The major new findings were presented in the form of bifurcation diagrams as
functions of viscoelastic parameters for ℜ up to 420. Published by AIP Publishing.
[http://dx.doi.org/10.1063/1.4948532]

I. INTRODUCTION

The knowledge and the control of the behavior of instabilities in non-Newtonian fluids are of
interest in many fields of science and engineering. In particular, viscoelastic fluids can be found in a
great number of applications such as those in bio-engineering and in pharmaceutical and petroleum
industries, among others. Most of the existing studies dealing with viscoelastic fluids focus either on
hydrodynamic instabilities under isothermal conditions1 or on thermal instabilities.2–10 In the latter
case, linear stability analysis reveals that the onset of natural convection of viscoelastic fluids can
be oscillatory instead of stationary, depending on the fluid elasticity. This behavior was confirmed
by the experimental results7 of Kolodner using DNA suspensions. Without DNA suspensions, no
oscillations on any time scale were observed in these control experiments. In the presence of DNA
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suspensions, experiments reveal that the first convective instability is oscillatory. Even though the
buoyancy-driven instabilities in viscoelastic fluids have been extensively studied for clear fluid
media, the same cannot be said about their counterparts in the presence of a porous matrix. This
is probably due to the crucial problem of the formulation of the constitutive equations regarding
viscoelastic fluid flows in porous media.

Recently, some activities11–15 have been devoted to investigate the primary convection patterns
of a viscoelastic fluid confined in a porous medium heated from below by using the modified
Darcy’s law based on the Oldroyd-B model. Kim et al.11 and Yoon et al.12 performed a linear
stability analysis and showed that in viscoelastic fluids such as polymeric liquids, a Hopf bifurca-
tion as well as a stationary bifurcation may occur depending on the magnitude of the viscoelastic
parameter. The three-dimensional convective and absolute instabilities of a viscoelastic fluid in the
presence of a horizontal pressure gradient have been analyzed by Hirata and Ouarzazi.13 From
the nonlinear point of view, Kim et al.11 carried out a nonlinear stability analysis by assuming a
densely packed porous layer and found that both stationary and Hopf bifurcations are supercritical
relative to the critical heating rate. The work of Kim et al.11 has itself been extended by Zhang
et al.14 to include the effects of the porous parameter Da (Darcy number) which bridges the gap
between nonporous cases (Da → ∞) and densely packed porous cases (Da → 0). In the former
case, they found that the bifurcation to oscillatory convection can be subcritical. In Ref. 14, the
authors focused only on the temporal evolution of standing waves at the onset of oscillatory insta-
bility. With infinite horizontal porous cavity, traveling waves are also possible. The question of
whether standing or traveling waves are preferred at onset has been fully addressed by Hirata et al.15

In addition to its theoretical interest, Delenda et al.16 have shown that viscoelastic convection in
porous media may be useful for industrial applications interested by the separation of species of
viscoelastic solutions. The introduction of a porous packing allows to control the average vertical
convective velocity (which is a function of the permeability of the medium) and to generate a
homogeneous convection current, improving the separation of species.

To our knowledge, the problem of convection of viscoelastic fluids in porous media has been
the subject of few numerical investigations.17–20 Fu et al.17 performed direct numerical simulations
on two-dimensional thermal convection of a viscoelastic fluid saturating a porous square cavity.
These simulations were conducted for Darcy-Rayleigh number up to 400 and for selected three set
values of dimensionless relaxation time λ1 and dimensionless retardation time λ2: (i) λ1 = 0.3 and
λ2 = 0.2, (ii) λ1 = 0.2 and λ2 = 0.1, and (iii) λ1 = 0.3 and λ2 = 0.1. In order to define clearly the
objective of the current study, we reproduced the main results for the three set values of viscoelastic
parameters used in Ref. 17. These results are depicted in Fig. 1 which illustrates the asymptotic
behaviour of the average Nusselt number Nu as a function of Darcy-Rayleigh numberℜ. The New-
tonian fluid case is also displayed for comparison purposes. The curves shown in Fig. 1 coincide

FIG. 1. Nusselt number Nu versus Darcy-Rayleigh number ℜ for values of viscoelastic parameters used in Ref. 17,
including the Newtonian fluid case.
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perfectly with those obtained in Fig. 4 of Ref. 17. As in Ref. 17, we found that when the conduction
state loses its stability, the flow oscillates periodically for all three cases, which results in the Nu
being oscillatory with time. Furthermore, as can be seen from the inset of Fig. 1, the Nu curve
for case (iii) is completely above that for a Newtonian fluid, while part of the Nu curves for the
two other cases merge with that for a Newtonian fluid. This last behavior of Nu means that in the
nonlinear regime, oscillatory convection for cases (i) and (ii) is completely suppressed and replaced
by stationary convection if ℜ exceeds a critical value. Furthermore, Fig. 1 also shows that for
sufficiently high values of Darcy-Rayleigh number, a clear deviation of the average Nusselt number
from a Newtonian behaviour is observed for cases (i) and (ii). Numerical simulations performed
in Ref. 17 showed that this qualitative change in Nusselt number is associated with a third transi-
tion from stationary convection to oscillatory one. Therefore, a question is raised according to the
numerical results of Ref. 17: why these numerical experiments revealed the existence of a second
transition from oscillatory convection to stationary one followed by a third transition to oscillatory
convection for cases (i) and (ii) while these successive transitions never occur for case (iii)?

The objective of this study is to provide some answers to the above question. More precisely,
our aim is to give a global picture in the (ℜ, λ1, λ2) space on possible successive bifurcations of
convection patterns in a square porous cavity saturated by a viscoelastic fluid. Both theoretical
and numerical approaches are used. We first perform a linear stability analysis in order to locate a
codimension-two bifurcation point where steady and oscillatory instabilities may develop simulta-
neously. As a second step, a weakly nonlinear stability approach is proposed to reduce the original
complicated problem into a simple model retaining only the most essential features. This method
turns out to be very successful to predict the nonlinear dynamics near the codimension-two bifurca-
tion point. In particular, an analytical relation that governs the nonlinear threshold Darcy–Rayleigh
number for a secondary bifurcation from oscillatory to steady convection is derived as a function
of viscoelastic parameters λ1 and λ2. Finally, direct numerical simulations on two-dimensional
thermal convection of a viscoelastic fluid saturating a square porous cavity based on the modified
Darcy’s law are performed. The objective of the numerical simulations is twofold. We first compare
numerical results with linear and weakly nonlinear theories. Especially, we determine the extension
in the viscoelastic parameters space where the second bifurcation from oscillatory to stationary
convection is observed. Second, for high values of Rayleigh number where weakly nonlinear anal-
ysis ceases to be valid, numerical simulations identify a third transition from stationary convection
to a new oscillatory mode of instability. A general diagram of stability, which provides all the
possible bifurcations and convective structures, is determined.

II. THE SYSTEM

A. Problem formulation

We consider a square box filled with a Boussinesq viscoelastic liquid saturating a porous square
cavity. Horizontal boundaries are assumed perfectly heat conducting and subjected to constant
temperatures; Td

0 on the bottom and Td
1 on the top, with Td

1 < Td
0 . The vertical walls are considered

impermeable and adiabatic.
The equilibrium between the filtration velocity and the pressure gradient is instantaneous

in Newtonian flows. However, for viscoelastic fluids, the equilibrium can only be reached after
a certain time. This characteristic time is called relaxation time λd

1 . Also, the material forgets
its initial form after unloading some of its elastic energy into kinetic energy at a second char-
acteristic time called the retardation time λd

2 with λd
2 ≤ λ

d
1 . Typical liquids having viscoelastic

behavior are solutions composed of a Newtonian solvent and polymeric solute. Thus, we define the
non-dimensional ratio Γ as

Γ =
λ2

λ1
=
λd

2

λd
1

=
µs

µs + µp
=
µs
µ
, (1)

where µs, µp, and µ are, respectively, the solvent, the polymer, and the solution viscosities; it is
clear that 0 ≤ Γ ≤ 1. The limit Γ = 0 recovers a purely elastic fluid or the so-called Maxwell fluid,
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and the limit Γ = 1 corresponds to a much diluted polymer solution (Newtonian behavior). Several
approaches exist for modeling the rheological behavior of viscoelastic fluids. The Oldroyd-B model
is one of the most frequently present in the literature. The viscoelastic stress tensor τ in this model
obeys the following system:




τG = −PdI + τ, (2a)�
1 + λd

1 Dt

�
τ = µ

�
1 + λd

2 Dt

�
γ, (2b)

Dtτ = ∂tτ +
(
U⃗d.∇⃗

)
τ −
(
∇⃗U⃗d
)T
τ − τ

(
∇⃗U⃗d
)
, (2c)

where τG is the global extra-stress tensor, Pd is the pressure, I is the identity tensor, τ is the
extra-stress tensor, γ is the deformation tensor, U⃗d is the fluid velocity, and Dt is the Oldroyd
derivative. By analogy with Oldroyd-B model, a phenomenological modified Darcy law was given
by Alishayev and Mirzadzhanzadeh,21

�
1 + λd

1∂t
�
V⃗ d
f = −K µ−1 �1 + λd

2∂t
� 
∇⃗pd + ρg⃗ · e⃗z


. (3)

V⃗ d
f

is the filtration velocity defined by the Dupuit’s equation: V⃗ d
f
= εU⃗d, where ε is the porosity, µ

is the dynamic viscosity, K is the permeability, ρ is the fluid density, g⃗ is the gravitational accelera-
tion, while ∂t is the partial derivative with respect to time. We adopt the Boussinesq approximation
and consider that the density ρ is a linear function of temperature,

ρ = ρ0
�
1 − β

�
Td − Td

1

��
, (4)

where Td is the temperature field, ρ0 is the fluid density at the reference temperature Td
1 , and β is the

thermal expansion coefficient.
In this study, we consider the local thermal equilibrium between the fluid and the porous ma-

trix. According to the Darcy-Oldroyd-B model, subject to the Oberbeck-Boussinesq approximation,
the incompressibility condition, the momentum, and the energy balance equations are given by the
following system:




∇⃗ · V⃗ d
f = 0, (5a)

�
1 + λd

1∂t
�
V⃗ d
f = −

k
µ

�
1 + λd

2∂t
� 
∇⃗Pd + ρ

�
β
�
Td − Td

0

��
g⃗ · e⃗z


, (5b)

�
σ∂t + ud∂x + w

d∂z
�
Td = κ

�
∂2
x + ∂

2
z

�
Td, (5c)

Td (x, 0) = Td
0 , Td (x, H) = Td

1 , ∂xT
d (0, z) = ∂xTd (H,z) = 0, V⃗ d

f · n⃗ = 0, (5d)

with κ and σ are, respectively, the effective thermal diffusivity and the volumetric heat capacity
ratio between solid and liquid phases.

B. The normalized system

We transform the equations of motion to the dimensionless form using the following reference
scales: H for lengths, σH2κ−1 for time, ∆T = Td

0 − Td
1 for temperature, and κH−1 for velocities.

Using the double curl procedure to drop the pressure and the stream function formulation
ψ =


udz = −


wdx to express incompressibility, the final normalized system is written as




∂tT =
�
∂2
x + ∂

2
z − u∂x − w∂z

�
T, (6a)

(1 + λ1∂t)H = ℜ (1 + λ2∂t) ∂xT, (6b)�
∂2
x + ∂

2
z

�
ψ = H , (6c)

T (x,0) = 1, T (x,1) = ∂xT (0, z) = ∂xT (1, z) = 0, (6d)
ψ (x, z) = 0 for all boundaries, (6e)

where ℜ = g β∆TKH/ (νκ) is the Darcy-Rayleigh number, and H is the harmonic function of ψ.
Equations (6d) and (6e) state, respectively, that horizontal walls are subjected to imposed tempera-
tures and the vertical walls are adiabatic and that the borders of the square box are impermeable.
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The limit λ2 = 0 recovers a purely elastic fluid or the so-called Maxwell fluid, and in the limit
λ1 = λ2, the Oldroyd-B fluids tend to Newtonian fluids, which can also be seen from Eq. (6b).
Indeed, this equation may be written for λ1 = λ2 as

λ1∂t (H −ℜ∂xT) = −(H −ℜ∂xT). (7)

The solution to this equation isH −ℜ∂xT ≈ e−t/λ1.
This solution states that for λ1 , 0 and in the limit of large time, we recover asymptotically the

usual Darcy model for Newtonian fluids with λ1 = λ2 = 0, namely,H −ℜ∂xT = 0.
The heat transfer rate is expressed in terms of the bulk-averaged Nusselt number defined as

Nu = −
 1

0
∂zT)z=0dx


, (8)

where the angle brackets indicate the long-time average.

III. NUMERICAL METHOD AND VALIDATION

Systems (6a)-(6c) subjected to conditions (6d) and (6e) have been numerically solved using
finite difference discretization with regular mesh.

Equation (6a) subjected to conditions (6d) is solved by the ADI method. To solve
Equation (6b), the space derivative of temperature is approximated by a standard second-order
centered scheme, and its temporal derivative is obtained by means of (6a). Using the already ob-
tained temperature fields Tn and Tn+1, Equation (6b) becomes an ordinary temporal differential
equation. We resolve it with a second order Runge-Kutta method. To find the stream function, we
discretize Poisson equation (6c) by a standard centered second order scheme and resolve it by the
successive over-relaxation (SOR) method. We use the Chebyshev acceleration in order to reduce
the required total number of iterations. To clarify, a summary of the principal steps is given as
follows:

1. Solve (6a) with updated ψ (i.e., u, w) and T or initial guess values ψ0 = 0, T0 = 1 − z∀ (x, z).
2. Approximate ∂xT by a standard second-order centered scheme.
3. Approximate ∂t (∂xT) = ∂x (∂tT) using a standard second-order centered scheme; ∂tT is ob-

tained from (6a).
4. Calculateℜ (1 + λ2∂t) ∂xT from 2 to 3.
5. Solve (6b) which become an ODE, using a second order Runge-Kutta method.
6. Solve Poisson equation (6c) with SOR method, using Chebyshev acceleration.
7. Verify convergence criterion (quadratic norm of residual’s sum <10−12).
8. If criterion 7 is not satisfied, then return to step 1.
9. If criterion 7 is satisfied, then increment the time and return to step 1.

To verify the accuracy of our numerical simulation results, we perform two tests as follows:

1. The limiting case of a Newtonian fluid (see Table I).
2. The general case of a viscoelastic flow (see Table II).

TABLE I. Results from the present numerical scheme with λ1= λ2= 0.001 and from the work of Caltagirone22 and
Mahidjiba23 in the Newtonian fluid case λ1= λ2= 0.

ℜ= 100 ℜ= 200

This work Caltagirone Mahidjiba This work Caltagirone Mahidjiba

Nu 2.6532 2.651 2.625 3.824 3.813 3.792
ψmax 6.3501 5.377 5.354 8.9299 8.942 8.937
Nx×Ny 32×32 48×48
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TABLE II. Comparison with Fu el al.17 of critical Rayleigh numbers and critical frequencies.

(λ1, λ2)
ℜc

Fu et al.
ℜc this

work
Relative difference

(%)
Frequency
Fu et al.

Frequency this
work

Relative difference
(%)

(0.3, 0.2) 33.00 33.70 2.07 1.25 1.24 0.80
(0.2, 0.1) 29.70 30.45 2.46 2.40 2.39 0.41
(0.3, 0.1) 19.80 20.20 1.98 3.10 3.00 3.22

The results presented in the two tables show very good agreement with the literature data, either
for the Newtonian flow or for the viscoelastic one. In Table I, we show the quantitative matching of
the stream and heat transfer intensities, at two fixed values of the Rayleigh number. The computed
results obtained for λ1 = λ2 = 0.001 converge asymptotically towards Newtonian fluids results with
a relative difference of almost 1%.

In Table II, we compare our results with those given by Ref. 17 using three pairs of (λ1, λ2).
We find that all the three cases present an oscillatory instability. We obtain the frequencies using
Fourier transformation. A good agreement is observed. Furthermore, as we will see in Sec. IV,
a perfect agreement is found between numerical and linear stability analysis results. Therefore,
all these results suggest that our numerical algorithm can accurately simulate the problem of the
present work.

IV. ONSET OF CONVECTION

The linear stability analysis is the starting point for treating the more realistic nonlinear prob-
lem. Since the latter is the main objective of the present work, we shall briefly sketch the linear
analysis, by emphasizing the most important points and presenting new results for a domain of unit
aspect ratio. The basic equations are obtained by linearizing sets (6a)–(6c) around the basic state

ψb = 0, Tb = 1 − z (9)

and by seeking the two-dimensional perturbations ψ,θ = T − Tb verifying the boundary conditions
of the form,

ψ = ψ1 sin (πz) sin (mπx) exp (σt) , (10a)
θ = θ1 sin (πz) cos(mπx) exp (σt) , (10b)

where m represents the number of convection rolls and σ = σr + iω dictates the time evolution of
the perturbation. The real part σr is the temporal growth rate, while ω represents the frequency
of the oscillations. Substitution of (10a) and (10b) into the linearized version of (6a)–(6c) leads
to the following results. There is a line of steady bifurcations given by ℜs

c = 4π2 for a single-cell
convection which is the most unstable steady mode and a line of Hopf bifurcations along

ℜOsc
c (m, λ1, λ2) = 1 + m2

λ1m2 (1 + λ2π
2(1 + m2)) (11)

with the critical frequency

ωc(m) =


1
λ2

[π2(1 + m2)(1 − λ2

λ1
) − 1

λ1
] (12)

provided λ1 > λ⋆1 = λ2 +
1

π2(1+m2) or equivalently λ2 < λ⋆2 = λ1 − 1
π2(1+m2) .

As the critical Rayleigh number for the onset of oscillatory convectionℜOsc
c (m, λ1, λ2) depends

on the number of rolls m, the relaxation time λ1, and the retardation time λ2, the true critical
Rayleigh numbers may be ordered in a such way that

ℜOsc
c (m, λ1, λ2) < ℜOsc

c (m + 1, λ1, λ2) (13)

for any integer m. According to expression (11), inequality (13) is satisfied only if
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λ2 >
1

π2(m2(1 + m)2 − 1) . (14)

In other words, the preferred mode of oscillatory instability is as follows:

(i) a mono-cellular flow (i.e., m = 1) if λ2 >
1

3π2 ,
(ii) a two-cellular flow if 1

35π2 < λ2 <
1

3π2 ,

(iii) a three-cellular flow if 1
143π2 < λ2 <

1
35π2 , and so on.

The Hopf curve branches off the steady bifurcation curve when

ℜ = ℜ⋆ = ℜOsc
c = 4π2, λ1 = λ

⋆
1 = λ2 +

1
π2(1 + m2) (15a)

or equivalently

ℜ = ℜ⋆ = ℜOsc
c = 4π2, λ2 = λ

⋆
2 = λ1 −

1
π2 (1 + m2) . (15b)

At this point, the frequency of the oscillation is zero and we have a codimension-two double-zero
bifurcation. In that point the linear theory fails to predict the dominant mode of convection. There-
fore, a weakly nonlinear stability analysis is needed to elucidate the bifurcation processes near the
codimension-two point

�
ℜ⋆, λ⋆1

�
.

The connection between linear theory and the numerically computed properties at the onset of
convection is examined and presented in Fig. 2 for λ1 = 0.25; 0.5, and 0.75. A close inspection of
this figure demonstrates that a very good agreement is obtained between the linear stability theory
(lines) and the numerical results (symbols). The critical Rayleigh number for the onset of oscillatory
instability increases both with the increase of λ2 for a fixed value of λ1 or the decrease of λ1
for a fixed value of λ2, attesting the stabilizing effect of the retardation time and the destabilizing
effect of the relaxation time. With regard to the question of the influence of the retardation time
λ2 on the pattern selection, Fig. 3 displays the onset of instability obtained numerically (symbols),
as well as the true critical Rayleigh number curves ℜOsc

c (m) determined by linear theory (contin-
uous line), as functions of λ2 for λ1 = 0.75. Also shown in this figure are the computed stream-
lines corresponding to the cases λ2 = 0.001, λ2 = 0.01, and λ2 = 0.035, respectively. This figure
shows that the true critical Rayleigh number ℜOsc

c (m) depends on λ2. The numerically computed
spatial patterns fall into the predictions of linear stability approach, namely, a three-cellular flow if

1
143π2 < λ2 = 0.001 < 1

35π2 , a two-cellular flow if 1
35π2 < λ2 = 0.01 < 1

3π2 , and a mono-cellular flow
for λ2 = 0.035 > 1

3π2 .

FIG. 2. Comparison between stability analysis and numerical results. Critical Rayleigh number and critical frequencies at
the onset of convection as functions of the viscoelastic parameters.
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FIG. 3. Critical Rayleigh number versus retardation time with λ1= 0.75. Also shown are the streamlines for ℜ= 4.5; λ2=

0.035 (a),ℜ= 2,5; λ2= 0.01 (b), andℜ= 1.7; λ2= 0.001 (c).

V. RESULTS IN NONLINEAR REGIME

A. Normal form analysis

Once the onset of convective instability has been identified, an amplitude equation approach is
used to determine the flow pattern bifurcations as functions of the control parameters (ℜ, λ1, λ2). In
a recent paper, Hirata et al.15 proposed a nonlinear reduced model by using perturbation techniques
in the neighborhood of the codimension-two point

�
ℜ⋆, λ⋆1

�
. They derived the following system of

nonlinear ordinary differential equations governing the dynamics of the normalized vertical velocity
field W :




dW
dt
= Z (t) , (16a)

dZ
dt
= −W 3 + µ1W + µ2Z (t) −W 2Z (t) , (16b)

with µ1 =
f 2
2
f 2
1

ℜ−ℜs
c

2λ2
, µ2 =

f2
f1

λ⋆1 (ℜ−ℜOsc
c )

2λ2
, f1 =

1
8λ2

, and f2 = − 1
λ2
[ 5

16π2 −
3λ⋆1

8 +
3

8λ2
( 1

4π4 −
λ⋆1
2π2 )].

The stability types of fixed points and limit cycles, the bifurcation lines, and the phase portrait
associated with system (16) were analyzed by Hirata et al.15 by using dynamic systems theory.
The reader is also referred to the paper by Holmes and Rand24 and to Chapter 7 of Ref. 25 for
further details. The current section is focused on the main nonlinear results with the objective to
aid comparison between theoretical predictions and numerical results. For this purpose, we have
first drawn the bifurcation set for the case λ1 = 0.5 in (λ2,ℜ) parameter plane, as shown in Fig. 4.
We can see that the (λ2,ℜ) plane is divided into six regions separated by five lines. In this figure,
the line ℜ = ℜOsc

c (i.e.,µ2 = 0) is the line of Hopf bifurcation points for which Eqs. (11) and
(12) hold. The line ℜs

c = 4π2 (i.e., µ1 = 0) is the line of pitchfork bifurcation points. These two
lines intersect at the codimension-two point(λ⋆2 = λ1 − 1

2π2 ,ℜ⋆ = 4π2). The oscillatory convection
induced by the Hopf bifurcation is the only stable pattern for ℜ < ℜNL1 (i.e., regions II and III
in Fig. 4). The two types of convective patterns, namely, oscillatory and stationary convection
coexist between the nonlinear thresholds ℜNL1 (i.e., µ2 = µ1) and ℜNL3 (i.e., µ2 = 0.752µ1). The
observability of either oscillatory convection or stationary one depends on the initial conditions.
The line ℜ = ℜNL2 (i.e., µ2 = 4/5µ1) corresponds to a double homoclinic bifurcation points. The
appearance of such orbits is often the precursor to a transition to chaos.26 Therefore one may expect
a rich dynamics in the neighborhood of this line. The line ℜ = ℜNL3 represents the nonlinear
threshold for the transition from oscillatory convection to stable stationary one independently of
initial conditions. This means physically that the viscoelasticity of the fluid has no influence on the
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FIG. 4. Bifurcation lines according to weakly nonlinear theory for λ1= 0.5.

convection properties and the system behaves like a Newtonian fluid when the Rayleigh number
slightly exceeds the nonlinear thresholdℜNL3.

It is of great interest to investigate the effects of the viscoelastic parameters λ1 and λ2 on the
nonlinear thresholds ℜNL1, ℜNL2, and ℜNL3. Fortunately we succeeded in obtaining an explicit
form of these nonlinear thresholds as a function of viscoelastic parameters. Let us define the
following:

ℜNL (α) = 4π2 *
,
1 +

ω2
cλ1λ

⋆
2

α − 1 + 2π2λ2 (3α − 1)
+
-
. (17)

Therefore we obtain

ℜNL1 = ℜNL (α = 1) ,ℜNL2 = ℜNL(α = 4/5), andℜNL3 = ℜNL (α = 0.752) . (18)

More importantly, the analytical expressions ℜNL1 and ℜNL3 can be used to determine the effect
of the relaxation time λ1 and the retardation time λ2 on the nonlinear threshold for the possible
transition from oscillatory to stable stationary convection. We found that both ℜNL1 and ℜNL3
decrease with an increasing λ2 and increase with an increasing λ1 as it is seen in Fig. 4 and in
Fig. 6(a), respectively. In other words, when the relaxation time increases, more heating is needed
for stationary convection to suppress oscillatory convection, whereas an opposite trend is observed
when the retardation time is increased.

B. Numerical results

The present section is devoted to the discussion of the above theoretical predictions in relation
to two-dimensional numerical simulations of the full problem.

Different numerical simulations will be performed, first for λ1 = 0.5 and λ2 = 0.43 at selected
values of Rayleigh number ℜ. The corresponding points in the (λ2,ℜ) plane are in Fig. 4 and
labeled from (a)–(d). The time history of the Nusselt number Nu is shown in Fig. 5 for the six
selected cases. The results obtained in the different cases are now briefly described.

(1) Points (a) and (b): for these cases (Figs. 5(a) and 5(b), respectively), we see that for ℜ =
37.9 < ℜOsc

c = 37.95, Nu tends to 1 indicating that the heat transfer is due only to the
conduction mechanism. Forℜ = 40.25 above the linear critical thresholdℜOsc

c , Nu oscillates
in time with a well-defined Hopf frequency corresponding to the emergence of a limit cycle,
as it is predicted by the normal form analysis.

(2) Point (c): for this case the value of Rayleigh numberℜ = 40.5 is chosen betweenℜ = ℜNL1
and ℜ = ℜNL3 given by analytical expressions (17) and (18). The conduction state and the
oscillatory convection state obtained in the two previous runs, respectively, for ℜ = 37.9
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FIG. 5. Time history of Nusselt number for several representative values of Rayleigh number corresponding to points (a)-(d)
of Fig. 4 with λ1= 0.5.

(point (a)) and for ℜ = 40.25 (point (b)) are two different initial conditions used for the
present runs. Figure 5(c) shows that the conduction state is maintained until t = 11, time at
which the Rayleigh number is suddenly increased toℜ = 40.5 (point (c)). As we can observe,
the Nu curve appears to be constant at large time attesting the steady nature of the convection.
On the other hand, Fig. 5(d) shows that the final convective state is periodic in time if the
point (c) is reached from the oscillatory state obtained in the point (b). These two runs confirm
that forℜNL1 < R < ℜNL3, the solution depends on the initial conditions as predicted by the
nonlinear stability analysis.

(3) Point (d): in this case oscillatory convective state obtained from the previous run with ℜ =
40.5 (point (c)) is used as initial conditions for the computations performed here with increas-
ing Rayleigh number toℜ = 41 at time t = 18. The result of this run is presented in Fig. 5(e),
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showing that Nu curve appears to be constant at large time, which means that oscillatory
convection is replaced by a stationary one.

(4) Back to the point (c): starting a run from the developed stationary convection obtained
with ℜ = 41 (point (d)), and decreasing ℜ to ℜ = 40.5 (back to the point (c)), we do not
recover oscillatory convection as it can be concluded from the stationary behavior of Nus-
selt number shown in Fig. 5(e). By ramping ℜ forth and back between points (c) and (d),
the numerical results showed that the convection exhibits hysteresis in the second transition
oscillatory/stationary convection.

In order to assess the validity of the theoretical results for different set of parameters, we
computed the bifurcation line from oscillatory convective pattern to stationary one for either a fixed
value of λ2 with varying values of λ1 or a fixed value of λ1 with varying values of λ2. For all cases
examined in the following, the initial conditions used are a rest state on the entire domain, except
on a random point where we set infinitesimal perturbation ψ = 10−9. In Fig. 6(a), we compare
theoretical results (bold continuous lines) corresponding to the nonlinear thresholds ℜNL1 and
ℜNL3 of a possible transition from oscillatory to steady convection in the (λ1,ℜ) plane for λ2 = 0.2

FIG. 6. General stability diagram for λ2= 0.2 in the (λ1,ℜ) plane (a) and for λ1= 0.5 in the (λ2,ℜ) plane (b). ℜNL1
(the lower bold line) andℜNL3 (the upper bold line) correspond to the nonlinear thresholds derived from weakly nonlinear
stability analysis.

 Reuse of AIP Publishing content is subject to the terms at: https://publishing.aip.org/authors/rights-and-permissions. Downloaded to  IP:  193.194.76.5

On: Sun, 12 Jun 2016 10:15:17



053106-12 Taleb et al. Phys. Fluids 28, 053106 (2016)

TABLE III. Values of λ⋆
2 and λ⋆⋆

2 for λ1= 0.25, 0.5, and 0.75.

λ1= 0.25 λ1= 0.5 λ1= 0.75

λ⋆⋆
2 0.107 0.215 0.345
λ⋆

2 0.200 0.450 0.697

with the results computed by direct two-dimensional simulations (solid square symbols). As can be
seen from this figure, the theoretical lineℜNL1 (ℜNL3) merges into (is tangent to) the numerically
computed curve. Nevertheless, the numerical results reveal that a transition to steady convection
is observed only for λ1 < λ⋆⋆1 , i.e., for a relatively weak elastic fluid. Additional computations,
not shown here, demonstrated that the maximal value λ⋆⋆1 depends on the retardation time λ2.
Changing λ2 produced only quantitative differences in the results. This finding may explain why
numerical experiments of Ref. 17 (see Fig. 1) conducted with λ2 = 0.1 revealed the existence of a
transition from oscillatory convection to stationary one for the case λ1 = 0.2, while this transition
never occurs for the case λ1 = 0.3. In the same manner, the effect of the retardation time λ2 on
the secondary bifurcation to a steady convection state is illustrated in Fig. 6(b) for λ1 = 0.5. In this
figure the nonlinear theoretical thresholds ℜNL1 and ℜNL3 are represented by a bold continuous
line, while squares are numerical results. As it is shown in Fig. 6(b), we observe a very good
agreement between theory and numerical simulations in the neighbourhood of the codimension-two
bifurcation point. Moreover, computed transition line to steady state convection attests the existence
of a minimal value λ⋆⋆2 below which no such transition can occur. In other words, the transition
from an oscillatory pattern to a steady one is only possible if λ2 ∈ ] λ⋆⋆2 , λ⋆2 [ , where λ⋆2 and λ⋆⋆2
depend on λ1. In Table III, we give the computed values of λ⋆2 and λ⋆⋆2 for λ1 = 0.25,0.5, and 0.75.

Once again this result may explain why in the numerical simulations of Ref. 17 (see Fig. 1)
with λ1 = 0.3, oscillatory convection for the case λ2 = 0.2 is completely suppressed and replaced
by a stationary convection when ℜ reaches a critical value, contrary to the case λ2 = 0.1 where
independently ofℜ the system never experiences this transition.

Up to now there are already several interesting points deserving to be remarked.

1. Two-dimensional numerical simulations show that in the parameter space where the system
exhibits a first Hopf bifurcation, a secondary transition may occur to a steady state. It is found
that convection exhibits hysteresis near this transition. The threshold Rayleigh number for the
onset of the secondary bifurcation is found to increase as a function of increasing the relaxation
time λ1 and to decrease with increasing the retardation time λ2.

2. Guided by the results of the normal form analysis, we numerically determine the extension
of the region where this transition is observed, as a function of the Rayleigh number and the
viscoelastic parameters. It is found that the secondary bifurcation to a steady state may occur
provided that either λ1 do not exceed a particular value λ⋆⋆1 for a prescribed value of λ2 or
that λ2 remains less than a particular value λ⋆⋆2 for a fixed value of λ1. This finding gives a
qualitative explanation of some numerical results of Ref. 17. Moreover, in the parameter space
where this secondary transition is possible, it is found that the threshold Rayleigh number
obtained numerically agrees very well with the nonlinear threshold determined analytically.

For reference purposes and according to the above finding, let us define three regions in the
viscoelastic parameters plane: (i) a weakly viscoelastic regime refers to the region of viscoelastic
parameters with λ1 < λ⋆1 or λ2 > λ⋆2 where the first instability has a steady character, (ii) a moder-
ately viscoelastic regime corresponds to viscoelastic fluids with λ⋆1 < λ1 < λ⋆⋆1 or λ⋆⋆2 < λ2 < λ⋆1
where the system experiences a time periodic convection pattern as a first instability, followed by
a secondary bifurcation to a steady mode of convection at a second critical value of the Rayleigh
number, and (iii) a strongly viscoelastic regime refers to viscoelastic fluids with λ1 > λ⋆⋆1 or
λ2 < λ⋆⋆2 .
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C. Computation of a secondary Hopf bifurcation far from the codimension-two point

In Sec. V B, the numerically computed dynamics associated with the nonlinear interaction
between oscillatory and stationary instabilities was found to be in a good agreement with weakly
nonlinear theory by using the time-dependent amplitude equation (16). In particular, the theoretical
predictions were very useful in guiding the numerical experiments. However, it is important to
emphasize that the derivation of the amplitude equation (16) is rigorously valid in the neighborhood
of the codimension-two bifurcation point. For high values of Rayleigh number (i.e.,ℜ ≫ 4π2), the
departure from the codimension-two point is very important implying that amplitude equation (16)
ceases to be valid. Therefore only direct numerical simulations will be used in the following. One
of our main points of interest centers on the question as to whether the primary and the secondary
steady bifurcation observed, respectively, in the weakly and moderately viscoelastic regimes is
stable against time-dependent disturbances. With regard to this question, it has been established
that for a Newtonian fluid saturating a porous square box, a single-cell solution undergoes a series
of bifurcations as the Rayleigh number is increased. At the second critical value of the Rayleigh
numberℜ ≈ 390, a Hopf bifurcation has been observed for two-dimensional single-cell convection
by, for instance, Schubert and Straus,27 Kimura et al.,28 and Aidun and Steen.29

FIG. 7. Transition from stationary to oscillatory convection at high Rayleigh numbers. Are shown: Nusselt number versus
time, streamlines, and temperature distribution for λ1= 0.5 and λ2= 0.6:ℜ= 120 ((a)–(c)) andℜ= 170 ((d)–(f)).
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The first set of results presented in this section involves fluids with the relaxation time λ1 = 0.5
and the retardation time λ2 = 0.3. Note that the prescribed value of λ2 is chosen such that λ2 ∈
] λ⋆⋆2 = 0.215, λ⋆2 = 0.45 [ (i.e., in moderately viscoelastic regime) in order to allow a secondary
transition from oscillatory to steady convection flow. With the aim to locate a possible third transi-
tion, we computed the averaged Nusselt number Nu as a function of the Darcy-Rayleigh numberℜ,
starting our numerical experiments from the nonlinear threshold Rayleigh number corresponding to
the transition to a steady convection state. By increasing ℜ, we found that the steady state is the
only stable state up toℜ ≈ 145 where a second Hopf bifurcation develops. Shown in Figs. 7(a)-7(c)
and 7(d)-7(f) the time dependence of Nu, the stream function and the temperature distribution
before and after the observed third transition, namely, forℜ = 120 andℜ = 170, respectively. The
corresponding points in the (λ2,ℜ) plane are in Fig. 6(b) and labeled (a) and (b), respectively.
The averaged Nusselt number displayed in Fig. 7(a) appears to be constant at large time attesting
the stationary character of the instability for ℜ = 120. Moreover, as it is seen in Fig. 7(b) the fluid
motion exhibits a single-cell convection. A further increase in Darcy-Rayleigh number to ℜ = 170
changes drastically the temporal behavior as well as the spatial convection pattern. Indeed for
ℜ = 170 larger than the threshold where the secondary Hopf bifurcation may develop, the flow
oscillates periodically, which results in the Nusselt number being oscillatory with time (Fig. 7(d)).
Furthermore, the fluid motion exhibits a two-cellular flow as it is clearly shown by the snapshot
of the corresponding stream function (Fig. 7(e)). In addition, comparison between the temperature
distributions shown in Figs. 7(c) and 7(f) attests that the penetration of the thermal plume from the
bottom thermal boundary layer is the physical origin for the observed emergence of a two-cellular
flow instead of a single-cell convection.

Having analyzed the λ1 = 0.5 and λ2 = 0.3 case, it can now be used as a reference in the exam-
ination of the effects caused by both viscoelastic parameters on the Hopf bifurcation properties. In
order to evaluate effect of the retardation time alone, varying values of λ1 cases are numerically
investigated with a fixed retardation time λ2 = 0.2. On the other hand, the effect of the retardation
time alone is studied by fixing λ1 = 0.5 and varying λ2. Here for the sake of brevity, we only focus
on the results corresponding to the nonlinear threshold beyond which a new transition occurs giving
rise to a Hopf bifurcation. The general bifurcation diagram is shown in (λ1,ℜ) plane for λ2 = 0.2
(Fig. 6(a)), and in (λ2,ℜ) plane for λ1 = 0.5 (Fig. 6(b)) where the upper curves correspond to the
computed Hopf bifurcation lines up toℜ = 420. In order to have an overview summarizing in a sin-
gle scheme all the main bifurcations, we also display in both figures the transition line to a first Hopf
bifurcation determined by linear stability analysis (lower curves) and the transition line to a steady
convection state (middle curves) determined previously. The two figures present a few interesting
phenomena worth discussing in more detail. First among them concerns the successive bifurcations

FIG. 8. Transition area from stationary to oscillatory convection (zoomed region of Fig. 6(b)).
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FIG. 9. Intermittent oscillation with steady state in the transition zone (star on Fig. 8): Nusselt variation at ℜ= 121 and
ℜ= 122 (a) and corresponding snapshots of stream-function and isotherms at t = 17.5 ((b) and (c)) and t = 18.5 ((d) and (e)).

observed in the weakly elastic fluids (i.e., for λ1 < λ⋆1 = 0.25 in Fig. 6(a) or λ2 > λ⋆2 = 0.45 in
Fig. 6(b). For these fluids, a first stationary bifurcation occurs at the well known critical Rayleigh
numberℜs

c = 4π2. This means that the fluid elasticity has no effect on the first instability properties
and the non-Newtonian fluid behaves as a Newtonian fluid. By increasing ℜ to a second critical
value ℜOsc

2 , a Hopf bifurcation occurs and the steady convective pattern is replaced by oscillatory
convection. A close inspection of Figs. 6(a) and 6(b) shows that the second critical Rayleigh num-
ber ℜOsc

2 reaches its maximum for λ1 = λ
⋆
1 = 0.25 and λ2 = λ

⋆
2 = 0.45, respectively. When λ1 is

decreased from λ⋆1 to λ1 = λ2 = 0.2 (see Fig. 6(a)) or λ2 is increased from λ⋆2 to λ2 = λ1 = 0.5 (see
Fig. 6(b),ℜOsc

2 decreases from its maximum and eventually joins the limitℜOsc
2 = 390, correspond-

ing to Newtonian fluids (Refs. 27–29). We conclude that the effect of the relaxation (retardation)
time on the second transition to oscillatory convection is stabilizing (destabilizing) for weakly
viscoelastic fluids.
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Second, in moderately viscoelastic regime where the viscoelastic parameters are such that
λ1 ∈ ] λ⋆1 , λ⋆⋆1 [ or λ2 ∈ ] λ⋆⋆2 , λ⋆2 [ , three sources of instability act in a concert to select the domi-
nant mode of instability, namely, the heating from below, the relaxation time, and the retarda-
tion time. The resulting dynamics in this regime may be understood for example by increasing
Darcy-Rayleigh number for fixed values of viscoelastic parameters. The first convective instability
is oscillatory rather than steady when Darcy-Rayleigh number exceeds the onset of the first Hopf
bifurcationℜOsc

c (region between the lower line and the middle line in Figs. 6(a) and 6(b)). It should
be noted that this oscillatory convection is completely due to the viscoelastic character of the fluid.
Our previous analytical and numerical investigations showed that more heating is needed to sup-
press the oscillatory instability. By increasingℜ to a defined critical value, a secondary bifurcation
occurs where a stationary pattern becomes the dominant mode of instability (region between the
middle line and the upper line in Figs. 6(a) and 6(b)). Physically, this transition may be understood
by the dominant viscous effect compared to the elastic contribution. Finally, at a third critical
Rayleigh numberℜOsc

3 , a transition is observed as a secondary Hopf bifurcation giving rise to a new
mode of oscillatory convection (region beyond the upper lines in Figs. 6(a) and 6(b)). It is interest-
ing to note that the critical Rayleigh numberℜOsc

3 observes a sharp decrease (i.e., a strongly destabi-
lizing effect) when λ1 exceeds the value λ⋆1 by small amount or λ2 is just below the value λ⋆⋆2 .

A final remark should also be made. It is instructive to identify the dynamics near the third tran-
sition line from stationary convection to oscillatory mode of instability. Fig. 8 represents zoomed
data corresponding to the dashed circle of Fig. 6(b). As indicated in Fig. 8 a transition area exists
before the appearance of a secondary oscillatory mode of convection. For an illustration purpose,
a discussion of the λ1 = 0.5 and λ2 = 0.25 case is provided for ℜ = 121 and ℜ = 122 (point
identified by a star in Fig. 8). Fig. 9(a) displays the time history of the average-Nusselt number.
It shows a stationary behavior of Nu for ℜ = 121 while Nu experiences an intermittent evolution
between a steady state and an amplified oscillatory state for ℜ = 122. Moreover, as can be seen
from Figs. 9(b) and 9(c), the steady state is a single cell pattern while the intermittent oscillatory
state is a pattern composed by three cells flow. The Nusselt peaks correspond to the transition from a
multi-cellular flow to a mono-cellular mode of convection.

Finally, it should be noted here that a different scenario occurs for a strongly elastic fluid (i.e.,
for λ1 > λ⋆⋆1 or λ2 < λ⋆⋆2 ). In this regime, the first observed destabilization is due mainly to the
fluid elasticity which is therefore responsible for the appearance of an elastic-induced mode of
instability in the form of oscillatory convection. Some preliminary computations conducted with
high Rayleigh number showed that the nonlinear dynamics is quite complicated. The study of
different bifurcations leading to a chaotic convective pattern is out of the scope of this paper.

VI. CONCLUSION

In the present paper, numerical and theoretical investigations were performed to assess the
effect of the viscoelastic character of the fluid on bifurcations of thermal convection in a porous
square cavity heated from below. The modified Darcy law based on the Oldroyd-B model was
used for modeling the momentum equation. The dimensionless governing equations of the prob-
lem are solved by the finite difference method. The horizontal walls are assumed to be imper-
meable and perfectly conducting, while the vertical walls are considered adiabatic. In addition to
Darcy-Rayleigh number ℜ, two viscoelastic parameters play a key role when characterizing the
spatio-temporal behavior of the instability, namely, the relaxation time λ1 and the retardation time
λ2. The main results that have been obtained can be summarized as follows:

(i) Linear stability analysis and two-dimensional numerical simulations showed that oscillatory
rolls are the most unstable ones if λ1 exceeds a particular value λ⋆1 (λ2) or λ2 is less than a
certain value λ⋆2 (λ1). Otherwise, the stationary rolls are the most amplified mode of convec-
tion as in the case for Newtonian fluids. Moreover, the number of rolls when a first Hopf
bifurcation occurs has been determined by linear theory as a function of λ2 and is found to
agree with two-dimensional numerical simulations.
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(ii) The critical Rayleigh numbers for oscillatory and stationary instabilities coincide for λ1 = λ
⋆
1

or λ2 = λ
⋆
2 and therefore a codimension-two bifurcation occurs. A weakly nonlinear stability

analysis is therefore used to describe the dynamics which result from the two competing
instabilities in the neighborhood of the codimension-two bifurcation point. In particular,
we give a simple analytical expression of the nonlinear threshold above which a second
hysteretic bifurcation from oscillatory to stationary convective pattern is observed.

(iii) A series of suitable numerical experiments are conducted with Rayleigh number up to
ℜ = 420 and varying viscoelastic parameters. For weakly elastic fluids with λ1 < λ⋆1 or
λ2 > λ⋆2 , we determined a second critical valueℜOsc

2 (λ1, λ2) above which the system exhibits
a Hopf bifurcation from steady convective pattern to oscillatory convection. The well known
limit ofℜOsc

2 (λ1 = 0, λ2 = 0) = 390 for Newtonian fluids is recovered and the fluid elasticity
effect is found to delay the onset of the Hopf bifurcation (i.e.,ℜOsc

2 (λ1, λ2) > 390 for weakly
elastic fluids).

For sufficiently elastic fluids with λ1 > λ⋆1 or λ2 < λ⋆2 , numerical simulations revealed that a
secondary bifurcation from oscillatory to a steady state may occur provided that either λ1 does
not exceed a particular value λ⋆⋆1 for a prescribed value of λ2 or λ2 remains less than a particular
value λ⋆⋆2 for a fixed value of λ1. In this moderately elastic regime, in addition to the heating,
both the elastic and viscous characters of the fluid act together in the destabilisation phenom-
ena. In the parameter space where this secondary transition is possible, it is found that near
the codimension-two bifurcation point, the threshold Rayleigh number ℜst

2 obtained numerically
agrees quite remarkably with the nonlinear threshold determined analytically. Moreover, for higher
Rayleigh number, the system may experience a third transition to a second Hopf bifurcation at
ℜ = ℜosc

3 (λ1, λ2), where the steady state convection is replaced by a new oscillatory mode of
convection. In contrast to weakly elastic regime, this observed Hopf bifurcation occurs earlier than
for Newtonian fluids (i.e., ℜosc

3 (λ1, λ2) < 390 for moderately elastic fluids). Additionally, we also
note that in the vicinity of the second Hof bifurcation line, the system experiences an intermittent
evolution between a steady state and an amplified oscillatory state.

Finally it should be noted here that the extension of the present work to study the influence
of viscoelasticity on the bifurcation sequence leading to a chaotic convective pattern for higher
Rayleigh number is postponed to a future investigation.

NOMENCLATURE

The units correspond to the dimensional variables with a d as exponent.

C Heat capacity [J/K]
g Gravity acceleration

�
m/s2�

H,Hd Side of the square box [m]
K Permeability

�
m2�

Pd Pressure [Pa]
ℜ Rayleigh Darcy numberℜ = Ra × Da
T,Td Temperature [K]
u, w,ud, wd The velocity components [m/s]
x, z Coordinate system

Greek symbols

β Volumetric expansion
�
K−1�

γ Deformation tensor
κ Effective thermal diffusivity

�
m2s−1�

ρ Density
�
kg/m3�

λi; λd
i Relaxation (i = 1) and retardation (i = 2) times [s]

µ Dynamic viscosity [Pa s]
ν Kinematic viscosity

�
m2s−1�
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σ Heat capacity ratio between solid and liquid phases
τ Stress tensor [Pa]
ψ Stream function

Subscripts

�c Critical
� f Filtration
�NL Nonlinear
�0 Reference state

Exponents

�n nth time step
�Osc Oscillatory
�St Stationary
�d Dimensional variable
�⋆ Codimension two
�⋆⋆ Limit of moderately elastic zone
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