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Abstract—Distillation columns constitute a significant fraction of the capital invested in the
refineries around the world; their control requires a major part of the total operating cost of
chemical processes, if the used strategy is not adequate. This article presents the application
of optimal fuzzy control to reduce the energy consumption of a Benzene-Toluene distillation
column. This method is based on the determination of the specific values of the fuzzy controller
parameters such that certain performance criterion is minimised. Results of a simulation study
are presented showing the potential improvement offered by this method.

1. INTRODUCTION

The control of the overhead and bottom composition in distillation column has been the subject
of research for many years. Luyben [7] has shown that composition control minimizes the energy
consumption of a distillation column under the influence of disturbances. However, implementing
composition control is not easy due to the phenomenon of interaction or coupling that exists
between the various control loops of distillation column [4]. In addition, distillation column is
usually non-linear, non-stationary, multivariable and is subject to constraints and disturbances.

These phenomenons pose a problem for the conception of a robust control system [2, 6, 13].
Accordingly, much research and development has focused to determine a control that permitted

to improve the performance of the distillation column and to optimize the energy consumed by this
column. The design of new control systems, using neural networks and fuzzy logic is perspective [5].
The goal of this work is to propose an optimal fuzzy controller developed by Wang [17] to control
a distillation column in view of optimization of the energy consumed by this column.

On the issue of optimal fuzzy control, Wang developed an optimal controller to stabilize a linear
time invariant system via Pontryagin maximum principle [17]. However, although fuzzy control
of linear systems could be a good starting point for better understanding of some issues in fuzzy
control synthesis, it does not have much practical implications since using the fuzzy controller
designed for a linear system directly as the controller may not be a good choice [17].

Tanaka and co-workers [14, 15] tried to obtain a fuzzy controller to minimize the upper bound
of the quadratic performance function by linear-matrix-inequality (LMI) approach based on the
assumption of local-linear-feedback-gain control structure. Nevertheless, no theoretical analysis
on this design scheme of optimal-fuzzy-control structure was proposed [18]. Wu and Lin [18, 19]
propose a global optimal fuzzy controller for a fuzzy system (i.e., the system described by a fuzzy
model).

This paper is organized as follows; a dynamic model of this binary distillation column is pre-
sented in Section 2. The Pontryagin maximum principle for solving the optimal control problem
is generalised in Section 3. In Section 4, the method developed by Wang to design an optimal
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fuzzy controller for linear systems is presented. Section 5 deals with the application of the Wang’s
method to control the study distillation column and gives the obtained simulations results.

2. MODEL OF THE COLUMN

Figure 1 shows a schematic representation of the binary distillation column studied in this work.
The column separates a mixture of Benzene-Toluene. It is constituted of seven trays with feed F
is entering at the feed tray f (f = 4).

In this process the top composition of the column (x7) is controlled by the reflux (Lr), and the
bottom composition of the column (xb) is controlled by the vapour flow (Xv). The nominal data
of the column are given by Khelassi [4].

For the modelling of the distillation column, both the material balance and heat transfer equa-
tions are used [3, 8], thus the obtained model will be constituted by a set of characteristic equations
corresponding to the different stages of operating column. For the system of equations describing
the operating column see Khelassi [4]. The linear model of the distillation column is given by the
state space representation [4]

ẋ = Ax + Bu, (1)
y = Cx,

where x = (xd, x7, . . . , xf , . . . , x1, xb, Pc, Vs)T is vector of state, u = (Lr, Pf , F, zf , Pss,Xv)T is
vector of inputs, y = (x7, xb)T is vector of outputs.

 

B

x

 

b

 

x

 

v

 

V

 

s

 

V

 

s

 

L

 

s

 

V

 

r

 

L

 

r

 

F 

 

z

 

f

 

 

 

P

 

f

 

x

 

7

 

L

 

r

 

x

 

d

 

D

 

7

1

LC

XC

XC

LC

Fig. 1. Schematic of the distillation column.
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The values of A and B are given by substitution of the linearised versions of equations around
the nominal points.

The values of the matrices A, B, and C are

A=



−0.0135 0.0063 0 0 0 0 0 0 0 0 0

0.0290 −0.0436 0.0168 0 0 0 0 0 0 0 −0.0490

0 0.0290 −0.0457 0.0212 0 0 0 0 0 0 −0.0908

0 0 0.0290 −0.0502 0.0290 0 0 0 0 0 −0.1396

0 0 0 0.0270 −0.0626 0.0346 0 0 0 0 −0.1176

0 0 0 0 0.0356 −0.0702 0.0446 0 0 0 −0.1369

0 0 0 0 0 0.0356 −0.0802 0.0548 0 0 −0.1240

0 0 0 0 0 0 0.0356 −0.0904 0.0628 0 −0.0892

0 0 0 0 0 0 0 0.0081 −0.0157 0 −0.0123

0 0 0 0 0 0 0 0 −15.2240 −5.0086 299.4200

0 0 0 0 0 0 0 0.0004 0.0283 0.0084 −0.6868



,

B =



0 0 0 0 0 0
0.0533 −0.0005 0 0 0 0
0.0988 −0.0009 0 0 0 0
0.1520 −0.0014 0 0 0 0
0.1653 −0.0019 −0.1169 0.0086 0 0
0.1129 −0.0011 0.1129 0 0 0
0.1023 −0.0010 0.1023 0 0 0
0.0736 −0.0007 0.0736 0 0 0
0.0102 −0.0001 0.0102 0 0 0

0 0 0 0 0.6229 1.4409
0.0005 0 0.0005 0 0 0



,

C =

(
0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0

)
.

3. THE PONTRYAGIN MAXIMUM PRINCIPLE

In this section, we state the Pontryagin maximum principle for solving the optimal control
problem. Consider the system

ẋ(t) = g[x(t),u(t)] (2)

with initial condition x(0) = x0 where x ∈ Rn is the state, u ∈ Rm is the control input, and g is a
linear or non-linear function.

The optimal control problem for the system (2) is as follows [10]: determine the control u(t)
such that the following performance criterion

J = S [x(T )] +

Tf∫
0

L[x(t),u(t)]dt (3)

is minimized, where S and L are given functions and the final time Tf may be given.
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The Pontryagin maximum principle for solving this optimal control problem proceeds as follows.
First, define the Hamilton function

H(x,u,λ) = L[x(t),u(t)] + λT(t)g[x(t),u(t)] (4)

and find u = h(x,λ) such that H(x,u,λ) is minimised with this u, substituting u = h(x,λ)
into (4) and define

H∗(x,λ) = H[x, h(x,λ),λ]. (5)

Then, solve the 2n differential equations [1]

ẋ(t) =
∂H∗

∂λ
, x(0) = x0, (6)

λ̇(t) = −∂H
∗

∂x
, λ(Tf ) =

∂S

∂x

∣∣∣∣
x(Tf )

, (7)

and let x∗(t) and λ∗(t) denote the solution of (6) and (7). Finally, the optimal control is obtained as

u∗(t) = h [x∗(t),λ∗(t)] . (8)

4. OPTIMAL FUZZY CONTROLLER

In this section a review of the method proposed by Wang to design an optimal fuzzy controller
of linear systems is presented. This method is based to determine the specific values of the fuzzy
controller parameters such that certain performance criterion is minimised.

Consider the time-invariant linear system

ẋ(t) = Ax(t) + Bu(t), x(0) = x0,

y(t) = Cx(t),
(9)

where x(t) = [x1, . . . , xn]T ∈ Rn is the state, u(t) ∈ Rm is the control input, y(t) ∈ Rn
′

is the
output vector and A, B, and C are, respectively, n×n, n×m, and n′×n matrices. The performance
criterion is given by the following quadratic function [1]

J = xT(Tf )Mx(Tf ) +

Tf∫
0

[
xT(t)Qx(t) + uT(t)Ru(t)

]
dt. (10)

Where the matrices M ∈ Rn×m, Q ∈ Rn×n, and R ∈ Rm×m are symmetric and positive definite.
It is assumed that the desired controller is constructed from the fuzzy systems. If the rules using

singleton fuzzifier, center-average defuzzifier and product inference engine [11]; the actuating signal
from the controller u(t) is u(t) = (u1, . . . , um)T with

uj = fj(x) =

2N1+1∑
l1=1

· · ·
2Nn+1∑
ln=1

yl1...lnj

(
n∏
i=1

µ
A
li
i

(xi)
)

2N1+1∑
l1=1

· · ·
2Nn+1∑
ln=1

(
n∏
i=1

µ
A
li
i

(xi)
) , j = 1, . . . ,m. (11)

Here the membership functions µ
A
li
i

(xi) are fixed. Our task is to determine the parameters yl1...lnj

such that J of Eq. (10) is minimised.
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Define the fuzzy basis function

b(t) = (b1(x), . . . , bN (x))T

as

bl(x) =

n∏
i=1

µ
A
li
i

(xi)

2N1+1∑
l1=1

· · ·
2Nn+1∑
ln=1

(
n∏
i=1

µ
A
li
i

(xi)
) , (12)

where

li = 1, 2, . . . , 2Ni + 1, l = 1, 2, . . . , 2N and N =
n∏
i=1

(2Ni + 1).

Define the parameter matrix θ ∈ Rm×N as

θ =
[
θT

1 . . . θ
T
m

]T
, (13)

where θT
j ∈ R1×N consists of the N parameters yl1...lnj for li = 1, 2, . . . , 2Ni+1 in the same ordering

as bl(x) for l = 1, 2, . . . , 2N .
Using these notations, we can rewrite the fuzzy controller

u(t) = (u1, . . . , um)T = (f1(x), . . . , fn(x))T

of (11) as

u = θb(x). (14)

To achieve maximum optimality, we assume that the parameter matrix θ is varying; that is,
θ = θ(t).

Substituting (14) into (9) and (10), we obtain the closed loop system

ẋ(t) = Ax(t) + Bθ(t)b(x(t)) (15)

and the performance criterion

J = xT(Tf )Mx(Tf ) +

Tf∫
0

[
xT(t)Qx(t) + bT(x(t))θT(t)Rθ(t)b(x(t))dt

]
. (16)

Hence, the problem of designing the optimal fuzzy controller becomes the problem of determining
the optimal θ(t) such that J of (16) is minimised [17]. Viewing the θ(t) as the control u(t) in
the Pontryagin minimum principle, we can determine the optimal θ(t) from (4)–(8). Specifically,
define the Hamilton function

H(x,θ,λ) = xTQx + bT(x)θTRθb(x) + λT[Ax + Bθb(x)]. (17)

From
∂H

∂θ
= 0; that is

∂H

∂θ
= 2Rθb(x)bT(x) + BTλbT(x) = 0, (18)
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We obtain, approximately, that [17]

θ ≈ −1
2
R−1BTλbT(x)

[
b(x)bT(x) + ∆

]−1
. (19)

Where ∆ is a full-rank matrix with very small norm; we introduce ∆ to make b(x)bT(x) + ∆
invertible (∆ may be generated by a small random number generator). Substituting (19) into (17),
we can get

H∗(x,λ) = xTQx + λTAx +
1
4
bT(x)

[
b(x)bT(x) + ∆

]−1

×b(x)λTBR−1BTλbT(x)
[
b(x)bT(x) + ∆

]−1
b(x)

− 1
2
λTBR−1BTλbT(x)

[
b(x)bT(x) + ∆

]−1
b(x)

= xTQx + λTAx +
[
α2(x)− α(x)

]
λTBR−1BTλ, (20)

where α(x) is defined as

α(x) =
1
2
bT(x)

[
b(x)bT(x) + ∆

]−1
b(x). (21)

Using this H∗ in (6) and (7), we obtain

ẋ(t) =
∂H∗

∂λ
= Ax + 2

[
α2(x)− α(x)

]
BR−1BTλ, (22)

λ̇(t) = −∂H
∗

∂x
= −2Qx−ATλ− [2α(x) − 1]× ∂α(x)

∂x
λTBR−1BTλ (23)

with boundary condition x(0) = x0 and λ(Tf ) = 2Mx(Tf ). Let x∗(t) and λ∗(t) (t ∈ [0, Tf ]) be the
solution of (22) and (23), then the optimal fuzzy controller parameters are [17]

θ∗(t) = −1
2
R−1BTλ∗(t)bT(x∗(t))

[
b(x∗(t))bT(x∗(t)) + ∆

]−1
, (24)

and the optimal fuzzy controller is

u∗ = θ∗(t)b(x). (25)

Note that the optimal fuzzy controller is a state feed-back controller with time varying coeffi-
cients.

4.1. The Optimal Fuzzy Controller Algorithm [17]

Step 1. Specify the membership functions µ
A
li
l

(xi) to cover the state space where li = 1, 2, . . . ,
2Ni + 1 and i = 1, . . . , n. The membership functions may not be chosen as triangular because the

function α(x) with these membership functions is not differentiable
[
we need

∂α(x)
∂x

in (23)
]
. We

choose µ
A
li
i

(xi) to be Gaussian functions.

Step 2. Compute the fuzzy basis functions bl(x) from (21) and the function α(x) from (21).

Compute the derivative
∂α(x)
∂x

.
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Step 3. Solve the two point boundary differential Eqs. (22) and (23) and let the solution be x∗(t)
and λ∗(t), t ∈ b0, Tf c. Compute θ∗(t) from (24).

Step 4. The optimal fuzzy controller u∗ is obtained as given by relation (25).

5. SIMULATION RESULTS

To demonstrate the contribution of the optimal fuzzy control depicted above, a comparison
with classical optimal control is performed on the basis of a simulation study. In order to apply
the two listed techniques, the RGA (Relative Gain Array) [9] of the considered distillation column
is generated to select the best control configuration. According to the values of the RGA given
bellow

RGA =

[
23.7 −22.7
−22.7 23.7

]
. (26)

The best control configuration is defined as follows

[Lr − x7]; [Xv − xb].

The stability condition is verified since the corresponding relative gains of the control configuration
pairs of this system are positive.

The quadratic function is chosen as

J =

Tf∫
0

[
eT(t)Qe(t) + uT(t)Ru(t)

]
dt, (27)

where e is error vector e = [e1, e2]T with

e1 = x7 set − x7, e2 = xb set − xb,

and x7 set is the set point for the top composition, xb set is the set point for the bottom composition.
The matrix Q and R are chosen as follow

Q =

[
0.008 0

0 0.01

]
and R =

[
0.2 0
0 0.05

]
.

The membership functions µ
A
li
i

(ei) are chosen as Gaussian form and are given by

µAli
(ei) = exp

[
−2(ei − elii )2

]
, (28)

li (i = 1, 2) makes reference to the considered fuzzy set NB (Negative Big), NS (Negative Small),
ZE (Zero), PS (Positive small) or PB (Positive Big), and eNB

i = −2, eNS
i = −1, eZE

i = 0, ePS
i = 1,

and ePB
i = 2.

The linguistic rule table is given by the Table 1 and the fuzzy basis function is given by

bl(e) =
µ
A
l1
1

(e1)µ
A
l2
2

(e2)

2N1+1∑
l1=1

2N2+1∑
l2=1

µ
A
l1
1

(e1)µ
A
l2
2

(e2)
, (29)

where l = (2N1 + 1)(2N2 + 1) with N1 = N2 = 2.
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Fig. 2. Compositions of top x7 and bottom xb of the column.

The dynamic responses of set point change of the top composition (x7 = 0.8983 → 0.91) and
the bottom composition (xb = 0.4878 → 0.0537) are presented in Fig. 2. It is shows that every
controller in the two considered control techniques assures the tracking of the assigned reference
input.

To express the energy consumed by the distillation column we calculate the integral absolute
error IAE of the two loops for the optimal fuzzy control and classical optimal control. The obtained
IAE values are given in Table 2. The total IAE values (0.2302 for the classical optimal control and
0.1831 of the optimal fuzzy control), shows that the dynamic error is reduced in the optimal fuzzy
control, what implies that the energy consumption is reduced in relation to the classical optimal
control. Therefore, according to the obtained IAE values, the optimal fuzzy controller gives better
results.

Table 1. The linguistic rule table

e1
NB NS ZE PS PB

e2

PPPPPPP
NB PB
NS PS
ZE PB PS ZE NS NB
PS NS
PB NB

Table 2. Calculation of the IAE of the two loops for the optimal fuzzy control and
classical optimal control of the column
Optimal control Top composition (x7) Bottom composition (xb)

Classic 0.1298 0.1004
Fuzzy 0.0942 0.0889
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6. CONCLUSION

In this paper an optimal fuzzy controller for a binary distillation column was presented and
compared to the classical optimal control. The obtained simulation results show the effectiveness
of the optimal fuzzy control. The comparison of the obtained performance criterion IAE values,
demonstrated that the consumed energy by the distillation column is optimised in the case of the
optimal fuzzy control in relation to the classical optimal control, what constitutes a significant
advantage in process industry capital investment, when we know that operating costs of these
systems are often amongst the highest.
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