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Abstract: Dynamic software updating (DSU) consists in updating running 
programs on the fly without any downtime. This feature is interesting in critical 
applications that must run continuously. Because updates may lead to safety 
errors and security breaches, the question of their correctness is raised. Formal 
methods are a rigorous means to ensure the correctness required by applications 
using DSU. In this paper, we present a formal verification of correctness  
of DSU in a Java-based embedded system. Our approach is based on  
three major contributions. First, a formal interpretation of the semantic of  
update operations to ensure type safety of the update. Secondly, we rely on a 
functional representation of bytecode, the predicate transformation calculus and 
a functional model of the update mechanism to ensure the behavioural 
correctness of the updated programs. It is based on the use of Hoare predicate 
transformation to derive a specification of an updated bytecode. Thirdly, we 
use the functional representation to model the safe update point detection 
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mechanism. This mechanism guarantees that none of the updated methods are 
active. This property is called activeness safety. We propose a functional 
specification that allows to derive proof obligations that guarantee the safety of 
the mechanism. 

Keywords: dynamic software updating; DSU; formal verification; weakest 
precondition calculus; dynamic update safety; critical systems. 
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1 Introduction 

During their life cycle, programs need to be updated in order to change their semantics, 
perform optimisations or add features. Dynamic software updating (DSU) consists in 
updating running programs on the fly without any downtime. Systems implementing this 
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feature require high availability. Indeed, in some applications such as banking, air traffic 
control and health support software, interrupting the application to perform a classical 
shut down, update and restart leads to considerable losses. 

Dynamic software updating raises three major scientific problems: code and data 
update, update timing and update correctness. The first and the second issues are tackled 
by DSU systems by defining techniques such as functions indirection for code update 
(Chen et al., 2007; Duggan, 2005), state transfer functions for data update (Hayden et al., 
2011; Gupta and Jalote, 1993) and introspection approaches to determine safe points to 
perform dynamic updates (Subramanian et al., 2009; Noubissi et al., 2011). These 
techniques are used in DSU systems in several application areas such as embedded 
systems (Lv et al., 2012; Noubissi et al., 2011), real time systems (Wahler et al., 2009; 
Seifzadeh et al., 2009) and operating systems (Arnold and Frans, 2009). 

Given the increasing need for DSU and its use in critical systems, the question of its 
correctness is raised. In fact, a dynamic update may introduce errors which may alter the 
execution, leading the system to an unexpected state. Besides, in some cases, the update 
is critical (e.g., in smart card application) in such a way that an attacker can take 
advantage of an incorrect update. In such applications, that have to be managed from 
security and safety point of view, the update must pass some certification procedures for 
example Common Criteria (2015). For a certain certification level, one has to provide a 
formal proof of the security mechanism implemented. A formal way to specify updates 
and verify their correctness is then necessary. 

In this certification scheme, seven evaluation assurance levels (EALs) are defined. 
These levels are a measure of assurance quality, where EAL 7 is the strongest. 
Assessment at the two highest levels, EAL 6 and 7, requires formal methods and gives 
not only the assurance that the security functions are implemented, but also that these 
functions are correct with respect to the security policies defined in the security target of 
the product. In the particular case of DSU, new issues are raised. Indeed, the certification 
process is a static view of a system and therefore requires specific treatment for certifying 
dynamic systems. Recently, the French ANSSI (Agence Nationale de la Sécurité des 
Systèmes d’Information) has proposed a dedicated process (ANSSI, 2015) allows to 
certify a product that can be dynamically changed, certifying only the update code and 
the loader. It defines the concepts and the methodology applicable to the evaluation of a 
product embedding a code loading mechanism and the usage of this loader as part of the 
assurance continuity process. 

DSU correctness does not rely on a unique definition. It is instead based on the 
consideration of several correctness criteria, which can be divided into two categories. 
The first category regroups common properties that are shared by all updates such as type 
safety (Hjálmtýsson and Gray, 1998; Neamtu et al., 2006; Makris, 2009; Zhang et al., 
2012) and consistency (Baumann et al., 2005; Hjálmtýsson and Gray, 1998). The second 
category refers to specific properties related to the semantics of updated programs 
(Hayden et al., 2012; Anderson and Rathke, 2009; Charlton et al., 2011). 

In this work, we study the case of a DSU system for Java Card applications. The 
system presented in Noubissi et al. (2011) called EmbedDSU is a system developed to 
implement DSU functionalities for Java card applications. It is based on two parts:  
off-card and on-card. In the off-card part, a module called DIFF generator computes the 
syntactic changes between the old and the new version of the application and generates a 
DIFF file (called also a patch). This patch is then sent to the card to perform the update 
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by other modules implemented by extending the Java card virtual machine. These 
modules represent the on-card part of the system. 

The main objective of this paper is to deploy formal methods to guarantee correctness 
properties of EmbedDSU. We will focus on three properties: 

• Type safety: this property is meant to ensure that data types for the program’s 
constants, variables and methods comply to the contract defined by the class they 
belong to. It represents the corner stone of Java-based applications safety. In this 
work, we guarantee that updated programs do not introduce type errors. 

• Behavioural correctness: once type safety is established, we consider the second 
property related to the behaviour of the updated program. We present an approach to 
establish that the obtained program, once the update is performed, implements the 
intended specifications which are expressed by the programmer before calculating 
changes off-card. 

• Activeness safety: the third property is related to the computation of a safe update 
point. Searching a safe update point to perform DSU is a critical concern. Indeed, a 
hazardous application of DSU leads to errors in the application. We present a 
mechanism that brings the system into a quiescent state to perform the update. The 
main condition of the quiescent state is the absence of updated methods in the list of 
active methods of the application. This property is called activeness safety criteria. 
We propose a formal specification of the safe update point (SUP) detection 
mechanism and we derive proof obligations that guarantee the property. 

The contributions of this paper are: 

1 A formal semantics for update operations at the instruction level (adding, deleting 
and modifying instructions) 

2 An extension of the formal semantics to consider more updates operations related to 
methods and fields (adding, deleting and modifying methods and fields) 

3 Establishing the soundness of the semantics: this contributes, with contributions in 
items 1 and 2, to establish type safety property 

4 An approach for formal verification of the specification of updated programs. This 
contribution leads to establish the behavioural correctness 

5 Specification of the search SUP module and proposition of an approach based on 
functional specifications to establish the activeness safety property. 

The contributions 2, 3, formalisation details of 4 and the contribution 5 represent the 
novelty of this paper with regard to our conference paper (Lounas et al., 2015). 

This paper is organised as follows: Section 2 gives an overview of EmbedDSU. 
Section 3 introduces the language and the formal semantics of updates, as well as the 
guaranteed type safety property. In Section 4, we present an approach to verify the 
semantics of updated programs. We present our functional modelling of Java bytecode 
and propose a predicate calculus for update operations to ensure the verification of 
behavioural correctness property. In Section 5, we present formal specification of the 
SUP search mechanism and the verification of the activeness safety property. We discuss 
related work in Section 6 and conclude in Section 7. 
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2 Overview of EmbedDSU 

EmbedDSU, introduced in Noubissi et al. (2011), is a software-based DSU technique for 
Java-based smart cards which relies on the Java card virtual machine. The virtual 
machine interprets Java card programs once they are compiled to bytecode and loaded to 
the card. The system EmbedDSU is based on the modification of the virtual machine 
(VM). 

2.1 The system architecture description 

The system EmbedDSU is composed of two parts: the off-card part and the on-card part. 
Its architecture is illustrated by Figure 1: 

• In off-card, a module called DIFF generator determines the syntactic changes 
between versions of classes in order to apply the update only to the parts of the 
application that are really affected by the update. The changes are expressed using a 
domain specific language (DSL). Then, the DIFF file result is transferred to the card 
and used to perform the update. 

• The on-card part is divided into two layers: 
1 Application layer: the binary DIFF file is uploaded into the card. After a 

signature check with the wrapper, the binary DIFF is interpreted and the 
resulting instructions are transferred to the patcher in order to perform the 
update. The patcher initialises data structures for update. These data structures 
are read by the update module module to determine what to update and howto 
update, by the safeUpdatePoint detector module to determine when to apply 
the update and by the rollback module to determine how to return to the 
previous version in case of update failure. These points require the 
introspection of the virtual machine. 

2 System layer: the modified virtual machine supports the followings features: 
a Introspection module which provides search functions to go through VM 

data structures like the references tables, the threads table, the class table, 
the static object table, the heap and stack frames for retrieving information 
necessary to other modules 

b update module which modifies object instances, method bodies, class 
metadata, references, affected registers in the stack thread and affected VM 
data structures 

c SafeUpdatePoint detector module allows detecting SUP in which we can 
apply the update by preserving coherence of the system. 

The system EmbedDSU is suitable for smart cards especially in term of resource 
limitations. It was established that sending a DIFF file is less resource consuming than 
sending the whole new version to the card and perform updates and that the resources 
implied by the update modules are acceptable in term of memory occupation (Noubissi, 
2011). 
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Figure 1 Architecture of EmbedDSU (see online version for colours) 

 

2.2 The update process 

The system EmbedDSU updates three principal parts: 

• the bytecode: the process updates first the bytecode of the updated class and the meta 
data associated with it, e.g., constant pool, fields table, methods table. 

• the heap: the process updates the instances of the updated class in the heap, obtains 
new references for modified objects and updates instances using these references. 

• the frames: the process updates in each frame in the thread stack the references of 
updated objects to point to new instances. 

Figure 2 Example of a patch (DIFF file) 

 

Update process starts by updating method bodies and class meta data of the class to be 
updated and related classes. The DIFF file includes information on entries of each 
modified method, parameters, local variables and bytecode instructions. Then, to update 
the code of a class, the update module proceeds by copy while modifying class meta data 
like constant pool, field table, method table and constant table. For each method that is 
not deleted, the process copies while modifying method header and bytecode instructions 
so that the old version is transferred to a new space while modifying it to obtain the 
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corresponding new version of the class. After updating the class, update process 
continues with the update of all other constant pools of related classes to modify 
references to old methods or fields in order to point to the new field entry table, or to 
point to the new method. 

This paper addresses first the bytecode update at the method level. In bytecode 
language, each instruction consists of an opcode specifying the operation to be 
performed, followed by zero or more operands. The types of updates that may occur are: 
adding, modifying or suppressing bytecode instructions, methods, local variables and 
fields. These updates are contained in the DIFF file which indicates the update and where 
it occurs. For example, Figure 2 shows an updated Java program (at the left side) and the 
corresponding modification at bytecode level, the patch (at the right side) indicates that 
the instruction iadd in the method compute_sum is deleted and the instruction isub is 
added at the same place provided by the program counter. We studied the update of 
instances in the heap and updating references in the stack in a previous work (Lounas  
et al., 2014). The SUP detection mechanism is detailed in Section 5. The next section 
presents the bytecode language, its semantics and a formal semantics of update 
operations performed by EmbedDSU. 

3 Language and semantics for type safety 

In this section, we present our formalised language. It provides a representative subset of 
bytecode instructions related to stack manipulation, object creation, arithmetic, fields, 
methods invocation and jump instructions. We also give a formal semantics for update 
operations. In the present paper, we extend the formal semantics given in our conference 
paper (Lounas et al., 2015) which deals only with update operations at instruction level 
(adding, deleting and modifying instructions). Here, we add the semantical rules for 
update operations related to methods and fields (adding, deleting and modifying methods 
and fields). This will help us to characterise well-formed updates. 

3.1 The language 

In Freund and Mitchell (1999), the authors present a formalisation of the semantics of a 
small Java bytecode based on a type system. Our proposition is mainly built by adding 
update instructions (Upd_Instr) to manage addition, deletion and modification of 
instructions within a method code. We introduce the following notations in our language 
definition: x, a, L, A, f, l, t and pc to denote respectively: a local variable, a constant, an 
instruction address, a class name, a field name, a method name, field type and method 
signature and the program counter. 

: | | | | |
| | | | |
| | |

Instruction pop if L store x load x new A
binop neg const a invokevirtual A l t goto L
getfield A f t putfield A f t return

=
 

_ :: _
| _
| _

Upd Instr Add Inst Instruction pc
Dlt Inst Instruction pc
Mod Inst Instruction instruction pc

=
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The instruction pop extracts the top of the stack and const a pushes a constant a on the 
top of the stack. The instruction load x pushes the value in the variable x on the top of the 
stack whereas the instruction store x pops the top of the stack and stores it in the variable 
x. The instruction if L jumps to L if the top of the stack is not zero else it performs the 
next instruction. Goto L jumps to L. The instruction New A allocates a new object of type 
A and pushes it on the top of the stack. The instructions manipulating fields are: getfield 
A f t and putfield A f t. Getfield reads the field f, which has the type t of the object of class 
A whose reference is on the top of the stack and pushes its value on the top of the stack 
and putfield modifies the field f with the value popped form the stack. The instruction 
invokevirtual invokes the method l of signature t and the class A. The instruction binop is 
used to gather arithmetic binary operations: add, mult and sub. The instruction neg 
negates the top of the stack and return is for method return. We notice that a modification 
on an instruction is interpreted as a deletion followed by an addition. 

Update instructions are respectively: adding an instruction, deleting instruction and 
modifying an instruction. We indicate the place of the update operation with pc. We will 
introduce further in this section, the update operations related to inserting, deleting and 
modifying methods and fields. 

3.2 Operational semantics for bytecode instructions 

The operational semantics is defined by a transition relation over configurations. In our 
model, based on the standard framework for operational semantics [see Freund and 
Mitchell (1999) and Bannwart and Müller (2005)], a configuration represents a step 
execution and is denoted by a tuple <M, s, h, f, pc> where: s consists of an operand stack, 
h represents the heap containing created instances, f a local variables map associating 
values to local variables, pc is a program counter and M the method body. A transition 
<M, s, h, f, pc> → <M, s2, h2, f2, pc2> takes the state from the configuration <M, s, h, f, 
pc>to the configuration <M, s2, h2, f2, pc2>. The rules for the instructions of our 
language are given in Figure 3. 

• The rule (Rpop) indicates that the instruction pop extracts the top of the stack to 
obtain another configuration. The rule (Rnew) indicates the creation of a new object 
of class A, thereby the modification of the current heap. A reference to the new 
object is pushed onto the stack. 

• The rule (Rldx) puts the value of x on the top of the stack and the rule (Rstx) pops a 
value from the stack and assigns it to a variable, f is modified accordingly. 

• The instruction if L has two rules (Rif1 and Rif2). It either jumps to the indicated line 
or performs the following instruction according to the value of the top of stack. 

• The rule (Rcst) indicates that a constant is pushed on the stack and the rule (Rneg) 
indicates that the top of the stack is replaced by its opposite. 

• The rule (Rget) indicates that the value of the field f is obtained and pushed on the 
stack, whereas the rule (Rput) updates the heap with the new value of the field of the 
object which is on the top of the stack. The new value is popped from the second 
element of the stack. 
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• The unconditional jump Goto l is expressed by the rule (Rgto). The rule (Rop) 
indicates that a binary arithmetic operation pops two values from the stack, performs 
the binary operation and pushes the result. 

• The rule (Rinv) expresses invoke of the method l on an object reference. The 
reference and parameters are popped from the stack and are replaced by the return 
value v of the invoked method after its execution. 

The operational semantics gives a clear presentation of bytecode instructions and is a step 
to introduce the semantics of insertion and suppression of instructions which is discussed 
in the next section. 

3.3 Formal semantics for update instructions 

Lounas et al. (2015) presented a static semantics that expresses the effects of the update 
instructions in a configuration of the bytecode. This semantics is designed to describe 
conditions and results of update instructions. The particularity of this semantics is the 
expression of typing information related to local variables and operand stack of a method. 
This information is tracked step by step and thus prevents type errors in the updated code. 

Figure 3 Rules for operational semantics 

 

3.3.1 Concepts and notations 

To express our semantics for update operations, we need to introduce some concepts and 
notations: 

• Typing information: in this semantics, we introduce two elements in order to track 
typing information: F and S. F is a mapping from a program point (representing an 
instruction address) to a mapping from a frame variable to a type. S is a mapping 
from a program point to an ordered sequence of types, i denotes a program point or 
an address of code. The map Fi gives a type of local variables at program point i. The 
string Si gives the types of entries in the operand stacks at program point i. These F 
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and S are useful to our semantics since they contain typing information about valid 
local variables and entries in the operand stack respectively. The empty sequence of 
types is denoted by (ε). The symbol  is used to represent a default initial value in 
typing variables. 

• Configuration information: we consider configuration at line i as a tuple  
<(F, S, SD, M), i> where F and S represent typing information, SD represents the 
stack depth, M is a mapping that associates a number to each line of the code. It is 
obtained by a function noted Map on a bytecode BC. 

3.3.2 Semantics rules 

The goal of expressing semantics of update operation with typing information is to 
establish that the update leads to well typed programs. We are, now, able to define the 
judgement that expresses that a bytecode BC is well typed by F and S is: 

1

1

, 1 0
, 1 ( )

( ), , ,
,

i

F F SD
S ε M Map BC

DOM BC F S i BC
F S BC

= =
= =

∀ ∈  

Figure 4 Some rules for update operations for instructions 

 

The first two lines of the judgement represent the initial configuration: all variables are 
mapped to the value , stack depth is zero, the sequence of types is initially empty and 
M1 is the initial mapping of the bytecode. In the last line, DOM(BC) is the set of 
addresses used by the method. The expression F, S, i  BC expresses that BC is well 
typed until the step i in the evaluation and the entire line expresses that the program BC is 
well typed at each step i in the evaluation. This premiss is derived from the semantics of 
update operations. The conclusion of the judgement expresses that BC is well typed. 
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Figure 4 shows four rules of update operation semantics. Transitions through 
configurations represent the evolution of typing information step by step (notations Fi 
and Si) and ensure that the program is well typed at each step. In these rules, the 
information PC_MAX is used to express the maximum offset in a method bytecode. For 
illustration, the insertion of the instruction new A at line i + 1, represented by the rule 
(Rup1), allows us to obtain a new configuration if the stack depth is incremented, local 
variables are not affected and the type A is inserted at the top of the stack. For the 
insertion of an instruction representing an arithmetic binary operation Binop, we show the 
rule (Rup3) of the instruction add which is a special case of Binop: this operation pops 
two elements (integers) from the stack and then pushes the result. mult and sub have 
analogous explanations by writing the right operation. In these rules, the mapping M2 is 
the result of operations on M1. The operations which represent manipulations on 
bytecode are: range and shift. The operation range extracts from a mapping M1 a part M2 
included between line n and line m. The second operation shifts a part from a mapping 
between n and m for p positions which is determined by the number of added 
instructions. 

We define the operations look_for_jumps and update_jumps to take into account 
jumps in bytecode transformation: look_for_jumps returns from a mapping a list of jumps 
instructions represented by their line number and the operation update_jumps updates 
jump instructions: 

_ _ :
_ : int int

Look for jumps mapping int list
Update jumps mapping list mapping

→
∗ ∗ →

 

Table 1 Example for typing information track 

i Instruction Fi Si 
0 const 0 (1, int), (2, int), (3, int) int.ε 
1 store 3 (1, int), (2, int), (3, int) ε 
2 load 1 (1, int), (2, int), (3, int) int. ε 
3 load 2 (1, int), (2, int), (3, int) int.int. ε 
upd Del_inst add (4) (1, int), (2, int), (3, int) int.int ε 
upd Add_inst sub (4) (1, int), (2, int), (3, int) int.int ε 
4 sub (1, int), (2, int), (3, int) int. ε 
5 store 3 (1, int), (2, int), (3, int) ε 
6 load 3 (1, int), (2, int), (3, int) int. ε 
7 return (1, int), (2, int), (3, int) ε 

These operations update jumps within the bytecode if necessary. When we add for 
instance an instruction at pc, the instructions after this position are shifted and their 
numbers change. It is then necessary to update goto and if instructions accordingly. These 
modifications keep the structure of the bytecode coherent. In the rules for instructions 
suppression (Rup2 and Rup4), the notations Effect_STK, Effect_F and Effects_SD are 
used to express the effects of an instruction on the stack and the local variables and stack 
depth. They are used to readjust these elements to the instruction at (i + 1) in the new 
bytecode after the suppression. The notation (M2)F (respectively, (M2)S) is used to 
express F (respectively, S) in the mapping M2. We notice that in this formalisation, a 
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modification is considered as suppression followed by an insertion. The remaining rules 
for inserting and suppressing instruction are given in the appendix. To illustrate how 
typing information evolves according to the semantics of (update) instructions, we 
reconsider the same program shown in Section 2 to illustrate DIFF files. The function 
computing the sum of two integers is rewritten in our bytecode sub language. The update 
consists in deleting add instruction and inserting sub. The evolution of typing information 
is shown in Table 1. The first column represents the number of the instruction. Update 
instructions (colored rows), are indicated by upd. The third column represents the 
evolution of typing information related to local variables. Local variables are represented 
by integers (1, 2 and 3). A type is associated to every variable. A variable and its type are 
represented as a couple (var, type). The evolution of the types in the operand stacks are 
shown on the fourth column. At the level of update instructions, the typing information 
guarantees that local variables and operand stack conforms the requirements of such 
instructions defined by the semantics. 

3.4 Formal semantics for methods and fields 

In this subsection, we propose a new extension of the formal semantics to handle 
methods and fields in a class. In this formalisation, a class C is defined by: 

• its name 

• a method table (noted Mt): which is a structure containing an entry for every method 
m in the class 

• a field table (noted Ft): which is a structure containing entry for every field f in a the 
class 

• its meta-data Meta including a constant table, status and an offset Table. 3. 

3.4.1 Methods 

This subsection presents the semantics to handle modifications related to methods. A 
method is defined with: its name m, its code BC, its signature sig and a structure to 
represent method information (Im) including: the maximum of local variables and the 
max_stack. Three cases are considered: 

• Add_method: this operation leads to the introduction of a new method in a class C. 

• Dlt_method: this operation leads to the suppression of a method from a class C. 

• Mod_method: this operation leads to an override of an existing method in order to 
implement a new version in a class C. 

The formalisation requires the definition of extension to the functions and mappings 
about type information. We introduce the sets M, Fs, Ss representing respectively: 

• the set of method names 

• the set of mappings F from a program point to a mapping from variables to types 

• the set of mappings S from a program point to an ordered sequence of types. The 
string Si gives the types of entries in the operand stacks at program point i. 
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Mappings F and S keep the same definition introduced in update operation semantics for 
instructions. We define two functions Fc and Sc: 

• the function Fc: M → Fs is used to associate each method m in the class C to a 
mapping F representing its variables typing information 

• the function Sc: M → Ss is used to associate each method m in the class C to a 
mapping S representing its operand stack typing information. 

These functions and information are used to formalise the semantics of three cases as 
shown on Figure 5. Every case is represented by a rule that captures the condition that 
ensures type safety of update operations. 

The rule (Rm1) expresses the introduction of a new method. In this rule, the first line 
represents the operation. The second line represents a check that the introduced method 
already exists in the method table. This check ensures that the operation does not 
inadvertently replace an existing method with the same name. The function 
look_for_entry returns a boolean true if a method with the same name and signature 
exists, false otherwise. In this case, an entry for the introduced method is created in the 
method table with the function create_entry. The creation of the entry leads to create and 
initialise typing information related to the inserted method (lines 4, 5 and 6). The function 
upd_meta is used to update meta data of the class with information related to the method 
(offsets table). 

The rule (Rm2) formalises the operation of deleting a method. The check at the 
second line ensures that an entry for the methods exists in the method table. This 
operation leads to the suppression of this entry. Typing information about the deleted 
method is deleted as well. Offsets are adjusted with upd_meta. 

Figure 5 Rules for introducing, deleting and modifying methods 

 

The rule (Rm3) expresses the modification of an existing method. The check at line 2 of 
the rule ensures that this method has already an entry in the method table (we notice that 
an update in a signature is considered as deleting a method and introducing a new 
method). The typing information Sc(m) is re-initialised in order to perform the update 
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from the method beginning. The typing information Fc(m) is re-initialised after 
performing potential updates in locals (var_upd(m, Im.loc)). Typing information must 
validate the correctness of all the instructions in the new bytecode BC of the method (the 
last premiss). This condition is based on the check performed at instruction level and 
defined in the previous subsection. The function (var_upd(m, Im.loc)) is used to manage 
updates in local variables of a method. The case of adding, deleting or modifying a local 
variable is a particular part of method modification. An introduced variable is defined 
with its name and type. Rules for variables are given in the appendix. 

We notice that in the rules for methods (and fields in the next subsection), the 
conclusions are not expressed as evolution of configurations. They express directly the 
fact of obtaining a well typed program. This is due to the fact that configurations are used 
to express evaluation within the code of a method (at instruction level) and that 
operations for adding, deleting or modifying methods (or fields) are expressed at the level 
of a class. The second reason is that the impact of such operations on instructions is 
detected and held at update operations related to instructions. 

3.4.2 Fields 

We present in this section an extension of the semantics to handle modifications related 
to fields. In this formalisation, a field is represented by its name f and its type tf. An entry 
in the field table is created for every field in the class. The typing information is supplied 
by a mapping to keep track of typing information for fields. This is represented by the 
mapping Fl which associates a type for each field at every point in the program. Figure 6 
represents the rules to check adding, deleting and modifying a field in a class. 

Figure 6 Rules for introducing, deleting and modifying fields 

 

The rule (Rf1) expresses the introduction of a new field. In this rule, similarly to the case 
of methods rule, the first line represents the operation. The second line represents a check 
if the introduced field already exists in the field table. The function look_for_entry 
returns a boolean true if a field with the same name and type exists, false otherwise. In 
this case, an entry for the introduced field is created in the field table with the function 
create_entry. The information about the type is recorded in Fl. 

The rule (Rf2) formalises the operation of deleting a field. The check at the second 
line ensures that an entry for the field exists in the field table. This operation leads to the 
suppression of this entry and the typing information related to it. 

The rule (Rf3) expresses the modification of an existing field. The check at line 2 of 
the rule ensures that this method has already an entry in the method table (the same name 
and the same type). The modification concerns only the modification of the value of a 
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field with Set_val. A modification of the type is considered as a suppression of the old 
field followed by the insertion of the new field. Thus, in this case, there is no operation 
on Fl. 

3.5 Soundness 

In this subsection, we outline the soundness of the update. The global soundness theorem 
states that a well-typed program and a well formed update operations (ensured by the 
semantics) leads to a well typed updated program. We present first a lemma to express 
that the program is well typed initially, then a single step update soundness to express 
that an update operation from a well typed program leads to another well typed program. 

Definition 1: (Initial soundness).We consider a bytecode BC, its initial mapping M, its 
typing information F and S and a DIFF file Δ containing update instructions. At the initial 
configuration <F , ε, 0, M, 0>, where variable types are initialised at their default value, 
typing stack information is empty, stack depth is zero and the number of the evaluation 
step is zero, the program is well typed, we write: F, S, 0  BC. 

Lemma 1: (Single-step update soundness). Given a bytecode BC, typing information F 
and S, a mapping M and a DIFF file Δ containing update instructions, we have: 

( )

, , , ( ), .
, ,

, , , , , , , ,
( )

, ,

j

i i i i

SD SD N i i DOM BC j N
F S i BC

F S SD M i F S SD M i
j length
F S i BC

Δ

′ ′

′ ′∀ ∈ ∈ ∈

′ ′ ′∧ < > → < >
∧ ≤ Δ

′⇒

 

This lemma expresses that the evaluation of an update instruction from a step i such that 
the bytecode is well typed until i leads to a well typed bytecode until the next evaluated 

step. The transition 
( )jΔ

→  represents the application of the update instruction at line j 
which has to be a valid line in the DIFF file Δ. The expression length(Δ) represents the 
number of update instructions in the DIFF file Δ represented as a list of update 
instructions. M′ represents the resulting mapping. 

Proof sketch. The proof of this lemma is based on the different cases obtained by 
examining all the update instructions represented by their semantics. We sketch the proof 
by studying the cases of inserting new instruction and add: 

Case 1 Δ(j) represents the update instruction add_inst new A (i + 1). We assume that 
the hypotheses are satisfied. This update instruction leads, by the semantics, to 
a configuration where: Fi′ = Fi, Si′ = A.Si, SD′ = SD + 1, i′ = i + 1 and the 
mapping M′ is obtained by inserting in M the new instruction by applying shift, 
range and Update_jumps operations. 

Case 2 Δ(j) represents the update instruction add_inst add i + 1. We assume that the 
hypotheses are satisfied. This update instruction leads, by the semantics, to a 
configuration where: Fi′ = Fi, Si′ = int.S0 such as Si = int.int.S0, SD′ = SD – 1,  
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i′ = i + 1 and the mapping M′ is obtained by inserting the new instruction in M 
by applying shift, range and Update_jumps operations. � 

The soundness of a single step in the update leads to express multiple step and method 
update soundness. 

Lemma 2: (Multiple-step update soundness). Given a bytecode BC, typing information F 
and S, a mapping M and a DIFF file Δ containing update instructions, we have: 

( )

, , , ( ), .
, ,

, , , , , , , ,
( )

, ,

j

i i i i

SD SD N i i DOM BC j N
F S i BC

F S SD M i F S SD M i
j length
F S i BC

Δ ∗

′ ′

′ ′∀ ∈ ∈ ∈

′ ′ ′∧ < > → < >
∧ ≤ Δ

′⇒

 

This lemma expresses that a sequence of sound single update steps starting from a well 

typed bytecode step leads to a well typed bytecode at the resulting step. The symbol 
( )jΔ ∗
→  

represents the application of update instructions contained in Δ ranging from the first 
update instruction to the jth update instruction. This can be represented by a sequence of 
transitions starting from the configuration corresponding to i and finishing at the 

configuration corresponding to 
(1) (2) ( )

1 2: .
j

i i i ii C C C C M
Δ Δ Δ

′+ +′ ′→ → →K  represents the 
resulting mapping. 

Proof sketch. The proof of this lemma is by induction on the length of Δ(j∗). We assume 
that the hypotheses are satisfied: 

Basis case length(Δ(j∗)) = 0. The configuration remains unchanged and thus, 
satisfied by hypothesis. 

Induction case we suppose that the property is satisfied for length(Δ(j∗)) = n. Thus, for 
length(Δ(j∗)) = n + 1, the demonstration follows the same pattern as 
lemma 1, on the basis of examining the cases of the update instruction 
number (n + 1). � 

This lemma introduces the update at the level of an entire method. 

Theorem 1: (Method update soundness). Given a method m, its bytecode BC, an initial 
mapping M, typing information F and S and a DIFF file Δm containing update instructions 
related to the method. The update of a method m according to Δm starting from an initial 
configuration C0 such as C0 = <F , ε, 0, M, 0> leads to a well typed program. 

0
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In this theorem, the soundness of a method update with update instructions contained if a 
DIFF file Δm starting from an initial configuration leads to a well typed method code. The 
step i′ represents the configuration obtained after the application of all the DIFF file Δm. 

The transition 
mΔ

→  represents the application of update instructions contained in Δm which 

can be represented by a sequence of transitions 
(0) (1) ( )

0 1 2
m m m j

iC C C C
Δ Δ Δ

′→ → →K  where Δm(j) 
represents the last update instruction in the DIFF file. The rest of the evolution until the 
end of the method (reaching the return instruction) is evaluated with the standard 
bytecode instruction of the language (Freund and Mitchell, 2003). The demonstration of 
this theorem is by induction of the length of the DIFF file related to the method. Thus, the 
proof follows the same scheme as for lemma 2. 

We express now the general soundness theorem. This theorem guarantees the 
soundness of all types of updates operations contained in the DIFF file (instructions, 
methods and fields). 

Theorem 2: (General soundness). Given a class C, its set of methods Meth_c, typing 
information sets for methods Fs and Ss, a DIFF file Δ and typing information Fc, Sc and Fl 
for the class, the update of C with regard to Δ leads to a well typed program if and only 
if: 
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field f tf val F S Fl f tf C

i Del field f tf F S Fl f tf C

i Mod field f tf val F S Fl C

⇒ ∧

Δ = ⇒ ∧
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In this theorem, all types of update performed in a class are considered. The updates are 
contained in the DIFF file. The variable i is used to indicate the current update 
instruction. 

The number of update instructions in the DIFF file are represented by length(Δ). 
When dealing with method modification, we consider that the updates related to the 
method are specified in a Δm which is a part of the general DIFF file Δ. In this theorem, 
Fm and Sm express typing information for a method m. It is initialised to default value and 
empty when inserting a new method. When modifying a method, its bytecode has to be 
well typed with regard to Fm and Sm (results from Theorem 1). The update operations for 
fields result straightforwardly from semantics rules. General soundness theorem ensures 
that the updated program will not attempt to perform any illegal operations and that all 
operations are sound with respect to the system type safety. The entire demonstration of 
these lemmas and theorems is planned to appear in a technical report. It implies that our 
model is correct by showing that no erroneous updated programs are accepted. 
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3.6 Application 

Given the fact that type safety represents the corner stone of the Java card platform safety 
and security, developing a verification tool to ensure this property for updated programs 
is a crucial issue. In the standard life cycle of a smart card application, a program must 
pass through bytecode verification before it is uploaded on-card. Bytecode verification is 
also performed on-card by type checking. 

The EmbedDSU system introduces a step in the life cycle of a smart card application. 
The virtual machine is extended to perform update operations and obtain a new version of 
the program. The process leads to a bytecode program which did not pass through the 
standard verification. Our semantics represent the first specification which captures how 
Java card bytecode must be checked for update. Based on this specification, our work 
extends the code update module with on-card verification. We developed a prototype for 
the verifier using our semantics. The formalisation is embedded in a system with high 
order logic (Coq proof assistant) in order to guarantee type safety. This property ensured, 
we have to tackle the behavioural correctness property. Indeed, once an updated program 
is ensured to be type safe, one has to guarantee that the intended specification is 
preserved by the application of the update operations contained in the DIFF file. This 
property is detailed in the next section. 

4 Approach for formal verification of behavioural correctness 

The mechanism of EmbedDSU implies the modification of the bytecode of a running 
application on-card after the conventional verification during its life cycle process. In this 
process, bytecode passes verification process based especially on type verification. The 
applications of update operations on-card are performed with insertion and suppression of 
instructions according to the DIFF file. Consequently, after the update process on-card, a 
new bytecode that was not submitted to the conventional verification process is obtained. 
Our work allows to: 

• Ensure the validity of update operations of the DIFF file according to the formal 
specification of the Java Card virtual machine specification and that the updates lead 
to a type safe program. This property was discussed in the precedent section. 

• Guarantee that the application of the update leads to a bytecode with the 
specification that conforms to the intended specification (provided by the 
programmer). 

• Guarantee that the update is applied at a safe point. This will be discussed in  
Section 5. 

In the second point, we aim to establish that given an initial program P1, its new version 
P2 and a DIFF file Δ containing the specification of the transformation derived from the 
differences between P1 and P2, the application of the DIFF file on-card on P1 (noted 
App_PATCH) leads to P2′. The two programs P2 and P2′ are verified to be semantically 
equivalent. This equivalence ensures that the system indeed implemented the desired 
transformation. This problem can be expressed equationally by: 
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1, 2, 2 , ( 1, 2 ) _ ( 1, ) 2 2P P P DIFF P P App PATCH P P P′ ′ ′∀ Δ = = Δ ⇒ ≡  

This raises two major issues: 

1 the modelling of the application of the DIFF file on an existing program 

2 the expression of the equivalence which guarantees the correctness of the update 
(noted ≡ in the equation). 

Figure 7 Approach for verification of behavioural correctness (see online version for colours) 

 

Figure 7 gives an overview of an off-card approach for formal verification of behavioural 
correctness of updated programs. The approach is split in three parts: 

• The transformation block: at this stage, we obtain from a first version of a bytecode 
program BC_V1 and a second version BC_V2 (version one transformed), a DIFF file. 
The versions BC_V1 and BC_V2 are supposed to be correct. The DIFF file will be 
applied to the on-card first version. We obtain a new version on-card. The goal of 
our approach is to establish that the on-card new version and BC_V2 are semantically 
equivalent. At this level, the specifications of both BC_V1 and BC_V2 are provided 
by the programmer using existing specification languages. 

• The functional block: a functional model is defined to represent and manipulate the 
Java Card bytecode. We implement an automatic translator called functional_reader 
which takes a program written in bytecode and produces a functional representation 
of it. The application of the DIFF file is represented at this level as annotations of the 
functional representation with expressions indicating the place of the update 
operation and its nature (addition of instructions, deletion …) 

• The verification block: the goal is to verify that the bytecode obtained by 
transformation is equivalent to the one written by the programmer, i.e., it satisfies the 
same specification. 

The specification of the obtained bytecode in its functional representation with 
annotations is performed by a weakest precondition calculus that we define specially to 
deal with update operations. Then, a verification condition generator gives statements to 
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be verified to establish that the obtained specification matches the specification given by 
the programmer at the transformation block. A proof assistant is used to discharge 
verification conditions. 

Figure 8 Bytecode annotation with update instructions (see online version for colours) 

 

4.1 Annotation and functional representation of bytecode 

The DIFF file containing the update instructions is calculated at bytecode level and then 
is sent to perform the update on-card. In order to ensure that we send the right one, we 
model its application on an initial version of bytecode P1 as annotations. The operation 
of annotating a bytecode with expressions indicating where an update instruction occurs 
and what is the operation involved can be defined recursively as an annotation function 
which transforms a program to an annotated program. 

( )
( ) ( )
[],

:: , _ _ , ( , )i i

Annot P P

Annot Upd P letP Add Annot Line Upd P in Annot P

≡

′ ′Δ ≡ = Δ
 

The annotation of a program with an empty DIFF file ([]) is the program itself otherwise, 
the function iterates over the update operations starting from the update instruction at the 
head of the DIFF file (Updi) in the DIFF file and adds a corresponding annotated line 
(Add_Annot_Line(Updi, P)) to the program. The rest of update instruction (Δ) is then 
considered. The symbol :: is a list constructor linking the head of the list to its rest. Figure 
8 shows an annotated program obtained by the application of a DIFF file on an initial 
bytecode. The annotations are represented as special comments. For example, Del 4: 
deletes the instruction at program counter (pc) 4 and add isub 4, adds the instruction isub 
at pc 4. 

In this framework, we use a functional representation based on the Coq specification 
language to represent manipulated data (integers, objects and variables), instructions of 
the sub language, update instructions, programs and annotated programs. The 
formalisation of these concepts is used to perform the calculus of the specification of 
updated programs using a dedicated calculus. This calculus and formalisation details are 
presented in the following subsection. 
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4.2 WP-based verification 

The approach for verification is based on the fact that the update of a program (of its 
semantics) implies the transformation of its specification. In Hoare (1969) logic, a 
program P1 and its specification is represented by a triple {pre1}P1{post1} where pre1 
(post1) is the precondition (postcondition) of the program P1. A new version of this triple 
written off-card by the programmer is {pre2}P2{post2} (called the target triple). The 
DIFF file is performed with P1 and P2 and then sent to the card to perform update 
operations, meaning, obtaining a new bytecode and a new specification. The goal is to 
establish that the target triple and the obtained triple after performing update operations 
match. 

4.2.1 Interpretation of the update 

In order to formally define the update interpreter, we need to define some notions. In this 
interpretation, a state is modelled by a three-tuple: <Heap, Frame, Stack_Frame> which 
represents the machine state where Heap represents the contents of the heap, Frame 
represents the execution state of the current method and, Stack_Frame is a list of frames 
corresponding to the call stack. A frame contains the following elements: the stack of 
operands OperandStack and the values of the local variables LocalVar at the program 
point PC of the method Method(<H, Method, PC, OperandStack, LocalVar>). The 
definition of the update interpretation is based on the notion of step. 

Definition 2: (Step) The semantics of an instruction (update instruction) is specified as a 
function step: Bytecode_Prog ∗ State ∗ Specification –> State ∗ StepName ∗ Specification 
that, given a bytecode BC, a state S and a specification SP, computes the next state S′, the 
name of the next step and a new specification. 

Definition 3: (Java bytecode update interpreter) We define an update interpreter 
(Upd_int) which iterates over steps. It takes as parameters an annotated program in its 
functional representation, an initial state and an initial specification and relies on 
predicate calculus and update interpretation function to produce a new state and a new 
specification. The interpreter is defined as Upd_int(BC, S) = (S′, Sp′), with S = initial(BC, 
Sp) representing the function for defining an initial state for the execution of the bytecode 
BC with the initial specification Sp. The bytecode BC is given with its parameters and an 
initial heap. The result of the interpreter is a state S′ and a new specification Sp′. 

Definition 4: (Verified updated bytecode) 

• Let P1 and P2 be the first and the new version of a program and P a patch 

• let P2′ = annot(P1, P) be the program obtained by annotation of P1 with P 

• let f(P2′) the functional representations of P2′ 

• let spec(P1) = (pre1, post1) the specification of P1 and spec(P2) = (pre2, post2) the 
specification of P2 

The program P2′ is a successfully verified update of P1 if and only if: 
verification(spec(P2), spec(P2′)) succeeds where spec(P2′) is obtained by a predicate 
transformation on f(P2′) starting from post2. 
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Table 2 Defining rules for weakest precondition calculus for update operations 

( ) ( )( )2_ @ ishift exp E=wp Add_instr(pop, i)  

( ) ( )( )2_ @ (0) /ishift exp E S x=wp  Add_instr(store x, i)  

( )( ) ( )( )2 2( ( , )) (0) 0 _ ( ) (0) 0 _ @ iS shift exp EL S shift exp E= = ⇒ ∧ ≠ ⇒wp Add_nstr if L i  

( ) ( )( )( )( ) _ _ @ / (0)iunshift exp shift exp E x S=wp Add_instr load x, i  

( ) ( )( )( )( , ) _ _ @ / (0)iunshift exp shift exp E a S=wp Add_instr const a i  

( ) [ ]( )( )( , ) _ _ @ ( , ) / (0), ::iunshift exp shift exp E create H A S A H H= =wp Add_instr new A i  

( ) ( )( )[ ]2( , ) _ @ ( (1) (0)) / (1)ishift exp E s S S= +wp Add_instr add i  

( )( )[ ]( ( , ) _ @ (0) / (0)iunshift exp E S S= −wp Add_instr neg i  

( ) ( )( )( )_ ( , ) _ @ (0), ( , ) / (0) (0)ishift exp E val S a f S S null⎡ ⎤= ∧ ≠⎣ ⎦wp Add nstr getfield a f t i  

( ) ( )( ) ( )( )3 ,@( , ) _ (0), ( ) : (1) /

(0)
ishift exp E H S a f S H

S null

⎡ ⎤= =⎣ ⎦
∧ ≠

wp Add_instr putfield a f t i
 

1( ) _ ( )lshift exp E=wp goto l1  

4.2.2 Weakest precondition calculus 

In this section, we define bytecode update logic in terms of a weakest precondition 
calculus. The proposed weakest precondition (WP) considers that each (update) 
instruction has a precondition. An instruction with its precondition is called an instruction 
specification and is noted as: Ei: Ii where Ii is the instruction and the expression Ei its 
specification. This notation expresses that the precondition Ei holds when the program 
pointer is at the program counter i. Table 2 shows the calculus of the WP rules for the 
update operations (inserting instructions). 

Functions and notations used. The functions shift_exp and unshift_exp are used to 
express the effect of pushing (popping) elements to (from) the stack S and the effect of 
shifting an expression regarding to the stack elements due to the insertion of instructions. 
They are defined as follows: 

[ ]
1

_ ( ) ( 1) / ( )

_ _

shift exp Exp Exp s i s i for all i N

unshift exp shift exp−

= + ∈

=
 

The elements of the stack are represented by positive integers, the top of stack is 0. The 
symbol @ is used to express the old specification associated to a position i: when an 
instruction is added at position i, the program and the specification are shifted from i 
position and then a new instruction is inserted. Its precondition is calculated with the 
specification of the instruction that was at position i before the update. 

In the rules, for the instructions store x, load x and pop, a precondition is obtained, as 
in Hoare’s (1969) assignment by substituting the right-hand side by the left-hand side in 
the postcondition. The precondition of an instruction store x under a postcondition Ei+1 
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(the precondition of the following instruction) is given by: shift_exp(Ei+1)(S(0) / x) 
meaning that if the expression E holds after the execution of store x then it also holds for 
the top of the stack before storing it in x. The function shift_exp is used to express that 
before the execution of the instruction, the top of the stack corresponding to the 
instruction at i + 1 was at index 1. 

Inserting an instruction, e.g., store x at line i means that the precondition of the old 
instruction at i becomes the postcondition of the inserted instruction and thus the 
calculated precondition starts from this old postcondition (@Ei). The function shift_exp is 
used twice (shift_exp2) to express also the impact due to the insertion of the instruction on 
the specifications of the following instructions. 

The instructions new, putfield and getfield are heap manipulating instructions. The 
function create used in the instruction new A returns a new object of type A in the heapH. 
This obtained heap (A :: H) replaces the old heap. The function val used in the definition 
of getfield to get the value of the field f of the class a from the address (top of the stack). 
This value is then pushed on the stack. In putfield, the value of the field designated by the 
top of the stack is updated with the value at the second element of the stack. The insertion 
of this instruction which pops two values implies three applications of shift_exp. 

In order to establish semantical equivalence of a code written by the programmer and 
a program obtained by applying a DIFF file, we check the equivalence of the weakest 
precondition of an annotated program obtained by WP calculus and a precondition 
written by the programmer before DIFF file is performed. 

4.2.3 Formalisation details 

The formalisation of the proposed approach relies on the formalisation on data types and 
the formalisation of the WP calculus: 

• The definition of manipulated data, objects, instructions and update instructions is 
mainly based on the concepts of lists for both bytecode programs and annotation 
function. Figure 9 shows a fragment of the Coq formalisation, mainly, the principle 
data structures. The formalisation starts by defining the data manipulated by the 
program to formalise the instructions (instruction) and update instructions 
(update_instruction). The definition of an instruction is given by the name of a 
construct (representing the name of the instruction) followed by its arguments. For 
example, for the instruction new, the construct new takes a class as argument. The 
instruction putfield is represented by the construct putfield followed by three 
arguments: the class (class), the names of the field (string) and its type. A bytecode 
line (bc_line) is a record composed of a number and an instruction. An annotated line 
is based on update instructions. A line in an annotated code is either a standard 
instruction line (std) or an annotation line (annoted). An annotated code is a list of 
annotated lines. 

• The formalisation of the WP calculus is mainly based on the notion of stacks. Two 
categories of stacks are defined: operand stack (op_stack) and logical stack 
(logical_stack) (Figure 9). The first stack is used to contain the data manipulated by 
the instructions of a program. The type logical_stack contains logical expressions. It 
is used to represent the specifications of the instructions of the program (the Ei 
expressions). The expressions of the logical stack relate to the content of the operand 
stack and the program instructions. A modification trough an update instruction has 



   

 

   

   
 

   

   

 

   

   326 R. Lounas et al.    
 

    
 
 

   

   
 

   

   

 

   

       
 

an impact on the logical stack. This impact is defined using the shift and unshift 
operations which performs recursively on logical stacks on the base of WP rules. The 
correspondence between the operand stack, the list of instructions and the stack of 
the specifications is established through the notion of instruction identifiant (Exp_id). 

Figure 9 Extract from the formalisation (see online version for colours) 

 

4.2.4 Example of WP calculus 

In order to illustrate how the logic works, we take the example of the function abs that 
returns the absolute value of an integer taken as an argument. This function is then 
transformed in order to get the double of the result in the initial calculus: for an integer 
given as an argument, the new function returns the abstract value multiplied by two 
(modified abs). The specifications of the two functions are respectively: 
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{ }
{ }

{ } 0 ) ( 0 )

{ } mod ( 0 2 ) ( 0 2 )

p P abs P result P P result P

p P ified abs P result P P result P

= ≥ → = ∧ < → = −

= ≥ → = ∗ ∧ < → = − ∗
 

Figure 10 Example of an annotated bytecode (a) the first version (b) the new version  
(c) the DIFF file (d) the annotated program 

 

Figure 11 WP calculus on the modified function 

 

In the specification, P denotes the logical value at the entry and result is the result of the 
function. Figure 10 shows the bytecode of the first version (a) and the second version (b) 
of the described function. The part (c) of the figure shows the DIFF file generated from 
the two versions. The last part of the figure (d) shows the bytecode of the function abs 
annotated with update instructions. We notice that in this bytecode, local variables are 
represented by integers: in load 1 for example, the number 1 means the local variable 1. 
The same notation is applied to other local variables. 

In Figure 11, the WP calculus is performed on the bytecode (without annotation) 
starting from the post-condition of the new version. The WP calculus is applied on the 
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annotated bytecode as shown on Figure 12. The specifications for the update instructions 
are in bold. This example shows that we obtain the same precondition {P = v0} which 
means that at the beginning of the calculus the logical value P is in the first local variable 
of the function. This result expresses the equivalence of the two bytecodes according to 
the proposed definition of verified updated program. This ensures the behavioural 
correctness of a type safe updated program according to a DIFF file. 

The application of the DIFF file in order to obtain a type safe updated program with 
the intended specification has to consider the execution state of the program in order to 
preserve the safety of the system. This concern is discussed in the next section. 

Figure 12 WP calculus on an annotated bytecode 

 

5 Ensuring activeness safety 

The application of the updates raises the question of active methods. Indeed, a naive 
modification may lead to system inconsistency: updating a method while it is active leads 
to the use of different versions of the same method and thus, generating an incoherent 
behaviour of the system. This situation is avoided by ensuring activeness safety property. 
This property ensures that an update may be performed only if the functions modified by 
the update are not active. It implies that the modified functions are not on the stack of a 
running program. This is ensured by analysing the applications to define SUP. We 
propose, in this section, a formalisation and a verification of a technique used to compute 
a SUP in EmbedDSU and other systems. We verify that it guarantees the correctness of 
the system by ensuring activeness safety. 

5.1 SUP detection 

This subsection presents a description of the concepts used in the technique of safe 
update point detection and its mechanism. 
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5.1.1 Methods and virtual machine modes 

Methods are considered from activeness point of view. Four cases are noticed: 

• Active/not active methods: a method is active if it is running. This means that the 
method owns a frame in the execution stack because it has been invoked. Otherwise, 
a method is not active. 

• Restricted/not restricted methods: a method is restricted if it is active in the VM and 
concerned by the update. A method is not restricted if it is not concerned by the 
update whatever it is active or not. 

The search of the appropriate point to perform DSU is performed by a safe update 
detection algorithm. This algorithm ensures that no restricted method is executing during 
the update. The update process defines three modes for the virtual machine: 

• The standard mode: during this mode, the virtual machine works normally until 
detecting an update. 

• The pending mode: at update detection, the virtual machine switches to seek a safe 
update point mode. A SUP corresponds to a state where restricted methods are not 
executing. 

• The update mode: after detecting a SUP, the update process is performed at the 
levels described in Section 2. 

The main idea is to force methods involved into an update to finish. This mechanism 
provides a highest priority to such methods that will be popped from the stack. 

5.1.2 Search SUP mode functions 

In order to detect a SUP, a function searchSUP introspects the frames for each thread of 
the running application. If the update is possible (no restricted methods in the frames), 
then the update mode is set to true and the search SUP mode is set to false. 

If restricted methods are present in the stack, we obtain the number of frames 
associated to restricted methods by VM introspection. It is stored in a variable counter. 
The search SUP mode uses the following functions to lead the systems to a safe update 
point: 

• createFrame: this function is used at every method invocation to create an associated 
frame. The frame is placed at the head of the frame list of the thread. This function is 
adapted to handle DSU mechanism during research SUP mode: at every created 
frame, a check is performed. If the thread has no frames related to a restricted 
methods in its execution stack then it is blocked. This policy avoids having other 
frames related to a method to be modified in the stack thread. The goal is to let 
restricted methods finish their execution and lead them to inactive state. 

• releaseFrame: this function is used at the end of the execution of a method to 
suppress its frame. In the search SUP mode, this function is adapted in order to check 
if restricted methods exist in the thread stack. If not, the thread is suspended. The 
counter counter, associated to the executing thread, is decremented at every release 
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of a frame associated to a restricted method. A safe update point is reached if this 
number reaches zero for every thread. 

• switchThread: if the VM is in the normal mode, this function selects the next thread 
to be the active one. If the mode is pending and if all the remaining threads are 
blocked then it switches the update mode. No restricted method is present in any 
thread, we have reached a SUP. 

At the starting point, the process counts all frames related to a modified method present 
in the stack thread. If the value is not equals to zero, then the update is pending, the 
virtual machine can continue to execute other applications. However, the value is 
decremented each time these methods finish their execution. When the value equals zero, 
then the SUP is obtained and the virtual machine can switch to the update mode. 

5.2 Ensuring activeness safety criteria 

We present in this subsection a formal verification of activeness safety. The formalisation 
is based on a functional modelling provided by the Why3 platform (Bobot et al., 2016). 
We use the Why3 platform to write specifications. This platform provides the language 
Why3 which is a functional language with logics. After specification, the platform offers 
an interface to different provers in which proof obligations can be discharged. The choice 
of this platform is motivated by the high level of expressiveness of the language for both 
computational and logic level and the large choice of provers supported by the platform 
including the Coq proof assistant. 

5.2.1 Specification 

This subsection presents the proposition of a functional formalisation of the DSU 
mechanism to reach a SUP. Precisely, our specification relies on: 

• a formalisation of the notion of time as a functional stream, virtual machine 
structures and modelling of behaviours as modes across time; 

• a formalisation of predicates and functions related to the update mechanism; 

• a formalisation of theorems to state activeness safety property. 

In Why3, specifications are based on the notions of theory. A theory is a list of 
declarations. Declarations introduce new types, functions and predicates, state axioms, 
lemmas and goals. Figure 13 shows the specification of types used in the formalisation. 

We represent the notion of time as a functional stream. Streams represent a 
potentially infinite sequence of data of the same kind. The evaluation of a part of a stream 
is done on demand, whenever it is needed by a current computation. The stream type is 
an abstract data type; one does not need to know how it is implemented. In this 
formalisation, a stream of instants represented by integers (type instant = I int) is 
considered. 
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Figure 13 Extract of types required by the specification (see online version for colours) 

 

The type flag is used to indicate a restricted method. It is set to one if a method concerned 
by the update is active. A method is specified by its identifier, signature, the list of its 
local variables and owner (the class of the method). Another information in method 
called upd_flag is defined. This information is used to indicate whether a method is 
concerned or not by an update. The upd_flag corresponds initially to zero. If the method 
is concerned by an update (according to a DIFF file) then this flag is changed. 

A thread is represented by its identifier, its list of frames, its owner and its status. A 
thread passes trough different states. In standard mode, a thread is scheduled then 
executed (Running). If it meets a sleep instruction, it goes to the sleeping state (Waiting). 
The thread gets blocked if it wants to acquire a lock but it cannot because another thread 
owns it, the active thread has to go to the blocked state (Blocked) and wait until another 
thread releases the lock. In our modelisation, another state is necessary. The thread gets 
DSU_blocked if the virtual machine enters the search SUP mode to force running 
restricted methods. 

The virtual modes of the virtual machine are represented by the type vm_mode, 
enumerating respectively the standard mode, the search SUP mode (pending) and the 
update mode. The evolution of the modes during time is represented as VM behaviour. 

Figure 14 Some predicates used by the specification (see online version for colours) 
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Figure 14 presents some illustration of predicates related to the types. For instance, the 
predicate is_restricted is used to state that a method is restricted if it is concerned by the 
update (is_updated predicate) and if it has frames in execution. The predicates are used in 
both modelling the functions representing the mechanism and writing theorems that 
ensures activeness safety property. 

5.2.2 Verification 

The process of verification is based on the Why3 platform. This framework generates 
from a Why3 language file a set of proofs that guarantee the correctness of the 
established theory. Figure 15 represents some theorems form our specification, the three 
lemmas are related to the three modes of the virtual machine. The first lemma ensures 
that updated methods are not running during the update. The second lemma related to the 
standard mode, guarantees that all the threads that have been blocked during the search 
SUP mode to reach a SUP are unlocked after the update release. The third lemma is 
crucial to establish the activeness safety property. It states that during the execution, a 
virtual machine passes through different modes (represented by a stream associating 
modes to instants). It states that during the search mode, the number of restricted method 
is decreasing across time (from an instant t1 to t2). The predicate before is used to 
express that t1 is before t2 in the stream. 

Figure 15 represents two goals. The first goal, establishes that the virtual machine 
reaches the SUP. Indeed, the number of restricted method reaches zero. This goal is 
principally based on the sup_mode1 lemma. The second goal ensures that a started update 
terminates and the virtual machine returns to the standard mode. These two goals 
guarantee the system safety. 

The Why3 platform provides interfaces with different proof systems (provers and 
proof assistants). Due to the high expressiveness required by the formalisation, we 
worked on the Coq proof assistant. 

6 Related work 

Several studies have been conducted in order to use formal methods to ensure DSU 
correctness. The concept of DSU correctness is not unique and relates to the different 
scientific problems (code update, data update and update timing). Correctness criteria are 
divided in literature into two categories. The first category relies on common properties 
that are shared by all updates such as type safety (Hjálmtýsson and Gray, 1998; Neamtu 
et al., 2006; Makris, 2009; Zhang et al., 2012) and activeness safety (Hayden, 2012). The 
second category refers to specific properties related to the semantics of updated programs 
(Hayden et al., 2012; Anderson and Rathke, 2009; Charlton et al., 2011). They are also 
called behavioural properties. Techniques and systems related to DSU are surveyed in 
Seifzadeh et al. (2013) and Miedes and Munoz-Escoi (2012). 

Several formalisms are used to establish DSU correctness criteria. Zhang et al. (2012) 
used an algebraic formalism to ensure correctness of DSU systems based on the 
mechanism of POLUS (Chen et al., 2007). The programs is formalised in terms of sort 
and operations and the update mechanism as a rewriting system. This work focuses on 
two types of correctness: common property correctness and correctness based on 
properties defined by the user. The process of verification is based on three parts: choose 
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an initial configuration, formalise properties and then verify. Type safety is specified as a 
predicate. System rewriting is then used to establish the property. Other works used 
different formalisms to ensure type safety such as functional formalism and type system 
in respectively (Anderson and Rathke, 2009; Duggan, 2005). 

Behavioural properties are studied in Charlton et al. (2011): the authors provided a 
framework such that the desired properties are expressed within the updated code using 
Hoare logic (HL) style Hoare (1969) by writing preconditions, post-conditions and 
assertions within the code. The system computes proof obligations which are discharged 
by theorem proving. In Anderson (2013), the behavioural properties are expressed in a 
type system extended with effects. The idea behind this work is that the correctness of an 
update depends on a state characterised by the code and the shared resources. The type 
system ensures that the modified system will behave as expected by keeping track of the 
effect of each update operation. The formalism includes a notion of world constraints to 
keep the difference between the effect of an update operation and the expected 
specification of an update. The language considered is a typed lambda-calculus with 
recursion and threads. 

Figure 15 Theorems from our formalisation (see online version for colours) 

 

In our work, the contribution is at both system level and single program level. First, we 
presented formal semantics for update operations and established type safety. Using 
semantics to prevent type errors in bytecode, the contribution extends the formalism 
presented in Freund and Mitchell (1999). This work defined semantics and a type system 
to study object initialisation in bytecode. The original idea was developed in Stata and 
Abadi (1999) to study bytecode subroutines. Freund and Mitchell (2003) extended the 
work (Freund and Mitchell, 1999) to bytecode subroutines, virtual method invocation and 
exceptions. Qian et al. (2000) proposed formal semantics for Java class loading. The 
specificity of the formalisation is the definition of semantics related to operations about 
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class loading, loaders delegating, class renaming and data structures related to class 
loading mechanism. 

Our work is close to Freund and Mitchell (1999) in the use of static semantics to 
analyse bytecode. The main difference between our formalisation and existing ones is the 
fact that ours is based on the definition of update operations. It ensures that each update 
operation operates on data with appropriate types. Performing an update operation, for 
instance inserting an instruction, requires the readjustment of the code to take into 
account the inserted instruction. The formal semantics define data structures and 
operations to check typing information and code readjustment. The other main difference 
is the formalisation of an extension of the Java card virtual machine (JCVM) to 
implement DSU. Our work is the first attempt to formalise such an extension on the 
JCVM. Indeed, the proposed formal semantics guarantees that the defined operations of 
the system preserve type safety with regard to virtual machine specifications. 

The second established property is behavioural correctness of the updated code. 
Using predicate transformation to reason about bytecode properties has been studied in 
Grégoire et al. (2008). The authors presented a verification condition generator for 
bytecode formalised in the Coq proof assistant and based on weakest precondition 
calculus. Another work using weakest precondition to generate verification conditions 
from an annotated bytecode is presented in Burdy and Pavlova (2006) and Burdy et al. 
(2007). Our bytecode logic for weakest precondition calculus is inspired by Bannwart 
and Müller (2005). It allows reasoning at single program level. We presented a  
Hoare-style logic combined with instruction specification in term of precondition. The 
main difference between the proposed WP calculus and existing predicate 
transformations is the fact that we presented WP rules dedicated to update operations to 
ensure update correctness with regard to specifications written by the programmer on the 
basis of DIFF file information. 

Correctness criteria related to update timing are addressed in literature through two 
major approaches: the first category improves the programming language to offer the 
possibility to insert update points within the code. Stoyle et al.’s (2007) updates are 
performed at points satisfying confreeness configurations: the code is labelled with 
update expressions at points where the update is possible in addition with the types that 
must not be updated. These points are inferred by a static analysis called updateability 
analysis. The major drawback of this category is that prediction techniques relies 
generally on the modification of the semantics of the programming language to offer the 
possibility to insert update points within the code. 

The second category (Hayden, 2012; Noubissi et al., 2011) relies on mechanisms to 
introspect the state of the application and drive it to a quiescent mode and then performs 
the update. Establishing activeness safety property is formally established using a 
bisimulation technique for C-like programs in Hayden (2012) and functional model for 
component- based programs in Buisson et al. (2016). Other properties related to update 
timing do exist in literature. We studied other properties in Lounas et al. (2017). In the 
present paper, the formalisation aims to verify the mechanism of searching safe update 
point for DSU for Java Card with regard to activeness safety by specifying both the 
mechanism and properties using a functional specification and based on the concept of 
streams. 
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7 Conclusions 

DSU consists in updating running programs on-the-fly without any downtime. This 
feature is important in critical systems that must run continuously. The use of DSU in 
critical systems leads to the use of formal methods that offer the high level of guarantee 
required by such applications. In this paper, we proposed an approach for formal 
specification and verification of DSU in Java Card applications. 

We verified three properties: first, we established that update operations are well 
typed by defining a formal semantics with regard to Java Card specification and type 
safety. This semantics is used to establish well-formed updates. Secondly, we established 
behavioural correctness of updated bytcodes. We proposed an approach that relies on a 
dedicated weakest precondition calculus to establish that the updated program matches 
the programmer’s specifications. Our third contribution consists in the specification of 
the update mechanism in order to ensure the safety of the update in term of timing. We 
specified the activeness safety property that guarantees that the update occurs at a safe 
point. 

Our work is based on functional representation. This is motivated by the fact that this 
kind of specification offers high expressiveness and eases the integration of our work 
with existing formal methods to construct proofs. We integrated our work in theWhy3 
framework but other formal frameworks can be considered. 

Our study started with considering the system EmbedDSU but this is not restrictive. 
The proposed framework can be generalised to specification and verification of updated 
programs written in languages that are compiled to bytecode. Besides, several research 
works rely on the principle of searching a safe update point to perform DSU. We believe 
that the presented contribution could be adapted. 

As a future work, we plan to extend our work to include exceptions in the 
formalisation of update operations and to extend the functional formalisation to verify 
other parts of the DSU system such as instances update in the heap. 
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Appendix 

We give in this appendix the remaining rules for update operations related to instruction 
insertion and suppression. Remarks:  

• In the rules for variables, the symbol  ⊥  represents the default value the added 
variables are initialised with. The Change operation is used to update the map 
accordingly and the set of local variables of a method (Im.loc) is updated in each rule 
according to the type of the operation. 

• In the instruction invokevirtual, the function dom represents the domain of the 
invoked function (types of its arguments) and the function card represents the 
number of elements in the domain. 

Table 3 Rules for Introducing, deleting and modifying variables 

{ }
{ }

_ ( , , )
_ _ ( . , , ) _ ( , , )

_ _ ( . , , ). . ( , )
. . \ ( , )( )

2 ( 1) 2 ( 1)( 1) ( 2)
, ,c c c c

Add Loc x tx m
look for var Im loc x tx false Del Loc x tx m

look for var Im loc x tx falseIm loc Im loc x tx
Im loc Im loc x txv x

M Change M M Change MRv Rv
F S C F S C

=
=← ∪

←←⊥
= =  

( )
_ ( , , , )
_ _ . , ,

( )
2 ( 1) ( 3)

,c c

Mof Loc x tx val m
look for var Im loc x tx true
v x val
M Change M Rv

F S C

=

←
=  

Table 4 Rules for update operations (insertion of instructions) 

1

1 1

1 1 1

_ ( 1)
_

2 _ ( 1, , 1)
1, ( )

, , , 1, , , , 2, 1

i i

i i i

i i i i i i

Add inst goto L i
SD SD PC MAX
S S F F
M Add inst M got L i
i L DOM BC

F S SD M i F S SD M i

+

+ +

+ + +

+
= + +

= =
= +

+ ∈
→ +

 

[ ]
1

0

1 0

1 1 1

_ ( 1)
1 _

.

2 _ ( 1, , 1)
1 ( ) ( )

, , , 1, , , , 2, 1

i i

i i

i

i i i i i i

Add inst store x i
SD SD PC MAX
S t S F x t
S S
M Add inst M store x i
i DOM BC x VAR BC

F S SD M i F S SD M i

+

+

+ + +

+
= − + +

= ←
=
= +

+ ∈ ∈
→ +

 

1 1

0 1 0

1 1 1

_ ( 1)
1

.
2 _ ( 1, , 1)
_

1 ( )
, , , 1, , , , 2, 1

i i i i

i i

i i i i i i

Add inst pop i
SD SD F F
S t S S S
M Add inst M pop i
PC MAX
i DOM BC

F S SD M i F S SD M i

+ +

+

+ + +

+
= − =

= → =
= +

+ +
+ ∈

→ +
 

1 1

0 1 0

1 1 1

_ ( , , )( 1)
2

. .
2 _ ( 1, ( , , ), 1)
_ 3 1 ( )

, , , 1, , , , 2, 1

i i i i

i i

i i i i i i

Add inst putfield A f t i
SD SD F F
S t A S S S
M Add inst M putfield A f t i
PC MAX i DOM BC

F S SD M i F S SD M i

+ +

+

+ + +

+
= − =

= ⇒ =
= +

+ + ∈
→ +
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Table 4 Rules for update operations (insertion of instructions) (continued) 

1

0 1 0

1

1 1 1

_ ( , , )( 1)

. .
2 _ ( 1, ( , , ), 1)
_ 3

, , , 1, , , , 2, 1

i i

i i

i i

i i i i i i

Add inst getfield A f t i
SD SD
S A S S t S
M Add inst M getfield A f t i
PC MAX F F

F S SD M i F S SD M i

+

+

+

+ + +

+
=

= ⇒ =
= +

+ =
→ +

 

1

1 1

1 1 1

_ ( 1)
1

_
[ ].

2 _ ( 1, , 1)
1 ( ) ( )

, , , 1, , , , 2, 1

i i

i i i i i

i i i i i i

Add inst load x i
SD SD
PC MAX
S F x S F F
M Add inst M load x i
i DOM BC x VAR BC

F S SD M i F S SD M i

+

+ +

+ + +

+
= +

+ +
= =
= +

+ ∈ ∈
→ +

 

( )( )1

1 0 1 0

1

1 1 1

_ ( , , )( 1)

( ) 1

1. 2 .
2 _ ( 1, ( , , ), 1)
1 ( )
_ 3

, , , 1, , , , 2, 1

i i

i n i

i i

i i i i i i

Add inst invokevirtual A l t i

SD SD card dom t

S tn tn tn S S S
M Add inst M invokevirtual A l t i
i DOM BC F F
PC MAX
F S SD M i F S SD M i

+

+ +

+

+ + +

+

= − +

= ≥ → =
= +

+ ∈ =
+

→ +

K

 

1

1 1

1 1 1

_ ( 1)

_

2 _ ( 1, , 1)
1 , ( )

, , , 1, , , , 2, 1

i i

i i i i

i i i i i i

Add inst if L i
SD SD
PC MAX
S S F F
M Add inst M if L i
i L DOM BC

F S SD M i F S SD M i

+

+ +

+ + +

+
=

+ +
= =
= +

+ ∈ ∈
→ +

 

1

1 1

1 1 1

_ ( 1)
1

_
.

2 _ ( 1, , 1)
1 ( )

, , , 1, , , , 2, 1

i i

i i i i

i i i i i i

Add inst const a i
SD SD
PC MAX
S int S F F
M Add inst M const a i
i DOM BC

F S SD M i F S SD M i

+

+ +

+ + +

+
= +

+ +
= =
= +

+ ∈
→ +

 

1 1

0 1

1 1 1

_ ( 1)

.
2 _ ( 1, , 1)
_

1 ( )
, , , 1, , , , 2, 1

i i i i

i i

i i i i i i

Add inst neg i
SD SD F F
S int S S
M Add inst M neg i
PC MAX
i DOM BC

F S SD M i F S SD M i

+ +

+

+ + +

+
= =

= =
= +

+ +
+ ∈

→ +
 

Table 5 Rules for update operations (suppression of instructions) 

( )

( )
( )

1

1

1

1 1 1

( 1)

_ , 2[ 1]
2 _ ( 1, , 1)

( 2) _ 2[ 1],

( 2) _ 2[ 1],
1, ( ) _

, , , 1, , , , 2, 1

i

i

i i

i i

i i i i i i

Dlt inst goto L i
SD a
SD Effects SD a M i
M Dlt inst M gotoL i
M S Effects STK M i S

M F Effects F M i F
i L DOM BC PC MAX

F S SD M i F S SD M i

+

+

+

+ + +

+ +
= →

= +

= +

= +

= +

+ ∈ − −
→ +
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( )

( )
( )

1

0

1 0

1

1 1

( 1)

_ , 2[ 1]
2 _ ( 1, , 1)

. , [ ]
( 2) _ 2[ 1], .

( 2) _ 2[ 1],
1 ( ) _ 3

, , , 1, , ,

i

i

i i

i

i i

i i i i i i

Dlt inst store x i
SD a
SD Effects SD a M i
M Dlt inst M store x i
S t S F x t
M S Effects STK M i t S

M F Effects F M i F
i DOM BC PC MAX

F S SD M i F S SD

+

+
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+ + +
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Table 5 Rules for update operations (suppression of instructions) (continued) 

( )

( )
( )

1

0

1

1

1 1 1

( 1)
_ , 2[ 1]

2 _ ( 1, , 1)
.

( 2) _ 2[ 1],

( 2) _ 2[ 1],
1, ( ) _

, , , 1, , , , 2, 1

i i

i

i i

i i

i i i i i i

Dlt inst if L i
SD a SD Effects SD a M i
M Dlt inst M ifL i
S int S
M S Effects STK M i S

M F Effects F M i F
i L DOM BC PC MAX

F S SD M i F S SD M i

+

+
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+ + +

+ +
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= +
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+ ∈ − −
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, , , 1, , , , 2, 1

i i
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i
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i i i i i i

Dlt inst pop i

SD a SD Effects SD a M i
M Dlt inst M pop i
S t S
M S Effects STK M i t S

M F Effects F M i F
i DOM BC PC MAX

F S SD M i F S SD M i

+

+

+

+ + +

+ +

= → = +

= +
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= +

= +

+ ∈ − −
→ +
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( )
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1

1
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. .
( 2) _ 2[ 1],

( 2) _ 2[ 1],
1 ( ) _ 3

, , , 1,

i

i

i

i i
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i i i i

Dlt inst putfield A f t i
SD a
SD Effects SD a M i
M Dlt inst M putfield A f t i
S A t S
M S Effects STK M i S

M F Effects F M i F
i DOM BC PC MAX

F S SD M i F

+

+

+

+

+ +
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( )

( )

( )
( )

1

0

1 0

1

1

( , , ) ( 1)

_ , 2[ 1]
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i
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Dlt inst getfield A f t i
SD a
SD Effects SD a M i
M Dlt inst M getfield A f t i
S A S
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M F Effects F M i F
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F S SD M i F
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i
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Dlt inst neg i
SD a
SD Effects SD a M i
M Dlt inst M neg i
S int S
M S Effects STK M i S

M F Effects F M i F
i L DOM BC PC MAX

F S SD M i F S SD M i

+
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+ + +

+ +
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( 2) _ 2[ 1],
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, , , 1, , , , 2,

i i

i

i
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i i i i i i

Dlt inst load x i

SD a SD Effects SD a M i
M Dlt inst M load x i
M S t S
M S Effects STK M i S

M F Effects F M i F
i DOM BC PC MAX

F S SD M i F S SD M i

+

+
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+ + +
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i

i

i

i i

i i

i i i i i i

Dlt inst const a i
SD a
SD Effects SD a M i
M Dlt inst M const a i
S S
M S Effects STK M i S

M F Effects F M i F
i DOM BC PC MAX

F S SD M i F S SD M i

+

+

+

+ + +

+ +

= →

= +

= +
= →

= +

= +

+ ∈ − −
→ +
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( )
( )

1

1 2 0

1

1

( , , ) ( 1)

_ , 2[ 1]
2 _ ( 1, ( , , ), 1)

. .
( 2) _ 2[ 1],

( 2) _ 2[ 1],
1 ( ) _ 3

i i

i n

i i

i i

Dlt inst invokevirtuel A l t i

SD a SD Effects SD a M i
M Dlt inst M invokevirtuel A l t i
S tn tn tn S
M S Effects STK M i S

M F Effects F M i F
i DOM BC PC MAX
F

+

+

+

+ +

= → = +

= +
= →
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