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1. Introduction

The problem of seeking positive solutions for boundary value problems associated with p-

Laplacian differential equations having positive nonlinearities, is usually converted to that of

finding solutions in the cone of nonnegative functions C of some functional space X , to the

abstract Hammerstein equation,

u = NFu, (1.1)
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where N is an increasing, 1-homogeneous and completely continuous self mapping of X and

F : C→ C is continuous and bounded (maps bounded sets into bounded sets). Note that the

mapping T = NF leave invariant the cone C.

This formulation has motivated many works, where existence results of fixed point for oper-

ators leaving invariant a cone have been proved. Krasnosel’skii’s theorems of compression and

expansion of a cone in a Banach space (see Theorems 4.12 and 4.14 in [14] and Theorems 2.3.3

and 2.3.4 in [13]), are the most famous and the most used in the literature.

Krasnosel’skii has provided in [14] many others interesting fixed point theorems. Among

these results, Theorems 4.10, 4.11 and 4.16 have attracted the attention of Amann in [1] where

he generalized these results for strict set-contraction leaving invariant a cone in a Banach space.

Roughtly speaking, these theorems and their generalization, state that if such an operator is

approximatively linear at 0 and ∞, and the spectral radius of the linear approximations are

oppositely located with respect to 1, then it has a fixed point.

In this paper, we will prove new fixed point theorems for operators leaving invariant a cone in

a Banach space, and as in Krasnosel’kii’s theorems, the main assumptions are on the behavior

of the operator at 0 and ∞. Letz(X) be the class of all increasing 1-homogeneous self operator

in X , more precisely, we will assume that our operator has an approximative minorant at 0

and an approximative majorant at ∞ in the class z(X) , or conversely; existence of the fixed

point is obtained under additional conditions: it is required that, the approximative minorant

has the strongly index-jump property and the positive spectrums of the approximative majorant

and minorant are oppositely located with respect to 1. The concepts of index-jump and the

strongly index-jump will be introduced in Section 2, where we prove that a 1-homogeneous,

positive and completely continuous operator has the index-jump property if and only if it has a

positive eigenvalue and we present some classes of such operators having the strongly index-

jump property.

The interest to the strongly index-jump property is motivated by the fact that it is conserved

by limits of nondecreasing sequences of operators having the strongly index-jump property (see

the proof of Theorem 3.16). In order to indicate the interest of this property, let us return to

bvps. In the case where the nonlinearity has a singular weight, the operator N in formulation
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(1.1) will contain this singular weight. Technically, one can see that such an operator is a limit

of a nondecreasing sequence of operators (Nn) having the SIJP. This what makes interesting the

above property.

The spirit of hypotheses in this work meet that in many results in the literature. Theorem 7.B

in [20] state that if a positive mapping T has a linear minorant having a eigensubsolution, then

T has eigensolutions. Webb in [19] has obtained fixed calculations for a positive mapping A

under the condition that A has a specific linear majorant or minorant (see Theorems 4.4, 4.5 and

4.7 in [19]); he has also provided nonexistence results under similar conditions (see Theorem

4.9 in [19]). Main ideas of this work are inspired from the works in [2], [3] and [4].

The paper is organized as follows. Section 2 is devoted for the needed background. In Section

3, we present the main results and their needed preliminaries. In the last section, we prove by

means of main results of Section 3, existene results for at least one positive solution to a class

of p-Lapalcian bvps having regular or singular weights.

2. Abstract background

We will use extensively in this work cones and the fixed point index theory, so let us recall

some facts related to these two tools. Let X be a Banach space, a nonempty closed convex subset

K of X is said to be a cone if (tC) ⊂ C for all t ≥ 0 and C∩ (−C) = {0X} . It is well known

that a cone C induces a partial order in the Banach space X . We write for all x,y ∈ X : x � y

if y− x ∈ C, x ≺ y if y− x ∈ C, y 6= x and x � y if y− x /∈ C. Notations �, � and � denote

respectively the inverse situations.

A cone C is said to be normal with a constant nC > 0 if for all u,v in C, u � v implies

‖u‖ ≤ nC ‖v‖ .

A function f : Ω⊂X→X is said to be bounded, if it maps bounded sets into bounded sets and

it is said to be completely continuous, if it is continuous and maps bounded sets into relatively

compact sets.

Definition 2.1. Let C be a cone in X and N : X → X a continuous map. N is said to be

a) positive, if N (C)⊂C,
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b) strongly positive, if C has a nonempty interior (intC 6= /0) and N (Cr{0X})⊂ intC,

c) increasing, if for all u,v ∈ X , u� v implies Nu� Nv,

d) strictly increasing, if for all u,v ∈ X , u≺ v implies Nu≺ Nv.

e) 1-homogeneous, if for all u ∈ X and t ∈ R, N (tu) = tN (u) and

f) subadditive on C if for all u,v ∈C, N (u+ v)� Nu+Nv.

Definition 2.2. Let C be a cone in X and let N1,N2 : X→ X be positive maps. We write N1 �N2

if for all x ∈C, N1x� N2x.

Definition 2.3. Let C be a cone in X and N : X → X a positive map. N is said to be lower

bounded on C if there exists a positive constant m such that for all u ∈C, ‖Nu‖ ≥ m‖u‖ . For

such an operator N, we denote

N−C = inf{‖Nu‖/‖u‖ , u ∈Cr{0X}} .

Let H (X) be the set of all continuous and 1-homogeneous self mapping on X , for N ∈H (X),

we set ‖N‖ = sup‖u‖=1 ‖Nu‖ . Arguing as for the space of linear continuous self mapping, we

obtain the following lemma.

Lemma 2.4. The pair (H (X) ,‖·‖) is a Banach space.

The concept of positive eigenvalue will be extensively evoked in this work, it is introduced

in the following definition.

Definition 2.5. Let C be a cone in X and let N ∈ H (X) be a positive operator. A nonnegative

constant µ is said to be a positive eigenvalue of N if there exist u∈Cr{0X} such that Nu = µu.

Lemma 2.6. Let C be a cone in X and for all integer n ≥ 1, Nn is a positive completely

continuous mapping in H (X) , having a positive eigenvalue λn. If Nn → N in operator norm

and λn −→ λ > 0 as n−→+∞ then λ is a positive eigenvalue of N.

Proof. Let φn be a normalized eigenvector associated with λn and ψn = N(φn). Since N is

completely continous, there exists a subsequence denote also (φn), such that (ψn) converges to
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some ψ ∈ K. Thus, we have the following estimates:

‖λnφn−ψ‖ = ‖Nn(φn)−ψ‖

≤ ‖Nn(φn)−N(φn)‖+‖N(φn)−ψ‖

≤ ‖Nn−N‖+‖ψn−ψ‖ .

So,

limλnφn = ψ and ‖ψ‖= lim‖λnφn‖= limλn = λ > 0.

Also, we have ∥∥Nn (φn)− 1
λ

N(ψ)
∥∥= ∥∥∥ 1

λn
Nn(λnφn)− 1

λ
N(ψ)

∥∥∥≤∥∥∥ 1
λn

Nn(λnφn)− 1
λ

Nn(λnφn)
∥∥∥+∥∥ 1

λ
Nn(λnφn)− 1

λ
N(λnφn)

∥∥+∥∥ 1
λ

N(λnφn)− 1
λ

N(ψ)
∥∥

≤
∣∣∣ 1

λn
− 1

λ

∣∣∣ |λn|‖Nn‖+ 1
λ
|λn|‖Nn−N‖+ 1

λ
‖N(λnφn)−N(ψ)‖ .

This together with the continuity of N, implies that limN(λnφn) = N(ψ). Leting n→ ∞ in

Nn(φn) = λnφn, we get that N(ψ) = λψ . This completes the proof.

We will use extensively in this work the fixed point index theory. For sake of completeness,

let us recall some lemmas providing fixed point index computations. Let C be a cone in X . Let

for R > 0, CR =C∩B(0X ,R) where B(0X ,R) is the open ball of radius R centred at 0X , ∂CR be

its boundary and consider a compact mapping f : CR→C.

Lemma 2.7. If f x 6= λx for all x ∈ ∂CR and λ ≥ 1, then i( f ,CR,C) = 1.

Lemma 2.8. If f x� x for all x ∈ ∂CR, then i( f ,CR,C) = 1.

Lemma 2.9. If f x� x for all x ∈ ∂CR, then i( f ,CR,C) = 0.

Lemma 2.10. If there exists e � 0X such that x 6= f x+ te for all t ≥ 0 and all u ∈ ∂CR, then

i( f ,CR,C) = 0.

For more details on the fixed point index theory, see, for instance, [10] and [13].

3. Main results

Preliminaries
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In all this section E is a real Banach space, K,P are two nontrivial cones in E with P ⊂ K

and H(E) denotes the Banach space of continuous 1-homogeneous self operator of E endowed

with the norm, ‖N‖= sup‖u‖=1 ‖Nu‖ . Hereafter � denotes the order induced by the cone K on

E and we set,

NP
K(E) = {N ∈ NK(E) : N is increasing and N(K)⊂ P}

and

QP
K(E) =

{
N ∈ NP

K(E) : N is completely continuous
}
.

In fact, the cone K is a naturel cone of E as the cone of nonnegative functions in functional

spaces and for N ∈ NP
K(E), the cone P is related to the operator N and in some manner it

represents the regularity of N; See for example the cone P in (4.5) and the property of lower

boundness of the operator Np in Lemma 4.1.

Now, for N ∈ NP
K(E) we define the subsets

Λ
N
P = {λ ≥ 0 : there exist u ∈ Pr{0E} such that Nu� λu} ,

Θ
N
P = {θ ≥ 0 : there exist u ∈ Pr{0E} such that Nu� θu} .

Remark 3.1. Note that

a) 0 ∈ΘN
P and if θ ∈ΘN

P then [0,θ ]⊂ΘN
P .

b) If λ ∈ ΛN
P then [λ ,+∞[⊂ ΛN

P .

c) ΛN
P ⊂ ΛN

K and ΘN
P ⊂ΘN

K .

d) If µ is positive eigenvalue of N then µ ∈ΘN
P ∩ΛN

P ∩ [0,‖N‖] .

e) If N−1 (0E)∩K = {0E} then ΛN
P = ΛN

K and ΘN
P = ΘN

K .

Also, for N ∈ NP
K(E), σK(N) denotes the set of all positive eigenvalues of N,

σ
−
N = infσK(N) and σ

+
N =

 supσK(N) if σK(N) 6= /0,

0 if σK(N) = /0.

Lemma 3.2. For all N ∈ NP
K(E), the subset ΘN

P is bounded from above by ‖N‖.

Proof. Let θ > ‖N‖ and Rθ = ∑k∈NNk/θ k and note that Rθ = I +Rθ (N/θ) . Moreover, we

have Rθ (P)⊂ P since for all k, Nk (P)⊂ P.
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Now, by the contrary, suppose that there exists u∈ ∂P1 such that Nu� θu and set v= θ−1Nu.

We have then the contradiction

Rθ (v)� Rθ (u) = u+Rθ (v)� Rθ (v) .

This shows that ΘN
P is bounded from above by ‖N‖. This completes the proof.

Lemma 3.3. For all N ∈ QP
K(E), the subset ΛN

P is nonempty.

Proof. Let λ > ‖N‖ and e ∈ Pr{0E} and consider the equation

u = Nλ (u, t), (3.1)

where for all u∈ P and t ∈ [0,1] , Nλ (u, t) = (t/λ )Nu+e. Clearly Nλ (P× [0,1])⊂ P and equa-

tion (3.1) has no solution in ∂PR with R > max(λ ‖e‖/(λ −‖N‖) ,‖e‖) . Thus, by homotopy

and normality properties of the fixed point index, we conclude that

i(Nλ (·,1),PR,P) = i(Nλ (·,0),PR,P) = 1.

Then equation Nλ (u,1) = u admits a solution u0 ∈ PRr{0E} and λ ∈ ΛN
P . For all N ∈ QP

K(E),

the constants λ N
P and θ N

P will play an important role in all this paper and they are defined by

λ
N
P = infΛ

N
P , θ

N
P = supΘ

N
P .

Lemma 3.4. Let N ∈ QP
K (E) and assume that λ N

P ,θ N
P > 0. Then for all γ,R > 0 we have

i(γN,PR,P) =

 1, if γθ N
P < 1,

0, if γλ N
P > 1.

Proof. Let R > 0, γ ∈
(
0,1/θ N

P
)

and u ∈ ∂PR such that γNu � u. This implies that 1/γ ∈ ΘN
P

and 1/γ ≤ θ N
P which contradicts γ ∈

(
0,1/θ N

P
)
. So, the hypothesis of Lemma 2.8 hold and

i(γN,PR,P) = 1. Let R > 0, γ > 1/λ N
P and u ∈ ∂PR such that γNu� u. This implies that 1/γ ∈

ΛN
P and 1/γ ≥ infΛN

p = λ N
P which contradicts γ > 1/λ N

P . So, the hypothesis of Lemma 2.7 hold

and i(γN,PR,P) = 0. This completes the proof.

Lemma 3.5. For all N ∈ QP
K(E) we have λ N

P ≤ θ N
P .
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Proof. Indeed, if λ N
P > θ N

P we have then from Lemma 3.4, for γ ∈
(
1/λ N

P ,1/θ N
P
)
, the contra-

diction

i(γL,KR,K) =

 1, since γθ N
P < 1,

0, since γλ N
P > 1.

Remark 3.6. We deduce from d) in Remark 3.1 and Lemma 3.5 that for all N ∈ QP
K(E),

σK(N)⊂
[
λ N

P ,θ N
P
]
.

Remark 3.7. Let N ∈ QP
K(E), v ∈ Pr{0E} and assume that the constant λ N

P is positive. Then,

equation λu−Nu = v has no solution in P for all λ ∈
(
0,λ N

P
)
.

The index jump property

Let N ∈ QP
K(E) and γ ∈ (0,+∞)rσK (N). The integer i(γN,KR,K) is defined for all R > 0

and the excision property of the fixed point index, make it independant of R. Moreover, if

γ < 1/‖N‖ , we have for all u� 0E and λ ≥ 1, γNu 6= λu and Lemma 2.7 leads to i(γN,PR,P)=

1. This justifies the following definition.

Definition 3.8. An operator N ∈ QP
K (E) is said to have the index-jump property (IJP for short)

if

νN = sup{γ > 0 : i(γN,PR,P) = 1}< ∞

and in this case we say that N has the IJP at νN .

Theorem 3.9. An operator N ∈ QP
K (E) has the IJP if and only if σK (N) 6= /0. Moreover, we

have that νN = σ
+
N .

Proof. Let N ∈QP
K(E) having the IJP at νN and let γ be a positive real number. By the contrary,

suppose that σK (N) = /0. In this case, for all λ ≥ 1 and u � 0E , γNu 6= λu. Hence, we have

from Lemma 2.7 that for all R > 0, i(γN,PR,P) = 1 contradicting the IJP property of N. Now,

suppose that for some N ∈ QP
K(E), , σK (N) 6= /0 and let γ > 1/σ

+
N . Consider for t > 0 the

equation

u− γN(u) = tφ1, (3.2)
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where φ1� 0E is such that N(φ1)=σ
+
N φ1 and t > 0. We claim that (2.2) has no positive solution.

Indeed, if there exists x� 0E satisfying (3.2), then, one has

x� γN(x) (3.3)

and

x� tφ1. (3.4)

We obtain from (3.3) that

x� (γN)(x)� (γN)2(x)� (γN)3(x)� ·· · � (γN)k(x)� ·· ·

From (3.4), we have

x� (γN)k(x)� (γN)k(tφ1) = γ
k(σ+

N,K)
k(tφ1),

which leads to

tφ1 � x/
(
γσ

+
N
)k
. (3.5)

Taking in account, γσ
+
N > 1, we obtain from (3.5) the contradiction

0E ≺ tφ1 � x/
(
γσ

+
N
)k→ 0E as k→ ∞.

Thus, we have from Lemma 2.10, i(γN,PR,P) = 0 whenever 1/γ /∈σK (N) and this shows that

νN = sup{γ > 0 : i(γN,PR,P) = 1} < ∞. At the end, we have from Lemma 2.7 that for all

γ < 1/σ
+
N , i(γN,PR,P) = 1. This shows that σ

+
N = νN and ending the proof.

We present now a concept which is stronger that the IJP, which plays an important role in our

main results.

Definition 3.11. An operator N ∈QP
K (E) is said to have the strongly index-jump property (SIJP

for short) if λ N
P > 0. Moreover, if λ N

P = θ N
P = ν then we say that N has the SIJP at ν .

Proposition 3.12. Let N1,N2 ∈ NP
K (E) and assume that N1 � N2. Then λ

N1
P ≤ λ

N2
P and θ

N1
P ≤

θ
N2
P . Moreover if N1,N2 ∈ QP

K (E) and N1 has the SIJP, then N2 has the SIJP.

Proof. Indeed, we have

Θ
N1
P ⊂Θ

N2
P and Λ

N2
P ⊂ Λ

N1
P ,
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which leads to

λ
N1
P ≤ λ

N2
P and θ

N1
P ≤ θ

N2
P .

Proposition 3.13. If N ∈ QP
K (E) is lower bounded on P, then N has the SIJP.

Proof. By the contrary, suppose that λ N
P = 0, in this case, there exists sequences (λn)⊂ (0,+∞)

and (un) ⊂ ∂P1 such that limn−→+∞ λn = 0 and Nun � λnun. Let (unk) be a subsequence such

that limNunk = v ∈ P. In one hand, we have that

v = limNunk � limλnkunk = 0E ,

and in the other,

‖v‖= lim‖Nunk‖ ≥ N−P ‖unk‖= N−P > 0.

This ends the proof.

In the reminder of this subsection, we answer to the question: what represent the constants

λ N
P and θ N

P for the operator N ∈ QP
K(E)?

Proposition 3.14. Let N ∈ QP
K(E) and assume θ N

P > 0. Then θ N
P = σ

+
N .

Proof. Let (θn)⊂
(
0,θ N

P
)
⊂ ΘN

P be an increasing sequence converging to θ N
P and consider for

all integer n≥ 1, the cone

Pn = {u ∈ P : Nu≥ θnu}

and note that Kn is not the trivial cone and N (Pn)⊂ Pn. Consider also the sets

Λ
N
n = {λ ≥ 0 : there exist u ∈ Pnr{0E} such that Nu� λu} ,

Θ
N
n = {θ ≥ 0 : there exist u ∈ Pnr{0E} such that Nu� θu}

and the constants

λ
N
n = infΛ

N
n and θ

N
n = supΘ

N
n .

By simple computations, one obtains

0 < θn ≤ λ
N
n ≤ θ

N
n ≤ θ

N
P
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and N admits for all n ≥ 1 a positive eigenvalue µn associated with a normalized eigenvector

φn ∈ Pnr{0E} with

0 < θn ≤ λ
N
n ≤ µn ≤ θ

N
n ≤ θ

N
P .

Clearly, we have lim µn = θ N
P . Thus, we have for all n≥ 1

N2
φn = µnNφn = µ

2
n φn

and the compcteness of N leads to φ = limNφn (up to a subsequence) satisfies Nφ = θ N
P φ and

‖φ‖= θ N
P > 0. At the end, Remark 3.6 leads to θ N

P = σ
+
N .

Proposition 3.15. Let N ∈QP
K(E) be subadditive (in particular linear) and assume that λ N

P > 0.

Then λ N
P = σ

−
N .

Proof. Let (λn) ⊂
(
λ N

P ,+∞
)
⊂ ΛN

P be a decreasing sequence converging to λ N
P and (φn) ⊂

Pr {0E} such that Nφn � λnφn. Consider for all integer n ≥ 1, Pn = {u ∈ P : Nu� λnu} and

note that the subadditivity of N makes of the set Pn convex and so, a cone in E which is diffrent

from the trivial one, since φn ∈ Pn. We have also, N (Pn)⊂ Pn and so, consider the sets

Λ
N
n = {λ ≥ 0 : there exist u ∈ Pnr{0E} such that Nu� λu} ,

Θ
N
n = {θ ≥ 0 : there exist u ∈ Pnr{0E} such that Nu� θu}

and the constants

λ
N
n = infΛ

N
n and θ

N
n = supΘ

N
n .

Clearly, we have 0 < λ N
P ≤ λ N

n ≤ θ N
n ≤ λn and N admits for all n≥ 1 a positive eigenvalue µn

associated with a normalized eigenvector ψn ∈ Pn with

0 < λ
N
P ≤ λ

N
n ≤ µn ≤ θ

N
n ≤ λn.

Thus, we have lim µn = λ N
P and for all n≥ 1

N2
ψn = µnNψn = µ

2
n ψn

and the compcteness of N leads to φ = limNψn (up to a subsequence) satisfies Nφ = λ N
P φ and

‖φ‖= λ N
P > 0. At the end, Remark 3.6 leads to λ N

P = σ
−
N . The proof is complete.
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Theorem 3.16. Let N ∈QP
K (E) be increasing and assume that the cone K is solid and N (∂Kr{0E})

⊂ int (K). Then N has a unique positive eigenvalue µN at which it has the SIJP.

Proof. First let us prove that θ N
K > 0. Let u ∈ ∂K r {0E} , since Nu ∈ int (K) we deduce

from Lemma 3.7 in [20] that there exists r0 > 0 small enough such that Nu � r0u and namely,

θ N
K ≥ r0 > 0. Since Proposition 3.14 claims that µN = θ N

K is a positive eigenvalue of N and

Lemma 3.5 states that λ N
K ≤ θ N

K , we have to show that λ N
K ≥ µN = θ N

K . By the contrary, suppose

that λ N
K < µN = θ N

K and let λ ∈
(
λ N

K ,µN
)
, φ ,ψ � 0E be such that Nφ = µNφ and Nψ � λψ.

Set

ψ̃ =

 ψ if ψ ∈ int (K) ,

N (ψ) if ψ ∈ ∂K

and observe that ψ̃ ∈ int (K) , N (ψ̃) � λψ̃ and from Lemma 3.7 in [20], there exists s0 > 0

small enough such that ψ̃ � s0φ .

Thus, we have

φ = (µN)
−1 Nφ � (s0µN)

−1 Nψ̃ � λ (s0µN)
−1

ψ̃.

Again we have,

φ = (µN)
−1 Nφ � (µN)

−1 N
(

λ (s0µN)
−1

ψ̃

)
� (s0)

−1 (λ/µN)
2

ψ̃.

By induction, we obatin that for all integer n≥ 1

φ � (s0)
−1 (λ/µN)

n
ψ̃,

which leads to the contradiction 0E ≺ ψ � α (λ/µN)
n

φ → 0 as n→ ∞. This ends the proof.

Corollary 3.17. Assume that the cone K is solid and let N ∈ QP
K (E) be a strongly positive and

increasing. Then N has a unique positive eigenvalue µN at which it has the SIJP.

Let Γ(E) be the class of operators N ∈QP
K (E) such that there exists a sequence of cones (Pn)

and an increasing sequence of operators Nn, such that Pn ⊂ P, Nn (K)⊂ Pn and Nn has the SIJP

at µn and Nn −→ N in operator norm.

Theorem 3.18. Let N ∈ Γ(E), then N has a unique positive eigenvalue µN at which it has the

SIJP.
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Proof. Let (Pn) ,(Nn) and (µn) be the sequences making of N an operator in the class Γ(E) and

let φn be the normalized eigenvector associated with λn.

First, we have that Θ
Nn
Pn =Θ

Nn
P . Indeed; it is obvious that Θ

Nn
Pn ⊂Θ

Nn
P and if θ > 0, u∈Pr{0E}

are such that Nnu � θu then Nnu ∈ Pnr{0E} and Nn (Nnu) � θNnu. This shows that θ ∈ Θ
Nn
Pn

and Θ
Nn
P ⊂Θ

Nn
Pn . By similar way, we obtain Λ

Nn
Pn = Λ

Nn
P and we have so,

0 < λ
Nn
P = λ

Nn
Pn = µn = θ

Nn
Pn = θ

Nn
P .

Since the sequence (Nn) is nondecreasing, we obtain by means of Proposition 3.12 that (µn) is

nondecreasing and

0 < λ
Nn
P = λ

Nn
Pn = µn = θ

Nn
Pn = θ

Nn
P ≤ λ

N
P ≤ θ

N
P .

Thus, we have

0 < µN = lim µn ≤ λ
N
P ≤ θ

N
P

and it follows from Lemma 2.6 that µN is a positive eigenvalue of N and µN = λ N
P ≤ θ N

P .

It remains to show that θ N
P = λ N

P = µN . Let θ ∈ (0,+∞)rσK (N) and R > 0, if θ > µN ,

we have then for all integer n ≥ 1, µn < θ and i
(
θ−1Nn,PR,P

)
= 1. Letting n→ ∞, we get

i
(
θ−1N,PR,P

)
= 1. If θ < µN , then there exists an integer n0 such that θ < µn and i

(
θ−1Nn,PR,P

)
=

0 for all n≥ n0. Letting n→ ∞, we get i
(
θ−1N,PR,P

)
= 0. Hence, we have proved that N has

the IJP at µN and it follows from Proposition 3.14 and Theorem 3.9 that µN = σ
+
N = θ N

P . This

ends the proof.

Remark 3.19. The problem of existence of a positive eigenvalue for increasing, 1-homogeneous

and completely continuous operators has been the subject of several recent and old works (see

[5], [6], [15], [16], [17] and [18]). Note that Proposition 3.13 and Theorems 3.16, 3.18 present

classes of such operators having at least one positive eigenvalue.

Fixed point theorems for positive maps

Let T : K→ K be a completely continuous mapping, the main goal of this section is to prove

fixed point theorems for the mapping T .
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Theorem 3.20. Assume that the cone K is normal and there exists two operators N1,N2 ∈

QP
K (E) , γ > 0, three functions G1,G2,G3 : K→ K such that θ

N1
P < 1 < λ

N2
P and for all u ∈ K

Tu� N1u+G1u,

N2u−G2u� Tu� γN2u+G3u. (3.6)

If either

G1u = ◦(‖u‖) as u→ 0 and Giu = ◦(‖u‖) as u→ ∞, i = 2,3, (3.7)

or

G1u = ◦(‖u‖) as u→ ∞ and Giu = ◦(‖u‖) as u→ 0, i = 2,3, (3.8)

then T has at least one nontrivial fixed point.

Proof. We present the proof in the case where (3.7) holds, the other case is checked similarly.

We have to prove existence of 0 < r < R such that

i(T,Kr,K) = 1 and i(T,KR,K) = 0.

In such a situation, additivity and solution properties of the fixed point index imply that

i(T,KRrKr,K) = i(T,KR,K)− i(T,Kr,K) =−1

and T has a positive fixed point u with r < ‖u‖< R.

Consider the function H1 : [0,1]×K→ K defined by H1(t,u) = (1− t)Tu+ tN1u and let us

prove existence of r > 0 small enough, such that for all t ∈ [0,1] equation H1(t,u) = u has no

solution in ∂Kr. By the contrary suppose that for all integer n ≥ 1 there exist tn ∈ [0,1] and

un ∈ ∂K1/n such that un = (1− tn)Tun + tnN1un. Note that vn = un/‖un‖ ∈ ∂K1 and satisfies

vn = (1− tn)(Tun/‖un‖)+ tnN1vn. (3.9)

Thus, the inequality

Tun/‖un‖ � N1 (vn)+(F1un/‖un‖) (3.10)

combines with the normality of the cone K and the fact that F1(un)= ◦(‖un‖) as n→∞ implying

that (Tun/‖un‖) is bounded. Because of the compactness of N1 there exists a subsequence

(vnk) such that limN1vnk = v ∈ P. In fact, we have that v � 0E . Indeed, if limN1vnk = 0E , then
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inequality (3.10), the normality of the cone K and the fact that F1(un) = ◦(‖un‖) as n→∞ imply

lim(Tun/‖un‖) = 0E . This together with (3.9)leads to limvnk = 0E contradicting ‖vnk‖= 1.

Therefore, letting k→ ∞ in

N1vnk = N1 ((1− tnk)(Tunk/‖unk‖)+ tnkN1vnk)

� N1 (N2vnk +(1− tnk)(F1unk/‖unk‖)) ,

we have v�N2v and 1≤ θ
N1
P , contradicting the hypothesis θ

N1
P < 1 in Theorem 3.20 and proves

existence of r > 0 small enough such that for all t ∈ [0,1] equation H2(t,u) = u has no solution

in ∂Kr. For a such radius r > 0, homotopy and permanence properties of the fixed point index

and Lemma 3.4 lead to

i(T,Kr,K) = i(H2(0, ·),Kr,K) = i(H2(1, ·),Kr,K) = i(N1,Kr,K) = i(N1,Pr,P) = 1.

In similar way, consider the function H2 : [0,1]×K → K defined by H1(t,u) = (1− t)Tu+

tN2u and let us prove existence of R > 0 large enough, such that for all t ∈ [0,1] equation

H2(t,u) = u has no solution in ∂KR. By the contrary, suppose that for all integer n ≥ 1 there

exist tn ∈ [0,1] and un ∈ ∂Kn such that

un = (1− tn)Tun + tnN2un.

Note that wn = un/‖un‖ ∈ ∂K1 and satisfies

wn = (1− tn)(Tun/‖un‖)+ tnN2wn. (3.11)

Thus, the inequality

Tun/‖un‖ � γN2wn +(F3un/‖un‖) (3.12)

combined with the normality of the cone K and the fact that F3(un) = ◦(‖un‖) as n → ∞,

implies that the sequence (Tun/‖un‖) is bounded. Because of the compactness of N2 there

exists a subsequence (wnk) such that limN2wnk = w ∈ P. In fact, we have that w � 0E ; Indeed,

if limN2vnk = 0E , then inequality (3.12), the normality of the cone K and the fact that F3(un) =

◦(‖un‖) as n→ ∞ imply lim(Tun/‖un‖) = 0E . This together with (3.11) leads to limwnk = 0E
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contradicting ‖wnk‖= 1. Therefore, letting k→ ∞ in

N2wnk = N2 ((1− tnk)(Tunk/‖unk‖)+ tnkN2wnk)

� N2 (N2wnk− (1− tnk)(F2unk/‖unk‖)) ,

we have w � N2w and 1 ≥ λ
N2
P , contradicting the hypothesis λ

N2
P > 1 in Theorem 3.20 and

proves existence of R > 0 large enough such that for all t ∈ [0,1] equation H2(t,u) = u has no

solution in ∂KR. For such a radius R > 0, homotopy and permanence properties of the fixed

point index and Lemma 3.4 lead to

i(T,KR,K) = i(H1(0, ·),KR,K) = i(H1(1, ·),KR,K) = i(N2,KR,K) = i(N2,PR,P) = 0.

This completes the proof.

Theorem 3.21. Assume that T (P) ⊂ P, there exists two operators N1,N2 ∈ QP
K(E) and two

functions G1,G2 : K→ K such that N1,N2 are lower bounded on P, θ
N1
P < 1 < λ

N2
P and for all

u ∈ K

N2u−G2u� Tu� N1u+G1u.

If either

G1u = ◦(‖u‖) as u→ ∞ and G2u = ◦(‖u‖) as u→ 0 (3.13)

or

G1u = ◦(‖u‖) as u→ 0 and G2u = ◦(‖u‖) as u→ ∞, (3.14)

then T has at least one nontrivial fixed point.

Proof. We present the proof in the case where (3.13) holds, the other case is checked similarly.

As in proof of Theorem 3.20, we have to prove existence of 0 < r < R such that

i(T,Pr,P) = 1 and i(T,PR,P) = 0.

Consider the function H1 : [0,1]×P→ P defined by H1(t,u) = (1−t)Tu+tN1u and let us prove

existence of r > 0 small enough, such that for all t ∈ [0,1] equation H1(t,u) = u has no solution

in ∂Pr. By the contrary suppose that for all integer n ≥ 1 there exist tn ∈ [0,1] and un ∈ ∂P1/n

such that

un = (1− tn)Tun + tnN1un.
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Note that vn = un/‖un‖ ∈ ∂P1 and satisfies

vn = (1− tn)(Tun/‖un‖)+ tnN1vn

then

N1vn = N1 ((1− tn)(Tun/‖un‖)+ tnN1vn) .

Because of the compacteness and the lower boundeness of N1, there exists a subsequence (vnk)

such that limN1vnk = v and ‖v‖= lim‖N1vnk‖ ≥ N−1,P > 0. Thus, letting k→ ∞ in

N1vnk = N1 ((1− tnk)(Tunk/‖unk‖)+ tnkN1vnk)

� N1 (N1vnk +(1− tnk)(G1unk/‖unk‖))

we obtain v � N1v and 1 ≤ θ
N1
P contradicting the hypothesis θ

N1
P < 1 in Theorem 3.21 and

proves existence of r > 0 small enough such that for all t ∈ [0,1] equation H1(t,u) = u has no

solution in ∂Pr. For such a radius r > 0, homotopy property of the fixed point index and Lemma

3.4 lead to

i(T,Pr,P) = i(H2(0, ·),Pr,P) = i(H2(1, ·),Pr,P) = i(N1,Pr,P) = 1.

In similar way, consider the function H2 : [0,1]×P→ P defined by H2(t,u) = (1− t)Tu+ tN2u

and let us prove existence of R> 0 large enough, such that for all t ∈ [0,1] , equation H2(t,u) = u

has no solution in ∂PR. By the contrary, suppose that for all integer n≥ 1 there exist tn ∈ [0,1]

and un ∈ ∂Pn such that

un = (1− tn)Tun + tnN2un.

Note that wn = un/‖un‖ ∈ ∂P1 satisfies

wn = (1− tn)(Tun/‖un‖)+ tnN2wn.

It follows that

N2wn = N2 ((1− tn)(Tun/‖un‖)+ tnN2wn) . (3.15)
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Because of the compacteness and the lower boundeness of N2, there exists a subsequence (wnk)

such that limN2wnk = w and ‖w‖= lim‖N2wnk‖ ≥ N−2,P > 0. Thus, letting k→ ∞ in

N2wnk = N2 ((1− tnk)(Tunk/‖unk‖)+ tnkN2wnk)

� N2 (N2wnk− (1− tnk)(G2unk/‖unk‖)) ,

we obtain w � N2w and 1 ≥ λ
N2
P contradicting the hypothesis λ

N2
P > 1 in Theorem 3.21 and

proves existence of R > 0 large enough such that for all t ∈ [0,1] equation H1(t,u) = u has no

solution in ∂KR. For such a radius R > 0, homotopy and permanence property of the fixed point

index and Lemma 3.4 lead to

i(T,PR,P) = i(H1(0, ·),PR,P) = i(H1(1, ·),PR,P) = i(N2,PR,P) = 0.

This completes the proof.

Theorem 3.22. Assume that K is a normal cone in E and there exist N1,N2 ∈QP
K (E) , α > 0 and

three functions G1,G2,G3 : K→ K such that θ
N1
P < 1 < λ

N2
P , N1,N2 are uniformely continuous

on B(0E ,2) and for all u ∈ K,

Tu� N1 (u+G1(u)) ,

N2 (u−G2(u))� T (u)� αN2 (u+G3(u)) .

If either

G1(u) = ◦(‖u‖)near 0 and Gi(u) = ◦(‖u‖) near ∞ for i = 2,3, (3.16)

or

G1(u) = ◦(‖u‖) near ∞ and Gi(u) = ◦(‖u‖) near 0 for i = 2,3, (3.17)

then T admits at least one nontrivial fixed point.

Proof. We present the proof in the case where (3.16) holds, the other case is checked similarly.

As in proof of Theorem 3.20, we have to prove existence of 0 < r < R such that

i(T,Kr,K) = 1 and i(T,KR,K) = 0.

Consider the function H1 : [0,1]×K → K defined by H1(t,u) = tTu+ (1− t)N1u and let us

prove existence of r > 0 small enough such that for all t ∈ [0,1] equation H1(t,u) = u has no
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solution in ∂Kr. By the contrary, suppose that for all integer n ≥ 1 there exist tn ∈ [0,1] and

un ∈ ∂K1/n such that un = tnTun +(1− tn)N1(un). Note that vn = un/‖un‖ ∈ ∂K1 and satisfies

vn = tn (Tun/‖un‖)+(1− tn)N1(vn). (3.18)

Then N1(vn) = N1 (tn (Tun/‖un‖)+(1− tn)N1(vn)) . Because of the compacteness and the uni-

form continuity of N1, there is a subsequence of integers (nl) , t̂ ∈ [0,1] and v ∈ P such that

lim tnl = t̂, limN1(vnl) = limN1(vnl +(G1unl/‖unl‖) = v.

We claim that v � 0E ; Indeed, if limN1(vn) = 0E , then the normality of the cone K and the

estimate

(T (unl)/‖unl‖)� N1 (vnl +(G1unl/‖unl‖)) ,

lead to lim(T (unl)/‖unl‖) = 0E and this combined with (3.18) implies limvnl = 0E , contra-

dicting ‖vnl‖= 1. At this stage, letting l→ ∞ in

N1(vnl) = N1(tnl (T (unl)/‖unl‖)+(1− tnl)N1(vnl))

� N1(tnl (N2 (vnl +(G1/‖unl‖)))+(1− tnl)N1(vnl)),

we obtain v � N1v and 1 ∈ Θ
N1
P . This contradicts the hypothesis 1 > θ

N1
P in Theorem 3.22 and

proves existence of r > 0 small enough such that for all t ∈ [0,1] equation H1(t,u) = u has no

solution in ∂Kr. For a such r > 0 we deduce from homotopy and permanance properties of the

fixed point index and Lemma 3.4 that

i(T,Kr,K) = i(H1(1, ·),Kr,K) = i(H1(0, ·),Kr,K) = i(N1,Kr,K) = i(N1,Pr,P) = 1.

In similar way, consider the function H2 : [0,1]×K→K defined by H2(t,u)= tTu+(1−t)N2(u)

and let us prove existence of R > 0 large enough such that for all t ∈ [0,1] equation H2(t,u) = u

has no solution in ∂KR. By the contrary, suppose that for all integer n≥ 1 there exist tn ∈ [0,1]

and un ∈ ∂Kn such that un = tnT (un) + (1− tn)N2(un). Note that wn = un/‖un‖ ∈ ∂K1 and

satisfies

wn = tn (T (un)/‖un‖)+(1− tn)N2(wn). (3.19)
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Then N2(wn) = N2(tn (T (un)/‖un‖)+ (1− tn)N2(wn)). Because of the compacteness and the

uniform continuity of N2, there is a subsequence of integers (nl) , t̂ ∈ [0,1] and w ∈ P such that

lim tnl = t̂, limN2(wnl) = limN2(wnl − (G2unl/‖unl‖)) = limN2(wnl +(G3unl/‖unl‖) = w.

We claim that w � 0E ; Indeed, if limN2(wnl) = 0E , then the normality of the cone K and the

estimate (T (unl)/‖unl‖) � αN2 (wnl +(G3unl/‖unl‖)) , lead to lim(T (unl)/‖unl‖) = 0E and

this combined with (3.19) implies limwnl = 0E , contradicting ‖wnl‖ = 1. At this stage, letting

l→ ∞ in

N2(wnl) = N2(tnl (T (unl)/‖unl‖)+(1− tnl)N2(wnl))

� N2(tnl (N2 (wnl − (G2/‖unl‖)))+(1− tnl)N2(wnl))

we obtain w� N2w and 1 ∈ Λ
N2
P . This contradicts the hypothesis 1 < λ

N2
P in Theorem 3.22 and

proves existence of R > 0 large enough such that for all t ∈ [0,1] equation H1(t,u) = u has no

solution in ∂KR. For a such R > 0, we deduce from homotopy and permanance properties of the

fixed point index and Lemma 3.4 that

i(T,KR,K) = i(H2(1, ·),KR,K) = i(H2(0, ·),KR,K) = i(N2,KR,K) = i(N2,PR,P) = 0.

This completes the proof.

Theorem 3.23. Assume that T (P)⊂ P, there exist N1,N2 ∈ QP
K(E) and functions G1,G2 : K→

K such that N1,N2 are lower bounded on P and uniformely continuous on B(0E ,2) , θ
N1
P < 1 <

λ
N2
P and for all u ∈ K,

N2 (u−G1(u))� T (u)� N1 (u+G2(u)) .

If either

G1(u) = ◦(‖u‖)near 0 and G2(u) = ◦(‖u‖) near ∞ (3.20)

or

G1(u) = ◦(‖u‖) near ∞ and G2(u) = ◦(‖u‖) near 0, (3.21)

then T admits at least one nontrivial fixed point.
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Proof. We present the proof in the case where (3.20) holds, the other case is checked similarly.

As in the proof of Theorem 3.20, we have to prove existence of 0 < r < R such that

i(T,Pr,P) = 1 and i(T,PR,P) = 0.

Consider the function H1 : [0,1]×P→ P defined by H1(t,u) = (1− t)Tu+ tN1(u) and let us

prove existence of r > 0 small enough such that for all t ∈ [0,1] equation H1(t,u) = u has no so-

lution in ∂Pr. By the contrary, suppose that for all integer n≥ 1 there exist tn ∈ [0,1] and un ∈ ∂Pn

such that un = H1(tn,un) = (1− tn)Tun + tnN1(un). Note that vn = un/‖un‖ ∈ ∂P1 and satisfies

vn = (1− tn)(T (un)/‖un‖)+ tnN1(vn). Then N1(vn) = N1 ((1− tn)(T (un)/‖un‖)+ tnN1(vn)) .

Because of the compacteness and the uniform continuity of N1, there is a subsequence of inte-

gers (nl) , t̂ ∈ [0,1] and v ∈ P such that

lim tnl = t̂, limN1(vnl) = limN1(vnl +(G1 (unl)/‖unl‖) = v.

Moreover, we have that ‖v‖= lim‖N1 (vnl)‖ ≥ N−1,P > 0. Thus, letting l→ ∞ in

N1(vnl) = N1((1− tnl)(T (unl)/‖unl‖)+ tnl N1(vnl))

� N1((1− tnl)(N2 (vnl +(G1 (unl)/‖unl‖)))+ tnl N1(wnl))

we obtain v � N1v and 1 ∈ Θ
N1
P . This contradicts the hypothesis 1 > θ

N1
P in Theorem 3.23 and

proves existence of r > 0 small enough such that for all t ∈ [0,1] equation H1(t,u) = u has no

solution in ∂Pr. For a such r > 0, we deduce from homotopy property of the fixed point index

and Lemma 3.4 that

i(T,Pr,P) = i(H1(1, ·),Pr,P) = i(H1(0, ·),Pr,P) = i(N1,Pr,P) = 1.

Consider the function H2 : [0,1]×P→ P defined by H2(t,u) = (1− t)Tu+ tN2(u) and let us

prove existence of R > 0 large enough such that for all t ∈ [0,1] equation H2(t,u) = u has no

solution in ∂PR. By the contrary, suppose that for all integer n ≥ 1 there exist tn ∈ [0,1] and

un ∈ ∂Pn such that un = H2(tn,un) = (1− tn)Tun + tnN2(un). Note that wn = un/‖un‖ ∈ ∂K1

and satisfies wn = (1− tn)(T (un)/‖un‖)+ tnN2(wn). Then

N2(wn) = N2 ((1− tn)(T (un)/‖un‖)+ tnN2(wn)) . (3.22)
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Because of the compacteness and the uniform continuity of N2, there is a subsequence of inte-

gers (nl) , t̂ ∈ [0,1] and w ∈ P such that

lim tnl = t̂, limN2(wnl) = limN2(wnl − (G2 (unl)/‖unl‖) = w.

Moreover, we have that ‖w‖= lim‖N2 (wnl)‖ ≥ N−2,P > 0. Thus, letting l→ ∞ in

N2(wnl) = N2((1− tnl)(T (unl)/‖unl‖)+ tnl N2(wnl))

� N2((1− tnl)(N2 (wnl − (G2 (unl)/‖unl‖)))+ tnl N2(wnl))

we obtain w� N2w and 1 ∈ Λ
N2
P . This contradicts the hypothesis 1 < λ

N2
P in Theorem 3.23 and

proves existence of R > 0 large enough such that for all t ∈ [0,1] equation H2(t,u) = u has no

solution in ∂PR. For a such R > 0 we deduce from homotopy and permanance properties of the

fixed point index and Lemma 3.4 that

i(T,PR,P) = i(H2(1, ·),PR,P) = i(H2(0, ·),PR,P) = i(N2,PR,P) = 0.

This completes the proof.

We consider now, the particular case T = NF where N ∈ QP
K (E), F : K→ K is a continuous

and bounded map. We deduce from the above theorems, existence results for positive solution

to the abstract Hammerstein equation (1.1).

Corollary 3.24. Assume that the cone K is normal, N is uniformely continuous on B(0E ,2) and

there exist three nonnegative real numbers α,β ,γ and three functions G1,G2,G3 : K→ K such

that αθ N
P < 1 < βλ N

P and for all u ∈ K

Fu� αu+G1(u),

βu−G2(u)� F(u)� γu+G3(u).

If either

G1(u) = ◦(‖u‖) at 0 and Gi(u) = ◦(‖u‖) at ∞ for i = 2,3 (3.23)

or

G1(u) = ◦(‖u‖) at ∞ and Gi(u) = ◦(‖u‖) at 0 for i = 2,3 (3.24)

then Equation (1.1) admits at least one positive solution.
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Corollary 3.25. Assume that N is lower bounded on the cone P and there exists three nonneg-

ative real numbers α,β and two functions G1,G2 : K→ K such that αθ N
P < 1 < βλ N

P and for

all u ∈ Pr{0E}

αu−G1(u)� F(u)� βu+G2(u).

If either

G1(u) = ◦(‖u‖) at 0 and G2(u) = ◦(‖u‖) at ∞, (3.25)

or

G1(u) = ◦(‖u‖) at ∞ and G2(u) = ◦(‖u‖) at 0 (3.26)

then Equation (1.1) admits at least one positive solution.

Remark 3.26. Conditions 1< λ
N2
P in Theorems 3.20, 3.21, 3.22, 3.23 and 1< λ N

P in Corollaries

3.24, 3.25 mean that operators N2 and N have the SIJP.

4. Application to p-Laplacian BVPs

We discuss in this section existence of at least one positive solution to the boundary value

problem (bvp for short) −(aφp (u′))
′ (t) = b(t) f (t,u(t)) a.e. t ∈ (0,1) ,

u′(0) = u(1) = 0.
(4.1)

where p > 1, φp (x) = |x|p−2 x, a,b : (0,1)→ [0,+∞) are measurable functions.

In all this section, we assume that a(t) > 0 a. e. t ∈ [0,1] , mes{t ∈ (0,1) : b(t)> 0} >

0, ψp (1/a) is integrable on any compact subset of (0,1] where ψp is the inverse function of φp,

b is integrable on any compact subset of [0,1) and f : [0,1]× [0,+∞)→ [0,+∞) is continuous.

In all what follows we let for ν = 0 or +∞

fν = liminf
u→ν

(
min

t∈[0,1]
ψp ( f (t,u))/u

)
, f ν = limsup

u→ν

(
max

t∈[0,1]
ψp ( f (t,u))/u

)
.

In all this section, we let E be the Banach space of all continuous functions defined on [0,1]

equipped with its sup-norm (for u ∈ E, ‖u‖= sup{|u(t)| : t ∈ [0,1]}) and K be the normal cone

of nonnegative functions in E.
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The regular case

We assume here that

ψp (1/a) , b ∈ L1 [0,1] (4.2)

and

lim
t→0

1
a(t)

∫ t

0
b(s)ds = 0. (4.3)

Because of Hypothesis (4.2), the operator Np : E→ E given for u ∈ E by

Npu(x) =
∫ 1

x
ψp

(
1

a(t)

∫ t

0
b(s)φp(u(s))ds

)
dt, (4.4)

is well defined. Let Fp : K→K, the Nemitski operator defined for u∈K by Fpu(x)=ψp( f (x,u(x))),

and Tp = NpFp. It is easy to see that, Np is completely continuous (by Ascoli-Arzela theorem),

Fp is bounded. Moreover if Hypothesis (4.3) holds, then all fixed points of Tp are positive

solutions to bvp (4.1).

Let P be the cone in E defined by

P = {u ∈C : u(x)≥ ρp(x)‖u‖ in [0,1]} (4.5)

where

ρ(x) =
1
ρ

∫ 1

x

dt
ψp(a(t))

, ρ =
∫ 1

0

dt
ψp(a(t))

.

Lemma 4.1. Assume that Hypothesis (4.2) holds, then we have that Np ∈ QP
K (E) and Np is

lower bounded on the cone P and has a unique positive eigenvalue at which it has the SIJP.

Proof. First, let us prove that Np (K)⊂ P. Let u ∈ K, v = Npu and w = v−ρ‖v‖. Assume that

for some t∗ ∈ (0,1), w(t∗)< 0 and let t0 ∈ (0,1) be such that

w(t0) = min
t∈[0,1]

w(t), w′(t0) = 0.

In this case and since w(0) = w(1) = 0, there exists τ1,τ2 ∈ (0,1) such that

τ1 < t0 < τ2 and w′(τ1)< w′(t0) = 0 < w′(τ2),

or

v′(τ1)−ρ
′(τ1)‖v‖< 0 < v′(τ2)−ρ

′(τ2)‖v‖.
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Since for all x,y, with x 6= y, (φp(x)−φp(y))(x− y)> 0, we obtain

a(τ1)(φp(v′(τ1))−φp(ρ
′(τ1)‖v‖))< 0 < a(τ2)(φp(v′(τ2))−φp(ρ

′(τ2))‖v‖),

contradicting (a(φp(v′)− φp(ρ
′)‖v‖))′(t) = −b(t)φp(u(t)) ≤ 0. This shows that Npu ∈ P and

Np (K)⊂ P. Consider the space

X =
{

u ∈C1 ([0,1]) , u(1) = 0
}

equipped with the C1-norm denoted ‖·‖1 defined for u ∈ X , by ‖u‖1 = supt∈[0,1] |u′ (t)| and let

O be the subset of X defined as follows,

O =
{

u ∈ KX : u′(1)< 0 and u(x)> 0 ∀x ∈ [0,1)
}

where KX = K∩X is a cone in X . Arguing as in the proof of Lemma 4.5 in [4], we obtain that O

is an open set in X and if Np,X : X → X is the restriction of Np to X , then NX (KX r{0X})⊂ O.

Therefore, we conclude from Corollary 3.17 that Np,X admits a unique positive eigenvalue µp

at which it has the SIJP.

Let u∈Pr{0E} and θ ≥ 0 be such that Npu� θu, because of N−1
p (0E)= {0E} and Np (E)⊂

X , we have N2
pu� θNpu. Hence, we have proved that ΘN

P =Θ
NX
K and θ N

P = θ
NX
K = µp. Similarly,

we have ΛN
P =Λ

NX
K and λ N

P = λ
NX
K = µp = θ N

P = θ
NX
K . This shows that Np has as a unique positive

eigenvalue at which it has the SIJP.

Let u ∈ P, we have

∥∥Npu
∥∥ = Npu(0)≥

∫ 1

0
ψp

(
1

a(t)

∫ t

0
b(s)φp(ρ(s)‖u‖)ds

)
dt

≥ ‖u‖
∫ 1

0
ψp

(
1

a(t)

∫ t

0
b(s)φp(ρ(s))ds

)
dt

and shows that Np is lower bounded on the cone P. This ends the proof.

Theorem 4.2. Assume that Hypotheses (4.2) and (4.3) hold and let µp be the unique posi-

tive eigenvalue of Np, then bvp (4.1) admits at least one positive solution whenever one of the

following conditions

f 0 < 1/µp < f∞ (4.6)
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and

f ∞ < 1/µp < f0 (4.7)

holds true.

Proof. We present the proof in the case where Hypothesis (4.6) holds, the other case is checked

similarly.

Let ε > 0 be such that f 0 + ε < µp < f∞, It follows from definitions of f 0 and f∞ that there

exits a positive constant C such that for all t ∈ [0,1] and u≥ 0,

( f∞− ε)u−C ≤ f (t,u)≤ f 0u+g2(u)

where g2(u) = max
(
0, f (t,u)− f 0u

)
. Therefore, we have

( f∞− ε)u−G1(u)≤ Fu≤
(

f 0 + ε
)

u+G2(u) for all u ∈ P,

where for all u ∈ K, G1u(t) = C,G2u(t) = g2(u(t)) and Hypothesis (3.6) holds. At the end

Corollary 3.25 guaranties existence of a positive solution to bvp (4.1).

The singular case

We assume in this subsection that∫ 1

0
ψp

(
1

a(t)

∫ t

0
b(s)ds

)
dt < ∞. (4.8)

As in the regular case, because of Hypothesis (4.8), the operator Np is well defined and if

Hypothesis (4.3) holds, then all fixed points of Tp are positive solutions to bvp (4.1).

Let (µn) and (νn) be two sequences in (0,1) such that lim µn = 0, limνn = 1, a(µn)< ∞ and

b(νn)< ∞, and let for all integer n≥ 1, an and bn be defined by

an(t) =

 a(t), if t ∈ (µn,1),

sup(a(t),a(µn)) if t ∈ (0,µn),

bn(t) =

 b(t), if t ∈ (0,νn),

inf(b(t),b(νn)) if t ∈ (νn,1).

Since all integer n≥ 1, ψp (1/an) , bn ∈ L1 [0,1] , the operator Np,n : E −→ E given by

Np,nu(x) =
∫ 1

x
ψp

(
1

an(t)

∫ t

0
b(s)φp(u(s))ds

)
dt



1-HOMOGENEOUS POSITIVE MAPS AND FIXED POINT THEOREMS 27

is well defined. Let for all integer n≥ 1, Pn = {u ∈ K : u(x)≥ ρn(x)‖u‖ in [0,1]}, where

ρn(x) =
1
ρ

∫ 1

x

dt
ψp(an(t))

and ρ =
∫ 1

0

dt
ψp(an(t))

.

Lemma 4.3. Assume that Hypothesis (4.8) holds, then the operator Np ∈ Γ(E) and so it has a

unique positive eigenvalue µp at which it has the SIJP. Moreover the operator Np is subadditive

on the cone K.

Proof. We have from Lemma 4.1 that for all integer n ≥ 1, Np,n ∈ QP
K (E) and Np,n is lower

bounded on the cone Pn and has a unique positive eigenvalue at which it has the SIJP. Note

also that the sequence
(
Nn

p
)

is increasing, therefore, we have to prove that Nn
p→ Np in operator

norm. Let u ∈ E with ‖u‖ = 1, taking in account definitions of (µn) , (νn) , (an) and (bn) , we

obtain by straightforward computations∣∣Npu(x)−Np,nu(x)
∣∣

≤
∫ 1

0

∣∣∣∣ψp

(
1

a(t)

∫ t

0
b(s)φp(|u(s)|)ds

)
−ψp

(
1

an(t)

∫ t

0
bn(s)φp(|u(s)|)ds

)∣∣∣∣dt

≤
∫

µn

0
ψp

(
1

a(t)

∫ t

0
b(s)ds

)
dt +

∫ 1

νn

ψp

(
1

a(t)

∫ t

0
b(s)ds

)
dt.

Therefore, we have∥∥Np−Np,n
∥∥≤ ∫ µn

0
ψp

(
1

a(t)

∫ t

0
b(s)ds

)
dt +

∫ 1

νn

ψp

(
1

a(t)

∫ t

0
b(s)ds

)
dt→ 0 as n→ ∞.

This ends the proof.

Arguing as in the proof of Theorem 4.2, we obtain from Corollary 3.24 the following result.

Theorem 4.4. Assume that Hypotheses (4.3) and (4.8) hold, then bvp (4.1) admits at least one

positive solution whenever one of the following conditions

f 0 < 1/µp < f∞ ≤ f ∞ < ∞ (4.9)

and

f ∞ < 1/µp < f0 ≤ f 0 < ∞ (4.10)

holds true.

5. Application to Urysohn type integral equations
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We consider in this section the integral equation of Urysohn type

u(t) = f (t,u(t))+g
(

t,
∫ 1

0
G(t,s)ϕα(u(s))ds

)
, (5.1)

where α is a positive real number, ϕα(x) = |x|α−1x, G : [0,1]× [0,1]−→ [0,+∞) is continuous

and does not vanish identicaly and f ,g : [0,1]× [0,+∞)→ [0,+∞) are continuous functions.

This type of integral equations has been discussed in [7], [8], [9], [11] and [12]. The main

goal of this section is to derive existence results for positive solutions to Equation (5.1) from

Theorems 3.20 and 3.21. We assume in all this section that f is a contraction, i.e. there exists k ∈ [0,1) such that for all t ∈ [0,1] and x,y≥ 0,

| f (t,x)− f (t,y)| ≤ k|x− y|.
(5.2)

We set

f̃ (t,u) =

 f (t,u) if u≥ 0,

f (t,0) if u≤ 0.

Clearly

| f̃ (t,x)− f̃ (t,y)| ≤ k|x− y| .

Note that because of (5.2), we have that the function
(

IR− f̃ (t, ·)
)

is an homeomorphism for all

t ∈ [0,1] . Moreover h : [0,1]×R→ R defined by h(t,x) =
(

IR− f̃ (t, ·)
)−1

(x) , is continuous.

Set for v = 0,+∞

hv = liminf
u→v

(
min

t∈[0,1]

h(t,g(t,u))
ψα(u)

)
hv = limsup

u→v

(
max

t∈[0,1]

h(t,g(t,u))
ψα(u)

)
,

where ψα be the inverse function of ϕα . Let E and K be respectively the Banach space and

the normal cone introduced in Section 4. Let N : E → E be the operator defined for u ∈ E

by Nu(t) = ψα(
∫ 1

0 G(t,s)ϕα(u(s))ds). Clearly, N is positive, positively one homogeneous and

completely continuous.

Lemma 5.1. Assume that

there exists [ξ ,η ]⊂ [0,1] such that G(t,s)> 0 for all t,s ∈ [ξ ,η ] . (5.3)

Then θ N
K > 0.
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Proof. Let u0 : [0,1]→ [0,+∞) be the function defined by

u0 (t) =



0 if t ∈ [0,ξ ] ,
4

β−α
(t−ξ ) if t ∈

[
ξ , 3ξ+η

4

]
,

1 if t ∈
[

3ξ+η

4 , ξ+3η

4

]
,

4
β−α

(η− t) if t ∈
[

ξ+3η

4 ,η
]
,

0 if t ∈ [η ,1]

and θ0 = ψα(G0 (η−ξ )/2) where G0 = min{G(t,s) : t,s ∈ [ξ ,η ]} . We have for all t ∈ [0,1] ,

Nu0 (t) = ψα

(∫ 1

0
G(t,s)ϕα (u0 (s))ds

)
≥ ψα

(∫ (ξ 3+η)/4

(3ξ+η)/4
G(t,s)ds

)
≥ θ0u0 (t) .

This shows that θ0 ∈ΘN
K and θ N

K ≥ θ0 > 0.

Lemma 5.2. Assume that there exists [ξ ,η ]⊂ [0,1] such that

G(t,s)> 0 for all t ∈ [ξ ,η ] and s ∈ [0,1] .
(5.4)

Then λ N
K > 0.

Proof. Let λ > 0 and u ∈ Kr{0E} such that Nu(t) ≤ λu(t) for all t ∈ [0,1] . It follows from

Hypothesis (5.4) that u(t)≥ λ−1ψα(
∫ 1

0 k(t,s)ϕα(u(s))ds)> 0 for all t ∈ [ξ ,η ] then

λ min
t∈[ξ ,η ]

u(t)≥ ψα( min
t∈[ξ ,η ]

∫
η

ξ

G(t,s)ϕα(u(s))ds)≥ ψα( min
t∈[ξ ,η ]

∫
η

ξ

G(t,s)ds) min
s∈[ξ ,η ]

u(s).

Leading to λ ≥ ψα(mint∈[ξ ,η ]

∫ η

ξ
G(t,s)ds)> 0 and λ N

K ≥ ψα(mint∈[ξ ,η ]

∫ η

ξ
G(t,s)ds)> 0.

Lemma 5.3. Assume that

 there exists [ξ ,η ]⊂ [0,1] , ρ > 0 such that

G(t,s)≥ ρ maxτ∈[0,1]G(τ,s) for all t ∈ [ξ ,η ] and s ∈ [0,1]
(5.5)

and let P be the cone in E defined by

P = {u ∈ K : u(t)≥ ψα (ρ)‖u‖ for all t ∈ [ξ ,η ]}.

Then N (K)⊂ P and N is lower bounded on P.
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Proof. We have for u ∈ K and t ∈ [ξ ,η ] ,

Nu(t) = ψα(
∫ 1

0
G(t,s)ϕα(u(s))ds)≥ ψα(

∫ 1

0
ρ( max

τ∈[0,1]
G(τ,s))ϕα(u(s))ds)≥ ψα (ρ)‖Nu‖ ,

which proves that Nu ∈ P and N (K)⊂ P. Now, we have for all u ∈ P

‖Nu‖ ≥ Nu(t)≥ ψα(
∫

η

ξ

k(t,s)ϕα(u(s))ds)≥ ρψα( max
t∈[0,1]

∫
η

ξ

K(t,s)ds)‖u‖,

which proves that N is lower bounded on the cone P.

Remark 5.4. Note that if (5.5) is satisfied then (5.4) is satisfied and obviously (5.3) is satisfied.

Let T1 : E→ E, T2 : K→ K and T : K→ E be the operators defined by

T1u(t) = f̃ (t,u(t)), T2u(t) = g(t,Nu(t)) and T = (I−T1)
−1 T2.

It is easy to prove the following lemma.

Lemma 5.5. Assume that

h(t,x)≥ 0 for all t ∈ [0,1] and x≥ 0 (5.6)

then T (K)⊂K and K is completely continuous. Moreover, u∈K is a solution to Equation (5.1)

if and only if u is a fixed point of T.

Our first existence result for Equation (5.1) is obtained by means of Theorem 3.20.

Theorem 5.6. Assume that Hypotheses (5.2), (5.4) and (5.6) hold. If either

h0 < 1/θ
N
K ≤ 1/λ

N
K < h∞ ≤ h∞ < ∞ (5.7)

or

h∞ < 1/θ
N
K ≤ 1/λ

N
K < h0 ≤ h0 < ∞, (5.8)

then Equation (5.1) admits at least one positive.

Proof. We present the proof in the case where Hypothesis (5.7) hold, the other case is checked

similarly. Let ε > 0 be such that (h0 + ε)θ N
K < 1 < (h∞− ε)λ N

K , then there exists two positive

constants C1,C2 such that for all x≥ 0 and t ∈ [0,1]

h(t,g(t,x))≤
(
h0 + ε

)
ψα (x)+ f1 (t,x) ,
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(h∞− ε)ψα (x)−C1 ≤ h(t,g(t,x))≤ (h∞ + ε)ψα (x)+C2,

where f1 (t,x) = maxsup{h(t,g(t,x))− (h0 + ε)x,0}. These inequalities lead to

Tu(t)≤ N1u(t)+G1u(t),

N2u(t)−G2u(t)≤ Tu(t)≤ γN2u(t)+G3u(t),

where

N1u(t) =
(
h0 + ε

)
Nu(t) , N2u(t) = (h∞− ε)Nu(t) , γ = (h∞ + ε)/

(
h0 + ε

)
,

G1u(t) = f1 (t,Nu(t)) , G2u(t) =C1 and G3u(t) =C2.

Clearly, we have

θ
N1
P =

(
h0 + ε

)
θ

N
K < 1 < λ

N2
K = (h∞− ε)λ

N
K ,

G1u = ◦(‖u‖) near 0 and Giu = ◦(‖u‖) near ∞ for i = 2,3.

Therefore we conclude from Theorem 3.20 that T admits a nontrivial fixed point and then from

Lemma 5.5 a positive solution to Equation (5.1).

Arguing as above we obtain by means of Theorem 3.21, the following existence result.

Theorem 5.7. Assume that Hypotheses (5.2), (5.5), (5.6) hold and T (K)⊂ P. If either

h0
θ

N
P < 1 < h∞λ

N
P , (5.9)

or

h∞
θ

N
P < 1 < h0λ

N
P , ((5.10)

then Equation (5.1) admits at least one positive solution.

Example 5.8. Let G(t,s) = sφ (t) with

φ (t) =

 0 if t ∈ [0,1/2] ,

t− (1/2) if t ∈ [1/2,1] .

It is easy to see that G satisfies (5.5) with [ξ ,η ] = [3/4,1] and ρ = 1/2; in this case we have (

as in the proof of Lemma 5.2) λ N
K = λ N

P ≥ ρ max
t∈[0,1]

∫ 1
3/4 K(t,s)ds = 7/128, where

P = {u ∈ K : u(t)≥ 1/2‖u‖ for all t ∈ [3/4,1]}.
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We have also, θ N
K = θ N

P ≤ max
t∈[0,1]

∫ 1
0 K(t,s)ds = 1/4.

Case A. Let α = 1 and f ,g :R+→R+ with f (x)=−x/(x+ c) , c> 1 and g(x)= ax2/
(
x2 +1

)
.

In this case we have

h(x) =


1
2

(
−(c+1− x)+

√
(c+1− x)2 +4cx

)
if x≥ 0,

x if x≤ 0.

Simple computations lead to h0 = h0 = 0 and h∞ = h∞ = a. Thus, we obtain from Theorem 5.6

that Equation (5.1) admits a positive solution whenever a > 128/7.

Case B. Let α = 2 and f ,g : R+→ R+ with f (x) =−x/2 and g(x) = a
√

x+bx, a,b > 0. In

this case we have

h(x) =


2x
3

if x≥ 0,

x if x≤ 0,

and h0 = h0 = 2a/3 and h∞ = h∞ = +∞. We have also T (P) ⊂ P, indeed, if u(t) ≥ (1/2)‖u‖

for all t ∈ [34,1] then

g(u(t))≥ a
√
(1/2)‖u‖+b(1/2)‖u‖ ≥ (1/2)g(‖u‖) = (1/2)‖g(u)‖ .

Thus, we obtain from Theorem 5.7 that Equation (5.1) admits a positive solution whenever

a < 3/2.

Case C. Let α = 1/2 and f ,g : R+→ R+ with f (x) =−x/2 and g(x) = a
√

x+bx, a,b > 0.

In this case we have h0 = h0 =+∞ and h∞ = h∞ = 0.

Thus, we obtain from Theorem 5.7 that Equation (5.1) admits a positive solution whenever

a < 3/2.
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