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Abstract. Complex engineering problems require simulations, which are computationally 

expensive in cases of inverse identification tasks since they commonly requires hundreds of 

thousands of simulations. This paper propose a method based on model reduction for crack size 

estimation, combining the proper orthogonal decomposition method with radial basis functions. 

The reduced model is validated by comparing the obtained boundary displacements with the 

corresponding results from a finite element model. This inverse procedure is formulated as the 

minimization of the difference between the measured and computed values of displacement at 

selected boundary nodes, called sensor points, using particle swarm optimization algorithm. 

Convex and a non-convex specimens have been considered for investigations of crack presence, 

and identification of its size, different crack sizes have been tested to demonstrate the efficiency 

of the proposed approach.  

1.  Introduction 

Crack initiation and propagation is an omnipresent fact in all structures undergoing cyclic loads due to 

the fatigue phenomenon. In most cases, cracks are engaged in a predictable location. Thus maintenance 

measures give big importance to the crack size, trying to follow its state to prevent reaching the 

dangerous level. Damage detection using vibration data has been the focus of a large number of studies 

in the literature [1-8]. There are several numerical methods for crack detection [9-11], that employ 

different theoretical bases. Many of these methods are dedicated to the use of parameters which are not 

accessible experimentally. 

Inverse problems are defined as the problems, in which the output is known and the input or source 

of output remains to be determined. They are opposite to the direct problems, in which output or 

response are determined using information from input [12]. In the case of the Inverse Elastostatics 

Problem of internal flaw detection, the geometric parameters of the flaw are unknown, but the 

displacements along the boundaries are known. In order to analyze this kind of problems, the boundary 
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displacements, usually called “experimental data”, are obtained under known boundary conditions and 

compared with the calculated ones. 

Inverse crack identification problems can be stated as an optimization task [4]. There are several 

optimization techniques summoned in [13]. The particle swarm optimization (PSO) is a very popular 

algorithms used in diverse range of applications. The most utilized methods in the calculation of the 

mechanical behaviour of structures are boundary element method (BEM), the finite element method 

(FEM) [14-22] and recently isogeometric analysis (IGA) [23-29], mainly used to obtain the 

displacement field. The FEM and BEM was employed to solve inverse methods in structural analysis 

[30, 31]. Generally speaking, the weak point of FEM based inverse methods is their very high 

computational cost. Model reduction is an alternative to solve this FEM difficulty. 

The proper orthogonal decomposition (POD) is a model reduction techniques proceed by the 

approximation of the problem solution using the appropriate set of approximation functions [32], which 

contributes to the huge acceleration of the procedure since, once a trained model is built, the system 

response are computed by means of it, in a time shorter by about five orders of magnitude compared to 

FEM [33]. This leads to a very quick alternative in inverse problems, which provides simplicity and a 

considerably lower computational time. 

Boundary measurement are employed to determine cracks since several decades [34]. The proposed 

crack size estimation procedure uses the same principle of classical approaches. Its main contribution 

lies in the way the structural response is obtained, which opposed to existing methods that employs 

simulation methods, they are calculated through a reduced model. Section 2 and 3 present the basic 

blocks of this approach, which are respectively the model reduction method POD-RBF and optimization 

method PSO, section 4 is dedicated to the formulation of the inverse problem by combining the POD-

RBF and PSO, section 5 studies the ability of model reduction in the estimation of boundary 

displacement in both convex and non-convex specimen. Finally in section 6, the efficiency of this 

approach have been tested in identifying small, medium and large cracks in both specimens. 

2.  POD-RBF as a model reduction method 

POD is a powerful statistical method for data analysis, used as model order reduction technique in 

different fields [35, 36]. In our study, the POD was applied to determine the boundary displacement 

field of a two dimensional elastic structure containing an unknown crack. Used input data were finite 

element boundary displacements corresponding to various known cracks, called snapshots. They were 

first stored in matrix U, which is expressed in equation 1, as shown in figure 1. 

Figure 1. Illustration of the snapshot concept 
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Where  N  is the number of sensor points and  S  represents the number of snapshot vectors 𝑢𝑗 that 

represent the boundary displacement field of each crack configuration. The matrix P stores the crack 

parameter sets Pi of all simulations, considered in our study as the crack size. 

The main purpose of the POD method is to propose a set of orthogonal vectors  Φ  called POD basis 

vectors, to reassemble the snapshot matrix  U  in an optimal way.  Φ  is related to  U  by the following 

linear relationship: 

    U = Φ ⋅ A ,                                                           (2) 

In Equation (2), A is the amplitude matrix collecting the coefficients of the new basis combination 

and, according to the orthogonality of  Φ , it can be computed from:  

   A =  ΦT ⋅ U ,            (3) 

Optimal basis vectors are defined by the performance of the POD method, also known as the singular 

value decomposition operation [37, 38]:  

 Φ = U ⋅ V ⋅ Λ-1 2⁄ ,           (4) 

Where V is the matrix storing the normalized eigenvectors of the covariance matrix C , and Λ the 

diagonal matrix storing its eigenvalues. The matrix C is given by the following equation: 

C =  UT ⋅ U,                       (5) 

Due to the optimality of the new system Φ constructed as a POD basis, a low dimensional 

approximation Φ̂ of high accuracy is extracted from it by preserving only K (K ≪ S) columns that 

correspond to the largest eigenvalues. Since the eigenvalues of the covariance matrix C , called the 

energy of the system, are stored in a descending order, POD directions that hold little information are 

then discarded without influencing the accuracy of the representation. This is known as the truncation 

of the POD basis, and is accomplished by choosing the fraction of system energy that will be neglected 

in later calculations. Consequently, the amplitude matrix Â is given by: 

Â =  Φ̂T ⋅ U ,                                           (6) 

since: 

 U = Φ̂ ⋅ Â.                                     (7) 

To determine the boundary displacement field of a two dimensional elastic structure containing an 

unknown crack, RBF interpolation was used. This method can generate different sets of parameters, 

which were not included in the initial selection in the matrix P. The amplitude matrix  A is defined as a 

multiplicative form of the function G, defined as the matrix of interpolation parameters, and the matrix 

 B  containing the unknown coefficients: 

 A = B ⋅ G.             (8) 

The interpolation functions are expressed by [32, 37, 39]: 

gi = gi(|P-Pi|) =
1

√|P-Pi|
2+c2

 ,         (9) 

Pi is the parameter corresponding to Ui (i=1,2,…,S). The argument of the i-th RBF is the distance 

|P-Pi|, P and Pi being respectively current and reference parameters.  c is the RBF smoothing factor 

defined in the range from 0 to 1. If all or some of the the knot points Pi are relatively close to each other, 

the matrix  G  could be singular, which is circumvented by reducing the  c  value. After the evaluation 

of the coefficient matrix B , a low-dimensional model issued from (8) is written in the following vector 

form: 

a(P) = B ⋅ g(P),            (10) 

Equation (7) can be expressed as an approximation of the snapshot  u  corresponding to a new 

parameter vector  P : 

 u(P) = Φ̂ ⋅ a(P),                                                     (11) 

This model will now be referred as the trained POD-RBF network. It is capable of reproduce the 

unknown boundary displacement field of the structure that corresponds to any set of crack parameters P 

. It must be noted that extrapolation outside the range of  P  leads probably to poor precision of the 

model.  
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Increasing the value of the smoothing factor c leads to a better interpolation. But it can make the 

matrix G singular, depending on the closeness of knot points. In the present work, the parameter c was 

chosen to be constant for all functions, and equal to the mean value of normalized parameters. 

3.  Particle swarm optimization 

The Particle Swarm Optimization (PSO) is a population based optimization method inspired from the 

behaviour of bird flocks that is characterized by distinct social and psychological principles. Large 

attention has been paid to this method in few last decades. The algorithm was initially proposed by 

Kennedy and Eberhart [40]. Its implementation requires a small number of parameters, which facilitates 

its application and reduces the computational cost. 

The main idea of PSO is to consider the potential solution as a particle moving through the space, 

looking for the global optimum position. Initiated as a group of random particles, each particle is 

characterized by its position in the multidimensional space and by its movement speed. These particles, 

each other, cooperate to achieve the solution, based on their personal previous experience and the 

experience of other particles. The speed and the position of the particles are calculated, respectively, as 

follows: 

{vi(t + 1)} = w{vi(t)} + c1{r1} ∙ ({xPb,j} − {xj(t)}) + c2{r2} ∙ ({xGb} − {xj(t)})         (12) 

and 

{xi(t + 1)} = {xi(t)} + vi(t + 1).                                 (13) 

The weight inertia w is multiplied by the particle speed value at every iteration to maintain the 

particle acceleration in its original direction. c1 is a positive constant, called cognitive parameter and 

controlling the step size toward the particle’s personal best position. c2 is social parameter that controls 

the step size toward the global best position. {r1} and {r2} are vectors containing random numbers within 

the interval [0,1]. {xj(t)} is the vector of the current positions of particles. {xPb,j} is the vector of the 

personal best position found by the particle j and {xGb} is the vector of the global best position found by 

the entire swarm. 

4.  Inverse problem formulation 

The existence of a crack changes the behavior of the plate when put under traction, therefore the 

deformation of the structure, which is also affected by the changes of the crack length. Benefiting from 

this fact, the deformation of the structure’s border is measured using deformation sensors for inverse 

crack size estimation. 

The crack estimation algorithm consists of two main stages. In the first stage, the identification 

problem is defined, and the response data corresponding to the unknown crack is chosen. In the second 

stage, the optimization algorithm is executed. All fitness function values are obtained from calculation 

on the reduced model, unlike classical methods where this operation needs a full analysis of the whole 

structure. Figure 2 summarizes the proposed approach. The fitness function was evaluated from the 

following equation: 

{
f(P) =

‖u(P0)− u(P)‖2

‖u(P0)‖2

f(Poptimal) = min [f(P)]
                                 (14) 

By introducing the crack parameters, corresponding to each possible solution, in the trained POD-

RBF network, the resulting boundary displacement vector u(P) is generated. Then, the fitness function 

value is the norm error between this vector and the reference displacement vector u(P0) caused by the 

real crack parameters. 
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Figure 2. Algorithm of the crack identification approach. 

 

The PSO algorithm is operating in the following manner: 

Step 1. Initialization of the algorithm by randomly generating the position vectors of the particles   within   

the   design   space (x1⃗⃗  ⃗, x2⃗⃗⃗⃗ , … , xNP⃗⃗⃗⃗ ⃗⃗  ⃗) and   calculating   their corresponding speed vectors (v1⃗⃗  ⃗, v2⃗⃗⃗⃗ , … , vNP⃗⃗⃗⃗ ⃗⃗  ⃗), 

where NP the number of particles. 

Step 2. Analysis and evaluation of the fitness value for current positions of the particles 

(𝔽(x1⃗⃗  ⃗), 𝔽(x2⃗⃗⃗⃗ ), … , 𝔽(xNP⃗⃗⃗⃗ ⃗⃗  ⃗)) , where NP the number of particles. Equation (14) in our study.  

Step 3. Personal best calculation, if the current fitness value is better than the best fitness value (Pbest) 

in the particle’s history then this value is set as the new Pbest and the current position as the new xPb,j 

for each j particle. 

Step 4. Global best calculation, the best fitness value of all the particles Pbest is set as Gbest and the 

corresponding position as the new xGb. 

Step 5. Updating particle velocity from Eq. (2.40) and update particle position from Eq. (2.41). 

Step 6. Check for any dimension i     xi ≤ xL  or xi ≥ xU set xi = xL or xi = xUrespectively and νi = 0. 
Step 7. If the maximum number of generations or a defined fitness level is reached, the algorithm is 

terminated; else, the steps 2-6 are repeated. 

5.  POD-RBF for the computation of boundary displacement field  
The POD in this stage has been used to build a reduced model describing the effect of crack size on the 

vertical boundary displacements, this model is based on a snapshot matrix containing boundary 

displacement vectors collected from 11 scenarios, corresponding to crack length s varying in the range: 

0 (no crack) to 2.5 mm, in two structures where the largest value of the crack (2.5 mm) is half the width 

of the specimen.  

 The first specimen (Specimen 1) consists of a rectangular plate, subjected to traction force from the 

upper and lower sides simulated as a to displacement of 0.1 mm. Young modulus and Poisson coefficient 

of the material are E = 210 GPa and ν = 0.3, respectively. The crack is located at the center of the plate. 

The displacement data considered for validating the POD-RBF model is obtained from the higher half 

of the vertical boundary as describes in Figure 3, which contains 40 nodes. The second (Specimen 2) 

specimen is a non-convex structure, with same material properties and subjected to the boundary 

conditions as described in Figure 4. The displacement results obtained from the 49 boundary nodes, 

highlighted by red color in descriptive figure, are considered for validating the POD-RBF.  
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The choice of the best K value is important, as a too low value will lead to poor precision, and too 

large value will cost more computational time. To test the effect of the chosen truncation point K on the 

accuracy of the model, we compared the POD-RBF results, corresponding to crack with size equal to 

1.4 mm, with equivalent results from FEM. Figure 5 and Figure 6 study respectively the convex and the 

non-convex examples by means of the ratio error of the boundary displacement field, produced by POD-

RBF model, issue from models constructed based on different K values, and equivalent boundary 

displacement field from FEM.  

 

 
Figure 3. Specimen 1 

 

 
Figure 4. Specimen 2 
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Figure 5. Effect of k value on the boundary displacement error for Specimen 1 

 

 
Figure 6. Effect of K values on the boundary displacement error for Specimen 2 

 

From Figure 5, we notice that maximum error for all K values is located at node number 40. This 

can be explained by the fact that this node is located on the centre of the structure, where the 

displacement is equal to zero. Therefore, a small difference between estimated results and FEM results 

affect largely the error value (POD-RBF/FEM). We can also see that the largest error value for all K 

values is about 2% found for K=1 and K=2. On the other hand, more than 4 modes (𝐾 ≥ 4) have led to 

better results with error around 1%. Moreover, when the first three modes are used, the results were 

even better with error less than 0.5%.  

Figure 6 shows that node 49 has the largest error value for all modes, similarly to the convex problem, 

this is due to the fact that displacement value in this node is close to null. It is also noticed that error in 

the interval between nodes 21 and 31 has a considerable error values for K=1 and K=2, which is not 

present for K values larger than 3 with error less than 0.1%.  Therefore, the first three modes are chosen 

to represent the full model in the inverse calculations. 
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6.  Crack size estimation 

The inverse problem solved by PSO, minimizing the cost function, which is the norm error between the 

vertical displacement vector caused by the crack that we want to estimate and the one proposed by PSO. 

The displacement data considered in the fitness evaluation is obtained from only 4 sensor point in both 

cases, convex and non-convex, where their position, as described in Figures 3 and 4, are chosen based 

on early study [40], in which, it has been found that better results are acquired when the sensors are 

dispersed uniformly respecting a near distance between every sensor point.  

Tables 1 summarize the PSO parameters, and Table 2 and 3 present crack size estimation results, for 

convex and non-convex specimen, respectively, the results presented in both table represent the best 

over 10 runs. In each table, three levels of crack size are studied (small, medium and large), as well as, 

the case of the absence of the crack, which is represented by crack size value equal to zero. The fitness 

value of each case is shown along with the error of the estimated results.  

 

Table 1. PSO parameters 

Parameter value 

Number of particles N 10 

Number of iterations M 100 

weight inertia w 0.9 

cognitive parameter c1 2 

social parameter c2 2 

 

Table 2. Crack size estimation in specimen 1 

Real (mm) Estimated (mm) fitness value error 

0 0.0421 0.000029 _ 

0.35 0.3687 0.000002 5.3% 

1.4 1.4131 0.000010 0.93% 

2.45 2.4506 0.000046 0.02% 

 

Table 3. Crack size estimation in specimen 2 

Real (mm) Estimated (mm) fitness value error 

0 0.0263 0.000045 _ 

0.35 0.3304 0.000050 5.6% 

1.4 1.3951 0.000034 0.35% 

2.45 2.4507 0.000059 0.02% 

 

From Tables 2 and 3, we can see that the presented approach could estimate the absence of the crack 

in both specimens with high accuracy, leading, for specimen 1, to a very small crack of 0.04 mm. It is 

noted that the fitness value does not follow any order. This is due to using only four sensors, as the 

displacement results in those sensors varies from one crack size to another. For the three levels of crack 

sizes, the maximum error value is found in the smallest crack (0.35mm), with a difference between the 

estimated and real crack equal to 0.02 mm, not the error is large because is calculated compared to a 
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value which is near zero, the larger cracks (1.4 mm and 2.45 mm) have been identified with better 

precision, due their larger effect of the boundary displacement.  

From both tables, we can see the estimation results are very close, which indicates that geometry of 

the specimen doesn’t affect the inverse estimation method. The average computation time in PC with 

Intel Dual-Core Processor 3.0 GHz and 2 GB RAM, is about 4 seconds. 

For the sake of illustration, figures 7 and 8 depict the crack size evolution and the fitness 

convergence, for the crack size equal to 1.4 in the case of specimen 2.  

 
Figure 7. Crack size evolution through iterations for example of real size equal to 1.4 mm in non-

convex specimen 

 

 
Figure 8. Fitness convergence for example of real size equal to 1.4 mm in non-convex specimen 

 

Figures 7 and 8 shows that the algorithm approached the final result very early, i.e. before the 10th 

iteration, and reach the optimal result around the 40th iteration. This means that good precision can be 

conserved even though a low number of iteration is adopted as stopping criteria.  
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7.  Conclusion 

In this numerical study, we presented POD-RBF method as model reduction of cracked specimens under 

traction. The finite element model of the structure was created for different crack lengths, and the results 

were obtained from the new model was compared to the original ones to insure the efficiency. Crack 

size was investigated based on vertical boundary displacement data using the PSO for the inverse 

calculation. The results have clearly shown that the developed algorithm was capable of estimating crack 

size accurately, and proved its effectiveness even with a very low number of sensors, in both convex 

and non-convex structures. 

The crack size estimation using PSO showed high accuracy, even with a very low number of sensors, 

and showed that the inverse calculation on the reduced model by POD-RBF was practical and helpful 

in avoiding computational time problems typical for the simulation based inverse problems. 
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