

 Int. J. Critical Computer-Based Systems, Vol. 7, No. 4, 2017 303

 Copyright © 2017 Inderscience Enterprises Ltd.

A formal verification of dynamic updating in a
Java-based embedded system

Razika Lounas*
LIMOSE Laboratory,
Faculty of Sciences,
University of M’hamed Bougara of Boumerdes,
Avenue de l’indépendance, 35000,
Boumerdes, Algeria
and
Xlim Laboratory,
University of Limoges,
123 Avenue Albert Thomas, 87700,
Limoges, France
Email: razika.lounas@univ-boumerdes.dz
*Corresponding author

Mohamed Mezghiche
LIMOSE Laboratory,
Faculty of Sciences,
University of M’hamed Bougara of Boumerdes,
Avenue de l’indépendance, 35000,
Bumerdes, Algeria
Email: mohamed.mezghiche@univ-boumerdes.dz

Jean-Louis Lanet
INRIA LHS-PEC,
263 Avenue Général Leclerc,
35000, Rennes, France
Email: jean-louis.lanet@inria.fr

Abstract: Dynamic software updating (DSU) consists in updating running
programs on the fly without any downtime. This feature is interesting in critical
applications that must run continuously. Because updates may lead to safety
errors and security breaches, the question of their correctness is raised. Formal
methods are a rigorous means to ensure the correctness required by applications
using DSU. In this paper, we present a formal verification of correctness
of DSU in a Java-based embedded system. Our approach is based on
three major contributions. First, a formal interpretation of the semantic of
update operations to ensure type safety of the update. Secondly, we rely on a
functional representation of bytecode, the predicate transformation calculus and
a functional model of the update mechanism to ensure the behavioural
correctness of the updated programs. It is based on the use of Hoare predicate
transformation to derive a specification of an updated bytecode. Thirdly, we
use the functional representation to model the safe update point detection

 304 R. Lounas et al.

mechanism. This mechanism guarantees that none of the updated methods are
active. This property is called activeness safety. We propose a functional
specification that allows to derive proof obligations that guarantee the safety of
the mechanism.

Keywords: dynamic software updating; DSU; formal verification; weakest
precondition calculus; dynamic update safety; critical systems.

Reference to this paper should be made as follows: Lounas, R., Mezghiche, M.
and Lanet, J-L. (2017) ‘A formal verification of dynamic updating in a
Java-based embedded system’, Int. J. Critical Computer-Based Systems,
Vol. 7, No. 4, pp.303–340.

Biographical notes: Razika Lounas is a final year PhD student. She has the
grade of Teacher-Researcher at the Computer Science Department at the
University of Boumerdes, Algeria since 2009. She is also a member of the
LIMOSE research laboratory at the same university and a member of the Xlim
Laboratory at the Limoges University, France. She received her Magister
Diploma form the Boumerdes University in 2009. Before that, she received her
Diploma of Computer Engineering at the Tizi Ouzou University, Algeria. Her
main research interests are dynamic software updating, formal methods and
Java card applications.

Mohamed Mezghiche is a Professor in the Computer Science Department at the
University of Boumerdes Algeria. He is also a Team Leader and the Director
of the LIMOSE Laboratory at the same university. He received his PhD
in Theoretical Computer Science from the University Paris 6 (France). His
research interests are formal methods, program certification, theorem proving,
logic and functional programming.

Jean-Louis Lanet is the Director of the High Security Labs of the Inria-RBA.
Previously, he was a Full Professor in the Computer Science Department at the
University of Limoges (2007–2014). He was also the Team Leader of Smart
Secure Device (SSD) research group. Prior to that, he was a Senior Researcher
at the Gemplus Research Labs (1996–2007). During this period he spent two
years at INRIA (Sophia-Antipolis) (2003–2005) as an Engineer at the Direction
des Relations Industrielles (DirDRI) and as a Senior Research Associate in the
Everest team. He started his career as a researcher at Elecma, Electronic
division of the Snecma, now a part of the Safran group (1984–1995) and his
field of research is on jet engine control. His research interests include security
of small systems like smart cards and software engineering.

This paper is a revised and expanded version of a paper entitled ‘An approach
for formal verification of updated Java bytecode programs’ presented at
9th International Workshop on Verification and Evaluation of Computer and
Communication Systems (VECos), Bucharest, Romania, 10–11 September
2015.

1 Introduction

During their life cycle, programs need to be updated in order to change their semantics,
perform optimisations or add features. Dynamic software updating (DSU) consists in
updating running programs on the fly without any downtime. Systems implementing this

 A formal verification of dynamic updating in a Java-based embedded system 305

feature require high availability. Indeed, in some applications such as banking, air traffic
control and health support software, interrupting the application to perform a classical
shut down, update and restart leads to considerable losses.

Dynamic software updating raises three major scientific problems: code and data
update, update timing and update correctness. The first and the second issues are tackled
by DSU systems by defining techniques such as functions indirection for code update
(Chen et al., 2007; Duggan, 2005), state transfer functions for data update (Hayden et al.,
2011; Gupta and Jalote, 1993) and introspection approaches to determine safe points to
perform dynamic updates (Subramanian et al., 2009; Noubissi et al., 2011). These
techniques are used in DSU systems in several application areas such as embedded
systems (Lv et al., 2012; Noubissi et al., 2011), real time systems (Wahler et al., 2009;
Seifzadeh et al., 2009) and operating systems (Arnold and Frans, 2009).

Given the increasing need for DSU and its use in critical systems, the question of its
correctness is raised. In fact, a dynamic update may introduce errors which may alter the
execution, leading the system to an unexpected state. Besides, in some cases, the update
is critical (e.g., in smart card application) in such a way that an attacker can take
advantage of an incorrect update. In such applications, that have to be managed from
security and safety point of view, the update must pass some certification procedures for
example Common Criteria (2015). For a certain certification level, one has to provide a
formal proof of the security mechanism implemented. A formal way to specify updates
and verify their correctness is then necessary.

In this certification scheme, seven evaluation assurance levels (EALs) are defined.
These levels are a measure of assurance quality, where EAL 7 is the strongest.
Assessment at the two highest levels, EAL 6 and 7, requires formal methods and gives
not only the assurance that the security functions are implemented, but also that these
functions are correct with respect to the security policies defined in the security target of
the product. In the particular case of DSU, new issues are raised. Indeed, the certification
process is a static view of a system and therefore requires specific treatment for certifying
dynamic systems. Recently, the French ANSSI (Agence Nationale de la Sécurité des
Systèmes d’Information) has proposed a dedicated process (ANSSI, 2015) allows to
certify a product that can be dynamically changed, certifying only the update code and
the loader. It defines the concepts and the methodology applicable to the evaluation of a
product embedding a code loading mechanism and the usage of this loader as part of the
assurance continuity process.

DSU correctness does not rely on a unique definition. It is instead based on the
consideration of several correctness criteria, which can be divided into two categories.
The first category regroups common properties that are shared by all updates such as type
safety (Hjálmtýsson and Gray, 1998; Neamtu et al., 2006; Makris, 2009; Zhang et al.,
2012) and consistency (Baumann et al., 2005; Hjálmtýsson and Gray, 1998). The second
category refers to specific properties related to the semantics of updated programs
(Hayden et al., 2012; Anderson and Rathke, 2009; Charlton et al., 2011).

In this work, we study the case of a DSU system for Java Card applications. The
system presented in Noubissi et al. (2011) called EmbedDSU is a system developed to
implement DSU functionalities for Java card applications. It is based on two parts:
off-card and on-card. In the off-card part, a module called DIFF generator computes the
syntactic changes between the old and the new version of the application and generates a
DIFF file (called also a patch). This patch is then sent to the card to perform the update

 306 R. Lounas et al.

by other modules implemented by extending the Java card virtual machine. These
modules represent the on-card part of the system.

The main objective of this paper is to deploy formal methods to guarantee correctness
properties of EmbedDSU. We will focus on three properties:

• Type safety: this property is meant to ensure that data types for the program’s
constants, variables and methods comply to the contract defined by the class they
belong to. It represents the corner stone of Java-based applications safety. In this
work, we guarantee that updated programs do not introduce type errors.

• Behavioural correctness: once type safety is established, we consider the second
property related to the behaviour of the updated program. We present an approach to
establish that the obtained program, once the update is performed, implements the
intended specifications which are expressed by the programmer before calculating
changes off-card.

• Activeness safety: the third property is related to the computation of a safe update
point. Searching a safe update point to perform DSU is a critical concern. Indeed, a
hazardous application of DSU leads to errors in the application. We present a
mechanism that brings the system into a quiescent state to perform the update. The
main condition of the quiescent state is the absence of updated methods in the list of
active methods of the application. This property is called activeness safety criteria.
We propose a formal specification of the safe update point (SUP) detection
mechanism and we derive proof obligations that guarantee the property.

The contributions of this paper are:

1 A formal semantics for update operations at the instruction level (adding, deleting
and modifying instructions)

2 An extension of the formal semantics to consider more updates operations related to
methods and fields (adding, deleting and modifying methods and fields)

3 Establishing the soundness of the semantics: this contributes, with contributions in
items 1 and 2, to establish type safety property

4 An approach for formal verification of the specification of updated programs. This
contribution leads to establish the behavioural correctness

5 Specification of the search SUP module and proposition of an approach based on
functional specifications to establish the activeness safety property.

The contributions 2, 3, formalisation details of 4 and the contribution 5 represent the
novelty of this paper with regard to our conference paper (Lounas et al., 2015).

This paper is organised as follows: Section 2 gives an overview of EmbedDSU.
Section 3 introduces the language and the formal semantics of updates, as well as the
guaranteed type safety property. In Section 4, we present an approach to verify the
semantics of updated programs. We present our functional modelling of Java bytecode
and propose a predicate calculus for update operations to ensure the verification of
behavioural correctness property. In Section 5, we present formal specification of the
SUP search mechanism and the verification of the activeness safety property. We discuss
related work in Section 6 and conclude in Section 7.

 A formal verification of dynamic updating in a Java-based embedded system 307

2 Overview of EmbedDSU

EmbedDSU, introduced in Noubissi et al. (2011), is a software-based DSU technique for
Java-based smart cards which relies on the Java card virtual machine. The virtual
machine interprets Java card programs once they are compiled to bytecode and loaded to
the card. The system EmbedDSU is based on the modification of the virtual machine
(VM).

2.1 The system architecture description

The system EmbedDSU is composed of two parts: the off-card part and the on-card part.
Its architecture is illustrated by Figure 1:

• In off-card, a module called DIFF generator determines the syntactic changes
between versions of classes in order to apply the update only to the parts of the
application that are really affected by the update. The changes are expressed using a
domain specific language (DSL). Then, the DIFF file result is transferred to the card
and used to perform the update.

• The on-card part is divided into two layers:
1 Application layer: the binary DIFF file is uploaded into the card. After a

signature check with the wrapper, the binary DIFF is interpreted and the
resulting instructions are transferred to the patcher in order to perform the
update. The patcher initialises data structures for update. These data structures
are read by the update module module to determine what to update and howto
update, by the safeUpdatePoint detector module to determine when to apply
the update and by the rollback module to determine how to return to the
previous version in case of update failure. These points require the
introspection of the virtual machine.

2 System layer: the modified virtual machine supports the followings features:
a Introspection module which provides search functions to go through VM

data structures like the references tables, the threads table, the class table,
the static object table, the heap and stack frames for retrieving information
necessary to other modules

b update module which modifies object instances, method bodies, class
metadata, references, affected registers in the stack thread and affected VM
data structures

c SafeUpdatePoint detector module allows detecting SUP in which we can
apply the update by preserving coherence of the system.

The system EmbedDSU is suitable for smart cards especially in term of resource
limitations. It was established that sending a DIFF file is less resource consuming than
sending the whole new version to the card and perform updates and that the resources
implied by the update modules are acceptable in term of memory occupation (Noubissi,
2011).

 308 R. Lounas et al.

Figure 1 Architecture of EmbedDSU (see online version for colours)

2.2 The update process

The system EmbedDSU updates three principal parts:

• the bytecode: the process updates first the bytecode of the updated class and the meta
data associated with it, e.g., constant pool, fields table, methods table.

• the heap: the process updates the instances of the updated class in the heap, obtains
new references for modified objects and updates instances using these references.

• the frames: the process updates in each frame in the thread stack the references of
updated objects to point to new instances.

Figure 2 Example of a patch (DIFF file)

Update process starts by updating method bodies and class meta data of the class to be
updated and related classes. The DIFF file includes information on entries of each
modified method, parameters, local variables and bytecode instructions. Then, to update
the code of a class, the update module proceeds by copy while modifying class meta data
like constant pool, field table, method table and constant table. For each method that is
not deleted, the process copies while modifying method header and bytecode instructions
so that the old version is transferred to a new space while modifying it to obtain the

 A formal verification of dynamic updating in a Java-based embedded system 309

corresponding new version of the class. After updating the class, update process
continues with the update of all other constant pools of related classes to modify
references to old methods or fields in order to point to the new field entry table, or to
point to the new method.

This paper addresses first the bytecode update at the method level. In bytecode
language, each instruction consists of an opcode specifying the operation to be
performed, followed by zero or more operands. The types of updates that may occur are:
adding, modifying or suppressing bytecode instructions, methods, local variables and
fields. These updates are contained in the DIFF file which indicates the update and where
it occurs. For example, Figure 2 shows an updated Java program (at the left side) and the
corresponding modification at bytecode level, the patch (at the right side) indicates that
the instruction iadd in the method compute_sum is deleted and the instruction isub is
added at the same place provided by the program counter. We studied the update of
instances in the heap and updating references in the stack in a previous work (Lounas
et al., 2014). The SUP detection mechanism is detailed in Section 5. The next section
presents the bytecode language, its semantics and a formal semantics of update
operations performed by EmbedDSU.

3 Language and semantics for type safety

In this section, we present our formalised language. It provides a representative subset of
bytecode instructions related to stack manipulation, object creation, arithmetic, fields,
methods invocation and jump instructions. We also give a formal semantics for update
operations. In the present paper, we extend the formal semantics given in our conference
paper (Lounas et al., 2015) which deals only with update operations at instruction level
(adding, deleting and modifying instructions). Here, we add the semantical rules for
update operations related to methods and fields (adding, deleting and modifying methods
and fields). This will help us to characterise well-formed updates.

3.1 The language

In Freund and Mitchell (1999), the authors present a formalisation of the semantics of a
small Java bytecode based on a type system. Our proposition is mainly built by adding
update instructions (Upd_Instr) to manage addition, deletion and modification of
instructions within a method code. We introduce the following notations in our language
definition: x, a, L, A, f, l, t and pc to denote respectively: a local variable, a constant, an
instruction address, a class name, a field name, a method name, field type and method
signature and the program counter.

: | | | | |
| | | | |
| | |

Instruction pop if L store x load x new A
binop neg const a invokevirtual A l t goto L
getfield A f t putfield A f t return

=

_ :: _
| _
| _

Upd Instr Add Inst Instruction pc
Dlt Inst Instruction pc
Mod Inst Instruction instruction pc

=

 310 R. Lounas et al.

The instruction pop extracts the top of the stack and const a pushes a constant a on the
top of the stack. The instruction load x pushes the value in the variable x on the top of the
stack whereas the instruction store x pops the top of the stack and stores it in the variable
x. The instruction if L jumps to L if the top of the stack is not zero else it performs the
next instruction. Goto L jumps to L. The instruction New A allocates a new object of type
A and pushes it on the top of the stack. The instructions manipulating fields are: getfield
A f t and putfield A f t. Getfield reads the field f, which has the type t of the object of class
A whose reference is on the top of the stack and pushes its value on the top of the stack
and putfield modifies the field f with the value popped form the stack. The instruction
invokevirtual invokes the method l of signature t and the class A. The instruction binop is
used to gather arithmetic binary operations: add, mult and sub. The instruction neg
negates the top of the stack and return is for method return. We notice that a modification
on an instruction is interpreted as a deletion followed by an addition.

Update instructions are respectively: adding an instruction, deleting instruction and
modifying an instruction. We indicate the place of the update operation with pc. We will
introduce further in this section, the update operations related to inserting, deleting and
modifying methods and fields.

3.2 Operational semantics for bytecode instructions

The operational semantics is defined by a transition relation over configurations. In our
model, based on the standard framework for operational semantics [see Freund and
Mitchell (1999) and Bannwart and Müller (2005)], a configuration represents a step
execution and is denoted by a tuple <M, s, h, f, pc> where: s consists of an operand stack,
h represents the heap containing created instances, f a local variables map associating
values to local variables, pc is a program counter and M the method body. A transition
<M, s, h, f, pc> → <M, s2, h2, f2, pc2> takes the state from the configuration <M, s, h, f,
pc>to the configuration <M, s2, h2, f2, pc2>. The rules for the instructions of our
language are given in Figure 3.

• The rule (Rpop) indicates that the instruction pop extracts the top of the stack to
obtain another configuration. The rule (Rnew) indicates the creation of a new object
of class A, thereby the modification of the current heap. A reference to the new
object is pushed onto the stack.

• The rule (Rldx) puts the value of x on the top of the stack and the rule (Rstx) pops a
value from the stack and assigns it to a variable, f is modified accordingly.

• The instruction if L has two rules (Rif1 and Rif2). It either jumps to the indicated line
or performs the following instruction according to the value of the top of stack.

• The rule (Rcst) indicates that a constant is pushed on the stack and the rule (Rneg)
indicates that the top of the stack is replaced by its opposite.

• The rule (Rget) indicates that the value of the field f is obtained and pushed on the
stack, whereas the rule (Rput) updates the heap with the new value of the field of the
object which is on the top of the stack. The new value is popped from the second
element of the stack.

 A formal verification of dynamic updating in a Java-based embedded system 311

• The unconditional jump Goto l is expressed by the rule (Rgto). The rule (Rop)
indicates that a binary arithmetic operation pops two values from the stack, performs
the binary operation and pushes the result.

• The rule (Rinv) expresses invoke of the method l on an object reference. The
reference and parameters are popped from the stack and are replaced by the return
value v of the invoked method after its execution.

The operational semantics gives a clear presentation of bytecode instructions and is a step
to introduce the semantics of insertion and suppression of instructions which is discussed
in the next section.

3.3 Formal semantics for update instructions

Lounas et al. (2015) presented a static semantics that expresses the effects of the update
instructions in a configuration of the bytecode. This semantics is designed to describe
conditions and results of update instructions. The particularity of this semantics is the
expression of typing information related to local variables and operand stack of a method.
This information is tracked step by step and thus prevents type errors in the updated code.

Figure 3 Rules for operational semantics

3.3.1 Concepts and notations

To express our semantics for update operations, we need to introduce some concepts and
notations:

• Typing information: in this semantics, we introduce two elements in order to track
typing information: F and S. F is a mapping from a program point (representing an
instruction address) to a mapping from a frame variable to a type. S is a mapping
from a program point to an ordered sequence of types, i denotes a program point or
an address of code. The map Fi gives a type of local variables at program point i. The
string Si gives the types of entries in the operand stacks at program point i. These F

 312 R. Lounas et al.

and S are useful to our semantics since they contain typing information about valid
local variables and entries in the operand stack respectively. The empty sequence of
types is denoted by (ε). The symbol is used to represent a default initial value in
typing variables.

• Configuration information: we consider configuration at line i as a tuple
<(F, S, SD, M), i> where F and S represent typing information, SD represents the
stack depth, M is a mapping that associates a number to each line of the code. It is
obtained by a function noted Map on a bytecode BC.

3.3.2 Semantics rules

The goal of expressing semantics of update operation with typing information is to
establish that the update leads to well typed programs. We are, now, able to define the
judgement that expresses that a bytecode BC is well typed by F and S is:

1

1

, 1 0
, 1 ()

(), , ,
,

i

F F SD
S ε M Map BC

DOM BC F S i BC
F S BC

= =
= =

∀ ∈

Figure 4 Some rules for update operations for instructions

The first two lines of the judgement represent the initial configuration: all variables are
mapped to the value , stack depth is zero, the sequence of types is initially empty and
M1 is the initial mapping of the bytecode. In the last line, DOM(BC) is the set of
addresses used by the method. The expression F, S, i BC expresses that BC is well
typed until the step i in the evaluation and the entire line expresses that the program BC is
well typed at each step i in the evaluation. This premiss is derived from the semantics of
update operations. The conclusion of the judgement expresses that BC is well typed.

 A formal verification of dynamic updating in a Java-based embedded system 313

Figure 4 shows four rules of update operation semantics. Transitions through
configurations represent the evolution of typing information step by step (notations Fi
and Si) and ensure that the program is well typed at each step. In these rules, the
information PC_MAX is used to express the maximum offset in a method bytecode. For
illustration, the insertion of the instruction new A at line i + 1, represented by the rule
(Rup1), allows us to obtain a new configuration if the stack depth is incremented, local
variables are not affected and the type A is inserted at the top of the stack. For the
insertion of an instruction representing an arithmetic binary operation Binop, we show the
rule (Rup3) of the instruction add which is a special case of Binop: this operation pops
two elements (integers) from the stack and then pushes the result. mult and sub have
analogous explanations by writing the right operation. In these rules, the mapping M2 is
the result of operations on M1. The operations which represent manipulations on
bytecode are: range and shift. The operation range extracts from a mapping M1 a part M2
included between line n and line m. The second operation shifts a part from a mapping
between n and m for p positions which is determined by the number of added
instructions.

We define the operations look_for_jumps and update_jumps to take into account
jumps in bytecode transformation: look_for_jumps returns from a mapping a list of jumps
instructions represented by their line number and the operation update_jumps updates
jump instructions:

_ _ :
_ : int int

Look for jumps mapping int list
Update jumps mapping list mapping

→
∗ ∗ →

Table 1 Example for typing information track

i Instruction Fi Si
0 const 0 (1, int), (2, int), (3, int) int.ε
1 store 3 (1, int), (2, int), (3, int) ε
2 load 1 (1, int), (2, int), (3, int) int. ε
3 load 2 (1, int), (2, int), (3, int) int.int. ε
upd Del_inst add (4) (1, int), (2, int), (3, int) int.int ε
upd Add_inst sub (4) (1, int), (2, int), (3, int) int.int ε
4 sub (1, int), (2, int), (3, int) int. ε
5 store 3 (1, int), (2, int), (3, int) ε
6 load 3 (1, int), (2, int), (3, int) int. ε
7 return (1, int), (2, int), (3, int) ε

These operations update jumps within the bytecode if necessary. When we add for
instance an instruction at pc, the instructions after this position are shifted and their
numbers change. It is then necessary to update goto and if instructions accordingly. These
modifications keep the structure of the bytecode coherent. In the rules for instructions
suppression (Rup2 and Rup4), the notations Effect_STK, Effect_F and Effects_SD are
used to express the effects of an instruction on the stack and the local variables and stack
depth. They are used to readjust these elements to the instruction at (i + 1) in the new
bytecode after the suppression. The notation (M2)F (respectively, (M2)S) is used to
express F (respectively, S) in the mapping M2. We notice that in this formalisation, a

 314 R. Lounas et al.

modification is considered as suppression followed by an insertion. The remaining rules
for inserting and suppressing instruction are given in the appendix. To illustrate how
typing information evolves according to the semantics of (update) instructions, we
reconsider the same program shown in Section 2 to illustrate DIFF files. The function
computing the sum of two integers is rewritten in our bytecode sub language. The update
consists in deleting add instruction and inserting sub. The evolution of typing information
is shown in Table 1. The first column represents the number of the instruction. Update
instructions (colored rows), are indicated by upd. The third column represents the
evolution of typing information related to local variables. Local variables are represented
by integers (1, 2 and 3). A type is associated to every variable. A variable and its type are
represented as a couple (var, type). The evolution of the types in the operand stacks are
shown on the fourth column. At the level of update instructions, the typing information
guarantees that local variables and operand stack conforms the requirements of such
instructions defined by the semantics.

3.4 Formal semantics for methods and fields

In this subsection, we propose a new extension of the formal semantics to handle
methods and fields in a class. In this formalisation, a class C is defined by:

• its name

• a method table (noted Mt): which is a structure containing an entry for every method
m in the class

• a field table (noted Ft): which is a structure containing entry for every field f in a the
class

• its meta-data Meta including a constant table, status and an offset Table. 3.

3.4.1 Methods

This subsection presents the semantics to handle modifications related to methods. A
method is defined with: its name m, its code BC, its signature sig and a structure to
represent method information (Im) including: the maximum of local variables and the
max_stack. Three cases are considered:

• Add_method: this operation leads to the introduction of a new method in a class C.

• Dlt_method: this operation leads to the suppression of a method from a class C.

• Mod_method: this operation leads to an override of an existing method in order to
implement a new version in a class C.

The formalisation requires the definition of extension to the functions and mappings
about type information. We introduce the sets M, Fs, Ss representing respectively:

• the set of method names

• the set of mappings F from a program point to a mapping from variables to types

• the set of mappings S from a program point to an ordered sequence of types. The
string Si gives the types of entries in the operand stacks at program point i.

 A formal verification of dynamic updating in a Java-based embedded system 315

Mappings F and S keep the same definition introduced in update operation semantics for
instructions. We define two functions Fc and Sc:

• the function Fc: M → Fs is used to associate each method m in the class C to a
mapping F representing its variables typing information

• the function Sc: M → Ss is used to associate each method m in the class C to a
mapping S representing its operand stack typing information.

These functions and information are used to formalise the semantics of three cases as
shown on Figure 5. Every case is represented by a rule that captures the condition that
ensures type safety of update operations.

The rule (Rm1) expresses the introduction of a new method. In this rule, the first line
represents the operation. The second line represents a check that the introduced method
already exists in the method table. This check ensures that the operation does not
inadvertently replace an existing method with the same name. The function
look_for_entry returns a boolean true if a method with the same name and signature
exists, false otherwise. In this case, an entry for the introduced method is created in the
method table with the function create_entry. The creation of the entry leads to create and
initialise typing information related to the inserted method (lines 4, 5 and 6). The function
upd_meta is used to update meta data of the class with information related to the method
(offsets table).

The rule (Rm2) formalises the operation of deleting a method. The check at the
second line ensures that an entry for the methods exists in the method table. This
operation leads to the suppression of this entry. Typing information about the deleted
method is deleted as well. Offsets are adjusted with upd_meta.

Figure 5 Rules for introducing, deleting and modifying methods

The rule (Rm3) expresses the modification of an existing method. The check at line 2 of
the rule ensures that this method has already an entry in the method table (we notice that
an update in a signature is considered as deleting a method and introducing a new
method). The typing information Sc(m) is re-initialised in order to perform the update

 316 R. Lounas et al.

from the method beginning. The typing information Fc(m) is re-initialised after
performing potential updates in locals (var_upd(m, Im.loc)). Typing information must
validate the correctness of all the instructions in the new bytecode BC of the method (the
last premiss). This condition is based on the check performed at instruction level and
defined in the previous subsection. The function (var_upd(m, Im.loc)) is used to manage
updates in local variables of a method. The case of adding, deleting or modifying a local
variable is a particular part of method modification. An introduced variable is defined
with its name and type. Rules for variables are given in the appendix.

We notice that in the rules for methods (and fields in the next subsection), the
conclusions are not expressed as evolution of configurations. They express directly the
fact of obtaining a well typed program. This is due to the fact that configurations are used
to express evaluation within the code of a method (at instruction level) and that
operations for adding, deleting or modifying methods (or fields) are expressed at the level
of a class. The second reason is that the impact of such operations on instructions is
detected and held at update operations related to instructions.

3.4.2 Fields

We present in this section an extension of the semantics to handle modifications related
to fields. In this formalisation, a field is represented by its name f and its type tf. An entry
in the field table is created for every field in the class. The typing information is supplied
by a mapping to keep track of typing information for fields. This is represented by the
mapping Fl which associates a type for each field at every point in the program. Figure 6
represents the rules to check adding, deleting and modifying a field in a class.

Figure 6 Rules for introducing, deleting and modifying fields

The rule (Rf1) expresses the introduction of a new field. In this rule, similarly to the case
of methods rule, the first line represents the operation. The second line represents a check
if the introduced field already exists in the field table. The function look_for_entry
returns a boolean true if a field with the same name and type exists, false otherwise. In
this case, an entry for the introduced field is created in the field table with the function
create_entry. The information about the type is recorded in Fl.

The rule (Rf2) formalises the operation of deleting a field. The check at the second
line ensures that an entry for the field exists in the field table. This operation leads to the
suppression of this entry and the typing information related to it.

The rule (Rf3) expresses the modification of an existing field. The check at line 2 of
the rule ensures that this method has already an entry in the method table (the same name
and the same type). The modification concerns only the modification of the value of a

 A formal verification of dynamic updating in a Java-based embedded system 317

field with Set_val. A modification of the type is considered as a suppression of the old
field followed by the insertion of the new field. Thus, in this case, there is no operation
on Fl.

3.5 Soundness

In this subsection, we outline the soundness of the update. The global soundness theorem
states that a well-typed program and a well formed update operations (ensured by the
semantics) leads to a well typed updated program. We present first a lemma to express
that the program is well typed initially, then a single step update soundness to express
that an update operation from a well typed program leads to another well typed program.

Definition 1: (Initial soundness).We consider a bytecode BC, its initial mapping M, its
typing information F and S and a DIFF file Δ containing update instructions. At the initial
configuration <F , ε, 0, M, 0>, where variable types are initialised at their default value,
typing stack information is empty, stack depth is zero and the number of the evaluation
step is zero, the program is well typed, we write: F, S, 0 BC.

Lemma 1: (Single-step update soundness). Given a bytecode BC, typing information F
and S, a mapping M and a DIFF file Δ containing update instructions, we have:

()

, , , (), .
, ,

, , , , , , , ,
()

, ,

j

i i i i

SD SD N i i DOM BC j N
F S i BC

F S SD M i F S SD M i
j length
F S i BC

Δ

′ ′

′ ′∀ ∈ ∈ ∈

′ ′ ′∧ < > → < >
∧ ≤ Δ

′⇒

This lemma expresses that the evaluation of an update instruction from a step i such that
the bytecode is well typed until i leads to a well typed bytecode until the next evaluated

step. The transition
()jΔ

→ represents the application of the update instruction at line j
which has to be a valid line in the DIFF file Δ. The expression length(Δ) represents the
number of update instructions in the DIFF file Δ represented as a list of update
instructions. M′ represents the resulting mapping.

Proof sketch. The proof of this lemma is based on the different cases obtained by
examining all the update instructions represented by their semantics. We sketch the proof
by studying the cases of inserting new instruction and add:

Case 1 Δ(j) represents the update instruction add_inst new A (i + 1). We assume that
the hypotheses are satisfied. This update instruction leads, by the semantics, to
a configuration where: Fi′ = Fi, Si′ = A.Si, SD′ = SD + 1, i′ = i + 1 and the
mapping M′ is obtained by inserting in M the new instruction by applying shift,
range and Update_jumps operations.

Case 2 Δ(j) represents the update instruction add_inst add i + 1. We assume that the
hypotheses are satisfied. This update instruction leads, by the semantics, to a
configuration where: Fi′ = Fi, Si′ = int.S0 such as Si = int.int.S0, SD′ = SD – 1,

 318 R. Lounas et al.

i′ = i + 1 and the mapping M′ is obtained by inserting the new instruction in M
by applying shift, range and Update_jumps operations. �

The soundness of a single step in the update leads to express multiple step and method
update soundness.

Lemma 2: (Multiple-step update soundness). Given a bytecode BC, typing information F
and S, a mapping M and a DIFF file Δ containing update instructions, we have:

()

, , , (), .
, ,

, , , , , , , ,
()

, ,

j

i i i i

SD SD N i i DOM BC j N
F S i BC

F S SD M i F S SD M i
j length
F S i BC

Δ ∗

′ ′

′ ′∀ ∈ ∈ ∈

′ ′ ′∧ < > → < >
∧ ≤ Δ

′⇒

This lemma expresses that a sequence of sound single update steps starting from a well

typed bytecode step leads to a well typed bytecode at the resulting step. The symbol
()jΔ ∗
→

represents the application of update instructions contained in Δ ranging from the first
update instruction to the jth update instruction. This can be represented by a sequence of
transitions starting from the configuration corresponding to i and finishing at the

configuration corresponding to
(1) (2) ()

1 2: .
j

i i i ii C C C C M
Δ Δ Δ

′+ +′ ′→ → →K represents the
resulting mapping.

Proof sketch. The proof of this lemma is by induction on the length of Δ(j∗). We assume
that the hypotheses are satisfied:

Basis case length(Δ(j∗)) = 0. The configuration remains unchanged and thus,
satisfied by hypothesis.

Induction case we suppose that the property is satisfied for length(Δ(j∗)) = n. Thus, for
length(Δ(j∗)) = n + 1, the demonstration follows the same pattern as
lemma 1, on the basis of examining the cases of the update instruction
number (n + 1). �

This lemma introduces the update at the level of an entire method.

Theorem 1: (Method update soundness). Given a method m, its bytecode BC, an initial
mapping M, typing information F and S and a DIFF file Δm containing update instructions
related to the method. The update of a method m according to Δm starting from an initial
configuration C0 such as C0 = <F , ε, 0, M, 0> leads to a well typed program.

0

().

, , , ,
, () ()
,

m

i i

SD N i DOM BC

C F S SD M i
j j i j DOM BC BC j return
F S BC

Δ

′ ′

′ ′∀ ∈ ∈

′ ′ ′→ < >
′∧∃ ≥ ∧ ∈ ∧ =

⇒

 A formal verification of dynamic updating in a Java-based embedded system 319

In this theorem, the soundness of a method update with update instructions contained if a
DIFF file Δm starting from an initial configuration leads to a well typed method code. The
step i′ represents the configuration obtained after the application of all the DIFF file Δm.

The transition
mΔ

→ represents the application of update instructions contained in Δm which

can be represented by a sequence of transitions
(0) (1) ()

0 1 2
m m m j

iC C C C
Δ Δ Δ

′→ → →K where Δm(j)
represents the last update instruction in the DIFF file. The rest of the evolution until the
end of the method (reaching the return instruction) is evaluated with the standard
bytecode instruction of the language (Freund and Mitchell, 2003). The demonstration of
this theorem is by induction of the length of the DIFF file related to the method. Thus, the
proof follows the same scheme as for lemma 2.

We express now the general soundness theorem. This theorem guarantees the
soundness of all types of updates operations contained in the DIFF file (instructions,
methods and fields).

Theorem 2: (General soundness). Given a class C, its set of methods Meth_c, typing
information sets for methods Fs and Ss, a DIFF file Δ and typing information Fc, Sc and Fl
for the class, the update of C with regard to Δ leads to a well typed program if and only
if:

() ()

{ } { }()

_ , 1 (),
() _ (, Im, ,) , , 0

, ,

() _ (, Im, ,) \ \
, ,

() _ (, Im, ,) , , ,
()

m m m

c c

s s m s s m

c c

c c
m m

m Meth c i length
i Add method m BC sig S ε S init F BC

F S Fl C

i Del method m BC sig F F F S S S
F S Fl C

i Mod method m BC sig F S BC F S Fl C
i Add

∀ ∈ ∀ ∈ Δ

Δ = ⇒ = ∧ ⇒

∧

Δ = ⇒ ← ∧ ← ⇒

∧

Δ = ⇒ ⇒ ∧

Δ =

K

{ }
{ }

_ (, ,) , , \ (,)

() _ (,) , , \ (,)

() _ (, ,) , ,

c c

c c

c c

field f tf val F S Fl f tf C

i Del field f tf F S Fl f tf C

i Mod field f tf val F S Fl C

⇒ ∧

Δ = ⇒ ∧

Δ = ⇒

In this theorem, all types of update performed in a class are considered. The updates are
contained in the DIFF file. The variable i is used to indicate the current update
instruction.

The number of update instructions in the DIFF file are represented by length(Δ).
When dealing with method modification, we consider that the updates related to the
method are specified in a Δm which is a part of the general DIFF file Δ. In this theorem,
Fm and Sm express typing information for a method m. It is initialised to default value and
empty when inserting a new method. When modifying a method, its bytecode has to be
well typed with regard to Fm and Sm (results from Theorem 1). The update operations for
fields result straightforwardly from semantics rules. General soundness theorem ensures
that the updated program will not attempt to perform any illegal operations and that all
operations are sound with respect to the system type safety. The entire demonstration of
these lemmas and theorems is planned to appear in a technical report. It implies that our
model is correct by showing that no erroneous updated programs are accepted.

 320 R. Lounas et al.

3.6 Application

Given the fact that type safety represents the corner stone of the Java card platform safety
and security, developing a verification tool to ensure this property for updated programs
is a crucial issue. In the standard life cycle of a smart card application, a program must
pass through bytecode verification before it is uploaded on-card. Bytecode verification is
also performed on-card by type checking.

The EmbedDSU system introduces a step in the life cycle of a smart card application.
The virtual machine is extended to perform update operations and obtain a new version of
the program. The process leads to a bytecode program which did not pass through the
standard verification. Our semantics represent the first specification which captures how
Java card bytecode must be checked for update. Based on this specification, our work
extends the code update module with on-card verification. We developed a prototype for
the verifier using our semantics. The formalisation is embedded in a system with high
order logic (Coq proof assistant) in order to guarantee type safety. This property ensured,
we have to tackle the behavioural correctness property. Indeed, once an updated program
is ensured to be type safe, one has to guarantee that the intended specification is
preserved by the application of the update operations contained in the DIFF file. This
property is detailed in the next section.

4 Approach for formal verification of behavioural correctness

The mechanism of EmbedDSU implies the modification of the bytecode of a running
application on-card after the conventional verification during its life cycle process. In this
process, bytecode passes verification process based especially on type verification. The
applications of update operations on-card are performed with insertion and suppression of
instructions according to the DIFF file. Consequently, after the update process on-card, a
new bytecode that was not submitted to the conventional verification process is obtained.
Our work allows to:

• Ensure the validity of update operations of the DIFF file according to the formal
specification of the Java Card virtual machine specification and that the updates lead
to a type safe program. This property was discussed in the precedent section.

• Guarantee that the application of the update leads to a bytecode with the
specification that conforms to the intended specification (provided by the
programmer).

• Guarantee that the update is applied at a safe point. This will be discussed in
Section 5.

In the second point, we aim to establish that given an initial program P1, its new version
P2 and a DIFF file Δ containing the specification of the transformation derived from the
differences between P1 and P2, the application of the DIFF file on-card on P1 (noted
App_PATCH) leads to P2′. The two programs P2 and P2′ are verified to be semantically
equivalent. This equivalence ensures that the system indeed implemented the desired
transformation. This problem can be expressed equationally by:

 A formal verification of dynamic updating in a Java-based embedded system 321

1, 2, 2 , (1, 2) _ (1,) 2 2P P P DIFF P P App PATCH P P P′ ′ ′∀ Δ = = Δ ⇒ ≡

This raises two major issues:

1 the modelling of the application of the DIFF file on an existing program

2 the expression of the equivalence which guarantees the correctness of the update
(noted ≡ in the equation).

Figure 7 Approach for verification of behavioural correctness (see online version for colours)

Figure 7 gives an overview of an off-card approach for formal verification of behavioural
correctness of updated programs. The approach is split in three parts:

• The transformation block: at this stage, we obtain from a first version of a bytecode
program BC_V1 and a second version BC_V2 (version one transformed), a DIFF file.
The versions BC_V1 and BC_V2 are supposed to be correct. The DIFF file will be
applied to the on-card first version. We obtain a new version on-card. The goal of
our approach is to establish that the on-card new version and BC_V2 are semantically
equivalent. At this level, the specifications of both BC_V1 and BC_V2 are provided
by the programmer using existing specification languages.

• The functional block: a functional model is defined to represent and manipulate the
Java Card bytecode. We implement an automatic translator called functional_reader
which takes a program written in bytecode and produces a functional representation
of it. The application of the DIFF file is represented at this level as annotations of the
functional representation with expressions indicating the place of the update
operation and its nature (addition of instructions, deletion …)

• The verification block: the goal is to verify that the bytecode obtained by
transformation is equivalent to the one written by the programmer, i.e., it satisfies the
same specification.

The specification of the obtained bytecode in its functional representation with
annotations is performed by a weakest precondition calculus that we define specially to
deal with update operations. Then, a verification condition generator gives statements to

 322 R. Lounas et al.

be verified to establish that the obtained specification matches the specification given by
the programmer at the transformation block. A proof assistant is used to discharge
verification conditions.

Figure 8 Bytecode annotation with update instructions (see online version for colours)

4.1 Annotation and functional representation of bytecode

The DIFF file containing the update instructions is calculated at bytecode level and then
is sent to perform the update on-card. In order to ensure that we send the right one, we
model its application on an initial version of bytecode P1 as annotations. The operation
of annotating a bytecode with expressions indicating where an update instruction occurs
and what is the operation involved can be defined recursively as an annotation function
which transforms a program to an annotated program.

()
() ()
[],

:: , _ _ , (,)i i

Annot P P

Annot Upd P letP Add Annot Line Upd P in Annot P

≡

′ ′Δ ≡ = Δ

The annotation of a program with an empty DIFF file ([]) is the program itself otherwise,
the function iterates over the update operations starting from the update instruction at the
head of the DIFF file (Updi) in the DIFF file and adds a corresponding annotated line
(Add_Annot_Line(Updi, P)) to the program. The rest of update instruction (Δ) is then
considered. The symbol :: is a list constructor linking the head of the list to its rest. Figure
8 shows an annotated program obtained by the application of a DIFF file on an initial
bytecode. The annotations are represented as special comments. For example, Del 4:
deletes the instruction at program counter (pc) 4 and add isub 4, adds the instruction isub
at pc 4.

In this framework, we use a functional representation based on the Coq specification
language to represent manipulated data (integers, objects and variables), instructions of
the sub language, update instructions, programs and annotated programs. The
formalisation of these concepts is used to perform the calculus of the specification of
updated programs using a dedicated calculus. This calculus and formalisation details are
presented in the following subsection.

 A formal verification of dynamic updating in a Java-based embedded system 323

4.2 WP-based verification

The approach for verification is based on the fact that the update of a program (of its
semantics) implies the transformation of its specification. In Hoare (1969) logic, a
program P1 and its specification is represented by a triple {pre1}P1{post1} where pre1
(post1) is the precondition (postcondition) of the program P1. A new version of this triple
written off-card by the programmer is {pre2}P2{post2} (called the target triple). The
DIFF file is performed with P1 and P2 and then sent to the card to perform update
operations, meaning, obtaining a new bytecode and a new specification. The goal is to
establish that the target triple and the obtained triple after performing update operations
match.

4.2.1 Interpretation of the update

In order to formally define the update interpreter, we need to define some notions. In this
interpretation, a state is modelled by a three-tuple: <Heap, Frame, Stack_Frame> which
represents the machine state where Heap represents the contents of the heap, Frame
represents the execution state of the current method and, Stack_Frame is a list of frames
corresponding to the call stack. A frame contains the following elements: the stack of
operands OperandStack and the values of the local variables LocalVar at the program
point PC of the method Method(<H, Method, PC, OperandStack, LocalVar>). The
definition of the update interpretation is based on the notion of step.

Definition 2: (Step) The semantics of an instruction (update instruction) is specified as a
function step: Bytecode_Prog ∗ State ∗ Specification –> State ∗ StepName ∗ Specification
that, given a bytecode BC, a state S and a specification SP, computes the next state S′, the
name of the next step and a new specification.

Definition 3: (Java bytecode update interpreter) We define an update interpreter
(Upd_int) which iterates over steps. It takes as parameters an annotated program in its
functional representation, an initial state and an initial specification and relies on
predicate calculus and update interpretation function to produce a new state and a new
specification. The interpreter is defined as Upd_int(BC, S) = (S′, Sp′), with S = initial(BC,
Sp) representing the function for defining an initial state for the execution of the bytecode
BC with the initial specification Sp. The bytecode BC is given with its parameters and an
initial heap. The result of the interpreter is a state S′ and a new specification Sp′.

Definition 4: (Verified updated bytecode)

• Let P1 and P2 be the first and the new version of a program and P a patch

• let P2′ = annot(P1, P) be the program obtained by annotation of P1 with P

• let f(P2′) the functional representations of P2′

• let spec(P1) = (pre1, post1) the specification of P1 and spec(P2) = (pre2, post2) the
specification of P2

The program P2′ is a successfully verified update of P1 if and only if:
verification(spec(P2), spec(P2′)) succeeds where spec(P2′) is obtained by a predicate
transformation on f(P2′) starting from post2.

 324 R. Lounas et al.

Table 2 Defining rules for weakest precondition calculus for update operations

() ()()2_ @ ishift exp E=wp Add_instr(pop, i)

() ()()2_ @ (0) /ishift exp E S x=wp Add_instr(store x, i)

()() ()()2 2((,)) (0) 0 _ () (0) 0 _ @ iS shift exp EL S shift exp E= = ⇒ ∧ ≠ ⇒wp Add_nstr if L i

() ()()()() _ _ @ / (0)iunshift exp shift exp E x S=wp Add_instr load x, i

() ()()()(,) _ _ @ / (0)iunshift exp shift exp E a S=wp Add_instr const a i

() []()()(,) _ _ @ (,) / (0), ::iunshift exp shift exp E create H A S A H H= =wp Add_instr new A i

() ()()[]2(,) _ @ ((1) (0)) / (1)ishift exp E s S S= +wp Add_instr add i

()()[]((,) _ @ (0) / (0)iunshift exp E S S= −wp Add_instr neg i

() ()()()_ (,) _ @ (0), (,) / (0) (0)ishift exp E val S a f S S null⎡ ⎤= ∧ ≠⎣ ⎦wp Add nstr getfield a f t i

() ()() ()()3 ,@(,) _ (0), () : (1) /

(0)
ishift exp E H S a f S H

S null

⎡ ⎤= =⎣ ⎦
∧ ≠

wp Add_instr putfield a f t i

1() _ ()lshift exp E=wp goto l1

4.2.2 Weakest precondition calculus

In this section, we define bytecode update logic in terms of a weakest precondition
calculus. The proposed weakest precondition (WP) considers that each (update)
instruction has a precondition. An instruction with its precondition is called an instruction
specification and is noted as: Ei: Ii where Ii is the instruction and the expression Ei its
specification. This notation expresses that the precondition Ei holds when the program
pointer is at the program counter i. Table 2 shows the calculus of the WP rules for the
update operations (inserting instructions).

Functions and notations used. The functions shift_exp and unshift_exp are used to
express the effect of pushing (popping) elements to (from) the stack S and the effect of
shifting an expression regarding to the stack elements due to the insertion of instructions.
They are defined as follows:

[]
1

_ () (1) / ()

_ _

shift exp Exp Exp s i s i for all i N

unshift exp shift exp−

= + ∈

=

The elements of the stack are represented by positive integers, the top of stack is 0. The
symbol @ is used to express the old specification associated to a position i: when an
instruction is added at position i, the program and the specification are shifted from i
position and then a new instruction is inserted. Its precondition is calculated with the
specification of the instruction that was at position i before the update.

In the rules, for the instructions store x, load x and pop, a precondition is obtained, as
in Hoare’s (1969) assignment by substituting the right-hand side by the left-hand side in
the postcondition. The precondition of an instruction store x under a postcondition Ei+1

 A formal verification of dynamic updating in a Java-based embedded system 325

(the precondition of the following instruction) is given by: shift_exp(Ei+1)(S(0) / x)
meaning that if the expression E holds after the execution of store x then it also holds for
the top of the stack before storing it in x. The function shift_exp is used to express that
before the execution of the instruction, the top of the stack corresponding to the
instruction at i + 1 was at index 1.

Inserting an instruction, e.g., store x at line i means that the precondition of the old
instruction at i becomes the postcondition of the inserted instruction and thus the
calculated precondition starts from this old postcondition (@Ei). The function shift_exp is
used twice (shift_exp2) to express also the impact due to the insertion of the instruction on
the specifications of the following instructions.

The instructions new, putfield and getfield are heap manipulating instructions. The
function create used in the instruction new A returns a new object of type A in the heapH.
This obtained heap (A :: H) replaces the old heap. The function val used in the definition
of getfield to get the value of the field f of the class a from the address (top of the stack).
This value is then pushed on the stack. In putfield, the value of the field designated by the
top of the stack is updated with the value at the second element of the stack. The insertion
of this instruction which pops two values implies three applications of shift_exp.

In order to establish semantical equivalence of a code written by the programmer and
a program obtained by applying a DIFF file, we check the equivalence of the weakest
precondition of an annotated program obtained by WP calculus and a precondition
written by the programmer before DIFF file is performed.

4.2.3 Formalisation details

The formalisation of the proposed approach relies on the formalisation on data types and
the formalisation of the WP calculus:

• The definition of manipulated data, objects, instructions and update instructions is
mainly based on the concepts of lists for both bytecode programs and annotation
function. Figure 9 shows a fragment of the Coq formalisation, mainly, the principle
data structures. The formalisation starts by defining the data manipulated by the
program to formalise the instructions (instruction) and update instructions
(update_instruction). The definition of an instruction is given by the name of a
construct (representing the name of the instruction) followed by its arguments. For
example, for the instruction new, the construct new takes a class as argument. The
instruction putfield is represented by the construct putfield followed by three
arguments: the class (class), the names of the field (string) and its type. A bytecode
line (bc_line) is a record composed of a number and an instruction. An annotated line
is based on update instructions. A line in an annotated code is either a standard
instruction line (std) or an annotation line (annoted). An annotated code is a list of
annotated lines.

• The formalisation of the WP calculus is mainly based on the notion of stacks. Two
categories of stacks are defined: operand stack (op_stack) and logical stack
(logical_stack) (Figure 9). The first stack is used to contain the data manipulated by
the instructions of a program. The type logical_stack contains logical expressions. It
is used to represent the specifications of the instructions of the program (the Ei
expressions). The expressions of the logical stack relate to the content of the operand
stack and the program instructions. A modification trough an update instruction has

 326 R. Lounas et al.

an impact on the logical stack. This impact is defined using the shift and unshift
operations which performs recursively on logical stacks on the base of WP rules. The
correspondence between the operand stack, the list of instructions and the stack of
the specifications is established through the notion of instruction identifiant (Exp_id).

Figure 9 Extract from the formalisation (see online version for colours)

4.2.4 Example of WP calculus

In order to illustrate how the logic works, we take the example of the function abs that
returns the absolute value of an integer taken as an argument. This function is then
transformed in order to get the double of the result in the initial calculus: for an integer
given as an argument, the new function returns the abstract value multiplied by two
(modified abs). The specifications of the two functions are respectively:

 A formal verification of dynamic updating in a Java-based embedded system 327

{ }
{ }

{ } 0) (0)

{ } mod (0 2) (0 2)

p P abs P result P P result P

p P ified abs P result P P result P

= ≥ → = ∧ < → = −

= ≥ → = ∗ ∧ < → = − ∗

Figure 10 Example of an annotated bytecode (a) the first version (b) the new version
(c) the DIFF file (d) the annotated program

Figure 11 WP calculus on the modified function

In the specification, P denotes the logical value at the entry and result is the result of the
function. Figure 10 shows the bytecode of the first version (a) and the second version (b)
of the described function. The part (c) of the figure shows the DIFF file generated from
the two versions. The last part of the figure (d) shows the bytecode of the function abs
annotated with update instructions. We notice that in this bytecode, local variables are
represented by integers: in load 1 for example, the number 1 means the local variable 1.
The same notation is applied to other local variables.

In Figure 11, the WP calculus is performed on the bytecode (without annotation)
starting from the post-condition of the new version. The WP calculus is applied on the

 328 R. Lounas et al.

annotated bytecode as shown on Figure 12. The specifications for the update instructions
are in bold. This example shows that we obtain the same precondition {P = v0} which
means that at the beginning of the calculus the logical value P is in the first local variable
of the function. This result expresses the equivalence of the two bytecodes according to
the proposed definition of verified updated program. This ensures the behavioural
correctness of a type safe updated program according to a DIFF file.

The application of the DIFF file in order to obtain a type safe updated program with
the intended specification has to consider the execution state of the program in order to
preserve the safety of the system. This concern is discussed in the next section.

Figure 12 WP calculus on an annotated bytecode

5 Ensuring activeness safety

The application of the updates raises the question of active methods. Indeed, a naive
modification may lead to system inconsistency: updating a method while it is active leads
to the use of different versions of the same method and thus, generating an incoherent
behaviour of the system. This situation is avoided by ensuring activeness safety property.
This property ensures that an update may be performed only if the functions modified by
the update are not active. It implies that the modified functions are not on the stack of a
running program. This is ensured by analysing the applications to define SUP. We
propose, in this section, a formalisation and a verification of a technique used to compute
a SUP in EmbedDSU and other systems. We verify that it guarantees the correctness of
the system by ensuring activeness safety.

5.1 SUP detection

This subsection presents a description of the concepts used in the technique of safe
update point detection and its mechanism.

 A formal verification of dynamic updating in a Java-based embedded system 329

5.1.1 Methods and virtual machine modes

Methods are considered from activeness point of view. Four cases are noticed:

• Active/not active methods: a method is active if it is running. This means that the
method owns a frame in the execution stack because it has been invoked. Otherwise,
a method is not active.

• Restricted/not restricted methods: a method is restricted if it is active in the VM and
concerned by the update. A method is not restricted if it is not concerned by the
update whatever it is active or not.

The search of the appropriate point to perform DSU is performed by a safe update
detection algorithm. This algorithm ensures that no restricted method is executing during
the update. The update process defines three modes for the virtual machine:

• The standard mode: during this mode, the virtual machine works normally until
detecting an update.

• The pending mode: at update detection, the virtual machine switches to seek a safe
update point mode. A SUP corresponds to a state where restricted methods are not
executing.

• The update mode: after detecting a SUP, the update process is performed at the
levels described in Section 2.

The main idea is to force methods involved into an update to finish. This mechanism
provides a highest priority to such methods that will be popped from the stack.

5.1.2 Search SUP mode functions

In order to detect a SUP, a function searchSUP introspects the frames for each thread of
the running application. If the update is possible (no restricted methods in the frames),
then the update mode is set to true and the search SUP mode is set to false.

If restricted methods are present in the stack, we obtain the number of frames
associated to restricted methods by VM introspection. It is stored in a variable counter.
The search SUP mode uses the following functions to lead the systems to a safe update
point:

• createFrame: this function is used at every method invocation to create an associated
frame. The frame is placed at the head of the frame list of the thread. This function is
adapted to handle DSU mechanism during research SUP mode: at every created
frame, a check is performed. If the thread has no frames related to a restricted
methods in its execution stack then it is blocked. This policy avoids having other
frames related to a method to be modified in the stack thread. The goal is to let
restricted methods finish their execution and lead them to inactive state.

• releaseFrame: this function is used at the end of the execution of a method to
suppress its frame. In the search SUP mode, this function is adapted in order to check
if restricted methods exist in the thread stack. If not, the thread is suspended. The
counter counter, associated to the executing thread, is decremented at every release

 330 R. Lounas et al.

of a frame associated to a restricted method. A safe update point is reached if this
number reaches zero for every thread.

• switchThread: if the VM is in the normal mode, this function selects the next thread
to be the active one. If the mode is pending and if all the remaining threads are
blocked then it switches the update mode. No restricted method is present in any
thread, we have reached a SUP.

At the starting point, the process counts all frames related to a modified method present
in the stack thread. If the value is not equals to zero, then the update is pending, the
virtual machine can continue to execute other applications. However, the value is
decremented each time these methods finish their execution. When the value equals zero,
then the SUP is obtained and the virtual machine can switch to the update mode.

5.2 Ensuring activeness safety criteria

We present in this subsection a formal verification of activeness safety. The formalisation
is based on a functional modelling provided by the Why3 platform (Bobot et al., 2016).
We use the Why3 platform to write specifications. This platform provides the language
Why3 which is a functional language with logics. After specification, the platform offers
an interface to different provers in which proof obligations can be discharged. The choice
of this platform is motivated by the high level of expressiveness of the language for both
computational and logic level and the large choice of provers supported by the platform
including the Coq proof assistant.

5.2.1 Specification

This subsection presents the proposition of a functional formalisation of the DSU
mechanism to reach a SUP. Precisely, our specification relies on:

• a formalisation of the notion of time as a functional stream, virtual machine
structures and modelling of behaviours as modes across time;

• a formalisation of predicates and functions related to the update mechanism;

• a formalisation of theorems to state activeness safety property.

In Why3, specifications are based on the notions of theory. A theory is a list of
declarations. Declarations introduce new types, functions and predicates, state axioms,
lemmas and goals. Figure 13 shows the specification of types used in the formalisation.

We represent the notion of time as a functional stream. Streams represent a
potentially infinite sequence of data of the same kind. The evaluation of a part of a stream
is done on demand, whenever it is needed by a current computation. The stream type is
an abstract data type; one does not need to know how it is implemented. In this
formalisation, a stream of instants represented by integers (type instant = I int) is
considered.

 A formal verification of dynamic updating in a Java-based embedded system 331

Figure 13 Extract of types required by the specification (see online version for colours)

The type flag is used to indicate a restricted method. It is set to one if a method concerned
by the update is active. A method is specified by its identifier, signature, the list of its
local variables and owner (the class of the method). Another information in method
called upd_flag is defined. This information is used to indicate whether a method is
concerned or not by an update. The upd_flag corresponds initially to zero. If the method
is concerned by an update (according to a DIFF file) then this flag is changed.

A thread is represented by its identifier, its list of frames, its owner and its status. A
thread passes trough different states. In standard mode, a thread is scheduled then
executed (Running). If it meets a sleep instruction, it goes to the sleeping state (Waiting).
The thread gets blocked if it wants to acquire a lock but it cannot because another thread
owns it, the active thread has to go to the blocked state (Blocked) and wait until another
thread releases the lock. In our modelisation, another state is necessary. The thread gets
DSU_blocked if the virtual machine enters the search SUP mode to force running
restricted methods.

The virtual modes of the virtual machine are represented by the type vm_mode,
enumerating respectively the standard mode, the search SUP mode (pending) and the
update mode. The evolution of the modes during time is represented as VM behaviour.

Figure 14 Some predicates used by the specification (see online version for colours)

 332 R. Lounas et al.

Figure 14 presents some illustration of predicates related to the types. For instance, the
predicate is_restricted is used to state that a method is restricted if it is concerned by the
update (is_updated predicate) and if it has frames in execution. The predicates are used in
both modelling the functions representing the mechanism and writing theorems that
ensures activeness safety property.

5.2.2 Verification

The process of verification is based on the Why3 platform. This framework generates
from a Why3 language file a set of proofs that guarantee the correctness of the
established theory. Figure 15 represents some theorems form our specification, the three
lemmas are related to the three modes of the virtual machine. The first lemma ensures
that updated methods are not running during the update. The second lemma related to the
standard mode, guarantees that all the threads that have been blocked during the search
SUP mode to reach a SUP are unlocked after the update release. The third lemma is
crucial to establish the activeness safety property. It states that during the execution, a
virtual machine passes through different modes (represented by a stream associating
modes to instants). It states that during the search mode, the number of restricted method
is decreasing across time (from an instant t1 to t2). The predicate before is used to
express that t1 is before t2 in the stream.

Figure 15 represents two goals. The first goal, establishes that the virtual machine
reaches the SUP. Indeed, the number of restricted method reaches zero. This goal is
principally based on the sup_mode1 lemma. The second goal ensures that a started update
terminates and the virtual machine returns to the standard mode. These two goals
guarantee the system safety.

The Why3 platform provides interfaces with different proof systems (provers and
proof assistants). Due to the high expressiveness required by the formalisation, we
worked on the Coq proof assistant.

6 Related work

Several studies have been conducted in order to use formal methods to ensure DSU
correctness. The concept of DSU correctness is not unique and relates to the different
scientific problems (code update, data update and update timing). Correctness criteria are
divided in literature into two categories. The first category relies on common properties
that are shared by all updates such as type safety (Hjálmtýsson and Gray, 1998; Neamtu
et al., 2006; Makris, 2009; Zhang et al., 2012) and activeness safety (Hayden, 2012). The
second category refers to specific properties related to the semantics of updated programs
(Hayden et al., 2012; Anderson and Rathke, 2009; Charlton et al., 2011). They are also
called behavioural properties. Techniques and systems related to DSU are surveyed in
Seifzadeh et al. (2013) and Miedes and Munoz-Escoi (2012).

Several formalisms are used to establish DSU correctness criteria. Zhang et al. (2012)
used an algebraic formalism to ensure correctness of DSU systems based on the
mechanism of POLUS (Chen et al., 2007). The programs is formalised in terms of sort
and operations and the update mechanism as a rewriting system. This work focuses on
two types of correctness: common property correctness and correctness based on
properties defined by the user. The process of verification is based on three parts: choose

 A formal verification of dynamic updating in a Java-based embedded system 333

an initial configuration, formalise properties and then verify. Type safety is specified as a
predicate. System rewriting is then used to establish the property. Other works used
different formalisms to ensure type safety such as functional formalism and type system
in respectively (Anderson and Rathke, 2009; Duggan, 2005).

Behavioural properties are studied in Charlton et al. (2011): the authors provided a
framework such that the desired properties are expressed within the updated code using
Hoare logic (HL) style Hoare (1969) by writing preconditions, post-conditions and
assertions within the code. The system computes proof obligations which are discharged
by theorem proving. In Anderson (2013), the behavioural properties are expressed in a
type system extended with effects. The idea behind this work is that the correctness of an
update depends on a state characterised by the code and the shared resources. The type
system ensures that the modified system will behave as expected by keeping track of the
effect of each update operation. The formalism includes a notion of world constraints to
keep the difference between the effect of an update operation and the expected
specification of an update. The language considered is a typed lambda-calculus with
recursion and threads.

Figure 15 Theorems from our formalisation (see online version for colours)

In our work, the contribution is at both system level and single program level. First, we
presented formal semantics for update operations and established type safety. Using
semantics to prevent type errors in bytecode, the contribution extends the formalism
presented in Freund and Mitchell (1999). This work defined semantics and a type system
to study object initialisation in bytecode. The original idea was developed in Stata and
Abadi (1999) to study bytecode subroutines. Freund and Mitchell (2003) extended the
work (Freund and Mitchell, 1999) to bytecode subroutines, virtual method invocation and
exceptions. Qian et al. (2000) proposed formal semantics for Java class loading. The
specificity of the formalisation is the definition of semantics related to operations about

 334 R. Lounas et al.

class loading, loaders delegating, class renaming and data structures related to class
loading mechanism.

Our work is close to Freund and Mitchell (1999) in the use of static semantics to
analyse bytecode. The main difference between our formalisation and existing ones is the
fact that ours is based on the definition of update operations. It ensures that each update
operation operates on data with appropriate types. Performing an update operation, for
instance inserting an instruction, requires the readjustment of the code to take into
account the inserted instruction. The formal semantics define data structures and
operations to check typing information and code readjustment. The other main difference
is the formalisation of an extension of the Java card virtual machine (JCVM) to
implement DSU. Our work is the first attempt to formalise such an extension on the
JCVM. Indeed, the proposed formal semantics guarantees that the defined operations of
the system preserve type safety with regard to virtual machine specifications.

The second established property is behavioural correctness of the updated code.
Using predicate transformation to reason about bytecode properties has been studied in
Grégoire et al. (2008). The authors presented a verification condition generator for
bytecode formalised in the Coq proof assistant and based on weakest precondition
calculus. Another work using weakest precondition to generate verification conditions
from an annotated bytecode is presented in Burdy and Pavlova (2006) and Burdy et al.
(2007). Our bytecode logic for weakest precondition calculus is inspired by Bannwart
and Müller (2005). It allows reasoning at single program level. We presented a
Hoare-style logic combined with instruction specification in term of precondition. The
main difference between the proposed WP calculus and existing predicate
transformations is the fact that we presented WP rules dedicated to update operations to
ensure update correctness with regard to specifications written by the programmer on the
basis of DIFF file information.

Correctness criteria related to update timing are addressed in literature through two
major approaches: the first category improves the programming language to offer the
possibility to insert update points within the code. Stoyle et al.’s (2007) updates are
performed at points satisfying confreeness configurations: the code is labelled with
update expressions at points where the update is possible in addition with the types that
must not be updated. These points are inferred by a static analysis called updateability
analysis. The major drawback of this category is that prediction techniques relies
generally on the modification of the semantics of the programming language to offer the
possibility to insert update points within the code.

The second category (Hayden, 2012; Noubissi et al., 2011) relies on mechanisms to
introspect the state of the application and drive it to a quiescent mode and then performs
the update. Establishing activeness safety property is formally established using a
bisimulation technique for C-like programs in Hayden (2012) and functional model for
component- based programs in Buisson et al. (2016). Other properties related to update
timing do exist in literature. We studied other properties in Lounas et al. (2017). In the
present paper, the formalisation aims to verify the mechanism of searching safe update
point for DSU for Java Card with regard to activeness safety by specifying both the
mechanism and properties using a functional specification and based on the concept of
streams.

 A formal verification of dynamic updating in a Java-based embedded system 335

7 Conclusions

DSU consists in updating running programs on-the-fly without any downtime. This
feature is important in critical systems that must run continuously. The use of DSU in
critical systems leads to the use of formal methods that offer the high level of guarantee
required by such applications. In this paper, we proposed an approach for formal
specification and verification of DSU in Java Card applications.

We verified three properties: first, we established that update operations are well
typed by defining a formal semantics with regard to Java Card specification and type
safety. This semantics is used to establish well-formed updates. Secondly, we established
behavioural correctness of updated bytcodes. We proposed an approach that relies on a
dedicated weakest precondition calculus to establish that the updated program matches
the programmer’s specifications. Our third contribution consists in the specification of
the update mechanism in order to ensure the safety of the update in term of timing. We
specified the activeness safety property that guarantees that the update occurs at a safe
point.

Our work is based on functional representation. This is motivated by the fact that this
kind of specification offers high expressiveness and eases the integration of our work
with existing formal methods to construct proofs. We integrated our work in theWhy3
framework but other formal frameworks can be considered.

Our study started with considering the system EmbedDSU but this is not restrictive.
The proposed framework can be generalised to specification and verification of updated
programs written in languages that are compiled to bytecode. Besides, several research
works rely on the principle of searching a safe update point to perform DSU. We believe
that the presented contribution could be adapted.

As a future work, we plan to extend our work to include exceptions in the
formalisation of update operations and to extend the functional formalisation to verify
other parts of the DSU system such as instances update in the heap.

References
Anderson, A. and Rathke, J. (2009) ‘Migrating protocols in multi-threaded message-passing

systems’, Proceedings of the 2Nd International Workshop on Hot Topics in Software
Upgrades (HotSWUp).

Anderson, G. (2013) Behavioural Properties and Dynamic Software Update for Concurrent
Programmes, Phd Thesis, University of Southampton.

Arnold, J. and Kaashoek, M.F. (2009) ‘Ksplice: automatic rebootless kernel updates’, Proceedings
of the 4th ACM European Conference on Computer Systems (EuroSys), pp.187–198.

Bannwart, F and Müller, P, (2005) ‘A program logic for bytecode’, in Electron. Notes Theor.
Comput. Sci., Vol. 141, pp.255–273, Elsevier Science Publishers B.V.

Baumann, A., Kerr, J., Da Silva, D., Krieger, O. and Wisniewski, R.W. (2009) ‘Module hot-
swapping for dynamic update and reconfiguration in K42’, in 6th Linux.Conf., Au.

Bobot, F., Filliâtre, J-C., Marché, C., Melquiond, G. and Paskevich, A. (2016) The Why3 Platform
Manual, University Paris-Sud, CNRS, Inria.

Buisson, J., Dagnat, F., Leroux, E. and Martinez, S. (2016) ‘Safe reconfiguration of Coqcots and
Pycots components’, Journal of Systems and Software, Vol. 122, pp.430–444.

 336 R. Lounas et al.

Burdy, L. and Pavlova, M. (2006) ‘Java bytecode specification and verification’, in SAC 2006,
pp.1835–1839.

Burdy, L., Huisman, M. and Pavlova, M. (2007) ‘Preliminary design of BML: a behavioral
interface specification language for Java bytecode’, in FASE 2007, pp.215–229.

Charlton, N., Horsfall, B. and Reus, B. (2011) ‘Formal reasoning about runtime code update’, in
ICDE Workshops, pp.134–138.

Chen, H., Yu, J., Chen, R., Zang, B. and Yew, P-C. (2007) ‘POLUS: a powerful live updating
system’, Proceedings of the 29th International Conference on Software Engineering, IEEE
Computer Society, pp.271–281.

Chen, J. and Huang, L. (2009) ‘Dynamic service update based on OSGi’, WRI World Congress on
Software Engineering, (WCSE), pp.493–497.

Common Criteria (2015)[online] http:///www.commoncriteriaportal.org/ (accessed 28 September
2017).

Duggan, D. (2005) Type-based Hot Swapping of Running Modules,pp.181–220, Acta Inf.
Springer-Verlag, New York, Inc.

Freund, S.N and Mitchell, J.C ‘A type system for object initialization in the Java bytecode
language’, in ACM Trans. Program. Lang. Syst., pp.1196–1250.

Freund, S.N and Mitchell, J.C. (2003) ‘A type system for the Java bytecode language and verifier’,
In J. Autom. Reasoning, Vol. 30, No. 3, pp.271–321.

Grégoire, B, Sacchini, J.L and Sivan, R. (2008) ‘Combining a verification condition generator for a
bytecode language with static analyses’, in Proceedings of the 3rd conference on Trustworthy
global computing, Springer-Verlag, pp.23–40.

Gupta, D. and Jalote, P. (1993) ‘On line software version change using state transfer between
processes’, Software – Practice and Experience, Vol. 23, No. 9, pp.949–964.

Hayden, C.M., Smith, E.K, Hicks, M., and Foster, J.S. (2011) ‘State transfer for clear and efficient
runtime upgrades’, in Proceedings of the 3rd International Workshop on Hot Topics in
Software Upgrades, HotSWUp 2011, IEEE Computer Society.

Hayden, C.M. (2012) Clear, Correct and Efficient Dynamic Software Updates, PhD Thesis,
University of Maryland, USA.

Hayden, C.M., Magill, S., Hicks, M., Foster, N. and Foster, J.S. (2012) ‘Specifying and verifying
the correctness of dynamic software updates’, Proceedings of the 4th International Conference
on International Conference on Verified Software: Theories, Tools, Experiments (VSTTE).

Hjálmtýsson, G. and Gray, R. (1998) ‘Dynamic C++ classes: a lightweight mechanism to update
code in a running program’, Proceedings of the Annual Conference on USENIX Annual
Technical Conference.

Hoare, C.A.R, (1969) ‘An axiomatic basis for computer programming’, in Commun. ACM, Vol. 12,
pp.576–580.

Lounas, R., Jafri, N., Legay, A., Mezghiche, M. and Lanet, J-L. (2016) ‘A formal verification of
safe update point detection in dynamic software updating’, in Cuppens, F., Cuppens, N.,
Lanet, J.L. and Legay, A. (Eds.): Risks and Security of Internet and Systems, Vol. 10158,
CRiSIS, Lecture Notes in Computer Science, Springer, Cham.

Lounas, R., Mezghiche, M. and Lanet, J-L. (2015) ‘An approach for formal verification of updated
java bytecode programs’, in Hedia, B.B. and Vladicescu, F.P. (Eds.): Proceedings of the 9th
Workshop on Verification and Evaluation of Computer and Communication Systems, VECoS,
Bucharest, Romania, 10–11 September 2015.

 A formal verification of dynamic updating in a Java-based embedded system 337

Lounas, R., Mezghiche, M. and Lanet, J-L. (2014) ‘Mise á jour dynamique des applications
JavaCard: Une approche pour une mise á jour sûre du tas’, Conférence en IngénieriE du
Logiciel (CIEL), CNAM, Paris, France.

Lv, W., Zuo, X. and Wang, L. (2012) ‘Dynamic software updating for onboard software’, Second
International Conference on Intelligent System Design and Engineering Application (ISDEA),
pp.251–253.

Makris, K. and Ryu, K.D. (2007) ‘Dynamic and adaptive updates of non-quiescent subsystems in
commodity operating system kernels’, SIGOPS Oper. Syst. Rev., pp.327–340.

Makris, K. (2009) Whole Program Dynamic Software Updating, PhD Thesis, Arizona State
University, USA.

Miedes, E. and Munoz-Escoi, F.D. (2012) A Survey About Dynamic Software Updating, Technical
report ITI-SIDI-2012/003, University of Valencia, Spain.

Neamtu, I., Hicks, M., Stoyle, G. and Oriol, M. (2006) ‘Practical dynamic software updating for C’,
Conference on Programming Language Design and Implementation, (PLDI), Proceedings of
the 27th ACM SIGPLAN, pp.72–83.

Noubissi, A.C. (2011) Mise á jour dynamique et sécurisée de composants systéme dans une carte á
puce, PhD Thesis, University of Limoges, France.

Noubissi, A.C., Iguchi-Cartigny, J. and Lanet, J.L. (2011) ‘Hot updates for Java based smart cards’,
in ICDE Workshops, pp.168–173.

Qian, Z., Goldberg, A. and Coglio, A. (2000) ‘A formal specification of Java class loading’,
Proceedings of the 15th ACM SIGPLAN Conference on Object-oriented Programming,
Systems, Languages, and Applications (OOPSLA), pp.325–336.

Secrétariat général de la défense et de la sécurité nationale (ANNSI) (2015) ‘Security requirements
for post-delivery code loading’, Agence Nationale de la Sécurité des Systèmes d´ Information,
Paris.

Seifzadeh, H, Kazem, A.A.P, Kargahi, M and Movaghar, A. (2009) ‘A method for dynamic
software updating in real-time systems’, Eighth IEEE/ACIS International Conference on
Computer and Information Science (ICIS), pp.34–38.

Seifzadeh, H., Abolhassani, H. and Moshkenani, M.S. (2013) ‘A survey of dynamic software
updating’, Journal of Software: Evolution and Process, Vol. 25, No. 5, pp.535–568.

Stata, R. and Abadi, M. (1999) ‘A type system for Java bytecode subroutine’, in ACM Trans.
Program. Lang. Syst., Vol. 21, pp.90–137.

Stoyle, G., Hicks, M., Bierman, G., Sewell, P. and Neamtiu, I. (2007) ‘Mutatis mutandis: safe and
predictable dynamic software updating’, ACM Trans. Program. Lang. Syst.

Subramanian, S., Hicks, M. and McKinley, K.S. (2009) ‘Dynamic software updates: a VM-centric
approach’, Proceedings of the 30th ACM SIGPLAN Conference on Programming Language
Design and Implementation, ACM, pp.1–12.

Wahler, M., Richter, S. and Oriol, M. (2009) ‘Dynamic software updates for real-time systems’,
Proceedings of the 2Nd International Workshop on Hot Topics in Software Upgrades
(HotSWUp), pp.2:1–2:6

Zhang, M., Ogata, K. and Futatsugi, K. (2012) ‘An algebraic approach to formal analysis of
dynamic software updating mechanisms’, AsiaPacific Software Engineering Conference
(APSEC), pp.664–673.

 338 R. Lounas et al.

Appendix

We give in this appendix the remaining rules for update operations related to instruction
insertion and suppression. Remarks:

• In the rules for variables, the symbol ⊥ represents the default value the added
variables are initialised with. The Change operation is used to update the map
accordingly and the set of local variables of a method (Im.loc) is updated in each rule
according to the type of the operation.

• In the instruction invokevirtual, the function dom represents the domain of the
invoked function (types of its arguments) and the function card represents the
number of elements in the domain.

Table 3 Rules for Introducing, deleting and modifying variables

{ }
{ }

_ (, ,)
_ _ (. , ,) _ (, ,)

_ _ (. , ,). . (,)
. . \ (,)()

2 (1) 2 (1)(1) (2)
, ,c c c c

Add Loc x tx m
look for var Im loc x tx false Del Loc x tx m

look for var Im loc x tx falseIm loc Im loc x tx
Im loc Im loc x txv x

M Change M M Change MRv Rv
F S C F S C

=
=← ∪

←←⊥
= =

()
_ (, , ,)
_ _ . , ,

()
2 (1) (3)

,c c

Mof Loc x tx val m
look for var Im loc x tx true
v x val
M Change M Rv

F S C

=

←
=

Table 4 Rules for update operations (insertion of instructions)

1

1 1

1 1 1

_ (1)
_

2 _ (1, , 1)
1, ()

, , , 1, , , , 2, 1

i i

i i i

i i i i i i

Add inst goto L i
SD SD PC MAX
S S F F
M Add inst M got L i
i L DOM BC

F S SD M i F S SD M i

+

+ +

+ + +

+
= + +

= =
= +

+ ∈
→ +

[]
1

0

1 0

1 1 1

_ (1)
1 _

.

2 _ (1, , 1)
1 () ()

, , , 1, , , , 2, 1

i i

i i

i

i i i i i i

Add inst store x i
SD SD PC MAX
S t S F x t
S S
M Add inst M store x i
i DOM BC x VAR BC

F S SD M i F S SD M i

+

+

+ + +

+
= − + +

= ←
=
= +

+ ∈ ∈
→ +

1 1

0 1 0

1 1 1

_ (1)
1

.
2 _ (1, , 1)
_

1 ()
, , , 1, , , , 2, 1

i i i i

i i

i i i i i i

Add inst pop i
SD SD F F
S t S S S
M Add inst M pop i
PC MAX
i DOM BC

F S SD M i F S SD M i

+ +

+

+ + +

+
= − =

= → =
= +

+ +
+ ∈

→ +

1 1

0 1 0

1 1 1

_ (, ,)(1)
2

. .
2 _ (1, (, ,), 1)
_ 3 1 ()

, , , 1, , , , 2, 1

i i i i

i i

i i i i i i

Add inst putfield A f t i
SD SD F F
S t A S S S
M Add inst M putfield A f t i
PC MAX i DOM BC

F S SD M i F S SD M i

+ +

+

+ + +

+
= − =

= ⇒ =
= +

+ + ∈
→ +

 A formal verification of dynamic updating in a Java-based embedded system 339

Table 4 Rules for update operations (insertion of instructions) (continued)

1

0 1 0

1

1 1 1

_ (, ,)(1)

. .
2 _ (1, (, ,), 1)
_ 3

, , , 1, , , , 2, 1

i i

i i

i i

i i i i i i

Add inst getfield A f t i
SD SD
S A S S t S
M Add inst M getfield A f t i
PC MAX F F

F S SD M i F S SD M i

+

+

+

+ + +

+
=

= ⇒ =
= +

+ =
→ +

1

1 1

1 1 1

_ (1)
1

_
[].

2 _ (1, , 1)
1 () ()

, , , 1, , , , 2, 1

i i

i i i i i

i i i i i i

Add inst load x i
SD SD
PC MAX
S F x S F F
M Add inst M load x i
i DOM BC x VAR BC

F S SD M i F S SD M i

+

+ +

+ + +

+
= +

+ +
= =
= +

+ ∈ ∈
→ +

()()1

1 0 1 0

1

1 1 1

_ (, ,)(1)

() 1

1. 2 .
2 _ (1, (, ,), 1)
1 ()
_ 3

, , , 1, , , , 2, 1

i i

i n i

i i

i i i i i i

Add inst invokevirtual A l t i

SD SD card dom t

S tn tn tn S S S
M Add inst M invokevirtual A l t i
i DOM BC F F
PC MAX
F S SD M i F S SD M i

+

+ +

+

+ + +

+

= − +

= ≥ → =
= +

+ ∈ =
+

→ +

K

1

1 1

1 1 1

_ (1)

_

2 _ (1, , 1)
1 , ()

, , , 1, , , , 2, 1

i i

i i i i

i i i i i i

Add inst if L i
SD SD
PC MAX
S S F F
M Add inst M if L i
i L DOM BC

F S SD M i F S SD M i

+

+ +

+ + +

+
=

+ +
= =
= +

+ ∈ ∈
→ +

1

1 1

1 1 1

_ (1)
1

_
.

2 _ (1, , 1)
1 ()

, , , 1, , , , 2, 1

i i

i i i i

i i i i i i

Add inst const a i
SD SD
PC MAX
S int S F F
M Add inst M const a i
i DOM BC

F S SD M i F S SD M i

+

+ +

+ + +

+
= +

+ +
= =
= +

+ ∈
→ +

1 1

0 1

1 1 1

_ (1)

.
2 _ (1, , 1)
_

1 ()
, , , 1, , , , 2, 1

i i i i

i i

i i i i i i

Add inst neg i
SD SD F F
S int S S
M Add inst M neg i
PC MAX
i DOM BC

F S SD M i F S SD M i

+ +

+

+ + +

+
= =

= =
= +

+ +
+ ∈

→ +

Table 5 Rules for update operations (suppression of instructions)

()

()
()

1

1

1

1 1 1

(1)

_ , 2[1]
2 _ (1, , 1)

(2) _ 2[1],

(2) _ 2[1],
1, () _

, , , 1, , , , 2, 1

i

i

i i

i i

i i i i i i

Dlt inst goto L i
SD a
SD Effects SD a M i
M Dlt inst M gotoL i
M S Effects STK M i S

M F Effects F M i F
i L DOM BC PC MAX

F S SD M i F S SD M i

+

+

+

+ + +

+ +
= →

= +

= +

= +

= +

+ ∈ − −
→ +

()

()

()
()

1

0

1 0

1

1 1

(1)

_ , 2[1]
2 _ (1, , 1)

. , []
(2) _ 2[1], .

(2) _ 2[1],
1 () _ 3

, , , 1, , ,

i

i

i i

i

i i

i i i i i i

Dlt inst store x i
SD a
SD Effects SD a M i
M Dlt inst M store x i
S t S F x t
M S Effects STK M i t S

M F Effects F M i F
i DOM BC PC MAX

F S SD M i F S SD

+

+

+

+ + +

+ +

= →

= +

= +
= = →

= +

= +

+ ∈ −
→ 1, 2, 1M i +

 340 R. Lounas et al.

Table 5 Rules for update operations (suppression of instructions) (continued)

()

()
()

1

0

1

1

1 1 1

(1)
_ , 2[1]

2 _ (1, , 1)
.

(2) _ 2[1],

(2) _ 2[1],
1, () _

, , , 1, , , , 2, 1

i i

i

i i

i i

i i i i i i

Dlt inst if L i
SD a SD Effects SD a M i
M Dlt inst M ifL i
S int S
M S Effects STK M i S

M F Effects F M i F
i L DOM BC PC MAX

F S SD M i F S SD M i

+

+

+

+ + +

+ +

= → = +

= +
= →

= +

= +

+ ∈ − −
→ +

()
()

()
()

1

0

1 0

1

1 1 1

(1)

_ , 2[1]
2 _ (1, , 1)

.
(2) _ 2[1], .

(2) _ 2[1],
1 () _

, , , 1, , , , 2, 1

i i

i

i

i i

i i i i i i

Dlt inst pop i

SD a SD Effects SD a M i
M Dlt inst M pop i
S t S
M S Effects STK M i t S

M F Effects F M i F
i DOM BC PC MAX

F S SD M i F S SD M i

+

+

+

+ + +

+ +

= → = +

= +
= →

= +

= +

+ ∈ − −
→ +

()

()

()
()

1

0

1

1

1

(, ,) (1)

_ , 2[1]
2 _ (1, (, ,), 1)

. .
(2) _ 2[1],

(2) _ 2[1],
1 () _ 3

, , , 1,

i

i

i

i i

i i

i i i i

Dlt inst putfield A f t i
SD a
SD Effects SD a M i
M Dlt inst M putfield A f t i
S A t S
M S Effects STK M i S

M F Effects F M i F
i DOM BC PC MAX

F S SD M i F

+

+

+

+

+ +

= →

= +

= +
= →

= +

= +

+ ∈ −
→ 1 1, , , 2, 1i iS SD M i+ + +

()

()

()
()

1

0

1 0

1

1

(, ,) (1)

_ , 2[1]
2 _ (1, (, ,), 1)

.
(2) _ 2[1], .

(2) _ 2[1],
1 () _ 3

, , , 1,

i

i

i

i

i i

i i i i

Dlt inst getfield A f t i
SD a
SD Effects SD a M i
M Dlt inst M getfield A f t i
S A S
M S Effects STK M i A S

M F Effects F M i F
i DOM BC PC MAX

F S SD M i F

+

+

+

+

+ +

= →

= +

= +
= →

= +

= +

+ ∈ −
→ 1 1, , , 2, 1i iS SD M i+ + +

()

()

()
()

1

0

1

1

1 1 1

(1)

_ , 2[1]
2 _ (1, , 1)

.
(2) _ 2[1],

(2) _ 2[1],
1, () _

, , , 1, , , , 2, 1

i

i

i

i i

i i

i i i i i i

Dlt inst neg i
SD a
SD Effects SD a M i
M Dlt inst M neg i
S int S
M S Effects STK M i S

M F Effects F M i F
i L DOM BC PC MAX

F S SD M i F S SD M i

+

+

+

+ + +

+ +

= →

= +

= +
= →

= +

= +

+ ∈ − −
→ +

()
()

()
()

1

1 0

1 0

1

1 1 1

(1)

_ , 2[1]
2 _ (1, , 1)

(1) .
(2) _ 2[1],

(2) _ 2[1],
1 () _

, , , 1, , , , 2,

i i

i

i

i i

i i i i i i

Dlt inst load x i

SD a SD Effects SD a M i
M Dlt inst M load x i
M S t S
M S Effects STK M i S

M F Effects F M i F
i DOM BC PC MAX

F S SD M i F S SD M i

+

+

+

+

+ + +

+ +

= → = +

= +
= →

= +

= +

+ ∈ − −
→ 1+

()

()

()
()

1

0

1

1

1 1 1

(1)

_ , 2[1]
2 _ (1, , 1)

(2) _ 2[1],

(2) _ 2[1],
1 () _

, , , 1, , , , 2, 1

i

i

i

i i

i i

i i i i i i

Dlt inst const a i
SD a
SD Effects SD a M i
M Dlt inst M const a i
S S
M S Effects STK M i S

M F Effects F M i F
i DOM BC PC MAX

F S SD M i F S SD M i

+

+

+

+ + +

+ +

= →

= +

= +
= →

= +

= +

+ ∈ − −
→ +

()
()

()
()

1

1 2 0

1

1

(, ,) (1)

_ , 2[1]
2 _ (1, (, ,), 1)

. .
(2) _ 2[1],

(2) _ 2[1],
1 () _ 3

i i

i n

i i

i i

Dlt inst invokevirtuel A l t i

SD a SD Effects SD a M i
M Dlt inst M invokevirtuel A l t i
S tn tn tn S
M S Effects STK M i S

M F Effects F M i F
i DOM BC PC MAX
F

+

+

+

+ +

= → = +

= +
= →

= +

= +

+ ∈ −

K

1 1 1, , , 1, , , , 2, 1i i i i i iS SD M i F S SD M i+ + +→ +

