Optimization of the Structures of the Electric Feeder Systems of the Oil Pumping Plants in Algeria

M. Bouguerra, F. Laaouad, I. Habi, and R. Azaizia

Abstract

In Algeria, now, the oil pumping plants are fed with electric power by independent local sources. This type of feeding has many advantages (little climatic influence, independent operation). However it requires a qualified maintenance staff, a rather high frequency of maintenance and repair and additional fuel costs. Taking into account the increasing development of the national electric supply network (Sonelgaz), a real possibility of transfer of the local sources towards centralized sources appears.These latter cannot only be more economic but more reliable than the independent local sources as well. In order to carry out this transfer, it is necessary to work out an optimal strategy to rebuilding these networks taking in account the economic parameters and the indices of reliability.

Keywords-Optimization, reliability, electric network.

I. Introduction

THE reliability problem's has always been one of the major concerns of electricians and manufactures for design and electric feeder systems (E.F.S.) exploitation of the industrial facilities. This problem is of fundamental importance in the E.F.S of the oil pumping plants (O.P.P.) in Algeria where oil industry has always played a determining role in its economic balance and will in future.
Now, the O.P.P. are fed with electric power by independent local sources. This type of feeding has many advantages (little climatic influence, independent operation). However, it requires a qualified maintenance staff, a rather high frequency of maintenance and repair and additional fuel costs.

Taking into account the increasing development of the national electric supply network (Sonelgaz), a real possibility of transfer of the local sources towards centralized sources appears. These latter cannot only be more economic but more reliable than the independent local sources as well.

In order to carry out this transfer, it is necessary to work out an optimal strategy to rebuilding these networks taking account of the economic parameters and the indices of reliability.

According to the criterion of the reliability required of the E.F.S, the electric installations are classified into three categories [1]:

[^0]- First category: theses installations don't admit any stop (accidental or planned) of their E.F.S., the stop of the latter can has the human death consequence; this is why their E.F.S. must be carried out with two independent sources.
- Second category: theses installations don't admit any stop (accidental or planned) of their E.F.S., the stop of the latter can has a significant economic consequence, and this is why their E.F.S. must be carried out with two independent sources.
- Third category : these installations don't has a capital insert in the technological process, they can admit a stop (accidental or planned) of their E.F.S. going up to 24 hours; this E.F.S. is carried out with only one source.
The oil pumping plants belong to the second category. In order to ensure a high level of reliability of their E.F.S, two power supply sources are envisaged, one principal, the other of reserve.

II. Suggested Alternative for the E.F.S. of O.P.P.

The suggested alternative for the E.F.S. of the O.P.P. can be schematized as follows (Fig. 1):

- 1.external source from the national electric network
- 2. circuit breaker of electric line
- 3. transformers and circuit breaker
- 4. coupling circuit breaker
- 5. electric load
- 6. local source.

III. Mathematical Formulation

It is known that the reliability of the E.F.S of the industrial installations is linked to the exploitation of the capital costs of these networks, the increase in reliability involves a reduction in the costs of unavaibility of the E.F.S costs more [2], this is why the criterion of the optimal structures of the the E.F.S. of O.P.P. could be formulated as follows [3]:

$$
\begin{gather*}
C_{T}=C_{T l}+C T_{\text {unav }} \longrightarrow \min \tag{1}\\
C_{T l}=C_{\text {cap }}+C_{\text {exp }} \tag{2}\\
C_{\text {exp }}=C_{\text {fe }}+C_{\text {losses }} \tag{3}
\end{gather*}
$$

Where :
C_{T} : yearly total cost;
$\mathrm{C}_{\text {cap }}$: capital cost including the costs of the network and the stations;
$\mathrm{C}_{\text {exp }}$: cost of exploitation;
C_{fe} : cost of the electric invoice of power or fuel, this cost is formulated as follows [3]:

$$
\begin{equation*}
C_{f e}=C_{T}^{\prime} \cdot h_{T}^{\prime} \cdot B^{\prime} \cdot P^{\prime}+C_{T}^{\prime \prime} \cdot h^{\prime \prime}{ }_{T} \cdot B^{\prime \prime} P^{\prime \prime} \tag{4}
\end{equation*}
$$

$\mathrm{C}^{\prime}{ }_{\mathrm{T}}, \mathrm{C}$ ', ${ }_{\mathrm{T}}$:cost of fuel of the local and centralized sources (\$/T)
${ }^{\prime}{ }_{\mathrm{T}}, \mathrm{h}^{\prime}{ }_{\mathrm{T}}$:annual time of use of the installations (h/years);
B', B' :annual average fuel consumption per Kwh (T/kWh);
$\mathrm{P}^{\prime}, \mathrm{P}$ " : annual average power (kW).
$\mathrm{C}_{\text {losses }}$: losses of electric power in the lines, this cost is obtained as follows:

$$
\begin{equation*}
\mathrm{C}_{\mathrm{losses}}=\sum_{i \in M \text { esist }} \frac{C o . T i \cdot R i}{U_{i}^{2} \cos \alpha_{i}^{2}} P_{i}^{2}+\sum_{j \in \text { Mnov }} \frac{C o . T j . R j}{U_{j}^{2} \cos \alpha_{j}^{2}} P_{j}^{2} \tag{5}
\end{equation*}
$$

Co: cost per unit of kWh of the losses of power electric (\$/kWh);
T : time of losses of power electric (h);
R : active resistance of lines (Ω);
U : voltage level of the electric network (kV);
P : active power transmitted (kW);
Mexist, $\mathrm{M}_{\text {nov }}$: existing and lately build electric installations
$\operatorname{Cos} \alpha$: power factor.
$\mathrm{CT}_{\text {unav }}$:cost of unavailability of the E.F.S. in case of failure (\$)
The cost of unavailability of the E.F.S. of the O.P.P. is formulated as follows:

$$
\begin{equation*}
C_{\text {unav }}=W_{o} \cdot T_{r} . \delta_{o} \tag{6}
\end{equation*}
$$

Where:

$$
\begin{equation*}
\delta_{o}=g\left(C_{g}-C_{p}-C_{t}\right) \tag{7}
\end{equation*}
$$

W_{o} : frequency of stop of the oil pumps ;
T_{r} : time of repair of the E.F.S. in case of failure;
g : reduction in the volume of oil transported at the time of stop of the O.P.P.;
$\mathrm{C}_{\mathrm{g}}, \mathrm{C}_{\mathrm{p}}, \mathrm{C}_{\mathrm{t}}$: cost of oil to export, cost of its production, cost of its transport respectively.

The frequency of stop of the oil pumps W_{o} and the time of repair T_{r} of the E.F.S. in case of failure can be obtained on the basis of the semi- Markovian's processes [4].

The structures of the E.F.S. (Fig.1) can be schematized with their reliability parameters as follows (Fig.2).

Fig. 2 Representative sources diagram

S_{0} : principal source;

S_{1} : reserve source;
λ_{o}, τ_{o} : principal source failure rate and time of repair respectively;
λ_{1}, τ_{1} : reserve source failure rate and time of rapair respectively.

The failure rate and the time of repair of the elements in series are given as follows:

The failure rate and the time of repair of the elements in parallels are given as follows:

$$
\begin{gather*}
\lambda_{i j}=\lambda_{i} \lambda_{j}\left(\tau_{i}+\tau_{j}\right) \tag{10}\\
\tau_{i j}=\frac{\tau_{i} \cdot \tau_{j}}{\tau_{i}+\tau_{j}} \tag{11}
\end{gather*}
$$

Under operation, the E.F.S. of the O.P.P. can has several states, on the basis of the semi-Markovian's processes, the evolution of the E.F.S. operation can be described by the states and the probability of transition P_{ij} according Fig. 3.

Fig. 3 Semi-Markovian's processes and transitions graph
e_{o} : PS under operation, RS in reserve;
e_{1} : PS in repair, RS under operation;
$\mathrm{e}_{2}: P S$ in failure, $\mathrm{t}_{\text {encl }}>\mathrm{t}_{\text {adm }}$;
$e_{3}: P S$ in repair, RS in failure;
e_{4} : PS under operation, RS in repair;
$\mathrm{e}_{5}: \mathrm{PS}$ in failure, RS in repair.

Where:

PS: principal source;
RS, reserve source ;
$\mathrm{t}_{\text {encl }}$: time of interlocking of the reserve source;
$\mathrm{t}_{\mathrm{adm}}$: acceptable time limits of interlocking of the reserve source.

The random values of the MTBF (middle time between failure) ξ_{0}, ξ_{1} as well the repair time η_{0}, η_{1} of the principal source and the reserve source respectively follow an exponential law [5], $\mathrm{P}_{i}(\mathrm{t}), \mathrm{G}_{i}(\mathrm{t})$ with the parameters λ_{i}, μ_{i} $(i=0,1)$.

The calculation probability P_{ij} of transitions between states could be calculated as follow:

$$
\begin{align*}
& P_{01}=1-q \tag{12}\\
& P_{02}=q \tag{13}
\end{align*}
$$

q : probability of failure of the circuit breaker of interlocking the reserve source [6].

$$
\begin{equation*}
q=P\left(t_{\text {encl }}>t_{a d m}\right)=1-F_{\text {encl }}\left(t_{a d m}\right) \tag{14}
\end{equation*}
$$

$$
\text { For } \begin{align*}
t_{\text {encl }} & =\text { const and } D(t)=P\left(t_{\text {adm }}<t\right)=\frac{t-t_{\text {adm } \min }}{t_{\text {adm } \max }-t_{\text {adm } \min }} \tag{15}\\
q & =\int_{0}^{\infty}\left[1-F_{\text {encl }}(t)\right] d D(t)=\frac{t_{\text {encl }}-t_{\text {adm } \min }}{t_{\text {adm } \max }-t_{\text {adm } \min }} \tag{16}
\end{align*}
$$

where:
$\mathrm{F}_{\text {encl }}(\mathrm{t})$: distribution law of the random value $\mathrm{t}_{\text {encl }}$; $D(t)$: distribution law of the random value $t_{a d m}$.

$$
\begin{gathered}
P_{10}=P\left\{\eta_{0}<\xi_{1}\right\}=\int_{0}^{\infty} G_{0}(t) d P(t)=\frac{\mu_{0}}{\lambda_{1}+\mu_{0}} \\
P_{13}=P\left\{\eta_{0}>\xi_{1}\right\}=\int_{0}^{\infty}\left[1-G_{0}(t)\right] d P(t)=\frac{\lambda_{1}}{\lambda_{1}+\mu_{0}} \\
P_{40}=P\left\{\xi_{0}>\eta_{1}\right\}=\int_{0}^{\infty}\left[1-P_{0}(t)\right] d G_{1}(t)=\frac{\mu_{1}}{\lambda_{0}+\mu_{1}}
\end{gathered}
$$

$$
\begin{gather*}
P_{45}=P\left\{\xi_{0}<\eta_{1}\right\}=\int_{0}^{\infty} P(t) d G(t)=\frac{\lambda_{0}}{\lambda_{0}+\mu_{1}} \tag{20}\\
P_{21}=P_{34}=P_{51}=1
\end{gather*}
$$

Knowing the existance distribution law $\mathrm{T}_{\mathrm{ij}}(\mathrm{t})$ in the state e_{i} at the time of the transition to the state e_{j} we determine the existence distribution law $\mathrm{F}_{\mathrm{i}}(\mathrm{t})$ and the existence mean time $T_{\text {ei }}$ at the state e_{i} as follows:

$$
\begin{gather*}
F_{i}(t)=\sum_{j=0}^{n} P_{i j} T_{i j}(t) \tag{22}\\
T_{e i}=\int_{0}^{\infty} t d F_{i}(t) \tag{23}
\end{gather*}
$$

Where :
$T_{01}(t)=P\left\{\xi_{0}<t / t_{\text {encl }}<t_{\text {adm }}\right\}=1-e^{-\lambda_{0} t}$
$T_{02}(t)=1-e^{-\lambda_{0} t}$
$T_{21}(t)=P\left\{t_{\text {encl }}-t_{\text {adm }}<t\right\}=\frac{t}{t_{\text {adm } \max }-t_{\text {adm } \min }}$
$T_{10} \quad(t)=P\left\{\eta_{0}<t / \eta_{0}<\xi_{1}\right]=1-e^{-}\left(\mu_{0}+\lambda_{1}\right)$
(27)
$T_{13}(t)=P\left\{\xi_{1}<t / \xi_{1}<\eta_{0}\right\}=1-e^{-}\left(\mu_{0}+\lambda_{1}\right)$
(28)
$T_{34}(t)=P\left\{\left(\eta_{0}-\xi_{1}\right)<t / \eta_{0}>\xi_{1}\right\}=1-e^{-\mu_{0} t}$
$T_{40}(t)=P\left\{\eta_{1}<t / \eta_{1}<\xi_{0}\right\}=1-e^{-\left(\mu_{1}+\lambda_{0}\right) t}$
$T_{45}(t)=P\left\{\xi_{0}<t / \eta_{1}>\xi_{0}\right\}=1-e^{-\left(\mu_{1}+\lambda_{0}\right) t}$
(31)
$T_{51}(t)=P\left\{\eta_{1}<\mathrm{t}\right\}=1-\mathrm{e}^{-\mu} \mu_{1}$

We determine that:

$$
T_{e 0}=\frac{1}{\lambda_{0}} ; T_{e l}=\frac{1}{\mu_{0}+\lambda_{1}} ; T_{e 2}=t_{e n c l}-\frac{t_{a d m \max }+t_{a d m \min }}{2}
$$

$$
\begin{equation*}
T_{e 3}=\frac{1}{\mu_{0}} ; T_{e 4}=\frac{1}{\mu_{1}+\lambda_{0}} ; T_{e 5}=\frac{1}{\mu_{1}} \tag{33}
\end{equation*}
$$

The stationary probabilities P_{i} of occupation at the state e_{i} can be given by solving the following system:

$$
\left\lvert\, \begin{align*}
& P_{i}=\sum_{j \in e} P_{j i .} P_{j} \\
& \sum_{i=0}^{5} P_{i}=1 \tag{34}
\end{align*}\right.
$$

$P_{0}=P_{10} \cdot P_{1}+P_{40 .} \cdot P_{4}$
$P_{1}=P_{01 .} P_{0}+P_{21} . P_{2}+P_{51} . P_{5}$
$P_{2}=P_{02} \cdot P_{0}$
$P_{3}=P_{13} \cdot P_{1}$
$P_{4}=P_{34} P_{3}$
$P_{5}=P_{45} . P_{4}$
$P_{0}+P_{1}+P_{2}+P_{3}+P_{4}+P_{5}=1$
We determine that:

$$
\begin{gather*}
P_{0}=\frac{\mu_{0}\left(\lambda_{0}+\mu_{1}\right)+\mu_{1} \lambda_{1}}{\left(\lambda_{0}+\mu_{1}\right)\left[2\left(2 \lambda_{1}+\mu_{0}\right)+q \mu_{0}\right]+q \mu_{1} \lambda_{1}}=\frac{\mu_{0}\left(\lambda_{0}+\mu_{1}\right)+\mu_{1} \lambda_{1}}{K} \\
P_{1}=\frac{\mu_{0}\left(\lambda_{0}+\mu_{1}\right)+\mu_{1} \lambda_{1}}{K} \\
P_{2}=\frac{q\left[\mu_{0}\left(\lambda_{0}+\mu_{1}\right)+\mu_{1} \lambda_{1}\right]}{K} \\
P_{3}=P_{4}=\frac{\lambda_{1}\left(\lambda_{0}+\mu_{1}\right)}{K} \\
P_{5}=\frac{\lambda_{0} \lambda_{1}}{K} \tag{42}
\end{gather*}
$$

The mean time between failures (MTBF) of the EFS can be obtained as follows:

$$
\begin{equation*}
M T B F=\frac{\sum_{e_{n} \in e_{+}} P_{e_{n}} . T_{e_{n}}}{\sum_{i \in e_{+}, j \in e_{-}} P_{l} P_{i j}} \tag{43}
\end{equation*}
$$

where:
$P_{e n}$: stationary probability at state e_{n}
$T_{\text {en }}$: average time of occupation at state e_{n}
e^{+}: states of good functioning of system
e^{-}: failure's states of system

So we determine that

$$
\begin{equation*}
\operatorname{MTBF}=\frac{\left(\lambda_{0}+\mu_{1}\right)+\left(\lambda_{1}+\mu_{0}\right)\left(1+\mu_{1} / \lambda_{0}\right)}{q\left[\mu_{0}\left(\lambda_{0}+\mu_{1}\right)+\mu_{1} \lambda_{1}\right]+\lambda_{1}\left(2 \lambda_{0}+\mu_{1}\right)} \tag{44}
\end{equation*}
$$

So the frequency of stop of the oil pumps W_{0}, Refer to "(6)," can be calculated as follows :

$$
\begin{equation*}
W_{0}=\frac{1}{M T B F} \tag{45}
\end{equation*}
$$

The time of repair T_{r} Refer to "(6)," of the E.F.S in case of failure is calculated as follows:

$$
\begin{equation*}
T_{r}=\frac{\sum_{e_{n} \in e-} P_{e n} . T_{e_{n}}}{\sum_{i \in e+, j \in e-} P_{l} \cdot P_{i j}} \tag{46}
\end{equation*}
$$

We determine that:

$$
\begin{equation*}
T_{r}=\frac{q\left[\mu_{0}\left(\lambda_{0}+\mu_{1}\right)+\mu_{1} \lambda_{1}\right] T_{e 2}+\lambda_{1}\left(\lambda_{0}+\mu_{1}\right) / \mu_{0}+\lambda_{0} \lambda_{1} / \mu_{0}}{q\left[\mu_{0}\left(\lambda_{0}+\mu_{1}\right)+\mu_{1} \lambda_{1}\right]+\lambda_{1}\left(2 \lambda_{0}+\mu_{1}\right)} \tag{47}
\end{equation*}
$$

The cost of unavailability of the E.F.S. of the O.P.P. varies according to choise of the principal source and the source of reserve Fig. 4.

Fig. $4 \mathrm{C}_{\text {unav }}$ Functions of the choise of the principal source and the reserve source and the length of feeders

- 1. both sources are autonomous;
- 2. the main source is a line, the source of reserve is autonomous;
- 3. The autonomous source is principal, the line is the reserve source;
- 4. the two sources are external lines.
L_{cr} : the length criticized of the line for a selected level of voltage.

IV. Calculation Algorithm of the Optimal Alternative

The E.F.S. of the O.P.P. are represented on the basis of general principle of the graph theory [7], where the whole of the O.P.P. and the sources of electric energy represents the nodes $a_{1}, a_{2}, \ldots, a_{n}$ connected to each other by bonds, the mutual geographical place between the sources and O.P.P are defined by the co-ordinates of the nodes (x, y), (Fig. 5), $\mathrm{G}\left\{\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right),\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right), \ldots . .\left(\mathrm{x}_{\mathrm{n}}, \mathrm{y}_{\mathrm{n}}\right)\right\}$.

Fig. 5 Chart of the E.F.S. and the O.P.P.
$a_{1}, a_{2}, a_{3}, a_{4}:$ oil pumpings plants;
$a_{5}, a_{6}, \ldots, a_{14}$: external sources or autonomous;
----------------: lately built lines;

- : already existing lines.

The complete representation of the graph (Fig. 5.) is definited algebraically using the matrix A_{ij} (Fig. 6.) which is formulated as follows:

$$
A_{i j}=\left\lvert\, \begin{align*}
& -1 \text { if }\left(a_{i}, a_{\mathrm{j}}\right) \text { nodes bound by existing line } \tag{48}\\
& 0 \\
& 1 \text { if if }\left(\mathrm{a}_{\mathrm{i}}, \mathrm{a}_{\mathrm{j}}\right) \text { nodes bound by new line }
\end{align*}\right.
$$

	a_{5}	a_{6}	a_{7}	a_{8}	a_{9}	a_{11}
a_{1}	0	1	1	0	0	0
a_{2}	-1	0	0	1	0	0
a_{3}	0	0	-1	0	1	0
a_{4}	0	-1	-1	0	0	0

Fig. $6 \mathrm{~A}_{\mathrm{ij}}$ matrix defining the structure of the diagrams of the E.F.S. of the O.P.P.

On the basis of matrix A_{ij} defining completely the structure of the diagrams of power supply of the O.P.P., it easy to determine the length of the feeder L_{ij} :

$$
\begin{equation*}
\sqrt{L_{i j}=\left(x_{i}-x_{j}\right)^{2}+\left(y_{i}-y_{j}\right)^{2}} \tag{49}
\end{equation*}
$$

During the presence in the E.F.S. of $\mathrm{a}^{-\mathrm{rd}}$ O.P.P. an autonomous source $\mathrm{i}^{\text {-rd }}$, the length of the line is equal zero same if the $\mathrm{j}^{-\mathrm{rd}}$ and $\mathrm{i}^{- \text {rd }}$ nodes are bound i.e. $\mathrm{A}_{\mathrm{ij}}=1, \mathrm{~L}_{\mathrm{ij}}=0$.

The calculation of costs $\mathrm{C}_{\mathrm{T} 1}$ will thus carrying out as follows:
If $\mathrm{A}_{\mathrm{ij}}=1$ and $\mathrm{L}_{\mathrm{ij}} \# 0$, so the calculation costs $\mathrm{C}_{\mathrm{T} 1}$ is for the external source of the network, if $\mathrm{A}_{\mathrm{ij}}=1$ and $\mathrm{L}_{\mathrm{ij}}=0$ then the calculation of the $\mathrm{C}_{\mathrm{T} 1}$ is determined for the autonomous sources, in this case the losses of electric power are null, if A_{ij} $=-1$ and $\mathrm{L}_{\mathrm{ij}} \# 0$ the calculation of the costs $\mathrm{C}_{\mathrm{T} 1}$ is made or the already existing lines, this cost includes only the losses of electric power.

When considering that the cost of the unavaibility depends on the structure's alternative of the E.F.S. of the O.P.P.,(Fig. $1)$, it is necessary to determine the type of the structure's alternative chosen, that can be possible thanks to matrix A_{ij} and the $\mathrm{N}(\mathrm{i})$ operator, who fixes the number and the type of
the source (Table I).

TABLE I

| MATRIX A_{J} AND THE N(I) OPERATOR |
| :---: | :---: | :---: | :---: |
| $1 \mathrm{~s} /$ system $2 \mathrm{~s} /$ system $\mathrm{N}(\mathrm{i})$
 sources
 $\mathrm{A}_{\mathrm{ij}}=1, \mathrm{~L}_{\mathrm{ij}} \# 0$ $\mathrm{~A}_{\mathrm{ij}}=1, \mathrm{~L}_{\mathrm{ij}} \# 0$ 2
 $\mathrm{~A}_{\mathrm{ij}}=1, \mathrm{~L}_{\mathrm{ij}}=0$ $\mathrm{~A}_{\mathrm{ij}}=1, \mathrm{~L}_{\mathrm{ij}} \# 0$ 1
 externales
 sources
 $\mathrm{A}_{\mathrm{ij}}=1, \mathrm{~L}_{\mathrm{ij}}=0$ $\mathrm{~A}_{\mathrm{ij}}=1, \mathrm{~L}_{\mathrm{ij}}=0$ 0
 1 line and 1
 autonomous
 source |

If $N(i)=2$, the cost of unavailability is calculated for the structure's alternative (Fig. 1a.).
If $N(i)=1$, the cost of unavailability is calculated for the structure's alternative (Fig. 1b.).
If $N(i)=0$, the cost of unavailability is calculated for the structure's alternative (Fig. 1c.).

During calculation, it is necessary to take into account the following technical contraints:

1. the number of sources is limited to two.
2. The sources where the O.P.P. are dependent must have a sufficient power.
3. The length of lines should not exceed the length critized $L_{\text {cr }}$ for a selected level of voltage.

V. Conclusion

The method presented makes it possible to determine the optimal structure's alternative of the E.F.S. of the O.P.P. taken in a single system (technological process and electric feeder system). This method doesn't take into account economic parameters but the indices of reliability as well.

In this context, a data-processing program was elaborate to offer best alternative of the electric feeder systems of the oil pumping plants. This program has been approved by the national company of oil and gas (Sonatrach) in Algeria.

REFERENCES

[1] Wang W., Loman J., reliability/Availability of K-out-of-N system with Standby units, proceedings of annual reliability and maintainability symposium, 2002.
[2] Okornov V.R., management of the electromechanical systems, principles and methods technico-economic, 1976, 128p.
[3] Menchov B. G., Bouguerra M., optimal development of the electric systems of the gas industrial dacilities, Omsk, 1987, pp. 67-70.
[4] Korolok V. Tourbine A.F., Processus semi-markoviens et leur application, Kiev, 1976.
[5] Bouguerra M., Benouareth A. Optimal rebulding of the electric feeder system of the gas comprssors plants, ICEEC'04, Cairo, pp. 849-851, 2004.
[6] Erchov M.S. effectiveness of the redundancy of the electric feeding system, Moscow, pp. 90-93, 1983.
[7] Kristofides N., graph theory, p. 427, 1976.

[^0]: Authors are with Department of automation and electrification of the industrial processes, Faculty of hydrocarbons and chemistry, University of Boumerdes, Algeria (e-mail: m_ourad59@yahoo.fr).

