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ABSTRACT
This article presents a novel comprehensive learning bat algorithm (CLBAT)
for the optimal coordinated design of power system stabilizers (PSSs)
and static VAR compensator (SVC) for damping electromechanical oscilla-
tions in multi-machine power systems considering a wide range of oper-
ating conditions. The CLBAT incorporates a new comprehensive learning
strategy (CLS) to improve microbat cooperation; location updating is also
improved to maintain the bats’ diversity and to prevent premature con-
vergence through a novel adaptive search strategy based on relative trav-
elled distance. In addition, the proposed elitist learning strategy speeds
up convergence during the optimization process and drives the global
best solution towards promising regions. The superiority of the CLBAT
over other algorithms is demonstrated via several experiments and com-
parisons through benchmark functions. The developed algorithm ensures
convergence speed, credibility, computational resources and optimal tun-
ing of PSSs and SVCs of multi-machine systems under different operating
conditions through eigenanalysis, nonlinear simulation and performance
indices.
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1. Introduction

Electromechanical oscillations impose great challenges in modern power systems since they limit the
maximum power transfer capability and deteriorate the system stability (Kundur, Balu, and Lauby
1994). Power system stabilizers (PSSs) are thus widely employed to damp such electromechanical
oscillations and restore operational stability. However, under some operating conditions, PSSs fail
to provide enough damping, especially for inter-area oscillation modes. The emergence of flexible
alternating current transmission systems (FACTS) provides an alternative solution to improve the
system damping (Bian et al. 2016; Shahgholian and Movahedi 2016). Among the various types of
FACTS, the static VAR compensator (SVC) is one of the most common devices used for this purpose.
Although the SVC is basically employed for regulating the bus voltage, studies have demonstrated that
it can also boost the system stability (Mondal, Chakrabarti, and Sengupta 2012; Abido and Abdel-
Magid 2003).

The simultaneous design of controllers in power systems is based on the optimization of com-
plex non-differentiable problems, which generally causes serious challenges for the application of
traditional compensation strategies.
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Several analytical approaches, based on traditional control theory, have been used to design robust
power systemcontrollers, such asH∞optimization techniques (Yang 1997), structured singular value
(Castellanos, Messina, and Sarmiento 2008) and bilinear matrix inequalities (de Campos, da Cruz,
and Zanetta 2014). These designs face the common problems of the selection of weighting func-
tions, pole-zero cancellation and their requirements for higher order controllers which make them
less common in applications. Adaptive control techniques have also been proposed (Nechadi et al.
2012; Hussein et al. 2010), where the controllers are designed with quickly adjustable parameters
according to the changes in the system parameters. However, since power systems are time vary-
ing, the implementation costs of real-time adaptive controllers are high as the on-line parameter
identification process is computationally heavy, particularly if optimal design is considered. Alter-
natively, artificial neural networks (ANNs) have been adopted in the design of PSSs (Tofighi et al.
2015; Mahabuba and Khan 2009). ANN-based controllers can significantly improve the system per-
formance, but at the price of their exploding computation capacity with large amounts of training
data and long training time. Sambariya and Prasad (2015) and Bouchama et al. (2016) used fuzzy
logic control (FLC) for the design of PSSs to address the inaccuracies and uncertainties in the system
model. However, extensive refinements to FLC are required before its application.

Modern studies have employed population-based algorithms to overcome these problems and
achieve optimal settings for robust performance. The teaching–learning algorithm with chaotic
strategy (Farah, Guesmi, and Abdallah 2017) was adopted in the coordinated design of a thyristor-
controlled series capacitor (TCSC) and PSSs. The small signal stability of a power system was
enhanced through the tuning of SVC andTCSC via the particle swarm optimization algorithm (Mon-
dal, Chakrabarti, and Sengupta 2012). The flower pollination algorithm was employed for the robust
design of SVC in a power system (Abdelaziz and Ali 2015). The gravitational search algorithm was
combined with a gradient local search method (Peres, Silva Júnior, and Filho 2018) and employed
for various types of PSS design. The optimal design of PSSs was proposed via the cuckoo search
algorithm (Abd-Elazim and Ali 2016b). The bacteria foraging algorithm was adopted for the coor-
dinated tuning of SVC and PSSs (Abd-Elazim and Ali 2012). The shuffled frog-leaping algorithm
(Darabian, Mohseni-Bonab, and Mohammadi-Ivatloo 2015) was proposed to improve power system
stability through the optimal tuning of SVC. Despite the many research studies in the field, an opti-
mal solution to this optimization problem does not exist in a closed form, which allows for future
improvements.

The bat algorithm (BA) (Yang and Gandomi 2012) is a metaheuristic algorithm inspired by the
echolocation behaviour of microbats. The BA employs a varying frequency, with increasing pulse
emission rates and decreasing loudness of bats to search for and locate the global best solution (gbest).
The key advantage of the BA is its higher accuracy in finding the optimal solution owing to the
echolocation capacity of its microbats, which can efficiently find their prey, distinguish it from local
candidates and precisely determine its location. However, the BA is still prone to premature con-
vergence and trapping into local optima; this issue, in addition to the unsatisfied balance between
exploration and exploitation, requires further improvements which will be introduced along with
novel developments in this article.

Accordingly, variants of the BA have been proposed in an attempt to enhance its optimization per-
formance. Liu et al. (2018) enhanced the BA’s local search capability based on chaotic initialization of
the population, position updating via a nonlinear decreasing time factor, and hybridization with an
external optimization algorithm.Meng et al. (2015) proposed compensation for the Doppler effect in
echoes and the foraging habitat of bats by further mimicking the bats’ behaviour. Four strategies were
also proposed by Bahmani-Firouzi and Azizipanah-Abarghooee (2014) for updating the bats’ veloc-
ities, in which an accumulator for each strategy was computed and used to determine the probability
of selecting that strategy. Saad et al. (2019) utilized a kriging surrogate model to solve computation-
ally expensive black-box optimization problems. Despite these various efforts, the possibilities for
enhancement remain, as there is no algorithm that is ultimately perfect, as indicated by the ‘no free
lunch’ theorem (Ho and Pepyne 2002).
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The utilization of the information of individuals from previous iterations for the improvement of
metaheuristic algorithms has proved to be an efficient strategy (Wang and Tan 2017). As an exam-
ple, the modified biogeography-based optimization (BBO), proposed by Jalili, Hosseinzadeh, and
Taghizadieh (2016), adopted a strategy in which elite individuals are transferred from the previous
generation to the current one, where they are reused in combination with the new individuals. The
bare bones artificial bee colony (ABC) algorithm (Gao et al. 2015) improves the search ability through
a Gaussian search equation that exploits the information on the best individual to generate a new
candidate in the onlooker phase. In this employed bee phase, a parameter adaptation strategy and a
fitness-based neighbourhoodmechanism exploit the information from the previous search and from
the best individuals, respectively. The comprehensive learning particle swarm optimizer (CLPSO)
(Liang et al. 2006) incorporates a comprehensive learning strategy (CLS) to improve its efficiency via
cooperative learning based on the exchange of information from previous iterations between all the
particles in the swarm.

Motivated by these significant improvements, a novel CLS is developed as an extension to the tra-
ditional BA, which ignores the use of previous information from other individuals except for the best
candidate. A comprehensive learning bat algorithm (CLBAT) is introduced to improve and control
the search memory during the optimization process, in which the current location can potentially
learn from the previous best locations of all individuals, and is not restricted to the global best loca-
tion as in the original BA. In addition, an elitist learning strategy (ELS) is proposed to push gbest
out of regions of local optima. Moreover, a new adaptive search strategy is introduced to control the
travelled distance of each microbat as an indicator of the tendency to either exploit or explore for
new solutions; this plays a positive role in speeding up the optimization process, which is a known
limitation of the original BA. The proposed algorithm is first tested against benchmark functions, in
which it shows superior performance. CLBAT is then employed for the coordinated design of PSSs
and SVC controllers for a two-area four-machine (TAFM) system under different operating condi-
tions. The performance of the obtained controllers is evaluated through eigenvalue analysis, nonlinear
simulation and indices, where the proposed controllers effectively damp out the electromechanical
oscillations and attain robust performance for all of the considered conditions.

This article introduces the CLBAT. This novel algorithm is tested against the benchmark test func-
tions and then employed in the coordinated design of PSSs and SVC.The obtained results and relevant
comparisons are discussed and concluding remarks are drawn, together with proposals for future
work.

2. Problem formulation

2.1. Power systemmodelling

The power system model is generally described using a set of nonlinear differential equations
(Kundur, Balu, and Lauby 1994):

ẋ = f (x, u) (1)

where x is the vector of the system states, including the generators, loads and other controllers such
as SVCs and PSSs, and u is the vector of the system inputs. A full description of the set of equations
governing the system operation is available in the literature (Sauer and Pai 1998).

For a given operating point, the linearized model is represented in the state-space approach as:

ẋ = Ax + Bu (2)

where A is the state matrix that determines the system eigenvalues, and is obtained by δf
δx at a given

operating point, and B is the input matrix that is equal to δf
δu .
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The damping ratio ζ that corresponds to a single eigenvalue λ is given by:

ζ = −real(λ)√
real(λ)2 + imag(λ)2

(3)

2.2. PSSmodelling

The main functions of a PSS are to improve the system stability and mitigate the electromechanical
oscillations bymodulating the automatic voltage regulator output. The conventional PSS (Figure 1) is
adopted in this work. It is composed of a stabilizer gainKs, washout block and lead-lag compensators.
Its input is the rotor speed deviation (�ω).

The role ofKs is to specify the amount of damping injected tomitigate the system oscillations. The
washout block is a high-pass filter that prevents the direct current (DC) component of the input signal
from affecting the terminal voltage; hence, the washout time constant Tw is set to 10 s. The two lead-
lag blocks, characterized by time constants T1, T2, T3 and T4 (in seconds), are used to compensate
for the phase lag between the input and the output of the PSS.

2.3. SVCmodelling

The SVC (Figure 2) is a shunt-connected static VAR generator that consists of a fixed capacitor C in
parallel with a thyristor-controlled rectifier. The SVC maintains a fixed bus voltage and boosts the
system stability. Its contribution in damping such oscillations is significantly improved by adding an
auxiliary controller, usually a lead-lag compensator, to the voltage control loop of the SVC.

The block diagram of the SVC shown in Figure 3 presents the thyristor firing control system char-
acterized by gain Kr and time constant Tr , and an auxiliary controller characterized by gain Ksvc and
two lead-lag blocks.

The firing angle of the thyristor adjusts the SVC output, which is the equivalent susceptance, to
control the bus voltage.

The state-space representation of the SVC controller is therefore given by:

Ḃsvc = 1
Tr

(−Ḃsvc + kr(Vref − Vt + Vs)) (4)

Figure 1. Block diagram of the power system stabilizer (PSS) and excitation system.
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Figure 2. Static VAR compensator (SVC) model.

Figure 3. Block diagram of the static VAR compensator (SVC).

3. Bat algorithm

3.1. Original BA

The BA is a metaheuristic algorithm that has been applied successfully for solving various optimiza-
tion problems such as robust design of multiple trailing edge flaps for helicopter vibration reduction
(Mallick, Ganguli, and Bhat 2015), the redundancy allocation problem (Talafuse and Pohl 2016),
maximum power point tracking in photovoltaic systems (Oshaba, Ali, and Elazim 2017) and tun-
ing proportional–integral controllers to design the load frequency controller (Abd-Elazim and Ali
2016a). The echolocation behaviour of bats gives them the ability not only to localize their prey but
also to discriminate it from other objects. Microbats use a type of sonar, called echolocation, to detect
prey; they emit a sound pulse with loudness that varies from the loudest when searching for prey
to a quieter base when approaching the prey. Most bats use short frequency-modulated signals for
echolocation.

The BA is formulated by idealizing the echolocation behaviour of bats using the following
approximate rules:

(1) All bats use echolocation to sense the distance of the prey and obstacles, and to discriminate
between them.
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Figure 4. Bat algorithm (BA) flowchart.

(2) The bats fly randomly with velocity vi at position xi with a fixed frequency fmin, varying wave-
length λ and loudnessA0 to search for their prey. They adjust the frequency of the emitted pulses,
and the rate of pulse emission r in the range of [0, 1], depending on the proximity of their target.

(3) The loudness varies from a largeA0 to a minimum valueAmin, while the frequency varies within
the range [fmin, fmax].

3.1.1. BA design procedures
The basic procedure of the BA is shown in Figure 4, which can be summarized through the following
steps.

In the initial phase, the positions xi and velocities vi of the bats are randomly distributed in the
D-dimensional search space, and they are updated in each iteration according to the following



ENGINEERING OPTIMIZATION 1767

equations:

fi = fmin + (fmax − fmin)β (5)

vti = vt−1
i + (xti − xtg)fi (6)

xti = xt−1
i + vti (7)

where β ∈ [0, 1] is a uniform random vector, xtg is the current gbest, and fmax and fmin are the values
of the maximum and minimum frequencies, respectively.

For each bat, its pulse rate is less than a uniform random number within [0, 1]. The local search
using random walk is performed to generate a new solution around the current gbest.

xnew = xtg + εAt (8)

where ε ∈ [−1, 1] represents a uniform randomnumber, andAt stands for themeanof the loudness of
all bats at iteration t. As the number of iterations increases, the batsmove closer to their target, and the
loudness is decreased while the pulse rate emission is increased. Hence, the update for these parame-
ters is
given as:

At+1
k = αAt

k (9)

rt+1
k = rok(1 − e−γ t) (10)

where α is a constant selected such that 0 < α < 1, and γ is a positive constant.

3.2. Comprehensive learning bat algorithm

3.2.1. Comprehensive learning strategy
The original BA relies only on its gbest to update the bats’ velocities at each iteration, and eventu-
ally all bats are attracted to the region of gbest that is expected to be the global optimum. However,
if gbest is stuck in the local optimum region, the bats are trapped in that local optimum. To over-
come this deficiency, the CLBAT employs an information-sharing strategy known as CLS (Liang et al.
2006), in which the information stored about the bats’ previous best locations serves to improve the
performance by increasing the diversity through the adopted velocity updating strategy:

vtdi = w.vt−1
di + rdi.d.(xtdi − bxtdi)fdi (11)

where vtdi is the velocity of the dth dimension of the ith bat at iteration t; similarly, xtdi and bx
t
di are the

current location and the best location of the dth dimension of the ith bat at iteration t, and fdi is the
frequency of that dimension. rdi is a random number uniformly distributed between 1 and 0, and d
is an inertia weight.W is the inertia weight, which is decreased linearly fromWmax toWmin:

w = (wmax − wmin).(1 − iter
itermax

) + wmin (12)

W is used to balance between the global and local searches. It is started with a large inertia weight
to rapidly direct the algorithm towards a global search, and decreases as the number of iterations
increases, to encourage exploitation during the convergence towards the global solution.

To illustrate the advantages of the CLBAT, consider the problem of minimizing a function f (X)

with dimension D, where X = (x1, x2, . . . ., xD) and XG = (xG1, xG2, . . . ., xGD) denote a solution in
the search space and the global optimum, respectively. An arbitrary solution XC with poor fitness
f (XC) could discover the ith dimension’s solution such that xCi = xGi. To keep and transfer this bene-
ficial information, the CLBAT enables the sharing of information among bats through the CLS, which
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Figure 5. Velocity update for bat i at iteration t.

is based on two features: (1) only the sharing of previous best information is allowed; and (2) a learning
probability Pci controls the updating of velocity at a dimension d using the dimension of a randomly
selected best location bxTd in the case where Pci is less than a randomly generated number; other-
wise, it is updated using its own best location bxid. This velocity-updating strategy is demonstrated
in Figure 5.

The learning probability is crucial in the determination of CLBAT performance, and is given as:

PC = (Pmax − Pmin).(1 − iter
itermax

)2 + Pmin (13)

The nonlinear Pc is more adequate for obtaining the proper balance between the exploration and the
exploitation states of the CLBAT. In the early stage, relatively high values of Pc encourage the micro-
bats to learn from their own previous information through the use of their best locations, because the
CLBAT is in the exploration phase (highw) since the sharable information is very limited at this stage.
In the final stage, however, the relatively low Pc encourages information sharing, in which a bat will
more probably learn from other bats’ best locations, because the CLBAT is in the convergence state
where more useful information is discovered, especially about the global optimum in some dimen-
sions. Therefore, the controlled information sharing among the bats allows useful propagation within
the population.

3.2.2. New searchmethod
The conventional search strategy of the BA is locally limited around gbest based on the mean of the
loudness. Because of this high dependence, however, the loudness control of the search radius is not
sufficient to speed up the convergence rate of the algorithm.Although the distribution of the bat’s new
locations varies dynamically during the optimization process, the new locations are often far from the
old locations in the exploration state, and very close in the final stage, owing to the adopted position-
updating strategy in the CLBAT. Hence, the difference between the bat’s new and old locations has
the same behaviour as the loudness, as it is large at the beginning and slowly decreases during the
optimization process. The new search method is suitable for adaptively refining gbest for exploration
and convergence states. The new search protocol is defined as:

Nxt+1
i = xtg + Ai.rand1.(Nxti − xti) (14)
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Figure 6. Modified elitist learning strategy.

where Nxti represents the bat’s new location, xtg is the current gbest, and rand1 is a random number
drawn from a standard normal distribution.

The new search strategy adaptively controls the search around gbest depending on the last travelled
distance from the bat’s old location to its new location. Since Nxti is far from xti in the exploration
phase, the search around gbest is performed with large travelled steps and more potential locations
may be discovered. In contrast, the distance between Nxti and xti is minimal at the final stage and the
search only refines gbest.

3.2.3. Modified elitist learning strategy
A modified ELS (Figure 6) is adopted as a jumping-out mechanism that updates gbest at randomly
selected dimensions to move it to better regions and helps it to escape local optima. One dimension
of a gbest solution is selected randomly to undergo modifications to preserve the main structure
of gbest, since many dimensions of gbest contain the information about the global optimum. The
modified ELS is given as:

Nxdg = xdg + rand2.(xdmax − xdmin) (15)

where rand2 is a random number from a uniform distribution within [−1, 1].
It is worth noting that in the proposed ELS (Zhan et al. 2009), Nxdg replaces gbest if its fitness is

better; otherwise, it replaces the worst fitness particleXw. Notice that this strategymay slow down the
convergence if the fitness ofNxg is worse than that of Xw; for that reason,Nxg is kept in the modified
ELS only if its fitness is better than the fitness of gbest or Xw.

4. Test functions

The performance of the developed CLBAT is first tested on a set of benchmark functions with var-
ious properties to assess its ability in exploring the region of search and jumping over regions of a
local optimum. Table 1 lists the details of each test function with its corresponding name, optimiza-
tion function, range of the search space and the maximum tolerance value to accept an optimization
solution.

The resulting performance of the CLBAT is also compared with the ABC algorithm (Karaboga
and Basturk 2007), original BA (Yang and Gandomi 2012) and BBO (Simon 2008). For a robust and
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Table 1. Test numerical functions.

Name Formula Range Global fmin Accept

Sphere f1(x) = ∑D
i=1 xi

2 [−100,100] 0 1e-2

Zakharov f2(x) = ∑D
i=1 x

2
i +

(∑D
i=1 0.5xi

)2 +
(∑D

i=1 0.5xi
)

[−10,10] 0 1e-2

Sum square f3(x) = ∑D
i=1 (ixi)2 [−100,100] 0 1e-5

Rastrigin f4(x) = ∑D
i=1 (x2i − 10 cos(2πxi)) + 10) [−5.12,5.12] 0 1e-5

f5(x) = ∑D
i=1 (y2i − 10 cos(2πyi)) + 10)

yi =
{
xi |xi| < 0.5
round(2xi)/2 |xi < 0.5| ≥ 0.5

Non-continuous
Rastrigin

[−5.12,5.12] 0 1e-5

Rosenbrock f6(x) = ∑D−1
i=1 (100(x2i − xi+1)

2 + (x2i − 1)
2
) [−2.048,2.048] 0 5

Schwefel 2.21 f7(x) = max{|xi|, 1 ≤ i ≤ D} [−100,100] 0 1e−2

Schwefel 2.22 f8(x) = ∑D
i=1 |xi| + ∏D

i=1 |xi| [−10,10] 0 1e−2

f9(x) = sin2(πyi) + ∑D−1
i=1 (yi − 1)2(1 + 10sin2(πyi + 1))

+(yD − 1)2(1 + sin2(2πyD))

yi = 1 + 1
4 (xi − 1)

Levy [−10,10] 0 1e−5

f10(x) = π
D [10sin

2(πy1) + ∑D−1
i=1 (yi − 1)2

×(1 + 10 sin(πyi+1)) + (yD − 1)2

+∑D
i=1 u(xi , 10, 100, 4)]

yi = 1 + 1
4 (xi + 1); uxi ,a,k,m =

⎧⎪⎨
⎪⎩
k(xi − a)m xi > a
0 − a ≤ xi ≤ a
k(−xi − a)m xi < −a

Penalized 1 [−50,50] 0 1e-5

f11(x) = π
D [10sin

2(3πx1) + ∑D−1
i=1 (xi − 1)2

×(1 + 10 sin(3πxi+1)) + (xD − 1)2

+∑D
i=1 u(xi , 5, 100, 4)]

Penalized 2 [−50,50] 0 1e-5

fair comparison of the results, the algorithms are tested for 30 independent runs for a sufficient max-
imum number of fitness evaluations set to 120,000 and with a population size of 40. The means and
standard deviations of the proposed algorithms are presented in Table 2. CLBAT outperforms the
other algorithms across all the test functions since it reaches accurately the global optimum of func-
tions (f 1–f 5) for all the runs with zeromean and standard deviation results. For (f 6–f 11) the accuracy
is very high andmuch better compared to the other algorithms, as themean is very close to the global
fmin. Specifically, the results demonstrate that theCLBAT is able to jumpout of local solutions through
the embedded CLS, modified ELS and adaptive search strategies.

5. Controller design using the CLBAT

The modes of oscillations in a linear system are related to its eigenvalues. To improve the power
system stability, a multi-objective function is employed to relocate all the eigenvalues within the D-
contour (Abdel-Magid and Abido 2003). The latter is characterized by δij ≤ δo, andζij ≥ ζo, as shown
in Figure 7. The values of δo, ζo and the weighting factor q are empirically set to −2.0, 0.25 and 10,
respectively, based on the system under study to ensure sufficient damping to the electromechanical
oscillations. The PSS and SVC parameters are simultaneously tuned using CLBAT to shift all modes
within theD-contour over a given range of operating conditions to guarantee awell-damped response
over that specified range.
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Table 2. Results of the comprehensive learning bat algorithm (CLBAT) compared to the state-of-the art
algorithms.

Name CLBAT ABC BA BBO

Sphere Mean 00e00 4.6103e-16 1.7617e-06 4.5731e-09
StdDev 00e00 4.9036e-17 4.6416e-07 5.2354e-09

Zakharov Mean 00e00 5.0351e-16 6.3080e-05 1.2455e-09
StdDev 00e00 7.1333e-17 1.6868e-05 4.8086e-09

Sum square Mean 00e00 5.1222e-16 5.2112e-05 1.3093e-07
StdDev 00e00 4.2745e-17 1.3938e-05 8.6187e-08

Rastrigin Mean 00e-00 4.1685e-14 1.4213e02 2.0187e-06
StdDev 00e-00 2.5567e-14 3.2932e01 2.3970e-06

Non-
continuous
Rastrigin

Mean 00e00 00e00 1.7249e02 4.2680e00

StdDev 00e00 00e00 4.9104e01 1.3620e00
Rosenbrock Mean 2.658e-01 3.6731e00 8.394e-01 2.1166e01

StdDev 1.0114e00 2.5191e00 1.6207e00 4.6231e00
Schwefel 2.22 Mean 1.4767e-46 1.2455e-15 2.672e-01 3.9218e03

StdDev 6.1958e-46 9.7600e-17 7.690e-01 5.0525e02
Schwefel 2.21 Mean 8.5432e-115 2.4731e01 2.1494e01 1.26e-02

StdDev 4.1846e-114 3.2802e00 7.1633e00 2.80e-03
Levy Mean 1.4998e-32 4.4509e-16 3.4239e01 1.6999e00

StdDev 1.1135e-47 6.9267e-17 1.1179e01 1.4384e00
Penalized 1 Mean 1.5705e-32 4.5600e-16 1.07599e01 1.8114e-11

StdDev 5.5674e-48 7.5544e-17 1.08950e01 4.7946e-11
Penalized 2 Mean 1.3662e-32 4.5336e-16 3.06354e01 1.6208e-10

StdDev 9.0016e-34 5.9422e-17 1.65191e01 2.0738e-10

Note: ABC = artificial bee colony; BA = bat algorithm; BBO = biogeography-based optimization.

Figure 7. The D contour.

The design problem is formulated based on the aforementioned criterion to minimize the multi-
objective function J:

J =
np∑
j=1

∑
δij≥δo

(δo − δij)
2 + q

np∑
j=1

∑
ζij≤ζo

(ζo − ζij)
2

(16)

subject to the following constraints:

0.01 ≤ Ksi ≤ 100 (17)

0.01 ≤ T1i ≤ 2 (18)

0.01 ≤ T2i ≤ 2 (19)

0.01 ≤ T3i ≤ 2 (20)

0.01 ≤ T4i ≤ 2 (21)
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Figure 8. Two-area four-machines power system.

Table 3. Operating conditions.

Operating condition Description

Case1 Base case (all lines in service)
Case2 Single line between 7 and 8 out of service
Case3 Single line between 8 and 9 out of service
Case4 Single line between 7 and 9 out of service

where i denotes the number of controllers, which is five in this study; np is the number of operating
conditions considered in the design process; and σij and ζij are, respectively, the real part and the
damping ratio of the ith eigenvalue of the jth operating point.

6. Results and simulation

The TAFM system, as shown in Figure 8, is a well-known benchmark for power system controller
design, testing and comparisons of the damping efficiency. The system is composed of two areas
linked through a weak transmission line that allows a 400MW active power to flow from area 1 to
area 2. The data for the system are available in Kundur, Balu, and Lauby (1994).

In controller design, four operating conditions (Table 3) are considered (Eslami et al. 2012) to
achieve a robust performance during frequent disturbances that occur during system operation.

6.1. Optimal SVC location selection

The optimal location of the SVC is selected using the effect of line outage on the system voltages
(Abd-Elazim and Ali 2012). As indicated in Table 4, the voltage at bus 8 is largely affected by the
line outages, especially in Case4, where the voltage at the bus drops significantly from 0.9647 pu to
0.787828 pu. Hence, bus 8 is the suitable location for installing the SVC, and this accords with the
results reported by Martins and Lima (1989). The line current between buses 9 and 10 is selected
as the input for SVC since it has high observability to the inter-area mode (Kundur, Balu, and
Lauby 1994).

6.2. PSS and SVC tuning using the CLBAT

The CLBAT is applied to simultaneously tune the 25 parameters of the four PSSs installed in the
generators and the SVC. All operating conditions are considered in the design stage to guarantee
optimal damping during all possible conditions and ensure the robustness of the controlled system
during variations. The obtained parameters of the controllers are listed in Table 5. Besides CLBAT’s
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Table 4. Effect of line outage on load bus voltages.

Case Base case Outage of line 7–8 Outage of line 8–9 Outage of line 7–9

Bus 5 1.0079 1.0036 1.004 0.99702
Bus 6 0.98156 0.971 0.97199 0.95499
Bus 7 0.9672 0.94821 0.95 0.91952
Bus 8 0.9647 0.9242 0.90925 0.78728
Bus 9 1.0044 0.99217 0.9905 0.96632
Bus 10 1.0086 1.0017 1.0008 0.98727
Bus 11 1.0228 1.0201 1.0197 1.0143

Table 5. Parameters of the proposed controllers for the comprehensive learning bat algorithm (CLBAT) and bat algorithm (BA).

CLBAT BA

Ks T1 T2 T3 T4 Ks T1 T2 T3 T4

SVC 1.0025 0.0122 0.0227 0.0122 1.4295 2.1800 0.0206 1.9122 0.0275 0.9218
G1 25.3641 1.4867 1.9919 1.9895 0.0113 96.2402 0.5174 1.6257 1.1438 0.9844
G2 7.8495 1.9972 1.8867 1.9947 0.0211 34.6806 0.6349 1.1051 1.7734 0.0206
G3 11.0329 0.0693 0.0328 1.9988 0.0456 98.6927 0.4037 0.1951 1.9751 1.5256
G4 20.0696 1.9911 1.9914 1.9972 0.0125 40.7534 0.9672 0.7700 1.2238 0.0206

Note: SVC = structured singular value; Ks = stabilizer gain.

superior accuracy and robustness, the CLBAT controller gains are lower than those of the BA, which
is another practical advantage in the realization of the controllers.

6.2.1. Optimization performance statistics
To explore the reliability of each algorithm inminimizing the given objective function, the experiment
was repeated over 10 runs. The best, worst and average costs at each iteration based on 10 runs are
indicated in Figure 9. The statistics in this section were obtained based on an ordinary computer with
four CPUs of 3.2GHz. The optimal design of the controllers’ parameters requires observation of the
system behaviour, which is carried out in an offline stage; hence, the optimality of the solution ismore
important than the optimization time. The running time for one iteration of the CLBAT is 39.0262 s
versus 19.7331 s for the BA. However, it is the call of the power system analysis toolbox (PSAT) that is
computationally heavy, and especially so for the CLBAT (39.0248 s) compared to the BA (19.7325 s)
owing to the introduced improvements. This time ismainly due to the communication and parameter
settings for the PSAT, as well as the load flow and eigenanalysis operations. Notice that the PSAT
is called according to the population for the BA, and twice that number for the CLBAT. The real
average computation time of the optimization process per iteration is really negligible compared to the
PSAT computations; this value is 1.4ms for the CLBAT and 0.6ms for the BA. However, the CLBAT
successfully reaches the desired settings for the controllers with the optimum required solution, while
the best fitness value of the BA is 1.7917. The CLBAT is also more reliable than the BA in solving the
optimization problem, since all 10 runs successfully converge to a solution, as depicted in Figure 9.

6.3. Eigenanalysis

The eigenvalues of the system without the controllers are listed in Table 6 for all the operating con-
ditions. It can be clearly seen that the inter-area mode (in bold) is unstable since it has a negative
damping ratio for all cases. Moreover, the two local modes are stable but close to the margin of the
s-plane, with insufficient damping ratios around 12% and 8% for all cases. The proposed controllers
greatly improve the damping, as indicated by the resulting eigenvalues shown in Table 7. Moreover,
the CLBAT-tuned controllers (CLBAT-Cs) outperform the original BA-tuned controllers (BA-Cs) for
all cases and for all electromechanical modes. In particular, the inter-area mode is successfully stabi-
lized, with an acceptable damping ratio greater than 58% for all cases. The damping of the localmodes
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Figure 9. Convergence of comprehensive learning bat algorithm (CLBAT) and bat algorithm (BA). PSS = power system stabilizer;
SVC = static VAR compensator.

Table 6. Open loop system eigenvalues, damping ratios and frequencies.

Eigenvalues Damping ratio (%) Frequency (Hz)

Case1 0.0085± j 3.2858 −0.2570 0.5230
−0.8451± j 6.5551 12.7870 1.0430
−0.5353± j 6.6360 8.0400 1.0560

Case2 0.1883± j 2.4619 −7.6280 0.3920
−0.8531± j 6.5426 12.9300 1.0410
−0.5394± j 6.5892 8.1590 1.0490

Case3 0.1915± j 2.4601 −7.7610 0.3920
−0.8541± j 6.5399 12.9500 1.0410
−0.5385± j 6.5917 8.1430 1.0490

Case4 0.3974± j 1.3435 −28.3650 0.2140
−0.8455± j 6.5270 12.8470 1.0390
−0.5434± j 6.5383 8.2820 1.0410

Table 7. Eigenvalues, damping ratios and frequencies of the systemwith comprehensive learning bat algorithm-tuned controllers
(CLBAT-Cs) and bat algorithm-tuned controllers (BA-Cs).

CLBAT-Cs BA-Cs

Eigenvalues Damping ratio (%) Frequency (Hz) Eigenvalues Damping ratio (%) Frequency (Hz)

Case1 −3.2501± j 4.0152 62.9160 0.6390 −2.0728± j 2.9066 58.0620 0.4630
−7.2855± j 9.3981 61.2680 1.4960 −2.0197± j 9.9362 19.9190 1.5810
−6.5611± j 9.9040 55.2270 1.5760 −3.8776± j 11.5054 31.9370 1.8310

Case2 −3.7421± j 2.9490 78.5430 0.4690 −2.0079± j 3.1667 53.5500 0.5040
−7.7259± j 9.3368 63.7510 1.4860 −2.7296± j 10.0837 26.1290 1.6050
−6.3177± j 9.6433 54.8010 1.5350 −3.2763± j 10.8879 28.8150 1.7330

Case3 −2.3849± j 3.3077 58.4840 0.5260 −1.4554± j 2.7237 47.1270 0.4330
−6.8595± j 9.2610 59.5200 1.4740 −2.4959± j 9.4909 25.4330 1.5110
−6.3334± j 10.098 53.1320 1.6070 −3.6723± j 11.2435 31.0470 1.7890

Case4 −2.5775± j 2.7228 68.7450 0.4330 −0.8586± j 3.7061 22.5700 0.5900
−6.0772± j 9.4128 54.2410 1.4980 −1.5742± j 7.8216 19.7310 1.2450
−7.4849± j 9.5150 61.8270 1.5140 −2.5815± j 11.1819 22.4940 1.7800

is further increased by CLBAT-C achieving values above 50% for all cases compared to just below 32%
achieved by the BA-C. Moreover, the damping of the inter-area mode with CLBAT-C is better than
the state-of-the-art results in Eslami et al. (2012) for the same system and operating conditions.
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Figure 10. Response of ω13 for a 0.1 pu step increase in Vref under all cases. CLBAT = comprehensive learning bat algorithm;
BA = bat algorithm.

6.4. Nonlinear time-domain simulation

Nonlinear simulation is performed on the nonlinear system to evaluate the performance of the pro-
posed controllers considering a small disturbance of a step increase of 0.1 pu in the reference voltage
(Wang et al. 2018) of generator 1 at 2 s with duration of 100ms for all four operating cases, in addi-
tion to a three-cycle three-phase fault applied at bus 9 for all cases, which is considered a large
disturbance.

Figure 10 illustrates that theCLBAT-Cs outperform the BA-Cs in terms of the oscillation overshoot
and the settling times for all the operating cases under the considered small disturbance.

Figure 11 depicts the response of ω13 during three-cycle three-phase faults at bus 9 for all cases.
While both BA-Cs and CLBAT-Cs maintain the system stability and restore the destined operation,
the CLBAT-Cs improve the damping compared to the BA-Cs. Superior damping results are achieved
in terms of the smallest oscillation amplitude, rapid damping and short settling time.

Moreover, these results are consistent with the eigenvalue analysis of the system, and fur-
ther demonstrate the capability of CLBAT-Cs to provide high damping to electromechanical
oscillations.

To further validate the performance of the proposed controllers, a different operating condi-
tion is considered that corresponds to a light loading condition in which the transferred power
from area 1 to area 2 is decreased to 3.5086 pu; then, a three-cycle three-phase fault is applied on
bus 9 at t = 1s.

Figure 12 confirms the superiority of the CLBAT-Cs since the settling time and maximum
overshoot are smaller than those of the system response with the BA-Cs.
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Figure 11. Response of ω13 for a three-cycle three-phase fault at bus 9 under all cases. CLBAT = comprehensive learning bat
algorithm; BA = bat algorithm.

Figure 12. Response of ω13 for a three-cycle three-phase fault at bus 9 under light loading conditions. CLBAT = comprehensive
learning bat algorithm; BA = bat algorithm.
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Table 8. Performance indices for a three-cycle three-phase fault for comprehensive learning bat
algorithm-tuned controllers (CLBAT-Cs) and bat algorithm-tuned controllers (BA-Cs).

ISE ITAE

Case CLBAT-Cs BA-Cs CLBAT-Cs BA-Cs

Case1 2.4334e-07 3.8104e-07 0.0014 0.0027
Case2 4.4770e-07 4.5871e-07 0.0021 0.0027
Case3 2.8188e-07 5.1877e-07 0.0013 0.0036
Case4 1.4475e-06 3.1808e-06 0.0058 0.0077

Note: ISE = integral square error; ITAE = integral of the time-weighted absolute error.

6.5. Performance indices

The robustness of the CLBAT-Cs is measured based on the integral of the time-weighted absolute
error (ITAE) and the integral square error (ISE):

ITAE =
∫ Tsim

t=0
t|Δω13(t)|dt (22)

ISE =
∫ Tsim

t=0
|Δω13(t)|2dt (23)

where Tsim is the simulation time of the system, set as 10 s. The smaller the values of these indices,
the better the system response.

The values of the two integral performance criteria in Table 8 demonstrate the superiority of
the developed CLBAT-optimized designs of the controllers over their BA-based counterparts in
maintaining an optimal response of the power system during the different cases.

7. Conclusion

In this article, the coordinated tuning of PSSs and SVC over a wide range of operating conditions for a
TAFM system using a newly developed algorithm, CLBAT, is proposed. The significant contributions
of the CLBAT include a new CLS, a modified ELS and the use of an adaptive search mechanism. This
greatly enhances the exploration and exploitation phases by increasing the diversity of the microbats
and improving the local search. The proposed CLBAT is first tested on a set of benchmark func-
tions to verify its accuracy and optimization stability compared to other algorithms in the literature.
CLBAT is then deployed for the optimal design of the PSS and SVC controllers for the TAFM system
through optimal relocation of oscillation modes considering four operating conditions. Simulation
results, eigenvalue analysis and performance indices confirm the effectiveness of the CLBAT-based
controllers in providing sufficient damping during various system disturbances across many oper-
ating cases. Future work will focus on the design of wide area controllers of very large-scale power
systems based on global signals rather than local signals.

Disclosure statement
No potential conflict of interest was reported by the authors.

References
Abd-Elazim, S. M., and E. S. Ali. 2012. “Coordinated Design of PSSs and SVC via Bacteria Foraging Optimization

Algorithm in a Multimachine Power System.” International Journal of Electrical Power & Energy Systems 41 (1):
44–53.

Abd-Elazim, S. M., and E. S. Ali. 2016a. “Load Frequency Controller Design via BAT Algorithm for Nonlinear
Interconnected Power System.” International Journal of Electrical Power & Energy Systems 77: 166–177.



1778 B. BAADJI ET AL.

Abd-Elazim, S. M., and E. S. Ali. 2016b. “Optimal Power System Stabilizers Design via Cuckoo Search Algorithm.”
International Journal of Electrical Power & Energy Systems 75: 99–107.

Abdel-Magid, Y. L., and M. A. Abido. 2003. “Optimal Multiobjective Design of Robust Power System Stabilizers Using
Genetic Algorithms.” IEEE Transactions on Power Systems 18 (3): 1125–1132.

Abdelaziz, A. Y., and E. S. Ali. 2015. “Static VARCompensatorDampingController Design Based on Flower Pollination
Algorithm for a Multi-machine Power System.” Electric Power Components and Systems 43 (11): 1268–1277.

Abido, M. A., and Y. L. Abdel-Magid. 2003. “Coordinated Design of a PSS and an SVC-Based Controller to Enhance
Power System Stability.” International Journal of Electrical Power & Energy Systems 25 (9): 695–704.

Bahmani-Firouzi, B., and R. Azizipanah-Abarghooee. 2014. “Optimal Sizing of Battery Energy Storage for Micro-grid
Operation Management Using a New Improved bat Algorithm.” International Journal of Electrical Power & Energy
Systems 56: 42–54.

Bian, X. Y., Y. Geng, K. L. Lo, Y. Fu, and Q. B. Zhou. 2016. “Coordination of PSSs and SVC Damping Controller to
Improve Probabilistic Small-Signal Stability of Power System with Wind Farm Integration.” IEEE Transactions on
Power Systems 31 (3): 2371–2382.

Bouchama, Z., N. Essounbouli, M. N. Harmas, A. Hamzaoui, and K. Saoudi. 2016. “Reaching Phase Free Adaptive
Fuzzy Synergetic Power System Stabilizer.” International Journal of Electrical Power & Energy Systems 77: 43–49.

Castellanos, R. B., A. R. Messina, and H. U. Sarmiento. 2008. “A μ-Analysis Approach to Power System Stability
Robustness Evaluation.” Electric Power Systems Research 78 (2): 192–201.

Darabian, M., S. M. Mohseni-Bonab, and B. Mohammadi-Ivatloo. 2015. “Improvement of Power System Stability by
Optimal SVCController DesignUsing Shuffled Frog-Leaping Algorithm.” IETE Journal of Research 61 (2): 160–169.

de Campos, V. A. F., J. J. da Cruz, and L. C. Zanetta Jr. 2014. “Robust Control of Electrical Power Systems Using PSSs
and Bilinear Matrix Inequalities.” International Journal of Electrical Power & Energy Systems 62: 10–18.

Eslami, M., H. Shareef, A. Mohamed, and M. Khajehzadeh. 2012. “An Efficient Particle Swarm Optimization Tech-
nique with Chaotic Sequence for Optimal Tuning and Placement of PSS in Power Systems.” International Journal of
Electrical Power & Energy Systems 43 (1): 1467–1478.

Farah, Anouar, Tawfik Guesmi, and Hsan Hadj Abdallah. 2017. “A NewMethod for the Coordinated Design of Power
System Damping Controllers.” Engineering Applications of Artificial Intelligence 64: 325–339.

Gao,W., F. T. Chan, L.Huang, and S. Liu. 2015. “Bare BonesArtificial BeeColonyAlgorithmwith ParameterAdaptation
and Fitness-Based Neighborhood.” Information Sciences 316: 180–200.

Ho, Y. C., and D. L. Pepyne. 2002. “Simple Explanation of the No-Free-Lunch Theorem and Its Implications.” Journal
of Optimization Theory and Applications 115 (3): 549–570.

Hussein, T.,M. S. Saad, A. L. Elshafei, andA. Bahgat. 2010. “Damping Inter-areaModes ofOscillationUsing anAdaptive
Fuzzy Power System Stabilizer.” Electric Power Systems Research 80 (12): 1428–1436.

Jalili, S., Y. Hosseinzadeh, and N. Taghizadieh. 2016. “A Biogeography-Based Optimization for Optimum Discrete
Design of Skeletal Structures.” Engineering Optimization 48 (9): 1491–1514.

Karaboga, D., and B. Basturk. 2007. “A Powerful and Efficient Algorithm for Numerical Function Optimization:
Artificial Bee Colony (ABC) Algorithm.” Journal of Global Optimization 39 (3): 459–471.

Kundur, P., N. J. Balu, and M. G. Lauby. 1994. Power System Stability and Control. Vol. 7. New York: McGraw-Hill.
Liang, Jing J., A. K. Qin, P. N. Suganthan, and S. Baskar. 2006. “Comprehensive Learning Particle SwarmOptimizer for

Global Optimization of Multimodal Functions.” IEEE Transactions on Evolutionary Computation 10 (3): 281–295.
Liu, Q., L. Wu, W. Xiao, F. Wang, and L. Zhang. 2018. “A Novel Hybrid Bat Algorithm for Solving Continuous

Optimization Problems.” Applied Soft Computing 73: 67–82.
Mahabuba, A., and M. A. Khan. 2009. “Small Signal Stability Enhancement of a Multi-machine Power System Using

Robust and Adaptive Fuzzy Neural Network-Based Power System Stabilizer.” European Transactions on Electrical
Power 19 (7): 978–1001.

Mallick, R., R. Ganguli, and M. S. Bhat. 2015. “Robust Design of Multiple Trailing Edge Flaps for Helicopter Vibration
Reduction: A Multi-objective Bat Algorithm Approach.” Engineering Optimization 47 (9): 1243–1263.

Martins, N., and L. T. G. Lima. 1989. “Determination of Suitable Locations for Power System Stabilizers and Static VAR
Compensators for Damping Electromechanical Oscillations in Large Scale Power Systems.” IEEE Transactions on
Power Systems 5 (4): 1455–1469.

Meng, X. B., X. Z. Gao, Y. Liu, and H. Zhang. 2015. “A Novel Bat Algorithm with Habitat Selection and Doppler Effect
in Echoes for Optimization.” Expert Systems with Applications 42 (17-18): 6350–6364.

Mondal, D., A. Chakrabarti, and A. Sengupta. 2012. “Optimal Placement and Parameter Setting of SVC and TCSC
Using PSO to Mitigate Small Signal Stability Problem.” International Journal of Electrical Power & Energy Systems
42 (1): 334–340.

Nechadi, E., M. N. Harmas, A. Hamzaoui, and N. Essounbouli. 2012. “Type-2 Fuzzy Based Adaptive Synergetic Power
System Control.” Electric Power Systems Research 88: 9–15.

Oshaba, A. S., E. S. Ali, and S. A. Elazim. 2017. “PI Controller Design forMPPT of Photovoltaic System Supplying SRM
via Bat Search Algorithm.” Neural Computing and Applications 28 (4): 651–667.

Peres, Wesley, Ivo Chaves Silva Júnior, and João Alberto Passos Filho. 2018. “Gradient Based HybridMetaheuristics for
Robust Tuning of Power System Stabilizers.” International Journal of Electrical Power & Energy Systems 95: 47–72.



ENGINEERING OPTIMIZATION 1779

Saad, A., Z. Dong, B. Buckham, C. Crawford, A. Younis, and M. Karimi. 2019. “A New Kriging–bat Algorithm for
Solving Computationally Expensive Black-box Global Optimization Problems.” Engineering Optimization 51 (2):
265–285.

Sambariya, D. K., and R. Prasad. 2015. “Optimal Tuning of Fuzzy Logic Power System Stabilizer UsingHarmony Search
Algorithm.” International Journal of Fuzzy Systems 17 (3): 457–470.

Sauer, P. W., andM. A. Pai. 1998. Power System Dynamics and Stability. Vol. 101. Upper Saddle River, NJ: Prentice Hall.
Shahgholian, G., and A. Movahedi. 2016. “Power System Stabiliser and Flexible Alternating Current Transmission

Systems Controller Coordinated Design Using Adaptive Velocity Update Relaxation Particle Swarm Optimisation
Algorithm in Multi-machine Power System.” IET Generation, Transmission & Distribution 10 (8): 1860–1868.

Simon,D. 2008. “Biogeography-BasedOptimization.” IEEE Transactions on Evolutionary Computation 12 (6): 702–713.
Talafuse, T. P., and E. A. Pohl. 2016. “A Bat Algorithm for the Redundancy Allocation Problem.” Engineering

Optimization 48 (5): 900–910.
Tofighi, M., M. Alizadeh, S. Ganjefar, and M. Alizadeh. 2015. “Direct Adaptive Power System Stabilizer Design Using

Fuzzy Wavelet Neural Network with Self-Recurrent Consequent Part.” Applied Soft Computing 28: 514–526.
Wang, D., N.Ma,M.Wei, and Y. Liu. 2018. “Parameters Tuning of Power System Stabilizer PSS4BUsingHybrid Particle

Swarm Optimization Algorithm.” International Transactions on Electrical Energy Systems 28 (9): e2598.
Wang, G. G., and Y. Tan. 2017. “Improving Metaheuristic Algorithms with Information Feedback Models.” IEEE

Transactions on Cybernetics 49 (2): 542–555.
Yang, T. C. 1997. “Applying H∞ Optimization Method to Power System Stabilizer Design—Parts1&2.” International

Journal of Electrical Power & Energy Systems 19 (1): 29–35.
Yang, Xin-She, and Amir Hossein Gandomi. 2012. “Bat Algorithm: A Novel Approach for Global Engineering

Optimization.” Engineering Computations 29 (5): 464–483.
Zhan, Z. H., J. Zhang, Y. Li, and H. S. H. Chung. 2009. “Adaptive Particle Swarm Optimization.” IEEE Transactions on

Systems, Man, and Cybernetics, Part B (Cybernetics) 39 (6): 1362–1313.

Appendix
CLBAT: α = 0.98, γ = 0.98, A = 1.8, r = 0.8, fmax = 2, fmin = 0, Wmax = 0.9, Wmin = 0.2, Pcmax = 0.8,
Pcmin = 0.2, G = 40.
BA: α = 0.9, γ = 0.9, A = 1, r = 0.8, fmax = 1, fmin = 0.
Excitation system: KA = 155, TA = 0.055 s, Kf = 0.125, Tf = 1.8 s, KE = 1, TE = 1 s, Tr = 0.05 s, SE = f (Efd) =
0.0056 (e(1.075|Efd|) − 1).
SVC controller: Tr = 0.02 s, Kr = 10.
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