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Abstract. We study complex PT-symmetric potentials, with real eigenvalues, cor-
responding to a complex coordinate shift (x+ i c2 ) of a real even potential. In this case,
the rules to achieve a coherent quantum mechanics are known. They allow the calcu-
lation of observables, which are found to be independent on c. This result is illustrated
by few analytical or semi analytical examples. On the other hand, trying to test this
property numerically faces problems linked to the difficulty of finding the proper so-
lutions of the Schrödinger equation. In particular, the large distance behaviour of the
wave functions generates instabilities. As an example, we have studied the (x+ i c2 )

4

potential.

Key words: Solutions of wave equations: bound states, Quantum mechanics,
Algebraic methods.

1. INTRODUCTION

Since the discovery of complex potentials with real eigenvalues, a large num-
ber of works has been devoted to this subject. Overviews and relevance for physics
applications can be found in the review articles by Bender [1] and Mihalache [2], for
instance, as well as in more recent papers [3, 4]. Let us also quote a few relevant
works on unique properties of complex-valued external potentials and their applica-
tions in many physical settings [5–8]. At the same times, it has raised the question of
building a coherent quantum mechanics for the corresponding non-Hermitian Hamil-
tonians. The situation has been well described by Bender [1]. One case is particularly
interesting, namely the complex potentials generated from an even real potential by
applying a complex coordinate shift :

x → x+ i
c

2
.

This case was first proposed by Znojil for the harmonic oscillator [9]. Its impact at
the quantum mechanical level was studied by Ahmed [10]. Indeed, it is generating
cases for which a coherent quantum mechanics can be easily formulated.

The purpose of the present work is to discuss observables of these shifted po-
tentials. In fact, we shall first show, on basic principles, that the complex shift is
not affecting the observables, which are actually independent of c. For illustrative
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purpose, few examples shall be treated explicitly. The number of analytic cases is
scarce. Numerical treatments are welcome. Unfortunately, they require a high ac-
curacy, and face instabilities. This situation shall be illustrated by considering the
(x+ i c2)

4 potential.
We came across this question while studying the inverse problem in the case

of complex potentials with real eigenvalues [11]. The reality of the spectrum implies
the possibility of finding at least one real potential partner with the same eigenvalues.
Thus, to distinguish between a real or complex potential requires to find a decisive
observable. Few preliminary results have been reported at the VIth-PCMTMP con-
ference (Tulkarem, Palestine, August 2018), and published in the Palestine Technical
University Research Journal [12].

2. GENERALITIES

In the D = 1 dimensional space (with ℏ = 2m = 1), we consider the Schrödinger
equation on the entire x axis[

− d2

dx2
+U(x)

]
ψn(x) = Enψn(x), (1)

where U(x)is an even function. The shift (x+ i c2) generates[
− d2

dx2
+V (x)+ iW (x)

]
ψn(x) = Enψn(x). (2)

Here, V (x) and W (x) are even and odd functions, respectively. The obvious change
of variables (x+ i c2)→ z, together with d

dx = d
dz , proves the equivalence of the two

equations. Thus, the eigenvalues are identical, up to a possible global shift of the
spectrum, and the wave functions admit the same analytical forms.

In the case of quantum mechanics in the complex plane, as recalled in the
review article by Bender [1], for an operator to be an observable, it has to fulfill the
condition

At = CPTACPT =A, (3)

where P and T are the parity and time reversal operators. For the shifted potentials,
the operator C has been derived by Ahmed [10]. It is given by

C = e−γpP with p=− d

dx
, (4)

where γ is a constant. The average value of A is thus given by

< n |A |m>=

∫ ∞

−∞
[CPTψn(x)]Aψm(x)dx . (5)
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Consider
xν → (x+ i

c

2
)ν . (6)

The right hand side fulfils the condition (3), and thus it constitutes the equiva-
lent operator to xν . Similarly, for shifted potentials, we have

CPTψn(x+ i
c

2
) = ψn(x+ i

c

2
) . (7)

Thus, the equivalent average value of xν is given by

Ān(c,ν) =< n | (x+ i c
2
)ν | n >=

∫ ∞

−∞
ψ2
n(x+ i

c

2
)(x+ i

c

2
)νdx . (8)

To check the behaviour of Ān(c,ν) against c let us take its derivative with respect to
c. It is given by

d

dc
Ān(c,ν) =

iν

2

∫ ∞

−∞
ψ2
n(x+ i

c

2
)(x+ i

c

2
)ν−1dx

+ i

∫ ∞

−∞
ψn(x+ i

c

2
)[
d

dc
ψn(x+ i

c

2
)](x+ i

c

2
)νdx. (9)

Setting

z = x+ i
c

2
together with

d

dc
=
i

2

d

dz
, (10)

the second term can be integrated by part, and we are left with

d

dc
Ān(c,ν) =

i

2
(ψ2

n(x+ i
c

2
)(x+ i

c

2
)ν−1

∣∣∣∣∞
−∞

. (11)

To be normalisable, the wave functions have to decrease to zero at both limits faster
than any power of x. Consequently, for such wave functions the derivative of Ān(c,ν)
with respect to c is zero. And thus it does not depend on c.

3. ILLUSTRATIVE EXAMPLES

The above statement is conclusive enough to make explicit calculations redun-
dant. Nevertheless, for the pleasure of the “amateurs”, it could be instructive to
discuss few cases. Analytically, it does not bring any new aspect. However, tack-
ling numerical examples sheds a light on the difficulties encountered in solving the
Schrödinger equation for complex potentials.

3.1. THE HARMONIC OSCILLATOR

As stated in the introduction, the first example of shifted potential has been
proposed by Znojil [9]. It concerns the harmonic oscillator :

V (x)+ iW (x) = x2+ icx . (12)
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It is a simple matter to show that the spectrum is independent on c up to the constant
shift of c2

4 . The wave functions are the usual ones of the harmonic oscillator in terms
of z. Looking for an observable capable to distinguish a shifted harmonic oscillator
from the real one, we have shown all the ground state moments to be independent on
c. This conclusion is easily extended to other state. Moreover, we found the dipole
sum rule to be also insensitive to c [12].

Here, we give the answer for the Fourier transform of the ground state density.
Let

ψ2
0(x) =

√
α

π
e−(αx2−iαcx) (13)

be the ground state density. Considering

eiqx → eiq(x+i c
2
) , (14)

the Fourier transform is given by

F (q) =

√
α

π
e(

αc2

4
− qc

2
)2

∫ ∞

0
e(−αx2) cos(q−αc)xdx= e−

q2

4α . (15)

The result is identical to the case c= 0.

3.2. THE SHIFTED PÖSCHL-TELLER POTENTIAL

A second analytical example is provided us by the shifted Pöschl-Teller poten-
tial [13, 14], which reads

V (x) =−σ(σ+1)
cosh2 (x)cos2 (c/2)− sinh2 (x)sin2 (c/2)

[cosh2 (x)cos2 (c/2)+sinh2 (x)sin2 (c/2)]2
, (16)

W (x) = 2σ(σ+1)
cosh(x)sinh(x)cos(c/2)sin(c/2)

[cosh2 (x)cos2 (c/2)+sinh2 (x)sin2 (c/2)]2
. (17)

Because of the cyclic character of the coefficients multiplying the hyperbolic func-
tions, the relevant domain of the shift is 0≤ c < π. Note that for c= 0, the potential
is real and attractive, whereas for c= π it becomes real and repulsive. For this latter,
bound states do not exist, the ground state eigenfunction has a singularity at the ori-
gin, and cannot be normalised. Consequently, this value of c= π has to be rejected.

Similarly to the above case, it is a simple matter to verify explicitly that the shift
does not affect the analytical form of the wave functions. The spectrum is identical
to the real one :

En =−[n−σ]2 , n ≤ σ. (18)

Calculating observables is more complicated, except in few particular cases.
Let us consider the case σ = 1

2 , which has a single bound state. Its squared wave
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function reads

ψ2
0(x+ i

c

2
) =

cos(c/2)cosh(x)− isin(c/2)cosh(x)
cosh2 (x)− sin2 (c/2)

. (19)

Its norm is given by

N−2
0 = cos(c/2)

∫ ∞

−∞

cosh(x)dx

cosh2 (x)− sin2 (c/2)
= cos(c/2)

π√
1− sin2 c/2)

= π.

(20)
The Fourier transform of the density takes the form

F (q) =
1

π

∫ ∞

−∞
e[q(x+i c

2
)] cosh(x)cos(c/2)− isinh(x)sin(c/2)dx

cosh2 (x)− sin2 (c/2)
dx (21)

=
4

π
e−qc/2

∫ ∞

0

cos(qx)cos(c/2)cosh(x)+sin(qx)sin(c/2)sinh(x)

cosh(2x)+cos(c)
dx.

With the help of integral tables [15], we get

F (q) =
1

cosh( qπ2 )
. (22)

Few other observables have been tested numerically, namely the average values of
(x+ i c2)

ν , ν = 1,2 and 4, for 0 ≤ c < π. Because of the singularity of the wave
function at c= π, deviations from the expected c=0 value appear as c is approaching
this limit. The precision depends sensitively from the integration mesh. Results
displayed in Table 1 correspond to ∆x= 10−5. Noticeable differences arise beyond
c= 3.1. For ∆x= 10−3, they appear already at c= 3.0 at the 1% level.

It is interesting to note the special role of < n | (x+ i c2) | n >. It relies entirely
on the imaginary part of the wave function, and thus it constitutes a convenient test
of it.

4. THE
(
x+ i c2

)4 POTENTIAL

This example is essentially designed to underline the limitations arising from
approximations generated by solving the Schrödinger equation numerically for com-
plex potentials. To our knowledge, this problem has not retain attention, the WKB
method being preferred [16, 17]. Recently, the finite difference method has also been
considered and compared to WKB method [18]. Thus, it deserves to underline few
aspects bringing special difficulties. Thus, we complete the present study with a look
at the (x+ i c2)

4 potential. Here we have

V (x) = x4− 3

2
c2x2 (23)
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Table 1

Shifted Pöschl-Teller potential. The numerical estimates of the ground state average of xν for ν =1,2

and 4 are displayed for values of 0 ≤ c < π. The integration mesh is 10−5. The results show the

influence of the singularity as c approaches π.

c < (x+ ic/2)> < (x+ ic/2)2 > < (x+ ic/2)4 >

0.0 0. 2.4674 30.440
1.0 2. 10−6 2.4674 30.4397
2.0 6. 10−6 2.4674 30.4398
3.0 6.8 10−5 2.4672 30.4390
3.10 2.4 10−4 2.4666 30.4364
3.14 6.3 10−3 2.4478 30.3432

3.1415 0.10 2.1498 28.873
3.14154 0.17 1.9347 27.811
3.14159 1.27 -1.5099 10.813

and

W (x) = 2cx3− 1

2
c3x. (24)

Use is made here of the Runge-Kutta method to solve coupled differential equations.
Writing

ψn(x) = un(x)+ ivn(x) , (25)

Assuming real eigenvalues, they reads

−u′′n(x)+V (x)un(x)−W (x)vn(x) = Enun(x) (26)

−v′′n(x)+V (x)vn(x)+W (x)un(x) = 0.

The prime and double prime represent the first and second derivative with respect to
x, respectively. For even states, the boundary conditions at the origin are un(0) = 1,
u′n(0) = 0., vn(0) = 0, v′n(0) has to be fixed. At infinity un(x) and vn(x) have to
vanish sufficiently fast the wave function to be normalisable.

In the case of real potentials, the number of nodes and the occurrence of a zero
at large distance, simulating an asymptotic decrease of the wave function, are suffi-
cient criteria to choose the solution to a desired approximation. This is not valid in
the complex case, because of the oscillatory behaviour of both the real and imaginary
part of the wave function. Thus, one has to rely on the large distance behaviour of
the wave function modulus. It is a positive definite function. Thus it never crosses
the x axis, but approximate solutions show a sharp minimum at large x. It should
be possible to add a second test by looking at the derivative of the modulus near its
large distance minimum. However, from the few examples we have worked out, this
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is strongly affected by instabilities in the tail of the wave function, and thus it is not
efficient.

On the other hand, the coupled equations (26) can be written for the modulus
and the phase. If

ψn(x) = ρn(x)e
iϕn(x) , (27)

we get

−ρ′′n(x)+V (x)ρn(x)+g
2
n(x)ρn(x) = Enρn(x) (28)

g′n(x)+2
ρ′n(x)

ρn(x)
g = W (x),

where we have set

ϕ′n(x) = gn(x). (29)

Provided the derivative of the phase to be known, Eq. (28) is similarly to an ordinary
Schrödinger equation.

A convenient strategy would be to start with Eqs. (26), which provides an
estimate of gn(x) :

gn(x) =
v′n(x)un(x)−u′n(x)vn(x)

u2n(x)+v
2
n(x)

. (30)

Introducing this quantity in Eqs. (28) for any solution of Eqs. (26), it gives the same
eigenvalue as the system (26) if and only if it corresponds to the correct solution.
Though quite useful, this criterion is not absolutely safe, precisely because of the
instabilities of ϕn(x) at large distances. In the tails of the wave functions and of the
modulus, the approximations are not the same in Eqs. (26) and (28). The differences
are expected to increase with c, requiring increased precision in the numerical codes
as c gets large.

For the sake of illustration, we have worked out the case of the ground state
(n= 0). The phase g0(x) is obtained from Eqs. (26), and fitted by a polynomial form

g0a(x) =
∑

k even

akx
k. (31)

Note that from Eqs. (28), ρ0(x) being an even function and W (x) being odd, g0a(x)
has to be an even function. Use has been made of a polynomial of order k = 18. The
phase function is introduced in Eqs. (28), and we retain the solution for which the
two estimates of E0 are in close agreement, i.e. usually better than 0.1 %.

The results for a sample of c values, up to c = 1.0, are displayed in Table 2.
The ground state energy E0 is compared to the expected value

E0,c = E0,0−
c4

16
. (32)
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Few moments, namely (x+ ic/2)ν for ν = 0,2 and 4, are compared to their values
at c = 0. The results agree with the expected values to better than 0.1 %, except for
< (x+ ic/2)4 > at c= 1.0.

We complete these results by displaying the modulus and the phase function
for a couple of c values in Figs. 1 and 2, respectively. The variation of the modulus
with c is rather small. The phase function, however undergoes quite sensitive changes
with c, becoming sharper in the tail as c increases.

Table 2

The (x+ i c2 )
4 potential. The ground state energy and observables obtained by solving Eqs. (26) are

compared to expected values for few values of c. The energy E0,c refers to Eq. (32) ; for the moments

the expected values are those of c= 0.

c E0,c E0 < (x+ i c2)> < (x+ i c2)
2 > < (x+ i c2)

4 >

0.0 1.060429 0.0 0.3620 0.3534
0.01 1.060429 1.060377 2.1 10−6 0.3619 0.3534
0.1 1.060423 1.060472 9.7 10−5 0.3619 0.3529
0.2 1.060329 1.060413 8.5 10−5 0.3621 0.3536
0.5 1.056523 1.056482 −9.0 10−7 0.3620 0.3534
1.0 0.997929 0.997922 −7.8 10−3 0.3648 0.3679

4.1. A POSSIBLE ITERATIVE PROCEDURE

The case c = 1.0 deserves attention. It provides us with an example of insta-
bilities of g0(x), specially in its tail. It suggests also the possibility of an iterative
procedure.

Because we choose the phase function giving the smallest difference between
the two energy estimates, it may be considered as a good first approximation to ge-
nerate an iterative procedure of Eqs. (28). If the process is converging, we may reach
the correct solution. The new phase function will differ from the one given by Eqs.
(26). The solutions of Eqs. (26) being approximative in any case, this difference
is not in contradiction with the basic postulate stating the equivalence of the two
systems of equations. In principle, it would allow us to start from any approximate
solution of Eqs. (26).

However, the situation does not follow this ideal scheme. The behaviour of
ρ0(x) in its tail, introduces large instabilities. In turn these instabilities render the
integration of the g0(x) equation quite hazardous. The few cases we have worked
out were unsatisfactory, leading to diverging results. It may be due to the finite
accuracy of our codes, but it may also underline that expressing g0(x) in term of a
finite polynomial is not sufficient to reach the exact solution.
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Fig. 1 – The (x+ i c2 )
4 potential. Squared modulus of the ground state wave function as function of x

for c= 0 (full line), c= 0.5 (filled circles) and c= 1.0 (filled squares).

Fig. 2 – The (x+ i c2 )
4 potential. Derivative of the phase of the ground state wave function g0(x). The

full line corresponds to c= 0.2, filled circles and squares to c= 0.5 and c= 1.0, respectively.
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We end this study with the following exercise. For c=1.0, starting with g0a(x),
we solve Eqs. (28) to get a new phase g01(x). In a kind of first iteration, we search
for

g02(x) = g0a(x)+αg01(x) , (33)
such that g02 brings the eigenvalue in close agreement with the one given by Eqs.
(26). This is achieved with α = 0.0045. The smallness of α indicate how close g0a
is from the exact solution. As we have checked, the differences appear essentially in
the tail of the phase function.

The results are displayed in Table 3 for few solutions of Eqs. (26) very close to
the exact one. This naive trick improves all the observables, except (x+ i c2), which
indicates uncertainties in the imaginary part of the wave function.

Table 3

The (x+ i c2 )
4 potential. Ground state observables obtained from Eqs. (28) by adjusting the phase

g02(x) = g0a(x)+αg01(x) as explained in the text are compared to values given by Eqs. (26).

v′0(0) EQS E0 < (x+ i c2)> < (x+ i c2)
2 > < (x+ i c2)

4 >

-0.48566 (26) 0.997864 −8.0 10−3 0.3649 0.3683
(28) 0.992594 −1.1 10−2 0.3622 0.3558

0.997926 −1.4 10−2 0.3619 0.3552

-0.48561 (26) 0.997928 −7.8 10−3 0.3648 0.3679
(28) 0.992764 −1.1 10−2 0.3621 0.3554

0.997920 −1.4 10−2 0.3618 0.3550

-0.48541 (26) 0.998163 −7.2 10−3 0.3643 0.3661
(28) 0.993452 −1.0 10−2 0.3618 0.3543

0.997929 −1.2 10−2 0.3616 0.3540

5. CONCLUSIONS

Complex potentials generated by a complex shift (x+ ic/2) of a real even po-
tential are very attractive. In particular, the way to calculate observables is known
[1, 10], and thus it gives rise to a coherent quantum mechanics. However, it turns out
that the observables are independent on the imaginary shift. For confining potentials,
the vacuum energy is affected by the value of c, but the energy differences between
the levels are the one obtained for c= 0.

The independence of the observables with respect to c has been obtained from
basic principles. It has been illustrated by two examples: the harmonic oscillator
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and the Pöschl-Teller potential. The case of the (x+ i c2)
4 potential has been chosen

to underline the difficulties encountered when solving the Schrödinger equation for
complex potentials.

Concerning the observables, whether a similar situation occurs for other com-
plex potentials with real eigenvalues remains an open question. At first glance it
sounds to be different. However, no statement can be made without establishing in
each case the way to calculate observables.
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