Effect of Entomopathogenic Fungi *Beauveria bassiana* and *Metarhizium anisopliae* var. *acridum* on the Haemolymph of the Desert Locust *Schistocerca gregaria*

Fatma Zohra Milat-Bissaad, Department of Biology, Faculty of Science, University M'hamed Bougara, BO 35000 Boumerdes, Algeria, **Farid Bounaceur,** Faculty of Natural Sciences and Life, University Ibn Khaldoun, BO 14000 Tiaret, Algeria, **Fatma Halouane, Nassima Behidj, Nadjiba Chebouti,** Department of Biology, Faculty of Science, University M'hamed Bougara, BO 35000 Boumerdès, Algeria, **and Bahia Doumandji-Mitiche,** Department of Zoology Agriculture and Forestry, National Agronomic Institute, Hassen Badi Street El-Harrach, Algiers, Algeria

ABSTRACT

Milat-Bissaad, F.Z., Bounaceur, F., Halouane, F., Behidj, N., Chebouti, N., and Doumandji-Mitiche, B. 2011. Effect of entomopathogenic fungi *Beauveria bassiana* and *Metarhizium anisopliae* var. *acridum* on the haemolymph of the desert locust *Schistocerca gregaria*. Tunisian Journal of Plant Protection 6: 127-132.

Effect of *Beauveria bassiana* and *Metarhizium anisopliae* var. *acridum* on the 5th instar nymphs of *Schistocerca gregaria* was studied in the laboratory. Infection by these both entomopathogenic fungi caused reduction in the hemolymph total protein. The average amounts of total proteins were 2.3, 2.07, 2.09 μg/100 ml of haemolymph in the control and *M. anisopliae* var. *acridum*, and *B. bassiana* based-treatments, respectively. Three types of haemocytes were recognized and identified as prohaemocytes, plasmatocytes and granulocytes. The treatment caused significant reduction in the total haemocyte count and in each haemocyte type on the 9th day after its application.

Keywords: Beauveria bassiana, haemolymph picture, haemolymph protein, Metarhizium anisopliae var. acridum, Schistocerca gregaria

Locusts and grasshoppers are major economic pests of crops and grasslands throughout the world's dry zones. Their damages attract much public attention and make headline news (14). Desert locusts, *Schistocerca gregaria*, consume approximately their own weight

Corresponding author: Fatma Zohra Milat-Bissaad Email: bissaad@yahoo.com

Accepted for publication 11 February 2012

(2 g as adults) of fresh vegetation each day. Swarms often contain 50 million individuals per km² so that even a moderate swarm measuring 10 km² could consume about 1000 tons of fresh vegetation daily during migration (3). Interest in using pathogens as biological control agents against locusts and grasshoppers has grown since the last major locust plague of the 1980. Locust control only became efficient after the development of Dieldrin (4). The major advantage of this insecticide was its

persistence (5). Dieldrin and Lindane remained the major products used for desert locust control until the early 1980's. However, these compounds are no longer used because of growing concern over their environmental impact.

The most pesticides recommended by the FAO locust pesticide referee group have a very short persistence in the field in order to avoid their accumulation in the environment. In desert locust control. Ultra Low Volume (ULV) spinning disc spray equipment is mainly used which served for hand application as well as for application by vehicle or aircraft (15). This technology is the most efficient way of transferring an insecticide to its target (1) and allows low volume application rates. Guidelines for locust control techniques and the organization of control operations have been developed (8, 19). Different insect growth regulators have been tested for acridid control (6). These products cause low risk for non-target organisms, except aquatic arthropods. As far as biocontrol agents are concerned, the most extensively studied pathogens are Deuteromycete fungi such Metarhizium anisopliae var. acridum and Beauveria bassiana (10). The use of pathogens may offer an environmentally sound method for the management of grasshoppers and locusts. and Hyphomycete fungi are the most promising candidates (16).

The present work aims to study the effect of two entomopathogenic fungi, *M. anisopliae* var. *acridum* and *B. bassiana*, against haemocytes and protein contents of *S. gregaria* under laboratory conditions.

MATERIALS AND METHODS

Tested insects. Insects used in the laboratory bioassay were 5th instar nymphs of the desert locust, *S. gregaria*. The individuals were taken from stock

culture maintained for several generations at the Locust Control Department, National Plant Protection Institute, El-Harrach, Algeria. The insects were reared in group and maintained at $30 \pm 5^{\circ}\text{C}$, $45 \pm 15\%$ RH under a photoperiod of L12:D12. The individuals of *S. gregaria* were fed on wheat seedlings supplemented with wheat bran.

Tested entomopathogenic fungi. Spores of *M. anisopliae* var. *acridum* used were from isolate IMI: 330189 provided by Biological Control Products, South Africa. *B. bassiana* spores were derived from mycosed cadavers of *S. gregaria* collected from Adrar area (7). The isolate was propagated in locust for several generations.

Effect of fungal infection on protein content of Schistocerca gregaria haemolymph. Three treatments were applied: 1) untreated nymphs, 2) nymphs treated with 10^5 spores/nymph of M. anisopliae var. acridum and 3) nymphs treated with 10^5 spores/nymph of B. bassiana. Fifteen nymphs were used for each treatment. Haemolymph samples were taken after treatment every 3 days 9th till. the dav. To collect haemolymph, the arthropodial membrane of a hind leg was pierced with a micro syringe. The haemolymph was collected into a capillary pipette (10 µl).

For haemocyte counting, 3 μ l of haemolymph was placed on a glass slide and smeared to a thin film. The smears were first stained with diluted May-Grunwald stain for 3 min, then washed with distilled water and stained for a second time with diluted Giemsa for 10 min then washed again in distilled water (12). The haemocytes were observed under light microscope with $100 \times \text{oil}$ immersion objective and identified according to Gupta (11).

To calculate the total haemocyte count, haemolymph was diluted (1: 4) with sterile ice cold anticoagulant buffer then placed in an improved Neubauer haemocytometer.

For estimating the protein contents, a 10 μ l sample of haemolymph was placed in an Eppendorf tube containing phenyl thiouria. The tubes were centrifuged (3000 rpm for 20 min) and stored at -20°C. The protein content was determinate based on the method of Bradford (2).

Statistical analysis. To study the effect of *M. anisopliae* var. *acridum* on the haemolymph picture and its protein contents, three treatment were carried, for each one 45 nymphs were used distributed randomly and divided to three repetitions.

Data were subjected to analysis of variance followed by Student-Newman-Keuls post-hoc tests (P = 0.05) using the ANOVA procedure of SAS (17). Mean values are presented with their standard errors (SE).

RESULTS

Effect of entomopathogens tested on *Schistocerca gregaria* haemocytes. For this study, three types of haemocytes i.e. prohaemocytes, plasmatocytes and granulocytes were recognized according to Gupta (11).

Effect on total haemocyte count. Data illustrated in Table 1 show the effect of M. anisopliae var. acridum and B. bassiana on total haemocyte count of the 5th instar nymphs of the desert locust on the 9th day after treatment. It is clear that the crude of haemocyte count was recorded in the infected insect. The treatment with B. bassiana showed the lowest reduction in the amount of haemocyte count (P < 0.05) while the M. anisopliae var. acridum based-treatment induced the highest reduction in the total haemocyte amount. The average amounts of the total haemocyte were 30.1, 5.52 102 and 3 95 × haemocytes/ul, respectively, in untreated locusts and those treated with B. bassiana and M. anisopliae var. acridum.

Table 1. Effect of two entomopathogenic fungi on the total haemocyte's count in 3 μ l of haemolymph of 5th instar nymphs of *Schistocerca gregaria* recorded on the 9th day after treatment as compared to the untreated control

Treatment	Control	Beauveria bassiana	Metarhizium anisopliae var. acridum
$X \pm SE \times (10^2)$	30.1 ± 2.26 a	5.52 ± 0.19 b	$3.95 \pm 0.15 \text{ b}$

^{*} Values (means \pm SE) followed by the same letters are significantly similar according to SNK test (at $P \le 0.05$).

Data presented in Table 2 illustrate the number of the different haemocyte types/3 µl of the 5th instar nymphs of *S. gregaria* in the control, and in *M. anisopliae* var. *acridum* and *B. bassiana* based-treatments recorded on the 9th day post-application. The highest number of haemocyte types was noted for

plasmatocytes followed by prohemocytes and granulocytes. The infection by the tested entomopathegenic fungi induced a significant (P < 0.05) decrease of the number of all haemocyte categories: plasmatocytes, prohemocytes and granulocytes.

Table 2. Effect of two entomopathogenic fungi on haemocyte's types count in 3 μ l of haemolymph of 5th instar nymphs of *Schistocerca gregaria* recorded on the 9th day after treatment as compared to the untreated control

Haemocyte	Control	Beauveria bassiana	Metarhizium anisopliae var. acridum
type	$\mathbf{X} \pm \mathbf{SE} \; (\times \; \mathbf{10^2})$	$X \pm SE \times (10^2)$	$X \pm SE \times (10^2)$
Prohemocytes	11.25 ± 1.63 a	1.90 ± 5.66 b	1.21 ± 3.75 b
Plasmatocytes	15.24 ± 1.96 a	2.18 ± 9.52 b	1.95 ± 11.75 b
Granulocytes	$5.11 \pm 0.73 \text{ b}$	$0.96 \pm 0.17 \text{ b}$	$0.68 \pm 0.08 \ b$

^{*} For each haemocyte type, values (means \pm SE) followed by the same letters are significantly similar according to SNK test (at $P \le 0.05$).

Effect of the entomopathogens on the total haemolymph protein content. Table 3 shows results for total protein content in haemolymph. The total protein content in the infected individuals decreased from the 5th day after treatment

until the end of the experiment. The treatment with B. bassiana and M. anisopliae var. acridum caused significant (P < 0.05) reduction in the total protein content.

Table 3. Effect of two entomopathogenic fungi on the total protein content ($\mu g/100$ ml) of haemolymph of 5th instar nymphs of *Schistocerca gregaria* as compared to the untreated control

Day after treatment	Control	Beauveria bassiana	Metarhizium anisopliae var. acridum
	$X \pm SE$	$X \pm SE$	$X \pm SE$
1 st	$2.09 \pm 0.01 \ a$	2.1 ± 0.02 a	2.1 ± 0.02 a
3 rd	2.24 ± 0.03 a	2.14 ± 0.01 a	2.16 ± 0.04 a
5 th	2.38 ± 0.02 a	$2.08 \pm 0.03 \text{ b}$	2.11 ± 0.03 b
7 th	2.39 ± 0.01 a	2.04 ± 0.04 b	2.06 ± 0.01 b
9 th	2.39 ± 0.04 a	$1.97 \pm 0.01 \text{ b}$	1.99 ± 0.02 b

^{*} For each day after treatment, values (means \pm SE) followed by the same letters are significantly similar according to SNK test (at $P \le 0.05$).

130

DISCUSSION

In this study, we have established that infection of 5th instar nymphs of the desert locust by two entomopathogenic fungi *B. bassiana* and *M. anisopliae* var. *acridum* had significantly reduced the

total haemocyte count and the number of three different haemocyte types. Similarly, Halouane *et al.* (13) noted reductions in the heamocyte's numbers after infection of adult of migratory locust *Locusta migratoria* by *B. bassiana*. Xia *et* al. (20) have recorded a decline in the total haemocyte count and a marked reduction in the proportion of plasmatocytes and coagulocytes after inoculation of mature adult males of the desert locust infected with *M. anisopliae* var. acridium. Gillespie et al. (9) also noted a decrease in the haemolymph protein content of *S. gregaria* treated with *M. anisopliae* var. acridum, which is in agreement with our findings.

In this study, we have also noted that the decrease in haemocytes attributed to fungal infection was not caused by the exhaustion of proteins as suggested by Seyoum *et al.* (18), indicating that competition of *M. anisopliae* var. *acridum* with the individual *S. gregaria*

against haemolymphatic metabolites resulted in depletion of reserves accumulated in the fat body.

The decrease in haemocyte numbers in response to mycosis of *S. gregaria* caused by *B. bassiana* and *M. anisopliae* var. *acridum* may be due to the intervention of these haemocytes in autophagy and humoral defense reactions.

Other studies have shown the increasing of the hemocytopoitic activity as long as conidia dosage. However, the fungus circumvents the host's immune defenses by preferentially destroying prohaemocyte and plasmatocytes, the most common haemocytes types in the termite (*Zootermopsis angusticollis*) (21).

RESUME

Milat-Bissaad F.Z., Bounaceur F., Halouane F., Behidj N., Chebouti N. et Doumandji-Mitiche B. 2011. Effet des champignons entomopathogènes *Beauveria bassiana* et *Metarhizium anisopliae* var. *acridum* sur l'hémolymphe du criquet pèlerin *Schistocarca gragaria*. Tunisian Journal of Plant Protection 6: 127-132.

L'effet des champignons *Beauveria bassiana* et *Metarhizium anisopliae* var. *acridum* sur les larves de 5ème stade de *Schistocerca gregaria* a été étudié au laboratoire; l'infection par les deux entomopathogènes entraîne une diminution de la quantité des protéines totales haemolymphatiques. Les moyennes des protéines totales calculées jusqu'au 9ème jour après traitement sont: 2,3; 2,07 et 2,09 g/100 ml respectivement chez les témoins et les traitements à base de *M. anisopliae* var. *acridum* et *B. bassiana*. Dans cette étude, trois types de cellules haemolymphatiques ont été reconnues et identifiées: prohémocytes, plasmatocytes et granulocytes. Le traitement a provoqué une réduction du nombre total des haemocytes et chaque type d'haemocyte au 9ème jour après traitement.

Mots clés: Beauveria bassiana, hémogramme, Metarhizium anisopliae var. acridum, protéines hémolymphatiques, Schistocerca gregaria

لمخصر

ميلاط بساعد، فاطمة الزهراء وفريد بوناصر وفاطمة حلوان ونسيمة بهيج ونجيبة شبوطي وبهية دومانجي متيش. 2011. تأثير الفطريين Beauveria bassiana و Beauveria bassiana في السائل اللمفاوي Tunisian Journal of Plant Protection 6: 127-132.

تمت دراسة تأثير الفطرين Beauveria bassiana و Beauveria bassiana في حوريات الطور الفطرين الفطرين الممرضين للحشرات في خفض كمية البروتين في المختبر. تسببت الإصابة بالفطرين الممرضين للحشرات في خفض كمية البروتين في السائل اللمفاوي. كان معدل البروتينات المحتسبة على التوالي 2,3 و 2,07 و 2,09 مكغ/100 مل عند الشواهد و عند الأفراد المعاملة بالفطر M. anisopliae var. acridum والفطر B. bassiana فذه الدراسة، تم تشخيص ثلاثة

أنواع من الخلايا اللمفاوية وهي خلايا الدم الأولية والخلايا البلازمية والخلايا الحبيبية. تسببت المعاملة في تخفيض مجموع الخلايا اللمفاوية في اليوم التاسع بعد المعاملة.

كلمات مفتاحية: بروتينات لمفاوية، رسم لمفاوي، Metarhizium anisopliae var. acridum 'Beauveria bassiana' Schistocerca gregaria

LITERATURE CITED

- Bateman, R.P. 1993. Simple standardized methods for recording droplet measurements and estimation of deposits from controlled droplet application. Crop Prot. 12: 201-206.
- Bradford, M. 1976. A rapid and sensitive method for the quantization of microgram quantities of protein utilizing the principle of protein-dye binding. Ann. Biochem. 72: 248-254.
- C.O.P.R. 1982. The locust and grasshopper agricultural manual. Ed. Centre for Overseas Pest Research, London, England, 690 pp.
- Courshee, R.J. 1983. Criteria for choosing application techniques for desert locust control. EPPO Bull. 13: 535-540.
- Courshee, R.J. 1990. Desert locusts and their control. International Pest Control 32: 16-18.
- Dorow, E. 1996. Alsystin-an environmentally friendly insecticide for the control of plagues of locusts. Pflan-zenschutznachrichten Bayer 49: 145-180
- Doumandji-Mitiche, B., Halouane, F., Chahbar, N., Agrane, S., Merabti, N. Seddik, A., and Doumandji, S. 1997. Note sur la présence de l'entomopathogène Beauveria bassiana (Hyphomycètes, Deuteromycotina) sur Schistocerca gregaria sur terrain à Adrar. Effet sur le rythme cardiaque et la respiration de cet acridien. Med. Fac. Landbouwm, Univ. Gent 62: 499-506.
- F.A.O. 1994. Workshop on spray equipment used in desert locust control. FAO Commission for Controlling the Desert Locust in the Near East, August 21-23, 1994, Cairo, Egypt.
- Gillespie, J.P., Burnett, C., and Charnley, A.K. 2000. The immune response of the desert locust Schistocerca gregaria during mycosis of the entomopathogenic fungus, Metarhizium anisopliae var. acridum. J. Insect Physiol. 46: 429-437.
- Greathead, D.J. 1992. Natural enemies of tropical locust and grasshoppers: their impact and potential as biological control agents. Pages 105-121. In: Biological control of locusts and grasshoppers. C.J. Lomer and C. Prior, Eds. CAB International, UK.
- Gupta, A.P. 1979. Haemocytes types: their structures, synonymies, interrelationships, and taxonomic significance. Pages 85-127. In: Insect haemocytes. A.P. Gupta, Ed., Cambridge University Press, GB.

- Guzo, D. and Stolz, D.B. 1987. Observations on cellular immunity and parasitism in the tissok moth. J. Insect Physiol. 33: 19-31.
- Halouane, F., Benzara, A., Doumandji-Mitiche, B., and Bouhacein, M. 2001. Effet de deux entomopathogènes, Beauveria bassiana et Metarhizium flavoviride (Hyphomycètes, Deuteromycotina) sur l'hémogramme des larves de 5ème stade et des adultes de Locusta migratoria migratorioides (Orthoptera: Acrididae). J. Orthop. Res. 10: 331-334.
- Lomer, C.J. 1997. Metarhizium flavoviride: recent results in the control of locusts and grasshoppers. Pages 159-169. In: New strategies in locust control. S. Krall, R. Peveling and D. Ba Diallo, Eds. Birkhäuser Verlag, Basel, Switzerland, 522 pp.
- Matthews, G.A. 1992. Pesticide application methods. 2nd Ed. Longman Scientific and Technical, UK, 405 pp.
- Perior, C. and Greathead, D.J. 1989. Biological control of locust: the potential for exploitation of pathogens. FAO Plant Protect. Bull. 37: 37-45.
- SAS institute (1999). SAS/Stat software (computer program electronic Manuel), version 8.01. Cary,
- Seyoum, E., Bateman, R.P., and Charnley, A.K. 2002. The effect of *Metarhizium anisopliae* var. acridum on haemolymph energy reserves and flight capability in the desert locust, *Schistocerca* gregaria. J. Appl. Entomol. 126: 119-124.
- Steedman, A. 1990. Locust handbook. 3rd Ed. Chatham, Natural Resources Institute, UK, 204 pp.
- Xia, P., Dean, P., Judge, A.J., Gillespie, J.P., Clarkson, J.M., and Charnley, A.K. 2000. Acid phosphatases in the haemolymph of the desert locust, Schistocerca gregaria, infected with the entomopathogenic fungus Metarhizium anisopliae. J. Insect Physiol. 46: 1249-1257.
- Avulova, S. and Rosengaus R.B. 2011. Losing the battle against fungal infection: suppression of termite immune defenses during mycosis. J. Insect Physiol. 57: 966-971.