Abstract

This paper discusses the adsorption and dissociation of the hydrogen sulfide (H₂S) molecule on the titanium dioxide surface. They were studied by density function theory (DFT). The GGA + *U*approach was used to analyze the adsorption behavior of the H₂S molecule on the TiO₂ anatase (100) surface. The results presented include adsorption energies, structural and electronic properties, charge transfer and work function. Different adsorption configurations are considered with coordination of H₂S at the surface (Ti_{5c}, (Ti_{5c})₂, O_{2c} and O_{3c} sites). The calculated adsorption energies are -0.31, -0.28, -1.14 and -5.66 eV. The most favorable adsorption sites lead to the dissociation of H₂S into HS and H, where the S atom of HS binds to Ti_{5c} or O_{2c} atoms, leaving a dissociated H atom bonded to another O_{2c} site. Analysis of Bader's charges reveals a significant charge transfer between the molecule and the surface of the TiO₂ anatase. The adsorption process reduces the work function and bandgap of the system, which improves the photocatalytic properties of TiO₂.