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Abstract—Advanced methods of fault diagnosis become 

increasingly significant for improving the safety, reliability and 

efficiently of dynamic systems in various domains of industrial 

engineering. This paper reviews and compares three bond graph 

model-based methods for fault diagnosis. These methods are 

causality inversion method, augmented Analytical redundancy 

relation method, and fault estimation method. These methods are 

applied to a simulation model of an electrical system. This latter 

is used to simulate the system variables in both normal and faulty 

situations and to generate residuals for fault detection and 

isolation. The results of the case study are compared for 

highlighting the fault diagnosis performance and capability of a 

method over another. The result shows that the fault estimation 

method has a better diagnosis performance when compared to 

the other methods. 

Keywords—Diagnosis, Bond graph, Causality inversion, 

Augmented Analytical redundancy relation, Fault estimation. 

I. INTRODUCTION  

Nowadays, the growing demand for safety, reliability, and 

efficiency of modern industrial systems motivates the 

development of new fault diagnosis methods for the decision 

support system. These methods are usually employed for 

avoiding critical situations that may due to the propagation of 

the faults, which affect the system dynamics. The fault 

diagnosis is performed by two steps: alarm generation (Fault 

detection FD), and the identification of ‘the faulty component 

Fault isolation (I). Via FDI procedures, an alarm can be 

created if the fault occurs. However, the magnitude of the fault 

cannot be obtained by these procedures. The magnitude of the 

fault is obtained using another procedure named fault 

estimation (FE).     

In the last dedicate, several approaches have emerged 

allowing to design and implement the fault detection and 

isolation (FDI) procedures using the so-called qualitative and 

quantitative approaches [1]. The qualitative approach is 

essentially based on artificial intelligence or recognition forms 

developed in [2]. This approach consists of distributing the 

parametric space in different classes corresponding to known 

modes of operation based on prior knowledge of the system 

(model-free). Among the pattern recognition methods used for 

diagnosis, the principal component analysis (PCA) [3, 4] is 

used which all operation modes (normal and failing) must be 

known in advance, which often unrealizable in real systems. 

In order to perform a reliable diagnosis, model-free methods 

such as AI-based require data of all the possible faulty 

component which is very expansive and exhausting.  

The quantitative approaches are mostly based on state 

space and input-output models and are more related to the 

model-based methods. Some of them use the observer [5, 6] to 

generate (residuals (r)) a difference between the measured 

output and the reference expected behavior of the system. In 

this context, the parity space method [7, 8] consists of 

eliminating all the system states in which all system elements 

are known. Compared to the aforementioned approaches, the 

BG approach can be an alternative solution for dealing with 

both sensor, actuator and parameter faults. 

The FDI using BG approach is based on the generation of 

analytical redundancy relations (ARRs). Moreover, the 

residuals represent the numerical evaluation of these ARRs and 

are used for real-time diagnosis. The residuals should 

converge to zero in normal operation, while in a faulty 

situation the residuals exceed certain values named the 

thresholds. In addition, the causal and structural properties of 

the BG model are used to eliminate systematically the 

unknown variables using a covering causal paths methodology 

[9]. In the BG approach, the fault isolation is performed 

through the Boolean fault signature matrix (FSM). This matrix 

is built using the binary sensitivity of the ARRs. Thus, the 

comparison between all fault signatures allows the knowledge 

of the faulty components that can be detected and isolated 

[10].   

In the present work, we compare three methods that intend 

to improve the fault diagnosis procedure using the BG 

approach. The first is the causality inversion method. The 

latter is based on the generation of ARRs from the BG model 

in preferred derivative causality, where the number of ARRs 

that can be obtained is equal to the number of junctions having 

at least an associated detector, plus the number of redundant 

detectors. These ARRs can then be used to build the FSM in 

order to isolate the faults. The second is the augmented 

Analytical redundancy relations method. This method allows 

the generation of different versions of the same ARR from 

each observed junction so that additional non-redundant ARRs 

can be obtained. The third method is based on the sensitivity 

relation between the residuals and the faults to generate the 

fault estimation equations. The comparison between the two 

estimations of each fault is an additional residual.  
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The rest of this paper is organized as follows: Section 2 

details the causality inversion method for ARRs generation and 

FSM. The augmented Analytical redundancy relations method 

and fault estimation method are described in Section 3, and 4 

respectively. Application with simulation results and 

comparative analysis are presented in Section 5. Finally, the 

conclusions are given in Section 6.        

II. CAUSALITY INVERSION METHOD AND FDI           

A bond graph (BG) is a multidisciplinary graphical 

modeling language based on energy transfer phenomena. The 

energy exchange link, called power bond with two generic 

power variables named flow f and effort e , associated with 

every bond, where e f power  (Fig. 1). The set of 

possible BG elements is: 

 S R C I TF GY Se Sf De Df J         

 

Fig. 1. Bond Graph representation. 

The set of elements  , ,R C I  models the system 

parameters where R, C, and I are the dissipation element, 

capacitance element, and inertial element respectively. The 

latter along with the elements  , ,0,1GY TF define the global 

structure of the system where GY  and TF are the gyrator 

element and transformer element respectively. Sensors are 

represented by effort ( Se ), and flow ( Sf ) detectors.  Junction 

1 (or 0) implies that all the connected bonds have the same 

flow (or effort) and the sum of efforts (or flows) equals zero. 

( )Sf and ( )Se  are the sources of flow and effort, respectively. 

For more information about BG modeling, see [11].  

A. ARRs generation using the causality inversion method  

The FDI using BG approach is based on the generation of 

ARRs. The latter represents the physical constrain lows 

calculated from an observable and over-constrained subsystem 

and they have the form: ( ) 0h K   for any function h  and set 

of known variables K . Evaluation of an ARR yields a 

residual  ( ) : ( )r r h K . In order to obtain the ARRs in a 

systematical manner, Ould Bouamama et al. [12] introduced 

the causality inversion method.  

Definition 1. Inversion of detectors, this means that the flow 

( Df ) (or effort ( De )) detector used for modeling (Fig. 2a) 

becomes ( SSf ) (or SSe ) (Fig. 2b) and imposes the flow (or 

effort) to the 1 (or 0) junction connected to this detector used 

for diagnosis respectively [14]. 

 
Fig. 2. Inversion of detectors. 

The following steps are taken to generate ARRs using the 

causality inversion method: 

Step 1: Obtain the BG model of the system in derivative 

causality, by inverting detectors when possible. Thus, the BG 

model of diagnosis is obtained. 

Step 2: From the BG model, an ARR is obtained from each 

observed junction by writing its junction equation and 

eliminating the unknown variables by using the causal path 

propagation. 

Step 3: For any non-dualized detector, a materiel redundancy 

is presented in the system. The latter exists if there are causal 

paths from one or more detectors in inverted causality to the 

non-inverted one, without passing through any two-port or 

passive element [13]. 

B. Fault isolation using  fault signature matrix 

The fault isolation can be done using the FSM that can be 

directly deduced either from the ARRs or from the BG model. 

In the FSM, the Boolean relations (  , 0,1i jS  ) between the 

residuals and the parameters are represented, as illustrated in 

Table 1. Where the rows are the parameters that represent the 

components (
, 1,2,.....i jC m ) and the columns are the residuals 

(
, 1,2,.....i jr n ). 

TABLE I.  FAULT SIGNATURE MATRIX 

 
1r  

2r   nr  
mDb  

mIb  

1C  
1,1S  

1,2S   1,nS  
1Db  

1Ib  

2C  
2,1S  

2,2S   2,nS  
2Db  

2Ib  

mC  
,1mS  

,2mS   ,m nS  
mDb  

mIb  

 

Let us define m nS  as a matrix of Boolean values
,i jS , where: 

, 1i jS   When 
thj ( )jARR r  contains the parameter of the 

thi  component. 

, 0i jS   Otherwise. 
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Let us define G (column
bI  ) as an isolability vector, where: 

1ig   When the signature is unique. 

0ig   Otherwise. 

III. AUGMENTED ANALYTICAL REDUNDANCY 

RELATION METHOD 

In [12, 13], it was shown that the number of ARRs which 

can be obtained by the causality inversion method is equal to 

the number of junctions having at least an associated detector. 

However, this last statement is not always valid. The causality 

inversion method only finds part of the possible solution set, 

because this method does not exploit all possible sensor 

combinations. Moreover, if sensor combinations are 

performed, augmented ARRs can be obtained [14]. These 

combinations can improve the diagnosis procedure, and 

consequently increase the number of the isolable faults.   

Let us use an illustrative example to explain the above 

method. Fig. 3a shows a BG model in derivative causality 

used for diagnosis, where the two detectors have been 

dualized to corresponding sources of information 

(
1 1: :De y SSe y ) and (

2 2: :Df y SSf y ). By applying 

the causality inversion method, two ARRs can be obtained: 

 1 1 1 2 0, , ,... 0ARR f y y I                                                      (1) 

 2 1 1 2, ,... 0ARR f y y                                                           (2) 

However, consider that the source of the signal 
1:SSe y  is 

disregarded, and only 
2:SSf y  is used for diagnosis as 

depicted in Fig.3b. In this case, an augmented ARR of the 

following form can be obtained: 

 3 3 2 0, ,... 0ARR f y I                                                          (3) 

Following the same procedure while using the 

information from the signal source
1:SSe y , and ignoring 

the one of
2:SSf y , another augmented ARR can be 

generated:  

 4 4 1 0, ,... 0ARR f y I                                                           (4) 

Nevertheless, these combinations do not allow 

generating the extra ARRs from the covering path 

procedure. Therefore, the bicausality notion is proposed, 

which is introduced in [15].  

IV. FAULT ESTIMATION METHOD 

If faults have the same signature and two sensitive 

residuals, they can be isolated if the sensitivity relations 

between the faults and the residuals are different [16]. As an 

example, let us consider two faults ( 1 2,F F ) and two residuals 

( 1 2,r r ) where: 

 
1, 1F r  is the sensitivity relation between 1F  and 1r .  

 
1, 2F r  is the sensitivity relation between 

1F and 
2r  .  

 
2 1F r  is the sensitivity relation between 

2F  and 
1r .  

 
2 2F r  is the sensitivity relation between 

2F  and 
2r .  

As reported by [17], the faults can be estimated from a 

sensitive residual by using the sensitivity relation. So, each 

fault (
1F  or

2F ) can be estimated from 
1r  and

2r . The 

comparison between the two estimations of each fault is 

residual. The latter is not sensitive to the estimated fault. 

Using the procedure illustrated in Fig. 4, the following 

equations can be generated: 

1 1

1 2

2 1

2 2

1 , 1

1 , 2

2 , 1

2 , 2

( ) : ( )

( ) : ( )

( ) : ( )

( ) : ( )

F r

F r

F r

F r

a F r

b F r

c F r

d F r

 


 


 
  

                                                        (5) 

 

Fig. 3. BG model in preferred derivative causality, (a)  Both 
1:SSe y and 

2:SSf y are dualized, and (b) Without dualizing 
1:De y . 

We remark that the fault 1F  is calculated with two ways, 

and using two estimation equations (Eq. 5a and Eq. 5b). This 

fault is isolated if the two results of these two estimation 

equations are equal, and in the same time, the two estimation 

equations of the second fault 2F  (Eq. 5c and Eq. 5d) are not 

equal. 
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Fig. 4. Fault isolation using sensitivity relations.  

The sensitivity relations are obtained from the BG model 

using the following rules: 

 Model the fault by replacing the BG element by its BG 

linear fractional transformation (BG-LFT) element [18], 

Where the modulated source MSf  (or MSe ) represents 

the flow (or effort) generated by the fault. 

 Apply the bi-causality on the modulated source and the 

sensor associated with a residual in order to eliminate the 

unknown variables appearing in the expression of the 

sensitivity relation. 

 Use the causal and the structural proprieties of the BG to 

generate the sensitivity relation between the residual and 

the fault.   

Let us explain the above rules through an illustrative 

example (Fig. 5a and 5b). (Fig. 5a) represents a faulty R-

element in conductive causality modeled by BG-LFT, where 

the modulated source : RMSf w  represents the flow generated 

by the multiplicative fault, : RDf Z  is a fictive sensor, and R 

is the nominal parameter.  

Fig. 5b shows a subsystem containing a faulty R-element 

in conductive causality and a detector SSe  modeled by BG-

LFT. From the 0-junction connected to the detector SSe , the 

following ARR can be generated: 

/

1 0;SSeARR f f f            0;SSef   

1 1/

1 1
0;SSe R SSeARR f e F e

R R

   
      

   

                                  (6) 

Where the inactive variable 
SSef  is equal to zero. This means 

that the inactive variable of a flow and effort detector is the 

effort the flow and, respectively. Without the presence of the 

fault, the residual is given by  

1

1
SSer f e

R

 
   

 

                                                                (7) 

In the presence of the fault, the residual is equal to: 

1/

1
R SSeF e

R

 
 
 

                                                                            (8) 

Thus, if the fault is null the residual is zero. In addition, the 

residual is equal to the inactive variable of the detector
SSef . 

This means that the residual is represented in the BG model by 

the inactive variable of the associated detector. Therefore, it is 

possible to generate the sensitivity relation between the 

residual and the fault from the BG model. This can be done by 

using Mason’s rule [19].  

 

Fig. 5. (a) Faulty R-element in conductive causality, and (b) Bi-causal 

faulty R-element. 

V. APPLICATION  

In this section, the fault diagnosis performance and 

capability of each method previously described are compared 

by applying them to an electrical system (Fig. 6a). The 

obtained FSM by each method is analyzed in order to 

conclude about fault isolability capability. The system is 

composed of two capacitance elements (
1:C C and

2:C C ), a 

resistance element (
1:R R ), a transformer element ( :1/TF N ), 

and the source of flow that represented by the current 

input
0:Sf I . The system is equipped with two voltage sensors 

represented in the model by 
1: mDe e and

2: mDe e . The BG 

model in derivative causality of this electrical system is 

illustrated in Fig. 6b, where the derivative causality is 

assigned to it, and the detectors are replaced by signal sources 

of effort (
1: mSSe e and

2: mSSe e ).    

The considered system contains two sensors connecting to 

two junctions ( 10  and 20 ). Thus, according to the causality 

inversion method (see section 2), two ARRs can be generated: 

1 2
1

1 0 1

1

1
m m

m

e e
e NARR I C
dt R



                                               (9) 

1 2
2

2 2

1

1
m m

m

e e
eNARR C

NR dt



                                                  (10) 

Hence, the evaluation of these ARRs gives two residuals 1r , 

and 2r . By considering that faults may affect all system 

components, the following fault signature matrix 

represented in Table 2, can be obtained from (9, 10). We 

remark that all system components are detectable ( Db ), 
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however, the capacitance element 
2:C C  is the only fault that 

can be isolated. 

 
Fig. 6. (a) Schematic model of the electrical system, and (b) BG model 

of the electrical system in derivative causality. 

TABLE II.  THE FSM OBTAINED BY THE CAUSALITY INVERSION METHOD  

Faults/residuals 
1r  

2r  Db  Ib  

 
1: mDe e   1  1  1  0 

 
2: mDe e   1  1  1  0 

 
0:Sf I   1  0  1  0 

 
1:C C   1    0  1   0 

 
1:R R   1  1  1  0 

 :1/TF N   1  1  1  0 

 
2:C C   0  1  1  1 

Consider that, at a time, only one of the existing detectors 

is used for diagnosis, where only
2: mDe e  is used for 

diagnosis. Then the bi-causality is propagated from the double 

source (
2: mSeSf e ) to  ^

1: mD f eeD  , as depicted in Fig. 7a. The 

system remains observable and over-constrained, and since the 

sensor 
1: mDe e  is not isolable (Table 2), it is possible to 

compute an additional non-redundant 
3ARR without using 

1: mDe e  for diagnosis. In addition, the following constraint 

can be generated:  

 ^ 2
1 2 1 2

1 m
m m

de
e e R NC

N dt
                                                  (11)                                                                                                         

Finally, in order to obtain 
3ARR  (12), 

1me  is replaced by  ^
1me  

in
3ARR . 

 ^
 ^ 1 2

1
3 0 1

1

1
   

: I  0.
m m

m
e e

e NARR C
dt R



                                     (12) 

Following the same procedure while using only the 

information from the signal source 
1: mSSe e  and ignoring the 

one of 
2: mSSe e  (Fig. 7b). In addition, the following constraint 

can be obtained: 

 ^ 1
2 1 1 0 1R I .m

m m

de
e N e C

dt

 


 
   



 

                                   (13) 

Finally, in order to obtain 4ARR    (14), 
2me  is replaced by 

 ^
2me  in 4ARR  .     

 ^
 ^1 2

2
4 2

1

1
 

ARR  :   0.
 R

m m
m

e e
deN C

N dt



                                    (14) 

These four ARRs are used to compute a new FSM, 

illustrated in Table 3. We Remarque that all the system 

components are detectable and the set of isolable faults is the 

following:  2 1 2: , : , :m mC C De e De e Therefore, with this 

method, two new faults are isolable. 

 

 

Fig. 7. (a) BG model of the system in bi-causality for 
 ^

1me  estimation, and 

(b) BG model of the system in bi-causality for 
 ^

2me  estimation. 

TABLE III.  FSM OF THE SYSTEM OBTAINED BY AUGMENTED ARRS 

Faults/residuals 
1r  

2r  
3r  

4r  Db  Ib  

 
1: mDe e   1  1 0 1  1  1 

 
2: mDe e   1  1 1 0  1  1 

 
0:Sf I   1  0 1 1  1  0 

 
1:C C   1    0 1 1  1   0 

 
1:R R   1  1 1 1  1  0 

 :1/TF N   1  1 1 1  1  0 

 
2:C C   0  1 1 1  1  1 
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According to the fault signature matrix (Table 2), four 

faults (
1 1 2: , : , : , :1 /m mR R De e De e TF N  ) have the same 

signature {11}, and two residuals (
1r and

2r ) are sensitive to 

them. So, these four faults can be isolated using the fault 

estimation equations (see section 4).  

Let us now consider a fault affecting the parameter 

element 1:R R . It is estimated from two ways by using the 

residuals 
1r and

2r . The two estimation equations of 
1:R R  

parameter fault from 
1r  (Fig. 8a) and from 

2r  (Fig. 8b) can be 

obtained: 

1

1 1

1

1

1/ 1

1 2

1 1 2

3 1/ 1/

2

1/ 2

1 2

1

1

1 1

1 1

R

m m

R R

R

m m

F r

e e
R N

r F F
N

F r

e e
R N


  

  
 

  
 

  
 

 

                    (15) 

 

Fig. 8. (a,b) Fault estimation of 
1:R R  parameter fault using

1r and
2r . 

We notice that the residual 
3r  is not sensible to the faults 

that affect the 
1:R R  parameter component because 

1

1

1/RF  

and 
1

2

1/RF are the estimations of this fault. Following the 

same procedure, we can obtain the estimation equations of 

1 2: , :m mDe e De e , and :1/TF N . Where 
4r , 

5r  and 
6r  are 

the residuals generated from the comparison of the two 

estimation equations of each fault respectively. Finally, by 

considering these new residuals, the fault signature matrix 

illustrated in Table 4 is obtained. It can be noticed that this 

method clearly increase the number of isolable faults of the 

system. In this case, five system components can be isolated. 

Therefore, with this method, two new faults can be isolated 

compared with the two methods described previously. 

TABLE IV.  FSM WHEN THE FAULT ESTIMATION  PERFORMED  

Faults/residuals 
1r  

2r  
3r  

4r  
5r  

6r  Db  Ib  

 
1: mDe e   1  1 1 0 1 1  1  1 

 
2: mDe e   1  1 1 1 0 1  1  1 

 
0:Sf I   1  0 - - - -  1  0 

 
1:C C   1    0 - - - -  1   0 

 
1:R R   1  1 0 0 1 1  1  1 

 :1/TF N   1  1 1 1 1 0  1  1 

 
2:C C   0  1 - - - -  1  1 

A. Simulation Results 

To verify the efficiency of each method, an application 

using simulation data has been done. The input and output 

signals of the electrical system are depicted in Fig. 9. The four 

ARRs 9, 10, 12, 14 are obtained using the augmented ARRs 

method were tasted in a normal situation, and the residuals are 

evaluated in real-time, as depicted in Fig. 10. As expected, the 

residuals ( 1 2 3, ,r r r  and 4r ) are close to zero and do not exceed 

the thresholds (the red dashed lines). This means that the 

electrical system is healthy (fault-free case).    

0 1 2 3 4 5 6 7 8 9 10
0

2

4

6

8

10

I 0 (
A

)

0 1 2 3 4 5 6 7 8 9 10
0

20

40

60

80

e
m

1
(v

)

0 1 2 3 4 5 6 7 8 9 10
0

5

10

15

20

25

30

Time(s)

e
m

2
(v

)

 
Fig. 9.  The input and output signals of the system in normal functioning. 
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Fig. 10.   
1 2 3, ,r r r  and 4r in normal functioning. 

An additive fault is then introduced in the voltage sensor 

(
2: mDe e ) at time t=5s, which is not isolable by the causality 

inversion method. The signal of the faulty/healthy voltage 

sensor (
2: mDe e ) is illustrated in Fig. 11.  

0 1 2 3 4 5 6 7 8 9 10
0

5

10

15

20

25

30

35

Time(s)

e
m

2
(v

)

 

 

Faulty sensor signal.

Healthy sensor signal

 

Fig. 11.   The output of the faulty/healthy (
2: mDe e ) voltage sensor fault. 

From the fault signature matrix (Table 3), the residuals 

sensitive to the introduced fault are 1r , 2r , and 3r . The 

residuals in case of the (
2: mDe e ) voltage sensor fault are 

illustrated in Fig. 12. As the structural results concluded, the 

residuals 1 2,r r , and 3r detect this fault and exceed the 

thresholds, while 4r  does not detect this fault because it is not 

sensitive to it. The signature {1110}, in this case, is the same 

as the signature of the 
2: mDe e  voltage sensor fault. It is then 

possible to conclude that a fault in the voltage sensor 
2: mDe e  

can be isolated when the sensor data combinations method is 

performed.        

0 1 2 3 4 5 6 7 8 9 10

-20

0

20

Time(s)

r 1
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20
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Fig. 12. 1 2 3, ,r r r  and 4r in case of (
2: mDe e ) voltage sensor fault.   

Let us now consider another fault affecting the parameter 

element 1:R R . This fault is not isolable either by causality 

inversion method or by augmented ARRs method. According 

to the fault signature matrix (Table 4), this fault can be 

isolated using the fault estimation equations. This is verified 

by the simulations results shown in Fig. 13. The estimations of 

the faults are don after the detection of the fault (Fig. 14). This 

means that the estimation is off when the residual ( 1r and 2r ) 

values are less than the threshold. The two estimations of  

11/RF  from 
1r , and 2r  are equal while the others are not (Fig. 

13). This means that the residual 3r  is equal to 0, which is the 

comparison between the two estimations of the fault 

11/RF from 1r , and 2r  while 4 5,r r  and 6r  are equal to 1 

because their estimations from 1r , and 2r  are not equal. In 

this case, the fault on the 
1:R R  parameter element is isolated. 
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Fig. 13. 
1 1 21/ , ,

m mR e eF F F and 
TFF  from 

1r and 2r in case of (
1:R R ) fault. 
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Fig. 14. 1r and 2r in case of (
1:R R ) fault. 

B. Comparative Analysis 

The advantages, drawbacks, and limitations of each 

method are summarized as follows: 

1. Advantages: 

1.1. Causality inversion method: 

The ARRs are obtained in a systematic way using covering 

causal path methodology to eliminate the unknown variables.    

The diagnosis information is considered with less calculation.  

1.2. Augmented ARRs method: 

Can generate different versions of the same ARR without 

adding new sensors. Excellent capability for sensors fault 

isolation even if these faults has only one sensitive residual. 

1.3. Fault estimation method: 

Represent a simple and systematic way to obtain the fault 

estimation equations directly from the graphical model.   

2. Drawbacks and limitations: 

2.1. Causality inversion method: 

Cannot isolate the faults that have the same signature (see 

Table 2). Does not exploit all possible sensor combinations. 

2.2. Augmented ARRs method: 

The system must remain over-constrained and observable 

when ignoring one of the sensors used for diagnosis, and this 

is not always available in all systems. A parameter fault can be 

isolated using this method if and only if its signature is 

different from all parameter and actuator faults (see Table 3). 

2.3. Fault estimation method: 

The generation of the sensitivity relations between the 

fault and the residual by using Mason’s rule is only limited in 

the linear case and inverted non-linear systems.         

VI. CONCLUSIONS 

In this paper, a comparative study between three methods 

using bond graph approach and its causal and structural 

proprieties for fault diagnosis has been presented. The study 

indicates that both Augmented ARRs and fault estimation 

methods are the extension of the causality inversion method. 

The first method combines the sensor data in order to generate 

additional non-redundant ARRs. These additional ARRs enable 

to obtain the different set of fault signatures. The second is 

based on the sensitivity relations between the fault and the 

residual, in order to generate the fault estimation equations. 

These equations are used to improve the isolation of the faults 

have the same fault signature. Each of these methods has its 

own advantages and limitations. The results show that the 

fault estimation method can isolate more faults when 

compared to other methods.  
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