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Original Article

Multi-fault diagnosis of rolling bearing
using fuzzy entropy of empirical mode
decomposition, principal component
analysis, and SOM neural network

Mohamed Zair , Chemseddine Rahmoune and
Djamel Benazzouz

Abstract

The condition monitoring and multi-fault diagnosis of rolling bearing is a very important research content in the field of

the rotating machinery health management. Most researches widely used empirical mode decomposition in tandem with

principal component analysis which is applied for feature extraction. But this method may lead to imprecise classification.

In this paper, we propose a new method of rolling bearing multi-fault diagnosis, by combining the fuzzy entropy of

empirical mode decomposition, principal component analysis, and self-organizing map neural network. The empirical

mode decomposition process allows the vibration signal to be decomposed into a series of intrinsic mode functions. For

each intrinsic mode function, we obtained the fault feature information. The proposed approach combines the fuzzy

function and sample entropy to obtain fuzzy entropy. By this combination, we can reflect the complexity and the

irregularity in each intrinsic mode function component. The fuzzy entropy of empirical mode decomposition used to

construct the vectors is defined as the input of the principal component analysis. This principal component analysis is

used to reduce the dimension of the feature vectors. Finally, the reduced feature vectors are chosen as input of self-

organizing map network for automatic fault diagnosis and fault classification. The obtained results show that the

proposed approach makes it possible to correctly assess the degradation of rolling bearing and to obtain recognition

of high-sensitivity defects for different types of bearing faults.

Keywords

Rolling bearing, empirical mode decomposition, fuzzy entropy, faults diagnosis, principal component analysis, fault clas-
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Introduction

Rotating machinery are considered to be a critical
mechanical component in industrial applications in
terms of economy, reliability, and safety. The rolling
bearings are the most important and frequently used
in rotating machinery; their defects usually lead to
drop in plant productivity and may cause huge
losses in economic field.1,2 Therefore, to keep the
bearings in good operation, it is important to diag-
nose their faults. Theoretically, rolling bearing fault
diagnosis can be divided into three main parts: signal
processing to extract the feature information vectors,
pattern recognition, and classification according to
the extracted fault feature vectors.3 However, in our
approach, we added a necessary step: feature reduc-
tion. These steps indicate correctly and efficiently the
uncovered fault characteristics in the original signal,

which has also an impact on the diagnostic processing
and classification results. The variation of working
conditions for bearings influences on the feature par-
ameters and may even cause change in the diagnostic
method.4

Nowadays, the majority of researchers analyze the
vibration signal using many conventional methods
such as Fourier Transform (FT), Wigner-Ville
Distribution (WVD), Short-Time Fourier Transform
(STFT), and Wavelet Transform (WT). The FT is
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applied only on linear systems and stationary signals.5

Therefore, the FT becomes inappropriate for extract-
ing the feature information as in our case, because the
vibration signal of rolling bearing is characterized
as nonstationary signals.6 Thus, to analyze the process
of nonstationary signals, there are many time-
frequency methods such as WT, WVD, and STFT.
Furthermore, these methods have limitations. The
drawbacks of WVD may assume large negative
values. Moreover, it presents some parasitic features
called cross-terms interference.7 The STFT principle’s
drawback is the finest time location and the best fre-
quency resolution cannot be reached simultaneously.
Meanwhile, although the WT has proved its superior-
ity in processing nonstationary signals, it is difficult to
choose wavelet base function and the number of
levels.8 Empirical mode decomposition (EMD) was
firstly proposed by Huang et al.,9 which is a temporal
frequency analysis method. It has an advantage over
the previous methods and it does not use basic func-
tions such as WT where the vibration signal is decom-
posed into intrinsic mode functions (IMFs). The
EMD method is a self-adaptive signal that can be
reflected to the local signal feature at different time
scales using functions as a filter bank.10

The theory of entropy has appeared in the thermo-
dynamics field.11 Recently, researchers have progres-
sively used feature extraction of nonstationary signals.
The sample entropy was proposed by Richman and
Moorman12 to measure the complexity and the simi-
larity of time series domain. The process of sample
entropy allows us to calculate the similarity of the
time domain signals. It is either one or zero, but with-
out intermediate values. Hence, the similarity degree
of a time domain signal is mostly obscured, which
leads to neglecting a large amount of information.
To eliminate this vague, we should represent the simi-
larity of time domain by a vague concept. The fuzzy
entropy contains two functions, sample entropy and
fuzzy membership function. This combination is used
to measure the irregularity, complexity, and stability
of the vibration signals.13

The obtained result from fuzzy entropy of EMD
for different condition modes is more or less complex.
Thus, to enhance the classification and dimensionality
reduction, principal component analysis (PCA) can be
used.14 First, we decompose the vibration signal by
EMD into IMFs. Then, we calculate the fuzzy
entropy for each IMF. Finally, we reduce the dimen-
sionality by using PCA. Moreover, the goal of PCA is
to find a lower dimensional space by calculated prin-
cipal components (PCs) using covariance matrix.
In this context, the intelligent classification techniques
such as artificial neural networks (ANNs) are
widely used.15

The neural network self-organizing map (SOM)
was introduced by Kohonen.16 The SOM neural net-
work learning without instructors has self-adaptive
and self-learning characteristics.17 The SOM neural

network has the unique ability to efficiently create
spatially organized internal representations of several
input data characteristics, providing a topology that
preserves the high-dimensional spatial map in only
two-dimensional spaces.18 The SOM feature can be
used to separate neurons with small similarities,
because the neurons with large similarities on the
map are very close.19 Therefore, the SOM is applied
for automatic bearings defects identification and
classification.

This paper proposes a reliable and improved multi-
fault diagnosis for rolling bearings. This method is
based on the combined fuzzy entropy of EMD, PCA,
and the SOM neural network. The paper is organized
as follows: The following section introduces the diag-
nosis principle of the proposed approach. The next sec-
tion presents fault identification and classification
schemes. The penultimate section shows the experimen-
tal benchmark description. The final section presents
the obtained results with comments and conclusion.

Fault feature extraction based on
fuzzy entropy of EMD

The rolling bearing diagnosis is divided in two main
parts, feature extraction and fault classification.
During the fault diagnosis, the fault features extrac-
tion is the most complicated step. This detected fault
is then classified according to the extracted feature.
The fault classification is applied when executing the
fault feature extraction.

Time-frequency signal decomposition based
on EMD

The EMD is used to extract the instantaneous fre-
quency and amplitude data in nonstationary
domain. The signal can be decomposed as follows:20

Step 1: Identify all the local extrema, and then connect
all the local maxima by a cubic spline line as
the upper envelope.

Step 2: Repeat the procedure for the local minima to
produce the lower envelope. The upper and
lower envelopes should cover all the data
between them.

Step 3: The mean of upper and lower envelopes value
is designated as mn1ðtÞ, and the difference
between the signal sðtÞ and mn11ðtÞ is h1ðtÞ.

h1ðtÞ ¼ sðtÞ �mn1ðtÞ ð1Þ

Step 4: If h1ðtÞ is an IMF, then h1ðtÞ is the first com-
ponent of sðtÞ. When h1ðtÞ is not IMF, repeat
steps (1–3); we obtain

h1ðtÞ ¼ sðtÞ �mn11ðtÞ ð2Þ

where mn11ðtÞ is the mean of upper and lower
envelopes value of N1ðtÞ.
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Step 5: Repeat the operation until k times, h1kðtÞ
becomes an IMF, that is

h1kðtÞ ¼ hð1k�1ÞðtÞ �mn1kðtÞ ð3Þ

Then, l1ðtÞ ¼ h1kðtÞ is designated as the first IMF
component from the original data. l1ðtÞ should
contain the finest scale or the shortest period com-
ponent of the signal.

Step 6: Subtract sðtÞ from l1ðtÞ, we obtain

R1ðtÞ ¼ sðtÞ � l1ðtÞ ð4Þ

Step 8: Let us repeat the process as described above
for n times, then n-IMFs of signal s tð Þ could be
obtained. Then

R1ðtÞ � l2ðtÞ ¼ R2ðtÞ

. . .

Rn�1ðtÞ � lnðtÞ ¼ RnðtÞ

ð5Þ

Step 9: The decomposition process can be stopped when
Rn becomes a monotonic function, from which
no more IMF can be extracted. By summing up
equations (4) and (5), we finally obtain

sðtÞ ¼
Xn

j¼1

ljðtÞ þ RnðtÞ ð6Þ

The RnðtÞ residue is the mean trend of sðtÞ.

Fuzzy entropy

The process of fuzzy entropy is used to measure the
irregularity, complexity, and stability for each IMF
component. The steps for the process of fuzzy entropy
are as follows21:

Step 1: Assume that a time series is denoted as
IMFðiÞ ¼ �ð1Þ,�ð2Þ, . . . ,�ðNÞð Þ, where N is
the length of times series. Then, the mean
u0ðtÞ of m consecutive IMFðiÞ values can be
calculated as follows

u0ðiÞ ¼
1

m

Xm�1

j¼0

� iþ jð Þ ð7Þ

where parameter m is called the embedding dimen-
sion and is a positive integer. Then m-dimensional
vector AðiÞ i ¼ 1, 2, . . . , n�mþ 1ð Þ is recon-
structed as

AðiÞ ¼ �ðiÞ,�ðiþ 1Þ, . . . ,�ðiþm� 1Þ½ � � u0ðiÞ ð8Þ

Step 2: The distances of each vector are calculated,
and the distance between Ai and Aj can be
defined as follows

dmij ðAi,AjÞ ¼ max AiðkÞ � AjðkÞ
�� ��� �

k ¼ 1, 2, . . . ,mf g ð9Þ

Step 3: The similarity between each set of vectors is
described using a fuzzy function. An exponen-
tial function is used, which is defined as
follows

Dm
ij ¼ e� dmij

�
r

� �n
ð10Þ

where n is the boundary gradient of the exponen-
tial function and r is the similar tolerance.

Step 4: The representation function Bm is defined as
follows

Bm ¼
1

N�m

XN�m

i¼1

1

N�m� 1

XN�m

j¼1,j6¼i

Dm
ij

�����

����� ð11Þ

Step 5: Make m ¼ mþ 1 and repeat step 1 to step 4;
Bmþ1 can be obtained and the fuzzy entropy
can be expressed as follows

fuzzyEn ¼ ln Bm=Bmþ1ð Þ ð12Þ

Fault identification and classification
based on PCA and SOM neural network

Principal component analysis

The PCA is a statistical analysis method that can be
used to reduce the dimensionality of vectors.
The PCA is based on finding the space, which repre-
sents the direction of the maximum variance of the
given data. For a given feature vector, set xi ¼
xi, . . . , xnf g, xi 2 Rn which consists of N feature vec-
tors, each one with n dimensions, and the algorithm
to extract critical features from the defect conditions
is given as follows22:

Step 1: Calculate the average value

u ¼
1

N

XN

i¼1

xi ð13Þ

Step 2: Subtract the mean from all samples

Di ¼
1

N

XN

i¼1

xi � u ð14Þ

Step 3: Compute the covariance matrix

C ¼
1

N

XN

i¼1

DiD
T
i ð15Þ

Step 4: Compute the eigenvalues li and eigenvec-
tors of vi i ¼ 1, 2, . . . , nð Þ of the covariance
matrix.

Cvi ¼ livi ð16Þ
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Step 5: Sort the eigenvectors according to their cor-
responding eigenvalues.

Step 6: Select the eigenvectors that have the largest
eigenvalues V ¼ v1, v2, . . . , vkf g, which repre-
sent the projection space of PCA.

Step 7: All samples are projected on the lower dimen-
sional space of PCA as defined.

P ¼ VTx ð17Þ

where P represents the first PCs. Then the goal is
to find a lower dimensional space.

SOM neural network

The neural network SOM introduced by Kohonen is
an unsupervised ANN (self-adaptive and self-learning).
The SOM neural network has the unique ability to
efficiently create spatially organized internal represen-
tations of several input data characteristics, providing a
topology that preserves the high-dimensional map into
only two-dimensional spaces. The SOM consists of
input and output layers, as shown in Figure 1. The
input layer contains many neurons which are deter-
mined by the number of vectors.

Each input layer is connected with an output layer
by connection m and each one of these connections
has a synaptic weight associated with it wk ¼

wk1,wk2, . . .wkdf g. Each neuron k on the maps is rep-
resented by m-dimensional and are connected by a
neighborhood relation Pk ¼ Pk1,Pk2, . . .Pkmf g.23

The SOM is trained frequently. Each stage of train-
ing, one vector of sample x of the input set is ran-
domly selected and fed to the grid. The distance
between all weight vectors from SOM is usually cal-
culated using the Euclidean minimum distance after
the weight vectors are formatted to a random value
between 0 and 1. The best matching unit is the output
neuron, whose weight vector is closest.24

c ¼ argmax x� wik k ð18Þ

The weight vectors of the neurons that are close to
the best matching unit in the network SOM are
adjusted toward the input vector. The SOM weight
updating rule of the unit is given as

wiðtþ 1Þ ¼ wiðtÞ þ �ðtÞhciðtÞ xðtÞ � wiðtÞ½ �½ � ð19Þ

where xðtÞ represents the input vector at time t. The
amount of weight vector movement is guided by a
learning rate �ðtÞ usually decreasing with time. hci is
the neighborhood function between unit V and unit i.
A typical choice is the following Gaussian function.25

hciðtÞ ¼ e � Pc tð Þ�Pi tð Þk k
2
�
2� tð Þ2

� �
ð20Þ

PcðtÞ and PiðtÞ represent the nodes coordinate in
the output space and hci is the neighborhood radius
at time t.

Experimental description

In order to validate the efficacy of the proposed
approach, we take into consideration the vibration
signal data from Bearing Data Center of Case
Western Reserve University.26 The type and geometry
of rolling bearing (6205-2RS-SKF, inside diameter
0.9843, outside diameter 2.0472, thickness 0.5906,
ball diameter 0.3126, and pitch diameter 1.537) used
in this experiment is shown in Figure 2.

The experimental benchmark consists of 1.5 kW
motor, torque {sensor-encoder}, dynamo-meter, and
electrical control devices. In this experience, the data
are collected by various fault load conditions {0 HP
(1797 r/min), 1 HP (1772 r/min), 2 HP (1750 r/min)}
for the bearing. The vibration signals in various fault
type conditions {normal, outer race, inner race, ball
fault} are considered. For each fault type condition,
the signals are categorized to 10 classes containing
three fault loads (0, 1, and 2 HP) and two fault seve-
rities (0.007, 0.014 inches).

Table 1 shows the four-mode operation of rolling
bearing, normal state, inner-race fault state, outer-
race fault state, and ball fault state were considered.
These data sets are divided into two sub-data sets to
cover all the working conditions except the normal

Figure 1. Structural model of self-organizing map neural

network. Figure 2. Experimental benchmark.
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state. Each one of these sub data sets contains 30
groups of data. Therefore, we end up with seven
data sets, which include 630 samples. The fault feature
extraction based on fuzzy entropy of EMD, PCA, and
SOM neural network is implemented for each sample.

As shown in Figure 3, the vibration acceleration
signals of rolling bearing in different conditions
modes, which represent the motor loads varying
from 0, 1, and 2 HP, and different diameters (0.007,
0.014 inches) of normal modes, outer race fault, inner
race fault, and ball fault are shown in Figure 3. It is

shown in this figure that the vibration signals in the
four conditions mode are highly complex, which lead
to the incapability of making the difference between
the faults in each situation.

Experimental results

The proposed method is based on the fuzzy entropy of
EMD, PCA, and SOM network to diagnose the vibra-
tion signals. The four types of original signals for roll-
ing bearing in different modes condition are

Figure 3. Vibration signals of different rolling bearing behaviors.

Table 1. Description of experimental data for bearing.

Label Fault type

Fault

diameter

(inches)

Dimension

vector

Working condition

0 HP 1 HP 2 HP

1 Normal — 30 3 3 3

2 Outer race fault 0.007 30 3 3 3

3 Outer race fault 0.014 30 3 3 3

4 Inner race fault 0.007 30 3 3 3

5 Inner race fault 0.014 30 3 3 3

6 Ball fault 0.007 30 3 3 3

7 Ball fault 0.014 30 3 3 3

Zair et al. 5



decomposed into multiple IMF components. To show
the process of EMD, we select the vibration signal of
the outer race fault as an example. The obtained
results of the vibration signal for the outer race fault
are shown in Figure 5.

It can be seen in Figure 5 that the EMD method
decomposed the vibration signal of the outer-race
fault into 10 IMF components and a residual signal.
Each IMF component includes information of
instantaneous amplitude and frequency. Moreover,
this decomposition is classified from high to low fre-
quency. Rolling bearing fault can be detected during
changing the feature information in each IMF com-
ponent. Therefore, the fault feature information ana-
lyzed can be complex and vague. The fuzzy entropy is
comprised of two functions, sample entropy and fuzzy
membership functions. This combination is used to

measure the irregularity, complexity, and stability of
the vibration signals accurately.

The concept of fuzzy set is introduced by Lotfi
Zedah. The fuzzy membership function is used to
describe the similarity degree. The exponential func-
tion Dm

ij ¼ e�ðd
m
ij =rÞ

n

is a type of fuzzy function
employed to measure the similarity of two vectors.
To calculate the process of fuzzy entropy, we need
to determine the boundary gradient n, which repre-
sents the weight of vectors, the threshold tolerance r,
which represents the width of the exponential function
and the embedding dimension m, which represents the
length of the compared vectors, thus the fuzzyEn can
be estimated by (m, n, r, N). Notice the similarity for
two vectors in sample entropy is based on the
Heaviside function which leads to a kind of conven-
tional two-state classifier. To calculate the process of

Figure 4. Flowchart of the proposed method.
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sample entropy, we need to determine the threshold
tolerance r, which represents the width of the
Heaviside function and embedding dimension m,
which represents the length of the compared vectors,
thus the sampEn can be estimated by (m, r, N).

Generally, r is defined by the signal standard devi-
ation (std) to increase the correlation between the time
domain and the Heaviside function in sample entropy.
On the other side, the correlation is defined between
the time domain and the width of the exponential
function in the fuzzy entropy. The selected value of
r is very important. If this value is too large, it leads to
a loss of feature information. On the other side, if the
value of r is too small, it leads to an increase of the
noise level. The values of boundary gradient confined
in the interval between 1 and 3 lead to increase in the
probability of similarity degree between the closest
vectors weight.

Hence, to avoid the undesired phenomena, we take
into consideration the same values for the sampEn
and fuzzyEn except for the value of boundary gradi-
ent n. The threshold tolerance r is chosen between 0.1
and 0.2 std, and the boundary gradient values n is
taken either 2 or 3 to keep as much as information
details. In this study, we consider the following par-
ameters: length of data N¼ 7000 for each IMF com-
ponent. Threshold tolerance r¼ 0.15 std. Boundary
gradient n¼ 2. After some tests, we have chosen the
value of m¼ 3000 to appreciate clearly the fault bear-
ing. Figure 6(a) and (b) illustrates, respectively, the
comparison between sample entropy and fuzzy
entropy for each IMF1-11 components with motor
load 1 HP and diameter fault 0.007 inch.

Figure 6(a) shows the trajectory of sample entropy
which represents the IMF components for different
states of bearing. We observe that there exists a gap

Figure 5. Decomposition results of the vibration signal of outer race fault 0.007 inch for load 1 HP.
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only between the sample entropy values of IMF 10 at
low frequency for the four rolling bearing states.
Nevertheless, most of the IMF overlaps in different
points of bearing, such as IMF 2, IMF 4, and particu-
larly in IMF 3. Thus, the sample entropy allows us to
measure the stability and the complexity of the vibra-
tion signal. But, it cannot distinguish the four rolling
bearing states for each IMF components. To elimin-
ate the undesired phenomena, we have proposed the
fuzzy entropy method which is based on fuzzy func-
tion to measure the irregularity, the complexity, and

the stability of the vibration signals which describe the
similarity of two vectors. Figure 6(b) shows the fuzzy
function measure in most points for each scattered
IMFs of rolling bearing state. It appears that there
is no overlap except for IMF 11.

Among the advantages of fuzzy entropy is that it
provides different points of rolling bearing situation
in low- and high-frequency characteristics which is
not the case for sample entropy. In sample entropy,
the decision rule for vector similarity is based on
the Heaviside function and it is very rigid because

Figure 6. Sample entropy and fuzzy entropy for each intrinsic mode function 0.007 inch for load 1 HP.

Figure 7. Scatter plots of the first three principal components obtained by empirical mode decomposition–principal component

analysis for different faults: {�} load 0 HP, {�} Load 1 HP, {þ} Load 2 HP.
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the two vectors are considered as similar vectors only
when they are within the tolerance threshold r.
To enhance the statistical stability, the fuzzy entropy
method which uses the fuzzy function substitutes
the Heaviside function to make a gradual entropy
variation when the value of r changes monotonously.
Another advantage of the fuzzy entropy is that it
is efficient when the vibration signal behavior is
more complex, which is our case of study.
Consequently, the fuzzy entropy is a powerful
approach than the sample entropy in the feature
extraction domain.

In feature extraction, we may find in the literature
EMD-PCA method which is widely used. The EMD
allows decomposition of the vibration signal into a
set of IMF. The energy of each IMF is then com-
puted to obtain a large feature matrix. For dimen-
sionality reduction, we use the PCA to find new
space from the calculated PCs. Figure 7 shows the
first three PCs using covariance matrix obtained by

EMD-PCA. We can observe that there are major
sets of PCs vectors grouped around the rolling
bearing in inner-race state and similarly for the
outer-race for 0.007 and 0.014 inches. Moreover, dis-
tances between inner-race states are relatively small
compared to the outer-race where this distance is
nonexisting. This leads to an unsatisfactory classifi-
cation. Consequently, the EMD-PCA is unsuitable
to differentiate various states in various condition
modes of bearings. The fuzzy entropy of EMD-
PCA is used to keep the stability of feature informa-
tion which can be extracted even in various condition
modes of bearing. Thus, this leads to a satisfactory
classification. Figure 8 shows clearly the distinguish-
able seven faults of rolling bearing feature extraction
in various condition modes separately for 0.007 and
0.014 inches.

To validate the accuracy of the proposed method,
the SOM neural network is used to identify and clas-
sify the rolling bearing fault. The most important

Figure 8. Scatter plots of the first three principal components obtained by FuzzyEn of empirical mode decomposition–principal

component analysis for different faults: {�} load 0 HP, {�} Load 1 HP, {þ} Load 2 HP.

Table 2. Training data and testing data statistics.

Label Fault type

Fault diameter

(inches)

Training

data

Working condition

0 HP 1 HP 2 HP

1 Normal — 24 3 3 3

2 Outer race fault 0.007 24 3 3 3

3 Outer race fault 0.014 24 3 3 3

4 Inner race fault 0.007 24 3 3 3

5 Inner race fault 0.014 24 3 3 3

6 Ball fault 0.007 24 3 3 3

7 Ball fault 0.014 24 3 3 3
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advantage of the SOM neural network versus
the other neural networks is that it provides a two-
dimensional space from which the input data distri-
bution could be clearly seen from the clustering
region, and each indicative is independent from each
other. The fuzzy entropy of EMD-PCA is defined as
the input of SOM neural network, and the outputs are
represented as classes, which represent normal, inner-
race fault, outer-race fault, and ball fault with fault
sizes of 0.007 and 0.0014 mils (1 mil¼ 0.001 inch).The
parameters of SOM neural network are as follows: the
number of input layer neurons is three. A 5� 6 matrix

is the output for the competitive layer. The learning
rate is 0.02, the neighborhood distance is 1.

Table 2 shows the data sets that are divided into a
learning data set with 24 data sets and a test data set
with 504 data sets. The U-matrix illustrating the four
working conditions of the formed SOM neural net-
work is shown in Figure 9.

Figure 9 shows that the graphs are effective signs
showing the distribution of identical units in a single
block to a given data set. Thus, the graph can be
designed in different colors. This method is used to
compare the several data sets by distributing ‘hits’ on
the map.

Figure 9 also shows the existence of a clear boun-
der between each fault mode. So the abnormality
detection which is responsible for deciding whether
the rolling bearing is in healthy mode or not could
be successfully avoided.

In order to demonstrate the effectiveness of the
accuracy of the classification shown in Figure 10,
we have remodeled the SOM to get the seven cases
of rolling bearings separately. The classification per-
formances of the SOM using the testing data set sets
are summarized in this figure.

Furthermore, Figure 10 shows the obtained results
of different faults. Therefore, the SOM facilitates the
visual comprehension of the fault. In this way, a cor-
rect control action can be easily learned depending on
the visual output.

The results indicate that the classification of
the method that we have proposed—fuzzy entropy
of EMD, PCA with SOM neural network—has
a good accuracy to diagnose faults for rolling
bearing.

Figure 10. Self-organizing map samples hits for different states.

Figure 9. Self-organizing map samples with training data sets,

epoch 2000.
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Conclusion

Rolling bearing diagnosis is considered as one of the
most important disciplines in rotating machinery. To
keep bearings in a good technical state for various
condition modes (various loads and different faults
size) this constitutes a new challenge to develop a
new method based on fuzzy entropy of EMD-PCA
and SOM neural network. The vibration signal is
decomposed into set of IMF component by EMD.
Each IMF contains feature information such as
instantaneous amplitude and frequency. However,
through this study the feature information of rolling
bearing is difficult to determine the kind of the fault.
To overcome this difficulty, we compared fuzzy
entropy and sample entropy, and it can be found
that the fuzzy entropy has a better outcome than
sample entropy in feature extraction accuracy. The
result obtained by fuzzy entropy of EMD for each
IMF is defined as the input of PCA to extract U-
matrix. This method finds out the first three PCs com-
munities of rolling bearing in different conditions
modes. Finally, to verify the robustness of the pro-
posed method, we use the SOM network. The
obtained results show the efficiency of the proposed
approach where the defects and the severities of roll-
ing bearings are clearly classified within different
working conditions.
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