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ALMOST AND WEAKLY NSR, NSM AND NSH SPACES

RACHID LAKEHAL1, LJUBIŠA D.R. KOČINAC2* AND DJAMILA SEBA1

Communicated by H.R. Ebrahimi Vishki

Abstract. We introduce and study some new types of star-selection princi-
ples (almost and weakly neighborhood star-Menger, neighborhood star-Rothb-
erger, and neighborhood star-Hurewicz). We establish some properties of these
selection principles and their relations with other selection properties of topo-
logical spaces. The behavior of these classes of spaces under certain kinds of
mappings is also considered.

1. Introduction and preliminaries

We give firstly definitions of notions, which are used in this paper.
Throughout the paper, N and R denote the set of positive integers and the set

of real numbers, respectively. Let X be a topological space, let U be a collection
of subsets of X, and let A ⊂ X. Then the set St(A,U) :=

∪
{P ∈ U : P ∩A ̸= ∅}

is called the star of A with respect to U ; we write St(x,U) instead of St({x},U).
For more information about star covering properties, see [5, 18].

Let A and B be collections of covers of a space X. Then the symbol S1(A,B)
denotes the selection hypothesis that, for each sequence (Un : n ∈ N) of elements
of A, there exists a sequence (Un : n ∈ N) such that for each n ∈ N, Un ∈ Un

and {Un : n ∈ N} is an element of B. The symbol Sfin(A,B) denotes the selection
hypothesis that for each sequence (Un : n ∈ N) of elements of A, there exists a
sequence (Vn : n ∈ N) such that for each n ∈ N, Vn is a finite subset of Un and∪

n∈N Vn is an element of B (see [13, 22]).
Kočinac [10] introduced the star selection hypothesis similar to the previous

ones. Let A and B be collections of covers of a space X.
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(A) The symbol Sfin
∗(A,B) denotes the selection hypothesis that for each se-

quence (Un : n ∈ N) of elements of A, there exists a sequence (Vn : n ∈ N) such
that for each n ∈ N, Vn is a finite subset of Un and

∪
n∈N{St(V,Un) : V ∈ Vn} is

an element of B.
(B) The symbol SS∗comp(A,B) (resp. SS∗fin(A,B)) denotes the selection hy-

pothesis that for each sequence (Un : n ∈ N) of elements of A, there exists
a sequence (Kn : n ∈ N) of compact (resp. finite) subsets of X such that
{St(Kn,Un) : n ∈ N} ∈ B.

Let O denote the collection of all open covers of a space X.

Definition 1.1 (see [10, 14]). A space X is said to be star-Menger (resp. star-
Rothberger) if it satisfies the selection hypothesis Sfin

∗(O,O) (resp. S1
∗(O,O)).

Definition 1.2 (see [3,10,14]). A space X is said to be star-Hurewicz if for every
sequence (Un : n ∈ N) of open covers of X, one can choose finite Vn ⊂ Un, n ∈ N,
such that for every x ∈ X, we have x ∈ St(

∪
Vn, Un) for all but finitely many n.

The following three generalizations of star selection properties were introduced
(in a general form and under different names) in [11] and studied in details in [4].

Definition 1.3 (see [4]). A space X is said to be neighborhood star-Menger
(NSM) if for every sequence (Un : n ∈ N) of open covers of X, one can choose
finite Fn ⊂ X, n ∈ N, such that

∪
n∈N St(On,Un) = X for every open On ⊃ Fn,

n ∈ N.

Definition 1.4 (see [4]). A space X is said to be neighborhood star-Rothberger
(NSR) if for every sequence (Un : n ∈ N) of open covers of X, one can choose
xn ∈ X, n ∈ N, such that

∪
n∈N St(On,Un) = X for every open On ∋ xn, n ∈ N.

Definition 1.5 (see [4]). A space X is said to be neighborhood star-Hurewicz
(NSH) if for every sequence (Un : n ∈ N) of open covers of X, one can choose
finite Fn ⊂ X, n ∈ N, such that for every open On ⊃ Fn, n ∈ N, each x ∈ X
belongs to St(On,Un) for all but finitely many n.

In the last few years, weaker forms of selection and star selection properties
became an important area of investigation (see, for example, [1, 2, 8, 9, 12, 15,
19–21, 23–26]). In this paper, we apply the same scenario to neighborhood star
selection properties.

2. About wNSL spaces

In this section, we give some facts about weaker forms of neighborhood star-
Lindelöf spaces. Recall that a space X is said to be neighborhood star-Lindelöf
(NSL) if for every open cover U of X, one can choose countable A ⊂ X such that
for every neighborhood O of A, we have St(O,U) = X [18].

Definition 2.1. A space X is said to be weakly neighborhood star-Lindelöf
(wNSL) if for every open cover U of X, one can choose countable A ⊂ X such
that for every neighborhood O of A, we have St(O,U) = X.

Theorem 2.2. An open Fσ-subset of a wNSL space is wNSL.



42 R. LAKEHAL, LJ.D.R. KOČINAC, D. SEBA

Proof. Let (X, τ ) be a wNSL space and let Y =
∪
{Hn : n ∈ N} be an open

Fσ-subset of X, where the set Hn is closed in X for each n ∈ N. We show that Y
is wNSL. Let U be an open cover of (Y, τY ). We have to find a countable subset
F of Y such that for each τY -open O ⊇ F , Y ⊆ St(O,U).

For each n ∈ N, consider the open cover Un = U ∪ {X \ Hn} of X. Since
X is wNSL, there exists a countable subset Fn of X such that for each (in X)
open O

′ ⊇ Fn, X = St(O′ ,Un). For each n ∈ N, let Mn = Fn ∩ Y . [Fn

must meet Y , because otherwise for the neighborhood X \ Hn of Fn we have
St(X \ Hn,Un) ⊂ X \ Hn.] Then Mn is a countable subset of Y such that for
each open O ⊇ Mn, Hn ⊆ St(O,U). If we put F =

∪
{Mn : n ∈ N}, then F is

a countable subset of Y such that for each open O ⊇ F , St(O,U) ⊇ Y , which
shows that Y is wNSL. □

A cozero-set in a space X is a set of the form f←(R \ {0}) for some real-valued
continuous function f on X [6].

Since a cozero-set is an open Fσ-set, we have the following corollary of Theorem
2.2.

Corollary 2.3. A cozero-set in a wNSL space is wNSL.

Definition 2.4 (see [4]). Let Y be a subspace of a space X. Then
(1) Y is relatively NSL in X if for each open cover U of X, one can choose a

countable subset A of X such that for each open O ⊃ A, St(O,U) ⊃ Y ;
(2) Y is said to be a relatively closed NSL space if it is closed and relatively

NSL in X.

Of course, every NSL space is relatively closed NSL.

Theorem 2.5. (1) If X =
∪
{Yk : k ∈ N} and each Yk is relatively NSL in

X, then X is NSL.
(2) If X =

∪
k∈N Yk and each Yk is relatively NSL in X, then X is wNSL.

Proof. (1) Let U be an open cover of X. Then for each k ∈ N, U covers Yk,
and since Yk is relatively NSL, there is a countable set Fk ⊂ X, such that for
each open set O ⊃ Fk, we have St(O,U) ⊃ Yk. Put F =

∪
k∈N Fk. Then F is

a countable subset of X. Let O be any open set containing F . Using the fact
that O contains all Fk, k ∈ N, we conclude that St(O,U) ⊃

∪
k∈N Yk = X, which

means that X is NSL.
(2) Let U be an open cover of X. Each Yk is covered by U . As Yk is relatively

NSL in X, for each k ∈ N, there is countable Fk ⊂ X such that for each open
O ⊂ X containing Fk, Yk ⊂ St(O,U). Let F =

∪
k∈N Fk and let G be an open set

containing F . Then
X =

∪
k∈N

Yk ⊂ St(G,U),

that is, X is wNSL. □
Theorem 2.6. Let X be a wNSL topological space and let Y be a topological
space. If f : X → Y is a continuous surjection, then Y is a wNSL.
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Proof. Let V be an open cover of Y . Then U = f←(V) = {f←(V ) : V ∈ V} is an
open cover of X. Since X is wNSL, there is countable F ⊂ X such that for each
open O containing F we have X = St(O,U). Let K = f(F ) and let G be an
open neighborhood of K. Then f←(G) is an open neighborhood of F such that
X = St(f←(G),U). We prove Y = St(G,V).

Let y ∈ Y and let x ∈ X be such that y = f(x). Then x ∈ St(f←(G),U). It
follows, y = f(x) ∈ f(St(f←(G),U)) ⊂ St(G,V). Therefore, K and G witness
for V that Y is wNSL. □

Recall that a space X is para-Lindelöf if every open cover U of X has a locally
countable open refinement.
Theorem 2.7. Every para-Lindelöf wNSL space X is weakly Lindelöf.
Proof. Let U be an open cover of X. There exists a locally countable open
refinement V of U . For each x ∈ X, there exists an open neighborhood Wx of x
such that Wx ⊂ V for some V ∈ V and {V ∈ V : Wx ∩ V ̸= ∅} is countable. Let
W = {Wx : x ∈ X}. Then W is an open refinement of V . Since X is wNSL, there
exists a countable subset A of X such that for every open O ⊃ A, X = St(O,V).
Especially, it is true for OA =

∪
{Wx ∈ W : x ∈ A} ⊃ A, that is, St(OA,V) = X.

Set Ṽ = {V ∈ V : V ∩ OA ̸= ∅}. Then Ṽ is a countable cover of X. For each
V ∈ Ṽ , choose UV ∈ U with V ⊆ UV . Then {UV : V ∈ Ṽ} is a countable subcover
of U , and X =

∪
V ∈Ṽ UV , which shows that X is weakly Lindelöf. □

3. New selection principles

In this section, we introduce weaker versions of NSM, NSR, and NSH spaces.
Definition 3.1. A space X is said to be:

(1) almost neighborhood star-Menger (aNSM) (resp. weakly neighborhood star-
Menger (wNSM); faintly neighborhood star-Menger (fNSM)) if for every
sequence (Un : n ∈ N) of open covers of X, one can choose finite sets
Fn ⊂ X, n ∈ N, such that for every open On ⊃ Fn, n ∈ N, we have∪

n∈N St(On,Un) = X (resp.
∪

n∈N St(On,U) = X;
∪

n∈N St(On,Un) = X).
(2) almost neighborhood star-Rothberger (aNSR) (resp. weakly neighborhood

star-Rothberger (wNSR); faintly neighborhood star-Rothberger (fNSR)) if
for every sequence (Un : n ∈ N) of open covers of X, one can choose the
sequence (xn : n ∈ N) of elements of X such that for every open On ∋ xn,
n ∈ N, we have

∪
n∈N St(On,Un) = X (resp.

∪
n∈N St(On,Un) = X;∪

n∈N St(On,Un) = X).
(3) almost neighborhood star-Hurewicz (aNSH) (resp. faintly neighborhood

star-Hurewicz (fNSH)) if for every sequence (Un : n ∈ N) of open covers
of X, one can choose finite Fn ⊂ X, n ∈ N, such that for every open
On ⊃ Fn, n ∈ N, each x ∈ X belongs to St(On,Un) (resp. to St(On,Un))
for all but finitely many n.

Remark 3.2. Of course, every NSM space is both aNSM and fNSM, and every
aNSM space is wNSM, and similarly, for Rothberger-type properties. Also, every
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NSH space is aNSH and fNSH. A regular space X is fNSM if and only if it is
aNSM, and similarly for Rothberger and Hurewicz cases.

R =⇒ SSR =⇒ NSR =⇒ aNSR =⇒ wNSR

⇓ ⇓ ⇓ ⇓ ⇓
M =⇒ SSM =⇒ NSM =⇒ aNSM =⇒ wNSM

⇑ ⇑ ⇑ ⇑
H =⇒ SSH =⇒ NSH =⇒ aNSH

Diagram 1

Observe also that every wNSM space is wNSL.

NSM =⇒ aNSM =⇒ wNSM

⇓ ⇓ ⇓
NSL =⇒ aNSL =⇒ wNSL

Diagram 2

Diagrams 1 and 2 give relations among classes of spaces defined above.

Example 3.3. (1) There is a wNSM space that is not NSM.
Let P be the space of irrational numbers with the usual metric topology, let

[0, ω] be the ordinal space, let Q be the set of rational numbers, let A = π+Q =
{π+q : q ∈ Q}, and let X = (P×[0, ω])\(P\A)×{ω} equipped with the following
topology τ : A basic neighborhood of a point < x, n >, x ∈ P, n < ω, is of the
form U × {n}, where U is a neighborhood of x ∈ P, while a basic neighborhood
of a point < y, ω >, y ∈ A, is of the form U × (n, ω) ∪ {< y, ω >}.

Notice that the space X is separable. Let D = {d1, d2, . . .} be a countable
dense subset of X.

Claim 1. X is wNSM.
Let (Un : n ∈ N) be a sequence of open covers of X. Consider the sequence

(Dn : n ∈ N), where Dn = {di : i ≤ n}, of finite subsets of X and a sequence
(On : n ∈ N) of neighborhoods of Dn, n ∈ N. Then

∪
n∈N St(On,Un) ⊃ D = X,

that is, X is wNSM.
Claim 2. X is not NSM.
The space X contains a copy of the space P as a closed subspace. Thus X

cannot be Menger, because P is not Menger, and the Menger property is preserved
by closed subspaces. On the other hand, in the class of paracompact spaces, the
Menger property coincides with the NSM property.

(2) The Sorgenfrey line [6] is an aNSR space that is not Rothberger (it is not
Menger).

Definition 3.4 (see [9]). We say that a topological space X is d-paracompact if
every dense family of subsets of X has a locally finite refinement.

Theorem 3.5. If a topological space X is wNSM and d-paracompact, then X is
aNSM.
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Proof. Let (Un : n ∈ N) be a sequence of open covers of X. Since X is wNSM,
one can choose finite Fn ⊂ X, such that for every open On ⊃ Fn, n ∈ N, we
have

∪
n∈N St(On,Un) is dense in X. By the assumption, {St(On,Un) : n ∈ N}

has a locally finite refinement W . Then
∪
W = (

∪
n∈N St(On,Un)) and therefore∪

n∈N St(On,Un) =
∪

W , that is,
∪
W is dense in X. As W is a locally finite

family, we have that
∪

W =
∪

W∈WW .
Since for every W ∈ W , there is k = k(W ) ∈ N such that W ⊂ St(Ok,Uk).

Therefore, it follows X =
∪

n∈N St(On,Un), that is, X is aNSM. □
Theorem 3.6. Let X be an aNSM space and let Y be a topological space. If
f : X → Y is a continuous surjection, then Y is also an aNSM space.
Proof. Let (Vn : n ∈ N) be a sequence of open covers of Y . For each n ∈ N, the
set Un := {f←(V ) : V ∈ Vn} is an open cover of X. Since X is aNSM, there are
finite sets Fn ⊂ X, n ∈ N, such that for every open On ⊃ Fn, n ∈ N, we have
{St(On,Un) : n ∈ N} is a cover of X. The sets f(Fn), n ∈ N, are finite in Y .
For each n, let Gn be an open neighborhood of f(Fn). Then f−1(Gn) = Hn is an
open subset of X for each n ∈ N and Hn ⊃ Fn. Thus X =

∪
n∈N St(Hn,Un). We

prove that Y =
∪

n∈N St(Gn,Vn).
Let y ∈ Y and let x ∈ X be such that y = f(x). Then there is k ∈ N such

that x ∈ St(Hk,Uk). Then y = f(x) ∈ f(St(Hk,Uk). Because f(St(Hk,Uk)) ⊂
f(St(f←(Gk),Uk)) ⊂ St(Gk,Vk), we have y ∈ St(Gk,Vk). Hence,
Y =

∪
n∈N St(Gk,Vk), that is, Y is aNSM. □

Definition 3.7 (see [6]). We say that a subset U of a space X is regular open
(regular closed) if U = int(U) (U = int(U)).
Theorem 3.8. A space X is a wNSM if and only if for each sequence (Un : n ∈ N)
of covers of X by regular open sets, there exist finite sets Fn ⊂ X, n ∈ N, such
that for every open On ⊃ Fn, n ∈ N, it holds

∪
n∈N St(On,Un) = X.

Proof. (⇒): It is obvious.
(⇐): Let (Un : n ∈ N) be a sequence of open covers of X. Putting Vn =:

{int(U) : U ∈ Un}, n ∈ N, we obtain a sequence (Vn : n ∈ N) of covers of X by
regular open sets. Then there exist finite Fn ⊂ X, n ∈ N, such that for every
open On ⊃ Fn, n ∈ N, we have

∪
n∈N St(On,Vn) = X. For every n ∈ N and every

V ∈ Vn, there exists UV ∈ Un such that V = int(UV ). Consider the sequence
(Wn : n ∈ N), where Wn = {UV : V ∈ Vn}. We claim that

∪
n∈N St(On,Un) = X.

Let x ∈ X and let G be a neighborhood of x. There exist k ∈ N and V ∈ Vk

such that G ∩ V ̸= ∅ and V ∩ Ok ̸= ∅, that is, there is U = UV ∈ Uk such that
G ∩ int(U) ̸= ∅ and Ok ∩ int(U) ̸= ∅. Then G ∩ U ̸= ∅ and Ok ∩ U ̸= ∅. [Let us
prove G ∩ U ̸= ∅. Let y ∈ G ∩ int(U) ̸= ∅. There is an open set H containing
y such that H ⊂ U , hence the neighborhood G ∩H of y intersects U . It follows
G ∩ U ̸= ∅.] Therefore, x ∈

∪
n∈N St(On,Un), that is, X is wNSM. □

Theorem 3.9. If X is an aNSM space, then every clopen subset of X is aNSM.
Proof. Let (Y, τY ) be a clopen subset of an aNSM space (X, τ ) and let (Un : n ∈ N)
be a sequence of open covers of (Y, τY ). As Y is clopen, Vn = Un ∪ (X \ Y ) is an
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open cover of X for every n ∈ N. Since X is aNSM, one can choose finite Fn ⊂ X,
such that for every open (in X) On ⊃ Fn, n ∈ N, we have

∪
n∈N St(On,Vn) = X.

Define now Hn = Y ∩Fn if Y ∩Fn ̸= ∅; and Hn any finite subset of Y , otherwise.
[Note that not all Y ∩Fn can be empty, because otherwise X\Y is a neighborhood
of all Fn intersecting only X \ Y from Vn.]

We claim that (Hn : n ∈ N) witnesses for (Un : n ∈ N) that Y is aNSM.
Let Gn be an open set in (Y, τY ) containing Hn, n ∈ N. Then Wn = Gn∪(X\Y )

is an open set in X containing Fn, n ∈ N and thus
∪

n∈N St(Wn,Vn) = X. Because
Y is closed in X and Hn∩ (X \Y ) = ∅, we conclude

∪
n∈N St(Hn,Un) = Y , which

means that (Y, τY ) is aNSM. □
Definition 3.10 (see [4]). Let Y be a subset of a space X. Then

(1) Y is relatively NSM (resp. relatively NSH) in X if for each (Un : n ∈ N) of
open covers of X, one can choose a sequence (An : n ∈ N) of finite subsets
of X, such that for every open On ⊃ An, n ∈ N, we have

∪
{St(On,Un) :

n ∈ N} ⊃ Y (resp. for each y ∈ Y , y ∈ St(On,Un) for all but finitely
many n).

(2) Y is relatively NSR in X if for each sequence (Un : n ∈ N) of open covers
of X, there are xn ∈ X, n ∈ N, such that for all open On ∋ xn, n ∈ N, we
have

∪
{St(On,Un) : n ∈ N} ⊃ Y .

Proposition 3.11. The following statements hold:
(1) If X =

∪
{Yk : k ∈ N}, and each Yk is relatively NSM (resp. relatively

NSH, relatively NSR) in X, then X is NSM (resp. NSH, NSR);
(2) If X =

∪
{Yk : k ∈ N}, and each Yk is relatively NSM (resp. relatively

NSH, relatively NSR) in X, then X is aNSM (resp. aNSH, aNSR).
Proof. (1) Let (Un : n ∈ N) be a sequence of open covers of X. Then for each
k, n ∈ N, Un covers Yk, and since Yk is relatively NSM, there are countable sets
Fk,n ⊂ X, n ∈ N, such that for each open set Ok,n ⊃ Fk,n, we have St(Ok,n,Un) ⊃
Yk. Consider the sequences (Fk,n : k, n ∈ N) and (Gk,n : k, n ∈ N) of neighbor-
hoods of F ′k,ns. It is easy to conclude that

∪
k∈N St(Gk,n,Un) ⊃

∪
k∈N Yk = X,

which means that X is NSM.
(2) Let (Un : n ∈ N) be a sequence of open covers of X. Each Yk is covered by

Un. As Yk is relatively NSM in X, for each k ∈ N, there is a sequence (Fk,n : n ∈ N)
of finite subsets of X such that for all open Ok,n ⊃ Fk,n, Yk ⊂

∪
n∈N St(Ok,n,Un).

Then
X =

∪
k∈N

Yk ⊂ St(Ok,n,Un),

that is, X is wNSM. □
Proposition 3.12. If X =

∪
{Yk : k ∈ N} and each Yk is wNSM (wNSR) in

X, then X is aNSM (aNSR).

Proof. We shall prove the NSM case. Let (Un : n ∈ N) be a sequence of open
covers of X. Rearrange this sequence to (Uk,m : k,m ∈ N). For each k ∈ N,
(Uk,m : m ∈ N) is a sequence of covers of Yk by sets open in X. For each k,
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Yk is wNSM, and thus there are finite sets Fk,m ⊂ X, m ∈ N, such that for
every open Ok,m ⊃ Fk,m, m ∈ N, we have

∪
m∈N St(Ok,m,Uk,m) ⊃ Yk. By the

assumption, X =
∪

k∈N Yk. It follows X =
∪

k∈N
∪

k,m∈N St(Ok,m,Uk,m), that is,
X is aNSM. □
Lemma 3.13 (see [26]). Let A be a regular closed subset of a space X and let B
be a dense subset of X. Then B ∩ A is a dense subset of A.
Lemma 3.14 (see [2]). (1) Let X be a topological space. If Y ⊂ X is dense

in X, and D ⊂ Y is dense in Y , then D is dense in X;
(2) If D ⊂ X is dense in X and E ⊂ Y is dense in Y , then D × E is dense

in X × Y .
Proposition 3.15. The following properties hold:

1. Let F be a regular closed subset of a space X and let Y be a wNSM (wNSR)
in X. Then Y ∩ F is wNSM (wNSR) in F .

2. Let A ⊂ X be wNSM (wNSR) in X and let B ⊂ A be wNSM (wNSR) in
A. Then B is wNSM (wNSR) in X.

3. If D ⊂ X is wNSM (wNSR) in X and E ⊂ Y is wNSM (wNSR) in Y ,
then D × E is wNSM (wNSR) in X × Y .

Proof. By Lemmas 3.13 and 3.14, the proof is evident. □
Lemma 3.16 (see [10]). If U is an ω-cover of a space X, then {U2 : U ∈ U}
is an ω-cover of X2.

An open cover U of a space X is said to be an almost ω-cover if each finite
F ⊂ X is contained in U for some U ∈ U .

Denote by aNSM(O,Ω) the following statement on a space X: For each se-
quence (Un : n ∈ N) of open covers of X, there are finite sets Fn ⊂ X, n ∈ N,
such that for each sequence (On : n ∈ N) of open sets with On ⊃ Fn, n ∈ N,
{St(On,Un) : n ∈ N} is an almost ω-cover of X.
Theorem 3.17. If all finite powers of a space X are aNSM, then X satisfies
aNSM(O,Ω).
Proof. Let (Un : n ∈ N) be a sequence of open covers of X and let N = N1∪N2∪· · ·
be a partition of N into infinite pairwise disjoint sets. For every k ∈ N and every
m ∈ Nk, let Wm = (Um)

k = {Uk : U ∈ Um}. Then (Wm : m ∈ Nk) is a
sequence of open covers of Xk. Applying to this sequence the fact that Xk is
aNSM, we find a sequence (Am : m ∈ Nk) of finite subsets of Xk such that
for every open sequence (Om : m ∈ Nk) of neighborhoods of Am, m ∈ Nk,
Xk =

∪
m∈Nk

St(Om,Wm). For every m ∈ Nk, let Bm be a finite subset of X

such that Bk
m ⊃ Am. Consider the sequence of all Bm,m ∈ Nk, k ∈ N, chosen

in this way; denote it as (Bn : n ∈ N). Let (Hn : n ∈ N) be a sequence of
neighborhoods of Bn, n ∈ N. We claim that {St(Hn,Un) : n ∈ N} is an ω-cover
of X. Let F = {x1, · · · , xp} be a finite subset of X. Then ⟨x1, · · · , xp⟩ ∈ Xp.
There exists n ∈ Np such that (Hp

n : n ∈ N) is a sequence of neighborhoods of
An. Hence, there exists n ∈ N such that ⟨x1, · · · , xp⟩ ∈ St(Hp

n,Wn). Therefore
we have F ⊂ St(Hn,Un), that is, X satisfies aNSM(O,Ω). □
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The symbol Oawgp denotes the collection of almost weakly groupable covers
of a space. A countable open cover U of a space X is said to be almost weakly
groupable if there is a partition U =

∪
n∈N Un of U into finite, pairwise disjoint

subcollections, such that for each finite subset F of X there is n ∈ N with
F ⊂

∪
Un.

Theorem 3.18. For a space X, the following statements are equivalent:
(1) X satisfies aNSM(O,Ω);
(2) X satisfies NSM(O,Oawgp).

Proof. (1) ⇒ (2) This implication directly follows from the facts that the selection
principle aNSM is monotone in the second coordinate and each countable almost
ω-cover is almost weakly groupable.

(2) ⇒ (1) Let (Un : n ∈ N) be a sequence of open covers of X. For each n ∈ N,
Vn =

∧
i≤n Ui. For each n, Vn is an open cover of X that refines Ui for all i ≤ n. By

applying (2) to the sequence (Vn : n ∈ N), there is a sequence An, n ∈ N, of finite
subsets of X such that for every sequence (On : n ∈ N) of open neighborhoods of
An, n ∈ N, the cover {St(On,Vn) is an almost weakly groupable cover of X. In
other words, there is an increasing sequence n1 < n2 < · · · < nk < · · · of natural
numbers such that for each finite set F in X, one has

F ⊂
∪

{St(Oi, ,Vi) : nk < i ≤ nk+1}

for some k. Define now
Bn =

∪
i<n

Ai, for n < n1,

Bn =
∪

nk<i≤nk+1

Ai, for nk < n ≤ nk+1.

Each Bn is a finite subset of X. For each n, take a neighborhood Hn of Bn. Then,
by the construction of sets Bn and covers Vn, we easily conclude that {St(Hn,Un) :
n ∈ N} is an almost ω-cover of X, that is, X satisfies aNSM(O,Ω). □

4. More on spaces and mappings

In this section, we investigate the preservation of the properties, which we
consider it in this article under some kinds of mappings.

Theorem 4.1. Let X be an aNSH space and let Y be a topological space. If
f : X → Y is a continuous mapping from X onto Y , then Y is also an aNSH
space.

Proof. Let (Un : n ∈ N) be a sequence of open covers of Y . For each n ∈ N, the
set U ′

n := {f←(U) : U ∈ Un} is an open cover of X. Since X is aNSH, there are
finite sets (Fn ⊂ X), n ∈ N, such that for every open set On ⊃ Fn, n ∈ N, and
each x ∈ X, we have x ∈ {St(On,U ′

n) for all but finitely many n. The sets f(Fn),
n ∈ N, are finite in Y . Let Gn ⊃ f(Fn) for each n be an open set in Y . Then
f←(Gn) = Hn is an open subset of X for each n ∈ N and Hn ⊃ Fn. Thus for



ALMOST AND WEAKLY NSM SPACES 49

each x ∈ X, we have x ∈ St(Hn,U ′n) for all but finitely many n. We prove that
for each y ∈ Y , y ∈ St(Gn,Un) for all but finitely many n.

Let y ∈ Y and let x ∈ X be such that y = f(x). Then there is k0 ∈ N such
that x ∈ St(Hk,U

′
k) for each k ≥ k0. Then y = f(x) ∈ f(St(Hk,U

′
k). Because

f(St(Hk,U
′

k)) ⊂ f(St(f←(Gk),U
′

k)) ⊂ St(Gk,Uk), we have y ∈ St(Gk,Uk) for all
k ≥ k0, that is, Y is aNSH. □

A mapping f : X → Y is weakly continuous [16] (resp. θ-continuous [7],
strongly θ-continuous [17]) if for each x ∈ X and each open neighborhood V of
f(x), there is an open neighborhood U of x such that f(U) ⊂ V (resp. f(U) ⊂ V ,
f(U) ⊂ V ).
Theorem 4.2. A θ-continuous image Y = f(X) of an fNSR space X is also
fNSR.
Proof. Let (Vn : n ∈ N) be a sequence of open covers of Y . Fix x ∈ X. For
each n ∈ N, pick a set V (x, n) ∈ Vn with f(x) ∈ V (x, n). Using the fact that
f is θ-continuous, take an open set U(x, n) ⊂ X such that x ∈ U(x, n) and
f(U(x, n)) ⊂ V (x, n). So, for each n, the set Un := {U(x, n) : x ∈ X} is an open
cover of X. Since X is fNSR, there is a sequence (an : n ∈ N) of points in X such
that for any sequence (Sn : n ∈ N) of neighborhoods of an, {St(Sn,Un) : n ∈ N}
is an open cover of X.

Consider the sequence (bn = f(an) : n ∈ N) of points in Y and a sequence
(Tn : n ∈ N) of neighborhoods of bn, n ∈ N. For each n, there exists an open set
On ∋ an such that f(On) ⊂ Tn. Then X =

∪
n∈N St(On,Un) implies f(X) = Y =∪

n∈N St(Tn,Vn); it is not hard to check. It follows that Y is an fNSR space. □

Similarly, we can prove the following.
Theorem 4.3. A θ-continuous image Y = f(X) of an fNSM (resp. fNSH) space
X is also fNSM (resp. fNSH).

The following results show the relationships between NSM (resp. NSH, NSR)
spaces and fNSM (resp. fNSH, fNSR) spaces.
Theorem 4.4. If a space Y is a weakly continuous image of an NSM space X,
then Y is fNSM.
Proof. Let f : X → Y be a weakly continuous mapping and let (Vn : n ∈ N)
be a sequence of open covers of Y . For each x ∈ X and each n ∈ N, there is
V (f(x), n) ∈ Vn containing f(x). Because f is weakly continuous, pick an open
set U(x, n) ⊂ X that contains x with f(U(x, n)) ⊂ V (f(x), n). In this way, one
obtains for each n ∈ N, an open cover Un = {U(x, n) : x ∈ X} of X. As X is
NSM, there is a sequence (An : n ∈ N) of finite subsets of X such that for any
open sets Gn ⊃ An, n ∈ N, X =

∪
n∈N St(Gn,Un). Put Bn = f(An), n ∈ N.

We have the sequence (Bn : n ∈ N) of finite subsets of Y . We prove that this
sequence witnesses for (Vn : n ∈ N) that Y is fNSM.

For each n ∈ N, take an arbitrary neighborhood Hn of Bn. Since An ⊂ X is
finite and f is weakly continuous, there is a neighborhood On of An such that
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f(On) ⊂ Hn. It is easy now to prove that from the construction of the sequences
Un and X =

∪
n∈N St(On,Un), it follows Y =

∪
n∈N St(Hn,Vn). This shows that

Y is an fNSM space. □
Quite similarly one can prove the following.

Theorem 4.5. If Y = f(X) is a weakly continuous image of an NSH (resp. NSR)
space X, then Y is fNSH (resp. fNSR).
Theorem 4.6. A strongly θ-continuous image Y = f(X) of an fNSM (resp.
fNSH, fNSR) space X is an NSM (resp. NSH, NSR) space.

Proof. (for the Rothberger case; other two cases are proved similarly) Let (Vn :
n ∈ N) be a sequence of open covers of Y . Since each Vn covers X, for each
x ∈ X and each n ∈ N, one can find a set V n

x that contains f(x). The strong
θ-continuity of f implies the existence of an open neighborhood Un

x of x with
f(Un

x ) ⊂ V n
x . Letting Un := {Un

x : x ∈ X}, we get a sequence (Un : n ∈ N) of
open covers of X. There are points p1, p2, . . . in X such that for arbitrary open
sets G1 ∋ p1, G2 ∋ p2, . . ., X =

∪
n∈N St(Gn,Un).

Set qn = f(pn), n ∈ N, and take for each n, an open set Hn ∋ qn. Next, for each
n, take an open set On ∋ pn such that f(On) ⊂ Hn. Then X =

∪
n∈N St(On,Un).

Let y ∈ Y and let x ∈ X be such that y = f(x). There is k ∈ N such that
x ∈ St(Ok,Uk). It is easily verified that y ∈ St(Hk,Vk). In other words, Y =∪

n∈N St(Hn,Un), that is, Y is an NSR space. □

5. Conclusion

New classes of spaces related to star versions of the classical Menger, Hurewicz,
and Rothberger covering properties have been considered. This idea may be
further applied to bitopological spaces and we hope it can open a new research
direction. Here is a short explanation for the NSM case. A bitopological space
(X, τ1, τ2) is a (τi, τj)-NSM-space, i, j = 1, 2, if for each sequence (Un : n ∈ N) of
τi-open covers of X, there is a sequence (Fn : n ∈ N) of finite subsets of X such
that for any τj-open sets On ⊃ Fn, n ∈ N, the set {St(On,Un) : n ∈ N} is a cover
of X. It is worth also to study the infinitely long two-person game associated
to NSM. Similarly, we define bitopological versions of other properties studied in
this article.
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