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ABSTRACT

This work focuses on the identification of the gas conditioning tower (GCT) operating in a cement
plant. It is an important element in the cement production line. Mathematical modeling of such a
process proves to be very complex. This is due to the phenomena that occur during the
operation of the system. An artificial neural network-based auto-regressive with exogenous
inputs (NNARX) model is constructed with the aim to study the system as well as used to control
the process. Resulted models are tested and validated using data extracted on a GCT operating at

Chlef cement plant in Algeria.

1. Introduction

Cement production is a very common industrial activ-
ity in the world. However, it is highly polluting if the
dust contained in the fumes generated along the
cement production process is not recovered [1]. The
gas conditioning tower (GCT), situated between the
preheater tower and the electrostatic precipitator, is
used to cool and condition the fumes coming from
the preheater tower and going to the electrostatic pre-
cipitator, in order to increase the electrostatic precipi-
tator effectiveness [2]. To ensure good recovery of the
dusts in the electrostatic precipitator, optimization of
the GCT functioning is necessary. For this purpose, the
study and identification of the GCT are of big
importance.

The study of the GCT has been the object of several
research studies. Schioth studied the optimization of
water injection control in the gas conditioning towers
while highlighting a conventional control system order
[3]. Raring presented a new vision of the GCT [4].
Bapat presented the effect of the GCT for the applica-
tion of the electrostatic precipitators in the cement
factories in India [5]. In the same context, the contri-
butions of Reyes, who proposed a new control method
of the fumes flow temperature in the cement plant
manufacturing, and of Reigel, who analyzed the influ-
ence of the mechanism of water injector channels on
the GCT efficiency, may be quoted [6,7]. Moreover,
Reigel advises a cascade loop of adjustments in order
to improve the reaction speed in the adjustment
system.
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It is to be noted that these works have helped to
improve the operating efficiency not only for the GCT
but also for the electrostatic precipitators. However, the
analysis of existing works reveals that, on one hand, the
authors have not based their studies on the GCT
model, leading to think that knowledge of the GCT
model can improve the GCT performances, and on the
other hand, in this field, there are no works that use
artificial intelligence techniques for modeling and con-
trol, such as fuzzy logic and artificial neural networks.

Artificial neural networks (ANN) are the computa-
tional models inspired by the human brain. They can
be trained to produce outputs that are expected from
gave inputs. In the domain of study, analysis and con-
trol of the industrial processes, this is known as a
neural network application for system identification
and control. The literature presents several applications
in this regard. The works that may be noted in this
area, which focus on the application of neural network
to learn dynamic systems comportment, are of Suman
[8] and Nirmaladevi [9]. In the same particular field,
the works done by Tani [10-12] on neural network
applications for identification and prediction the sys-
tems performances are noteworthy.

To summarize, it is our belief that the use of artifi-
cial neural networks to identify the dynamic behavior
of the gas conditioning tower, based on experimental
data collected directly on the actual process, will make
it possible to build a model for the system. This model
will be essential to design control strategies in order to
optimize the GCT operation.
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Section 2 of this paper gives a description of the
GCT operating principle and its position in the fumes
circuit. In section 3, the procedure of neural network-
based modeling and identification of the GCT is pre-
sented. Section 4gives the results of this modeling and
identification and provides their analysis. Section 6 is
the conclusion.

2. Gas cleaning process in cement industry

The cleaning of gas in the cement industry is a very
difficult task. The modern process of cement production
implies the crushing of the raw carbonated and argillac-
eous materials and the heating treatment of the rectified
raw flour (i.e. preheated), precalcined and clinkered in
the rotating kiln. After this stage, the kiln is cooled by a
kiln cooler. All these operations produce a great quantity
of fumes (gases and dust) whose characteristics are vari-
able in terms of temperature values, moisture content,
distribution of particles’ dimension, and chemical com-
position [5,13]. The emission of this dust constitutes one
of the principal factors of air pollution. To purify these
fumes before their rejection in the atmosphere it is neces-
sary to use an electrostatic precipitators (ESP). For the
success of the operation, the ESP performances depend
considerably on the equipment that is located upstream.
This explains why all the electrostatic precipitators are
associated with the GCT [1,3,4].

The aeraulic fumes circuit found in the cement
production process presented in Figure.l is the most
frequently used one in the cement production line. The
circulation of the fumes is carried out according to the
evolution of the process [1]:

e The fumes go from the preheating tower to the
chimney via the raw mill and electrostatic
precipitator;

e In the case if the homogenization silos are full, the
fumes are first directed toward the gas condition-
ing tower, then to the electrostatic precipitator
and finally to the chimney;

e In the mixed mode, the energy provided to the
raw mill is rather high. Approximately 10%-20%
of the fumes are sent to the GCT and the remain-
ing quantity to the raw mill.

One part of the generated fumes is sent toward the raw
mill and the other part is directed toward the gas
conditioning tower. In the raw mill, the fumes are
used to dry the raw materials and then they are for-
warded to the electrostatic precipitator. In the GCT,
the fumes are conditioned (reduction in temperature at
the lower part of the equipment with maximum resis-
tivity) and are purified from a significant amount of
dust then sent toward the electrostatic precipitator. To
finish, the gases are rejected into the atmosphere via
the chimney [1].

The picture in Figure 2 gives a photographic view of
the cement production line. In the figure, several parts
are identified: The GCT, the cyclone preheating and
the chimney.

2.1. Gas conditioning process

Gas temperature and dust resistivity affect the ESP
performance. Gas conditioning is one of the means to
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Figure 1. Fumes circuit in cement plant.
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Figure 2. Photographic view of GCT in cement production line.

tackle this situation. It comprises any one or the com-
bination of the following [5,6]:

Reduction of gas temperature

Increase of gas moisture content

Dilution of gas by cold air

Increase of the concentration of hydrophilic com-
pounds, such as K,SO,, in the gas.

The moisture content of the gas is increased in the
equipment called ‘gas conditioning tower” (Figure 3).
Gas enters at the top of the tower, flows down and exits
at the bottom. Water is introduced into the gas stream
at the top in tiny droplets produced by spray nozzles.
As they flow down, the water droplets absorb heat from
the gas and evaporate. The gas is cooled and its moist-
ure content is increased. The inflow of water is con-
trolled such that the entire quantity introduced at the
top evaporates and no water reaches the tower bottom.
In this way, the handling of dust collected at the tower
bottom becomes easy. The water flow control is
achieved by continuous measurement of outgoing gas
temperature. For example, in the kiln section, exit gas
temperature is brought down from 330°C to about 150°
C and the dew point is raised from 40°C to about 60°C.
The following constraints on the use of the GCT have
been reported [1]:

e Gas cooled to 150°C can’t be used for further heat
recovery
¢ High cost of electric power and water

¢ Depending on the availability of water of accep-
table quality

e Additional maintenance and unreliability due to
system failures.

However, the development of a good conduit model for
GCT control will allow to optimize its operation and,
therefore, to optimize the performance of the electro-
static precipitator.

2.2. Gas conditioning tower control scheme

There are many control strategies of the tempera-
tures of the fumes forwarded to the electrostatic
precipitator that are applied in the cement industry
[13]. All GCT control strategies cited in the literature
are based on the experimental method. Moreover,
the control parameters are defined by trial and
error procedure.

In Chlef's cement plant, the control strategy
applied is illustrated in Figure 4. In this case, the
signals from the thermocouples are compared with a
temperature set point, and a signal to increase or
decrease the water flow is transmitted to the water
flow control valve. The air flow control valve is then
modulated to control the proper air-to-water ratio.
Of course, the control parameters in this control
strategy are defined by trial and error procedure.
This operation is carried out in the installation and
the start-up of the system.



4 R. HADDOUCHE ET AL.

o
0O
Inlet fumes /y o © Water spray
T O | ¢ nozzels
o
L>:‘.O.$j
63':' 0 O
%%
0
1o o
O OO
: N
O 40
o 0 0
0 ° ’
Compressed , U
W Io o 0
Water = o o @
c o0 0°
o
o]
0o 0
Dust forwarded to ESP .
O O Concht;(s:md
o |:| N g
)
0 Uu //
) = Q, QOnutlet fumes
Dust recupered in the O o 0° 5. temperature
bottom of GCT &
O o
o Q‘,o-.-". L
e ZOI.'.I;
Collected dust

Figure 3. The GCT used in cement plant.

3. Neural network identification procedure

Identification procedure is traditionally used to estab-
lish the model parameters with a specified structure.
This involves the collection of input-output data and
the use of a parameters identification technique, such
as least squares, to adjust the parameters of the model
chosen. This procedure is suitable for the linear sys-
tems, but is not directly applicable to modeling non-
linear systems.

3.1. System identification procedure

To ensure substantially the validity of the resulting
neural model, there are four steps to follow in the
experimental method based on system identification
[14,15]:

e Acquisition of the excitation signal by collecting
input/output data file from the process,

o Selecting the model structure (adjusting the neural
network: number of layers, number of neurons on
each layer, number of input/output),

e Model Estimation (adjusting the neural network
weights),

e Model validation.

The following flowchart summarizes the procedure
adopted for neural network system identification
(Figure 5).

In our case, the used neural network is a single layer
neural network with eight neurons in the hidden layer,
having multi inputs and a single output. The number

of inputs indicates the order ‘n’ of the model sought to
build.
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Figure 4. Algerian’s GCT control scheme.

e Two inputs: first order model (n = 1);
e Four inputs: second order model (n = 2);
¢ Six inputs: third order model (n = 3).

It is to be noted that for each two additional inputs, the
model order ‘n’ increases by one unit [16,17].

3.2. Experimental data collection

To collect experimental data from the gas conditioning
tower, variations needs to be applied to the water flow
Q (m*/h) injected at the GCT inlet and the temperature
variations T (°C) at the outlet of the tower need to be
recorded. As the GCT is a slow behavior system (tem-
perature evolution), the experimental data are collected
with a sampling time equal to 6s.

To obtain the data file (input/output), the interven-
tion in the process was carried out under the following
conditions:

e The variation of the water flow is between 14 m>/h
and 30 m’/h because, on the one hand, if the

water flow is lower than 14 m’/h then the gas
temperature is very high and the electrostatic pre-
cipitator loses in efficiency, and, on the other
hand, if the water flow is more than 30 m>/h,
then there will be formation of sludge in the
GCT bottom [13];

o The step length of the input signal (water flow)
must be sufficiently large because the GCT is a
slow process.

Two different sets of data are collected. The first set of data
is collected in the control room. It will be used to train the
neural network models because the excitation signal is a
random amplitude signal (RAS). The second set of data is
collected manually at the water injection valve. This set of
data will be used to validate the obtained models.

3.2.1. Data collected via the control room

The first trial is made from the control room. The
excitation signal of the process is a random amplitude
signal (RAS). The amplitude signal is random variable
and the width is set at 125 s for each impulse.
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Figure 5. The system identification procedure.

Obtained data is given in Figures 6(a, b). Figure 6
(a) gives the water flow variation at the inlet GCT
and Figure 6(b) gives the temperature recorded at
the outlet of the latter. This data will be used to train
the neural network in order to build the neural net-
work model.

3.2.2. Data collected directly from the system

The second trial is applied directly on the system. The
control system is turned in manual mode, and then the
water injection valve is turned on/off. The water varia-
tion is shown in Figure 7(a) and the temperature
recorded is shown in Figure 7(b). This data will be
used to validate the neural network model obtained.

3.3. Neural network ARX identification scheme

The direct neural network auto-regressive with exogen-
ous input model is obtained by learning an artificial
neural network based on data inputs/outputs of the gas
conditioning tower. The identification scheme is given
in Figure 8 and the learning algorithm wused is
Levenberg-Marquardt algorithm.

The neural network structure is fixed with one hid-
den layer which contains ten hyperbolic tangent units
(f)) and one output layer which contains one linear
unit (f,) (Figure 9).

The number of inputs (Q and T) will be fixed
according to the model order to build (First order:
n = 1, second order: n = 2 or third order: n = 3).

In this work, it is projected to testing three different
order models according to the number of inputs of the
neural network selected.

The neural network output T, is calculated as
follows:

m n
T (k) = f, (Z wefi (Z Weij Q(k — i)
=1 i=1 (1)
n
+ Z W,er,"j T(k — l) + Wej) + WS>
i=1
where;
[ Wel 1 Wel,m Ws1
W, = : : ; W= ; Wep
L Wean,1 Wean,m Wsm
Wel
= : ) st = Ws
L Wem

and W,, W, Wy, and W, are respectively: the input
weights matrix, the output weights vector, the input
bias vector and the output bias vector. This weights
matrix and These vectors, indicated vector 6, are the
adjustable parameters to calculate during the trained
operation.

3.4. Neural network-based autoregressive with
exogenous part model calculation

Neural network autoregressive with exogenous part
(NNARX) is a nonlinear model. In this case, the regres-
sors are based on inspiration from linear system iden-
tification [15,17,18].

The regressors can be given by:

() =[T(t—1)... T(t—n,) Qt —m)... Qt —np—np—1)]"
(2)

The training data are a set of inputs Q(?) and outputs T
(t) presented in Figure 5(a,b) the training set is noted
as follows:

ZN ={[Q(t), T(t)] t=1,...,N} 3)

The training objective is then to determine an opti-
mal vector 6 which allows to obtain a neural network
outputs T,,(t) as close as possible to the GCT tempera-
ture outputs T'(z).
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A mean sum of squared error MSSE criterion is the
prediction error strategy applied to calculate the
weights correction as follows:
1< T
En(60,2%) = 55> [T(0) = Tu(t0)] " [T(e) — Tu(t]0)]
=1

(5)

Moreover, the difference between an ARX model and
an NNARX model is in the black box model chosen. In
the NNARX model, the minimization of mean-square
error criteria is based on the Levenberg-Marquardt
algorithm.

Like the quasi-Newton methods, the Levenberg-
Marquardt algorithm was designed to approach sec-
ond-order training speed without having to compute
the Hessian matrix. When the performance function is
the sum of squares (as is typical in training feed-for-
ward networks), then the Hessian matrix can be
approximated like the following [19,20]:

H=]'] (6)
And the gradient can be computed like the following,
where J is the Jacobian matrix that contains first deri-
vatives of the network errors with respect to the
weights and biases, and e is a vector of network errors.

7)

The Jacobian matrix can be computed through a stan-
dard back-propagation technique that is much less
complex than computing the Hessian matrix.

The Levenberg-Marquardt algorithm uses this
approximation to the Hessian matrix in the weights
computing like the following:

g=1Je

7)

When the scalar y is zero, it is only the Newton’s
method, using the approximate Hessian matrix. When
u is large, this becomes the descendant gradient with a
small step size. Newton’s method is faster and more
accurate, near error minimum. The aim is therefore to

Wi = Wi— [J7T+pul] 'TTe
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shift toward the Newton’s method as quickly as possi-
ble. Thus, y is decreased after each successful step
(reduction in performance function) and is increased
only when a tentative step increases the performance
function. In this way, the performance function is
always reduced at each iteration of the algorithm.

4. Results and discussion

Three different models are selected: first-order model,
second-order model, and third-order model. The mod-
els are trained using data collected in the real process,
and the results are illustrated in Figures10-12.

Figure 10 shows the trained result of the first-order
model (n = 1). In this case, the neural network has two
inputs for each iteration: water flow inlet Q(k-1) and
outlet measured temperature T(k-1).

Figure 11 shows the trained result of the second-
order model (n = 2). In this case, the neural network



Figure 9. Neural network structure with one hidden layer.
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Figure 10. Trained result and validation of the first order.

has four inputs for each iteration: water flow inlet (Q(k-
1), Q(k-2)) and outlet measured temperature (T(k-1),T
(k-1)).

Figure 12 shows the trained result of the third-order
model (n = 3). In this case, the neural network has six
inputs for each iteration: water flow inlet (Q(k-1), Q(k-
2), Q(k-3)) and outlet measured temperature (T(k-1),T
(k-2), T(k-3)).

These figures indicate that the NNARX models adapt
excellently the nonlinear dynamics of the GCT. The

150 200 250 300
Time (samples)

training algorithm forces the NNARX models to converge
quickly to the desired recurrent neural network models.
Moreover, in the case of the first order model, the predic-
tion error (Figure 10) is in the range of [-2, + 6], and in
the case of the second and third order models, the predic-
tion error (Figures 11 and 12) is in the range of [-2, + 2].

Furthermore, the prediction error peaks (at Time =
48 and Time = 295) in the second-order model are less
than the prediction error peaks obtained in the cases of
the first and the third order models.
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Figure 11. Trained result and validation of the second order.
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Figure 12. Trained result and validation of the third order.



5. Conclusion

Based on the obtained results by the application of
neural network-based autoregressive with exogenous
part (NNARX) model identification, it can be stated
that the model NNARX is an adequate model type to
describe the complex and dynamic systems. Regarding
the identification results, the three models obtained are
acceptable. However, the results show that the second-
order NNARX model yields better performance and
higher accuracy than the first and the third order
NNARX models.

Also, the obtained model can be used to select the
GCT controller structure, to compute the GCT con-
troller parameters and to analyze the dynamics of the
GCT and to enable automatic diagnosis. These results
are very interesting because they are based on the
experimental data.

In addition, neural networks based identification is
an effective approach to the identification of systems, as
is shown by the good results obtained.
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