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We analyzed drilling induced tensile fractures from resistivity image log data to ascertain the orientation of
maximum horizontal stress (Sy) from the eastern Illizi basin, Algeria. An average Sy azimuth of 150°N (+ 10°)
has been interpreted from B-quality induced fractures, as per world stress map guidelines. The overall NW-SE
orientation of Sy translates to the relative plate motion of the African and Eurasian plates. Vertical stress (Sy)
gradient of 1.07 PSI/ft has been derived from density log. Pore pressure estimated from sonic slowness reveals
overpressure in Silurian shale, deposited in a transgressive depositional environment, whereas Devonian and
Ordovician hydrocarbon reservoirs have been seen to be normally pressured. Poroelastic strain model has been
employed to quantify maximum and minimum horizontal stress (S,) magnitudes. An effective stress ratio of 0.6,
interpreted from leak-off test has also been used to model Sy. Using frictional faulting theory, upper limit of Sy
has been quantified. Sy/Sy ratio of 1.04 (1.01-1.26) has been seen in the study area. Based on the relative stress
magnitudes (Sy > Sy > Sp), a present day strike-slip faulting regime has been inferred in the eastern Illizi basin,

Algeria. Fault reactivation potential at reservoir level has been inferred from stress polygon analysis.

1. Introduction

Reservoir geomechanical modeling has become an integral part of
field development studies. It has critical implications in horizontal well
placement, drilling and completion, reservoir development and aban-
donment (Sayers et al., 2002; Tingay et al., 2005, 2009; Meng et al.,
2011; Ramdhan and Goulty, 2011; Hoesni, 2004). A comprehensive
geomechanical model has five principal components: magnitude of three
in-situ stresses, i.e. vertical stress (S), minimum horizontal stress (Sy),
maximum horizontal stress (Sy); distribution of formation pore pressure
(PP) and orientation of Sy (Tingay, 2015; Zoback, 2007; Rajabi et al.,
2016). Accurate knowledge of pore pressure and in-situ stress distribu-
tion equips subsurface team to better plan well delivery and production
optimization (Zhang, 2011, 2013; Sen et al., 2019, 2020).

In this study, we investigated an exploratory well, drilled in the
Takouazet field, eastern Illizi basin, Algeria. Hydrocarbon discoveries
have been established from the Devonian and Ordovician sandstone
units. We took this opportunity to utilize the well data and perform a
well-scale geomechanical modeling, being the first from this field. The
primary objectives of this work are to estimate the magnitude of in-situ
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stress tensors and direction of Sy. A rock mechanical property based
approach has been considered for this analysis that involves the avail-
able geophysical log data set as primary inputs and downhole mea-
surements as calibration parameters. Based on the relative magnitudes
of in-situ stress tensors, present day strike-slip faulting regime has been
interpreted in the eastern Illizi basin. Drilling induced tensile fractures
(DITF) have been interpreted from Formation micro-imager log (FMI) to
decipher precise Sy azimuth and has been correlated with World Stress
Map (WSM) database. Utilizing stress polygons, we analyzed the reac-
tivation potential of critically oriented faults at Devonian and Ordovi-
cian reservoirs, and inferred the minimum pore pressure changes
required during hydraulic fracturing to cause a fault slip.

2. Geological settings of the study area

The studied Takouazet field is situated at the eastern part of Illizi
basin, In-Amenas area of southeast Algeria near to Algeria-Libya inter-
national border (Boote et al., 1998; Klett, 2000). Amguid-Hassi Touareg
structural axis defines the western boundary, while Tihemboka Arch
demarcates the eastern boundary. Hoggar massif and Ghadames
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(Berkine) basin are situated at the south and north of Illizi basin (Boote
et al., 1998; Klett, 2000). Fig. 1 represents the Illizi basin and studied
well. This part of the Saharan platform tends to have a near flat struc-
tural dip and is thought to have been subject to the effects of strike-slip
tectonics. Throughout the Paleozoic this basin has experienced several
regressive and transgressive depositional cycle. Marine quartz arenites
of glacial-tidal shallow marine origin deposited reservoir quality sands
during Ordovician lowstand system tract. A major flooding event during
Silurian deposited the source rocks (Aliev et al., 1971; Boudjema, 1987)
with an average total organic carbon (TOC) content of 2-4% (Daniels
and Emme, 1995). Prograding deltaic-fluvial and shallow marine/tidal
sandstones of Devonian unit form the reservoir facies in Takouazet field,
as encountered in the studied well. Devonian unit lies unconformably
above the Silurian marine shale and it consists of marine or marginal
marine sandstone members which are major hydrocarbon bearing for-
mations in the studied field. These Devonian reservoir units are named
as F6-A, B and C units. Various intraformational Paleozoic marine shales
act as seals for reservoir facies in Illizi basin petroleum system (Van de
Weerd and Ware, 1994; Boote et al., 1998). The studied well TAKW-1 in
eastern Illizi basin encountered Devonian (F6) and Ordovician reser-
voirs. Fig. 2 represents the generalized lithostratigraphy of the Illizi
basin.

3. Material and methods
3.1. Data used

The vertical discovery well TAKW-1 was drilled till 2675 m TVD
(true vertical depth) in Takouazet field, eastern Illizi basin to explore the
hydrocarbon potential in Paleozoic horizons. A complete set of con-
ventional wireline logs (consisting of gamma ray, caliper, resistivity,
compressional sonic slowness, bulk density and neutron porosity), FMI
logs and direct downhole formation pressure measurements by Modular
Dynamic Tool (MDT), leak-off test (LOT) data were available from the
studied well. A quality check (QC) has been performed on the collected
data before calculation stage. The brief workflow diagram for this pre-
sent study has been presented in Fig. 3.

3.2. Estimation of rock mechanical properties

Rock elastic properties and rock strength parameters are critical in-
puts for geomechanical modeling. The standard practice is to estimate
these properties from geophysical logs and calibrate the calculated dy-
namic values with static values available from core based
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Fig. 1. Location of Illizi basin in North-Central Africa along with three struc-
tural trends. Studied well TAKW-1 has been presented as a triangle.

Journal of Structural Geology 132 (2020) 103975

measurements. In this study, we focused on four principal rock prop-
erties: Poisson’s ratio (v), Young’s modulus (Y), coefficient of internal
friction (p) and Uniaxial Compressive strength (UCS).

Dynamic rock elastic properties are calculated from density (RHOB),
compressional wave velocity (Vp) and shear wave velocity (Vs) data.
The equations are as below (Lal, 1999; Chang et al., 2006; Zoback,
2007):

Vp? —2Vs?
- " 1
vd 2(Vp? — Vs?) 1)
R 3Vp? — 4Vs?
Yd =RHOB*Vs® {W )
H=tan ¢ 3
. _y (Vp — 1000
=| Sin” ' F——©x
¢ { n <Vp ¥ 1000)} “)

where vd and Yd are dynamic Poisson’s ratio and Young’s modulus
respectively, ¢ is angle of internal friction (in degree) and p is the co-
efficient of internal friction measured from logs. Vp and Vs are in meter/
second unit. Chang et al. (2006) suggested an average value of 0.6
against frictional coefficient.

UCS has been estimated from compressional sonic slowness (DT). We
have deployed two different UCS equations for sandstones and shales.
McNally, 1987 propose following expression for fine grained, consoli-
dated sandstones with wide range of porosity:

UCSsandsione = 122 ¢~ PT )

For UCS calculation against shales, we used the following relation-
ship by Horsrud (2001):

4.8\ 208
30 8> ®)

UCSspate =0.77 ——
Shal < DT

where DT represents the sonic slowness log in us/ft unit and generated
UCS is in mega-pascal (MPa) unit.

3.3. Orientation of maximum horizontal stress (Sg)

Approximately one fifth of the horizontal stress direction indicators
is yielded by wellbore failures, as documented in World Stress Map
(WSM) database (Sperner et al., 2003; Heidbach et al., 2016a, 2016b,
2018, 2019). When the circumferential radial stress concentration
around the wellbore goes exceeds the tensile strength of the rock mass,
wellbore fails parallel to Sy direction (Zoback, 2007) and this is known
as drilling induced tensile fractures (DITF). In a vertical well FMI log,
these tensile failures appear 180° apart as narrow conductive features
parallel to wellbore axis (Heidbach et al., 2010; Tingay et al., 2008; Lai
et al., 2018).

A cumulative 817 m of Palaeozoic section (2475-1658 m) covering
the Devonian and Ordovician reservoirs have been logged by FMI tool.
We interpreted the DITFs from the extensive FMI log and inferred Sy
direction.

3.4. Vertical stress (S,) magnitude

Density log data is conventionally used to estimate the overburden
pressure, or vertical stress (Sy) and the equation is as follows:

H
Sv= / RHOB*g dH )
0

where, RHOB is the bulk density log value at a depth (H), and g is
gravitational acceleration.
Usually operators do not record wireline logs in the shallow parts as
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Fig. 2. Generalized lithostratigraphic column of Illizi basin, adapted from Boudjema (1987). The studied well TAKW-1 was drilled till Ordovician formation in

Takouazet field, eastern Illizi basin.

its devoid of zone of interest and the second is to reduce the operating
cost. In the interval of missing density at the shallower level, density was
extrapolated using a power law curve using the following equation:

TVD — AG\*
RHOB,, =Rs + (u)

3125

®

where, RHOByy, is the synthetic density for shallow section, Rs is the
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Fig. 3. Workflow diagram, as followed in this study.

surface sediment density (default value 1.9 g/cc), TVD is true vertical
depth and AG is air gap (distance between drill floor and mean sea
level). ‘o’ is a fitting parameter with default value of 0.6 (Radwan et al.,
2019). The parameters of the power law curve were determined by
adjusting the three reference points to match the power law curve to the
density log over the depth interval for which density data was available
(Sen et al., 2017).

We had looked for possible washed out segments in the borehole
from caliper logs (Sen and Ganguli, 2019), since these are the potential
zones where recorded RHOB can give erroneous data (as RHOB is
measured using a padded tool) (Sen et al., 2015). Necessary environ-
mental corrections have been introduced to nullify those bad data areas.
Corrected composite density logs have been the input to estimate ver-
tical stress using Eq. (1).

3.5. Pore pressure (PP) magnitude

Pore pressure (PP) is a critical parameter in Geomechanical model
building, since Sy and Sy are dependent on PP. Presence of abnormal
formation pressure can critically lower the effective stress values, which
translates to reduced safe mud window, wellbore instability and hence
drilling complexities. The commonly accepted industry practice is to
estimate PP from indirect methods using geophysical logs (i.e. re-
sistivity, sonic etc.) or drilling exponent and calibrate against the
downhole measurements (which is only available against the reservoir
units or potential hydrocarbon bearing zones) (Sen et al., 2018a,
2018Db). To perform the indirect PP calculation method, first shale zones
are distinguished from non-shale units using a combination of gamma

ray, resistivity, neutron porosity and density logs along with drill cutting
lithology information (Ramdhan and Goulty, 2011; Sen et al., 2019).
Thereafter, a normal compaction trend (NCT) is established on the shale
picks, which acts as the basis of PP characterization. A normally com-
pacted shale indicates hydrostatic pressure regime, whereas any devia-
tion from NCT would mean that the shale has higher pressure (Tingay
et al., 2005; ; Zhang, 2011; Sen et al., 2020).

In this study, we have used compressional sonic slowness log and
applied the widely accepted Eaton’s equation (Eaton, 1975) as below:

9

DTCn\’
DTC

PP=Sv—(Sv— Ph)*(

where Ph denotes hydrostatic pressure (approximately 0.433 psi/ft).
DTC is the compressional sonic slowness log (us/ft) and DTCn is the
sonic log response against shale.

Direct in-situ pore pressure measurements were available from
principal reservoir formations. Downhole pressure data was recorded by
Modular Formation Dynamics Tester tool, commonly known as MDT.
This is a wireline tool that inserts a probe (single or dual probe module)
into the target formation and a high precision pressure gauge records the
formation pressure reading. This is also capable of reservoir fluid sam-
pling. MDT data has been used for calibration of estimated PP in this
study.

3.6. Minimum horizontal stress (Sp) magnitude

Leak-off test (LOT) provides the effective stress ratio (K), which
translates to the ratio of the pressure at which formation fractures to the
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value of Sv at that particular TVD. This ‘K’ parameter serves as the direct
calibration point of Sy, at the depth of interest. This effective stress ratio
based approach to estimate Sh was proposed by Mathews and Kelly
method (1967):

Sk = PP+ K*(Sv — PP) (10)

where K is the effective stress coefficient and Sy is the estimated Sh
from effective stress ratio.

Another approach for estimating Sy, is poroelastic horizontal strain
which involves tectonic strains to accommodate anisotropic horizontal
stresses (Javani et al., 2017; Amiri et al., 2019), since tectonic strains
applied to an elastic body of rock results in an addition of stress
component (Najibi et al., 2017). The equation is as follows:

Ys

Y
(Sv—PP) + PP+os—— ex+1———ey an

Shporo = ) 1—

S
1—os
where Spporo is the minimum horizontal stress magnitude by strain
model, us is static Poisson’s ratio; Ys is the static Young’s modulus; ex
and ey are two horizontal strain components along Sy, and Sy directions
(Najibi et al., 2017). ex and ey have been estimated by the equations
below (Kidambi and Kumar, 2016):

vs 1
SfoVYS (m—l> 12)

vs

on(1-5)

Static values of elastic properties are measured on cores. Wang
(2000) established the following relationship by to estimate static
Poisson’s ratio and Young’s modulus from dynamic values:

ey =25y 13)

vs= vd 14
Ys =0.4142*Yd — 1.0593 (15)

where vd and Yd are dynamic Poisson’s ratio and Young’s modulus
respectively.

In this study, we have utilized both the models - effective stress ratio
as well as poroelastic strain model.

3.7. Maximum horizontal stress (Sy) magnitude

Sy magnitude is the most critical part of in-situ stress tensors, since it
cannot be measured directly. However we have followed here the
poroelastic strain model to estimate the Sy magnitude and the equation
is as follows (Javani et al., 2017; Najibi et al., 2017):

vs

Y Y
=% (Sy—PP)+PP+vs— " eyt ex (16)

SHM 0ro
o 1—vs 1 —vs? 1 —vs?

All the input parameters used in Eq. (12) have been described
already in section 3.5.

Although there has not been a direct measurement of Sy like pore
pressure, its upper limit can be constrained by frictional faulting theory
(Brudy et al., 1997; Zoback, 2007). It states that the ratio of maximum
(01) to minimum (o3) effective principal stress can be correlated with a
function of frictional coefficient factor (p):

— 2

s e [0+ 4] a7
S1 and S3 vary with the tectonic stress regime. For example, Sy is the

highest principal stress in normal faulting regime, while lowest in

reverse faulting regime based on Anderson’s faulting principle. Town-

end and Zoback, 2000; Zoback, 2007 suggested an average value of 0.6

against p.
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4. Results and discussion
4.1. Sy orientation

We investigated the FMI log recorded against Devonian to Ordovi-
cian unit. Numerous DITF were identified and its orientations were
interpreted, although wellbore breakouts could not be observed. WSM
quality ranking policy suggests that C-quality stands for more than four
distinct DITF segments with a combined length of >20 m in a single well
and the standard deviation should be less than 25°, while more than 6
DITF zones of >40 m cumulative zones with <20° standard deviation
defines a B-quality stress direction indicator (Heidbach et al., 2010). The
highest quality is indicated a A-quality defined by > 10 DITF zones with
>100 m cumulative fracture length and <12° standard deviation
(Heidbach et al., 2010; 2016a; 2016b; 2018; 2019).

In the studied well TAKW-1, DITFs occurred in the Ordovician in-
terval. Seven distinguishable DITF zones have been observed between
2410 and 2462 m TVD (Fig. 4). The orientations of these DITFs are in
between 140° and 160°N, with an average azimuth of 150°N (& 10°).
Based on the observations from FMI logs, B-quality DITFs have been
summarized that deciphers a NW orientation for Sy in the eastern Illizi
basin.

We looked for Sy azimuth data from the adjacent areas and sur-
rounding basins. All stress indicator data population in Algeria from
WSM (Fig. 5) belongs to the north of Sahara flexure geographically and
indicate a dominant NW-SE orientation. However various researchers
(Koceir and Tiab, 2000; Patton et al., 2003; English et al., 2017; Paludan
et al., 2017) worked out stress directions using wellbore failures from
petroleum data of Ghadames (Berkine) basin, Ahnet basin, Hassi Mes-
saoud area, Tiguentourine Field of southeastern Algeria etc. and
confirmed a general Sy trend ranging between NNW and NW. These
findings correlate strongly with our findings from Takouazet field,
eastern Illizi basin. The overall NW-SE orientation of Sy translates to the
relative plate motion of the African and Eurasian plates, which is in the
same direction.

4.2. Magnitude of pore pressure and in-situ stress components

As the very first step of the workflow, S, was determined from
density log. For synthetic shallow density, we modeled three density
profiles, using ‘@’ values as 0.6 (Default), 0.5 and 0.4. with a surface
sediment density (Rs) of 1.9 g/cc (Eq. (8)). Based on the results (Fig. 6),
a = 0.4 has been observed to be following the wireline density in best
manner and hence used in calculation. A composite density combining
shallow pseudo density and wireline bulk density had been used to
generate vertical stress profile for the entire studied Palaeozoic stratig-
raphy. At the well TD (target depth) of 2476.5 m TVD, S, has a
magnitude of 8744.85 PSI, which reflects to 1.07 PSI/ft gradient in the
onshore Takouazet field of eastern Illizi basin, Algeria. Interpreted Sv
gradient and magnitude has been presented in Fig. 6.

PP has been calculated from sonic log and calibrated with downhole
in-situ formation pressure measurements (MDT) available against
Devonian and Ordovician reservoirs. Pore pressure distribution and the
NCT have been presented in Fig. 7. Study reveals hydrostatic pressure
regime from surface to the Devonian unit, which also includes Devonian
F-6 sandstone reservoirs and an average pore pressure gradient of 0.47
PSI/ft has been interpreted in the mentioned interval. Deviation of sonic
log response from NCT indicated the increase in formation pressure
magnitude within Silurian shales. Fig. 7 clearly indicates an increase in
neutron porosity log (NPHI) value against the Silurian shale. An
abnormal pressure gradient of 0.66 PSI/ft continued till the base of
Silurian unit at 2332 m TVD and the top of overpressure has been
marked around 2100 m. Being deposited in shallow marine to marine
system during a transgressive sea level condition, high sedimentation
rate prevailed. As a result connate water could not escape from the pore
spaces and failed to maintain a hydrostatic pressure head, thus exerting
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abnormal pore pressure. Another critical aspect of the pressure distri-
bution is the sudden drop in in-situ pore pressure from Silurian to
Ordovician unit at around 2332 m TVD. The boundary between the two
geological units is marked by a major unconformity across which the
depositional system changes from regressive Lowstand System tract
(Ordovician) to Transgressive System tract (Silurian). Ordovician unit
reflects a normal pressure regime with a hydrostatic gradient (0.43 PSI/
ft). The same has been confirmed by the MDT measurements against the
reservoir sandstones (Fig. 7).

For the estimation of Sy, we have followed two approaches - poroe-
lastic strain model and effective stress ratio. Poroelastic strain model for
estimating horizontal stress magnitudes require the characterization of
rock elastic properties. Based on density, compressional and shear sonic
logs, we estimated dynamic elastic moduli, i.e. Young’s modulus, Pois-
son’s ratio as well as rock strength, i.e. Uniaxial Compressive strength
(UCS) (Fig. 8). Result shows an average 107-150 MPa UCS against
Ordovician sandstones, which correlates strongly with the core based
uniaxial measurements of the same formation from southern Illizi basin,
where a UCS range of 90.38-163.96 MPa has been reported by English
et al. (2017). Young’s modulus values of overpressured lower Silurian
shale and Ordovician units are 6-10 MPa and 37-50 MPa respectively,
while English et al. (2017) gave similar values from south Illizi basin
cores (7-8 MPa for lower Silurian shale and 41-69 MPa range for various
Ordovician reservoir units). Based on the dynamic rock mechanical
properties followed by dynamic to static property calibration (Egs. (8)
and (9); Wang, 2000), Sh has been estimated for the Paleozoic section
and presented in Fig. 9. The second approach of Sh estimation employs
leak-off test (LOT). A leak-off test was carried out at 1670 m TVD
(against Devonian shale) to understand the downhole pressure limit that
creates a fracture in the formation for the fluid to leak through. An
effective stress ratio of 0.6 has been interpreted from the LOT test, which
provides us a Sy estimate (Fig. 9). Patton et al. (2003) also reported a
very close effective stress ratio value (0.59) from the Tiguentourine field
in Illizi basin. Based on the magnitudes of both Sh models (Table 1),
normally pressured Devonian unit reveals a Sh range between 0.74 and
0.81 PSI/ft; abnormally pressured Silurian shales reflect a high Sh
gradient of 0.86-0.88 PSI/ft, whereas Ordovician unit sandstones and
shales display 0.68 and 0.78 PSI/ft respectively. Sy magnitude based on
poroelastic strain model has been presented in Fig. 9 and Table 1. Based
on the poroelastic model approach, Sy has an average gradient of 1.14
PSI/ft in the Devonian unit. With the increase in PP against Silurian
shale, Sy magnitude increases and a maximum 1.34 PSI/ft gradient has
been recorded in overpressured Silurian shale. Ordovician unit reveals
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Fig. 6. Synthetic density curve with modified Amoco coefficients (Rs = 1.9 g/cc, a = 0.4, Track 4) follows the wireline density (red) trend better. Interpreted vertical
stress (Sv) from composite density profile (black curve on Track 5) has been presented on Track 6.

an average 1.12 PSI/ft gradient.

4.3. Stress regime

Interpreted in-situ stress magnitudes have been presented in Fig. 9
and Table 1, which reveals Sy is the maximum magnitude, while Sy, is the

least principal stress (Sy > Sv > Sp) in the eastern Illizi basin. Based on
Andersonian classification, the study area indicates a strike-slip faulting
regime. Sy/Sy ratio varies between 1.01 and 1.26. Patton et al. (2003)
reported a Sy/Sy ratio of 1.04 from southeastern Algeria. A cross plot
between Sy normalized minimum and maximum horizontal stress

components (Fig. 10) depicts this vertical change in in-situ stress state.
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Fig. 7. Represents NCT on DT log (Track 4) used to estimate pore pressure (PP) profile. PP against Devonian and Ordovician reservoirs have been interpreted from
MDT data.
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Fig. 8. Represents estimated dynamic elastic parameters and rock strength parameters from the studied well.

Based on frictional faulting theory (Zoback, 2007; Zoback, 2007), we
have estimated the upper bound of SH in the study area using Eq. (13)
considering a strike slip regime (S1=Sy, S3=Sj and p = 0.6). The output
has been presented in Fig. 9 and Table 1. Since frictional faulting limit is
based on the effective maximum and minimum principal stress ratio, a
decrease in the Sy upper limit magnitude has been observed against the
abnormally pressured Silurian shale (Fig. 9).

4.4. Fault reactivation potential

Hydraulic fracturing and fluid injection can potentially induce local
seismicity by affecting the stress field (Tingay et al., 2005) and it can
result in fault reactivation (Townend and Zoback, 2000; Moeck and
Backers, 2011; Reis et al., 2013). We evaluated the fault reactivation
chances at two primary reservoir levels, i.e. Devonian and Ordovician,
where hydraulic stimulation might be attempted for enhanced
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Fig. 9. Represents interpreted principal stress components and pore pressure in the studied well. Minimum horizontal stress (S,) estimated from Effective stress ratio
and poroelastic strain models. Maximum horizontal stress (Sy) magnitude calculated from poroelastic strains, whereas an upper bound has been constrained from
Frictional faulting limit.
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Table 1
Interpreted pore pressure (PP) and principal in-situ stress (Sy, Sy, and Sy) magnitudes across the Paleozoic stratigraphy.
TVD (m) Age Pressure Magnitude (PSI) Comments
Sy PP PP Regime Sk Sy Sy Bound
Poroelastic Eff. Stress Ratio
1700 Devonian 5885.5 24429 Normal (Hydrostatic) 4080.5 4521.1 6658.4 8860.2 F-6 Reservoir
1800 6248.5 2586.8 4447.6 4789.9 6620.7 9428.4
1900 6603.2 2730.5 4792.7 5065.9 7191.7 9952.1
2000 6662.5 2874.2 5272.7 5344.5 8051.4 10478.3
2050 7139.7 2945.9 4966.8 5487.8 7289.4 10740.5
2100 Silurian 7330.4 3717.8 Overpressure 5388.6 5785.3 7863.9 10697.6 Pressure Ramp
2150 7521.8 4124.5 6059.3 6171.2 8921.1 10465.9
2200 7713.1 4685.8 6496.6 6507.9 9560.1 10339.8
2300 8090.9 4959.5 6840.8 6837.3 10080.3 10823.7 Continuous Overpressure
2330 8202.8 5081.9 6907.1 6943.8 10396.1 11289.2
2340 Ordovician 8239.7 3362.5 Normal (Hydrostatic) 5526.3 6311.2 7999.1 12442.9 Ordovician IV-2 and IV-1 Reservoirs
2370 8351.3 3405.8 5957.3 6379.1 8913.9 12648.8
2400 8466.4 3448.8 6394.8 6466.3 9696.9 12826.5
2450 8650.2 3520.9 6039.4 6605.4 8953.8 13107.5
2476 8743.3 3558.1 5944.6 6675.1 8703.8 13247.8
1.50
1.40
Strike-slip Faulting Reverse Faulting
1.30
1.20
1.10
w‘w
% 1.00
[72]
0.90
Normal Faulting
0.80
0.70
0.60
0.50
0.50 0.70 0.90 1.10 1.30 1.50
S,/S,

Fig. 10. Represents the crossplot between principal horizontal stress magnitudes normalized with vertical stress (S,) from the studied well, indicating Strike-slip

faulting regime in the eastern Illizi basin (Sp/Sy >1).

production. Stress polygons based on frictional faulting theory has been
presented in Fig. 11 at 1765 m and 2440 m, which belongs to Devonian
F6 and Ordovician IV reservoirs respectively. At 1765 m, reservoir zone
F6 has a Sy of 6125 PSI, pore pressure from downhole measurements
yielded a value of 2540 PSI (hydrostatic) and effective stress ratio pro-
vided Sy, magnitude of 4701 PSI. Sy, PP and Sy, values at Ordovician IV
reservoir level has been estimated as 8614 PSI, 3507 PSI and 6578 PSI
respectively. Rock mechanical property characterization provided
average UCS values of 115 and 125 MPa at these two reservoirs (Fig. 11).

11

Poroelastic strain model estimated Sy magnitude of 7100 and 9560 PSI
respectively for Devonian and Ordovician units. At present day condi-
tion, both the dataset falls into strike-slip faulting polygon.

Frictional faulting theory assumes effective stress ratio controls the
shear slippage of critically stressed faults. So if pore pressure increases
by hydraulic fracturing fluid injection, effective stress reduces, stress
polygons squeeze (Fig. 11) and it might result in fault slip. Based on
present day in-situ stress distribution and hydrostatic formation pore
pressure condition, significant pore pressure increments are required at



Rafik Baouche et al.

20000
(a)
18000
16000
Reverse faulting limit
14000
5
5
o 12000 e RF
7 L (| NN, S B
=) < i
% F//
10000 & !
7] %77
5 /
— = /SS
535 / Depth =1765 m
o S, = 6125 PSI
6000 . S PP =2540 PSI
E |,INE v S, = 4701 PSI
=l Sg=7100 PSI
4000 z. p=0.6
UCS =115 MPa
2000
2000 4000 6000 8000 10000 12000 14000 16000 18000 20000
S. (PST)

Sy (PSI)

Journal of Structural Geology 132 (2020) 103975

20000 4
(b) Reverse faulting limit
18000
16000 ' §;— _________________________
&
3y
14000 S
5
&
R
12000 g
<
& :
10000 /
Bl
= i
8000 g INF Depth = 2440 m
E 2 i S, = 8614 PSI
6000 5= PP =3507 PSI
z & Sy, = 6578 PSI
Sy = 9560 PSI
4000 p=0.6
UCS =125 MPa
2000
2000 4000 6000 8000 10000 12000 14000 16000 18000 20000
S, (PST)

Fig. 11. Stress polygons: in-situ stress data from the studied well at the (a) Devonian reservoir level, 1765 m TVD (violet square) and (b) Ordovician reservoir level,
2440 m TVD (green square). Frictional faulting limits for three possible stress polygons (normal, strike-slip and reverse faulting regimes) have been plotted along
with. Present stress state plotted in the stress polygon indicates Strike-slip faulting in both the reservoirs. The small/squeezed stress polygon marked by dotted red
lines present the effect of pore pressure increase. Arrow indicates the result of pore pressure increment causing fault reactivation (shear slippage) and induced

seismicity at Devonian F6 and Ordovician IV reservoirs.

Devonian and Ordovician reservoirs to reactivate an existing critically
oriented fault.

5. Conclusion

A comprehensive geomechanical model has been presented from the
studied TAKW-1 well, drilled in eastern Illizi basin, Algeria to ascertain
the magnitude of pore pressure, principal in-situ stress components and
orientation of horizontal stress. An integration of geophysical logs,
downhole measurements (leak-off pressure and formation pressure by
MDT) has been used to estimate formation pressure magnitudes and
rock elastic properties. Silurian shale has been interpreted to be
abnormally pressured, whereas the Devonian and Ordovician units
consisting of hydrocarbon bearing sandstones indicate normal pore
pressure (hydrostatic regime). Drilling induced tensile fractures from
image log deciphered a NW-SE trend for maximum horizontal stress.
Based on the relative stress magnitudes, a strike-slip normal faulting has
been observed in the studied eastern Illizi basin. We deployed stress
polygon approach to decipher the fault reactivation potential by pore
pressure increase during hydraulic stimulation at the two major reser-
voir level (Devonian and Ordovician units). Results quantified the
required minimum pore pressure increment to cause a fault slip at the
both primary hydrocarbon bearing zones.

The workflow adopted in this paper can be extended as a standard
practice to establish basinal stress regime and quantify shear slippage
potential from 1D geomechanical model. This can be very useful in
building field development plan (FDP) by precise placement of deviated
well and subsequent optimum hydraulic fracturing design.
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