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Abstract. In this paper, an accurate technique is used to find an approximate solution to the fractional-order Duffing-Van der Pol 
(DVP, for short) oscillators equation which is reproducing kernel Hilbert space (RKHS, for short ) method. The numerical results 
show that the n-term approximation is a rapidly convergent series representation and they present also the high accuracy and 
effectiveness of this method. The efficiency of the proposed method has been proved by the theoretical predictions and confirmed 
by the numerical experiments. 

Keywords: Duffing-Van der Pol oscillator equations of fractional order; Method of reproducing kernel Hilbert space; Caputo 
derivative; Convergence; Numerical Solutions. 

1. Introduction 

The theory of integrations and derivations of arbitrary order is well known, nowadays, as fractional calculus (FC, for short). The 
FC concept aims to generalize the notion of integer order differentiation and n-fold integration to the non-integer order and we call 
it generalized differintegrals. Due to its wide applications in physics, dynamics, viscoelasticity, engineering, control theory, 
economics, and many other areas, fractional calculus attracted many researchers [23, 1, 16, 8]. 

Since finding exact solutions to problems described by fractional-order equations are sometimes too complicated, many 
analytical and numerical methods have been developed for this purpose, including spectral Tau method [6], finite difference method 
[24], finite element method [27], fractional-order Wavelet method [18]. For further applications of numerical methods, we refer to 
other recent studies [12, 20, 25, 19, 14, 15, 4, 7, 11]. 

The DVP oscillator equation of fractional order is considered among the most intensively used in the design of various systems, 
from dynamic, biology, seismology, and so on. This equation, in the classical derivative case, can be considered as the generalization 
of the classic van der Pol oscillator equation [17, 26, 13]. As is well-known, it is somehow difficult to obtain a closed-form numerical 
solution to the fractional DVP oscillator equation due to the complexities that occur in the fractional derivatives. Various techniques 
have been used to solve this kind of oscillator equations like the decomposition method of Adomian [2], homotopy perturbation 
[22], and Runge-Kutta methods. Despite the development of the analytical and numerical methods to handle such type of equations, 
the challenge is still on-going to solve them using new numerical methods that can be easily implemented. In this orientation, the 
basic motivation of this paper is to extend the application of the RKHS method to conduct a numerical investigation for the 
emerging problems modeled from nonlinear fractional oscillation phenomena. 

In this research, the reproducing kernel Hilbert space method will be used to find a numerical approach of the DVP oscillator 
equation in which we will discuss both theoretical predictions and numerical results in Hilbert space. Applying the RKHS method 
is mainly based on the orthogonal basis system and the structures of the used reproducing kernel functions. This technique has 
been developed by many researchers to find the exact or approximate solutions to a linear or nonlinear oscillatory problem. RKHS 
method has many advantages compared with the classical methods. It provides rapidly convergent solutions and gives approximate 
solutions with higher precision [3, 28, 21]. 

We organize the paper as follows: The second section of this paper presents some basic concepts and definitions. The third 
section gives the DVP oscillator equation. In this section, the RKHS method has been applied to the DVP oscillator equations too. 
The fourth section provides two illustrative examples to show the method's effectiveness and the accuracy of the obtained solutions. 
The conclusion has been presented in the last section. 
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2. Some Preliminary Results 

Here, we recall basic definitions from fractional calculus. We have provided some important concepts, properties, and theorems 
of the general theory of reproducing kernel that we will use in this study. 
 
Definition 2.1. A function :K × → ℂX X  is called a reproducing kernel for H  provided [28] 

1. ( ) ,K Hη ⋅ ∈ .η∀ ∈X   

2. ( ) ( ),Kη η⋅ =   for all , .H η∈ ∈X  

In which H  is a Hilbert space consists of real functions defined on a nonempty set .X  
 
Remark 1. Let H  be a Hilbert space which has a reproducing kernel function. We then call H  a reproducing kernel Hilbert space. 
Condition 2 in Definition 2.1 is "the reproducing kernel property". 

Let us here give some RKHSs, 
 

Definition 2.2. Denote [ ]3
2 0,1W  the space of functions such as [10] 

[ ] ( ) ( ) ( ) ( ) ( ) ( ){ }33 2
2 0,1  are [0,1], 0,1,2,  and 0 0 0 .    [0,1],absolutely continuous functionW s Lonη η ′= ∈ = = =

       

We define its inner product and norm as: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )3
2

12
3 3

0 0

, 0 0 ,
W

dτ τ η τ η η
=

= +∑ ∫ 



φ φ φ   

and 3 3
2 2

1/2
,

W W
=φ φ φ  in which 3

2, [0,1].Wτ ∈φ  

Theorem 2.1. (see [3]) For each fixed [ ]0,1η ∈  and for any ( )φ ζ  in the reproducing kernel space [ ] ( ) [ ]3 3
2 20,1 ,  0,1W K Wη ζ∃ ∈  such that 

( ) ( ) ( )3
2

,
W

Kηζ ζ η=φ φ  and ( )Kη ζ  is called the reproducing kernel function in the space [ ]3
2 0,1 .W  

 
Theorem 2.2. (see [5]) ( )Kη ζ  is the reproducing kernel function associated to the space [ ]3

2 0,1 ,W  given by  

 ( )
( )
( )

, , ,

, , ,

k
K

kη

η ζ ζ η
ζ

ζ η ζ η

 ≤=  >
  (1) 

where ( ) ( ) ( )( )2 2 3 2, / 120 5 10 3 .k η ζ ζ ηζ ζ η ζ= − + + +   

 

Definition 2.3. Denote [ ]1
2 0,1W  the space of functions such as [9] 

[ ] ( ) ( ){ }1 2
2 0,1  is [0,1] .   [0,1],absolutely continuous functionsW n Loη η′= ∈     

We define its inner product and norm as: 

( ) ( ) ( ) ( )( )1
2

1

0

, ,
W

dτ η τ η η τ η η′ ′= +∫φ φ φ   

and 1 1
2 2

1/2
,

W W
=φ φ φ  in which 1

2, [0,1].Wτ ∈φ  

 

Theorem 2.3. The reproducing kernel function ( )Rη ζ  associated to the complete reproducing kernel space 1
2 [0,1]W  is given by [9] 

 ( )
( )

( ) ( )1
cosh 1 cosh 1 .

2sinh 1
Rη ζ η ζ η ζ = × + − + − −     (2) 

Definition 2.4. If a function ( ),  0η η>  can be written as ( ) ( )1
pη η η=   for some ,p µ>  where ,µ ∈ ℝ  and ( )1 η  is continuous in 

[ )0, ,∞  then we say that ( )η  is in the space .Cµ If ( ) ,  ,m C mµ∈ ∈ ℕ  we say that .mCµ∈   
 
Definition 2.5. The integral operator in Riemann-Liouville sense of order 0>̻ is 

 
( )( )

( )
( ) ( )

( )( ) ( )

1

0

0

1
: , 0,

: .

d
η

η η ζ ζ ζ η

η η

−= − >

=

∫
̻̻J

̻

J

 

 

Γ   (3) 

We have : 

1. ( ) ( ),  , 0.v v vη η+= ≥̻ ̻J J J ̻   

2. 
( )
( )

γ γγ
γ

γ

+1
,  0,  1,  0.

+ 1
η η η

+
= > >− >

+
̻ ̻J ̻

̻

Γ

Γ
  

3. ( )( ) ( ) ( ) ( ) ( )
1

0

: 0 ,  0,  1 .
!

km
km m

k

D D m m
k

η
η η η η

−
+

=

= = − > − < ≤∑̻ ̻J J ̻      
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Definition 2.6. The fractional derivative in Caputo sense of ( )η  function of order 0>̻  is 

 ( )( ) ( )( )( ) ( )
( ) ( ) ( )1

0

1
: ,

mm mmD d
m

η

η η η ζ ζ ζ
− −−= = −

− ∫
̻̻ ̻J

̻
  

Γ
  (4) 

for ( ) 1 ,  0,  1 ,mC m mη η−∈ > − < ≤̻  and .m ∈ ℕ  

3. Analysis of the Method 

Next, we consider the following DVP oscillator equation of fractional order: 

 
( ) ( )( ) ( ) ( ) ( ) ( )

( ) ( )

2 3

0 1

1 , , , 0 1,  1 2,

0 ,  0 .

D a bη µ η η η η ω η η

λ λ

 ′− − + + = ≤ < < ≤ ′= =

̻� � � � � ̻

� �

g
  (5) 

Here D̻ is the fractional derivative in Caputo sense of order ,̻  denotes the forcing strength,� represents the displacement of its 

equilibrium position, and the damping parameter of the system is defined by 0.µ> The periodic driving function g depends on 

angular frequency of the driving force ω and the time η will be denoted by ( ), , .ω ηg We can express the DVP oscillator equation in 

three different physical situations, if 0a> and 0b> then it is a single-well, if 0a< and 0b> then it is a double-well and if 0a> and

0b< then it is a double-hump. 

To apply the proposed algorithm easily, we first homogenize the initial conditions ( ) 00 λ=� and ( ) 10 .λ′ =� To do so, take

( ) ( ) ( )1 0η η λ η λ= − +�ћ in eq. (5). we obtain: 

 ( ) ( ) ( )( )
( ) ( )

Φ , , ,

0 0 and 0 0,       

D η η η η ′ = ′= =

̻
ћ ћ ћ

ћ ћ
  (6) 

where 0 1,  1 2,η≤ < < ≤̻ and ( ) ( )( ) ( ) ( ) ( )( )Φ 1 0 1, , , , .η η η η η λ η λ η λ′ ′= + + +ћ ћ ћ ћ Then, we get a new formula eq. (7) by integrating both 

sides of eq. (6) in Riemann-Liouville sense  

 ( ) ( ),Gη η=ћ   (7) 

where ( ) ( ) ( )( )( )Φ , , .G η η η η′= ̻J ћ ћ  

Anyhow, define the operator L as 3 1
2 2: [0,1] [0,1]L W W→  such that ( ) ( ).L η η=ћ ћ As a result, we can rewrite the formula eq. (7) as 

follows: 

 ( ) ( ),     0  <1,L Gη η η= ≤ћ   (8) 

Applying the RKHS method based on the construction of the orthogonal function system of 3
2 [0,1].W  To do so, let ( )

ιι
φ ( ) Rηη η=  

and 
ι ι

φ( ) ( ),Lη η∗=ψ where the countable set { }ι ι 1
η

∞

=
 is dense in the interval [0,1],  the operator L∗ is the formal adjoint of ,L and 

( )
ι

Rη η represents the reproducing kernel function associated to the space 1
2 [0,1].W   

Next, the orthonormal system { }ι ι 1

∞

=
ψ in 3

2 [0,1]W  is obtained by applying the process of Gram-Schmidt as follows: 

 ( ) ( )
ι

ι ι ιι
ι   k

1

,     0,   1,2, ,k
k

η η
=

= > =∑ … ψ ψ   (9) 

in which the orthogonalization coefficients
ι  k are considered by the following cases : 

ι

ι

ι

ι

ι ι

ι

ι

ι

ι

 
1

 

-1

  

1
,                 for  = 1,

1
,                     for  = 1,

1
,  for ,k

k

e

C
e =

 = = = ≠ =− >
∑





  













 

ψ

 

where
ι

ι ι ιι ι 3
2

1
2 2

  
1

,  , ,k k k W
k

e C C
−

=

= − =∑ψ ψ ψ and { }ι ι 1

∞

=
ψ  denotes the orthonormal system in the space 3

2 [0,1].W  

Remark 2. It is easy to determine the expression of ( )ι ηψ  function 

( ) ( ) ( ) ( ) ( )
ι ιι ι ι ιφ φ φ

13 1
22 2

( ) ( ), ( ), ( ), | ,
WW W

L L K LK R LK L K sη η η η ζ η ζ ηη η ζ ζ ζ ζ ζ ζ
∗ ∗

== = = = =ψ   

where the operator Lζ means that the operator L is applied to the variable .ζ   

 

Theorem 3.1. Let { }ι ι 1
η

∞

=
 be a dense set on [0,1], then { }ι ι 1

∞

=
ψ is the complete system of the space 3

2 [0,1].W  
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Proof. Let us first put ( ) ( )ι ι3
2

, 0,  1,2, ,
W

η η = = …� ψ for each fixed ( ) 3
2 [0,1].Wη ∈�  

Since  

( ) ( ) ( ) ( ) ( ) ( ) ( )ι ι ι ιφ φ3 13
2 22

*, , , 0,
W WW

L L Lη η η η η η η= = = =� � � �ψ   

and { }ι ι 1
η

∞

=
 is a dense set on the interval [0,1], we reach ( ).L η�  From the existence of 1,L− we find ( ) 0.η =�   

 

Lemma 3.1. Assume ( ) 3
2 [0,1],Wη ∈� then we have 

( ) ( ) ( )ι
ι3

2

,   0,1,2,
WC

η η≤ =� ̥ �  

the constant ̥ is positive and we note that ( ) ( )
0 1
max .

C η
η η

≤ ≤
=� �  

Proof. , [0,1]η ζ∀ ∈  we have 

( ) ( ) ( ) ( )ι ι
ι

3
2

, ,  0,1,2.
W

Kη ηη ζ ζ= ∂ =� �  

From the expression of the RK function “ ( )Kη ζ ”, we find the following estimate 

( )ι

ι ι
3
2

,   0,1,2.
W

K Mη η ζ∂ ≤ =  

Consequently, 

( ) ( ) ( ) ( ) ( ) ( ) ( )ι ι ι

ι
ι3 33 3

2 22 2

, ,  0,1,2.
W WW W

K Kη η η ηη η η η η η= ∂ ≤ ∂ ≤ =� � � ̥ �  

Here, suppose { }ι
ι 0,1,2
max ,
=

=̥ ̥ then the last estimate become as 

( ) ( ) ( )ι
ι3

2

,   0,1,2.
WC

η η≤ =� ̥ �  

 
Theorem 3.2. Assume { }ι ι 1

η
∞

=
is a dense set on [0,1]  and the problem eq. (8) has at most one solution on 3

2 [0,1],W then the solution of the 

problem eq. (8) is obtained as: 

 ( ) ( ) ( )
ι

ι

ι

 k
1 1

,k
k

Gη η η
∞

= =

=∑∑ ψћ   (10) 

and we have also the solution of the problem eq. (5) as:  

 ( ) ( ) ( ) ( )
ι

ι

ι

1 0 k
1 1

.k
k

Gη η η λ η λ
∞

= =

  = + +   ∑∑�  ψ   (11) 

Proof. We first note that from the completeness of the orthonormal basis ( ){ }ι ι 1
η

∞

=
ψ  in the space 3

2 [0,1],W we get 

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

ι ι

ι

ι

ι ι

ι

ι

ι ι

ι

ι

ι ι

ι

ι

ι ι

ι

ι

ι ι

ι

φ

φ

3
2

3
2

3
2

3
2

1
2

1
2

1

 k
1 1

 k
1 1

*
 k

1 1

 k
1 1

 k
1 1

,

       ,

       ,

       ,

       ,

       ,

     

W

k
k W

k
k W

k
k W

k
k W

k
k W

L

L

L Rη

η η η η

η η η

η η η

η η η

η η η

η η η

∞

=

∞

= =

∞

= =

∞

= =

∞

= =

∞

= =

=

=

=

=

=

=

∑

∑ ∑

∑∑

∑∑

∑∑

∑∑











ψ ψ

ψ ψ

ψ ψ

ψ

ψ

ψ

ћ ћ

ћ

ћ

ћ

ћ

ћ

( ) ( )
ι

ι ι

ι

 k
1 1

  ,k
k

G η η
∞

= =

=∑∑ ψ

  

with ( ) ( ).k kG Lη η= ћ  

In addition, we mention that ( ) ( ) ( )1 0η η λ η λ= + +� ћ and from the expression of ( ),ηћ it easy to get 

( ) ( ) ( ) ( )
ι

ι

ι

1 0 k
1 1

.k
k

Gη η η λ η λ
∞

= =

  = + +   ∑∑�  ψ  
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Here, If we take a finite many terms in the series which is represent ( ),η� then the approximate solution ( )n η�  is given as 

( ) ( ) ( ) ( )
ι

ι

ι

1 0 k
1 1

.
n

n k
k

Gη η η λ η λ
= =

  = + +   ∑∑�  ψ  

It is easy to see that ( ) ( ) ( )
ι

ι

ι

1 0 k
1 1

k
k

G η η λ η λ
∞

= =

+ + <∞∑∑ ψ  because of the Hilbert space 3
2 [0,1]W   properties. 

Consequently, the approximate solution ( )n η� converges normally. 

 

Theorem 3.3. The approximate solution ( )n η�  converges uniformly and its derivatives ( ) ( )ι

n η�  of order ι 1,2,=  are also uniformly 

convergent. 

Proof. First, to prove that ( )n η�  is uniformly convergent let us give the following estimate for all [0,1],η ∈  

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( )

3
2

33
22

3
2

0

,

                        

                        ,

n n W

n WW

n W

K

K

η

η

η η η η η

η η η

η η

− = −

≤ −

≤ −

� � � �

� �

C � �

  

where 0C  is a constant. 

Next, we prove the uniform convergence of the approximate derivatives as follows. 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

ι ι ι ι ι

ι ιι

3
2

3 3
2 2

,

                            ,

n n
W

nW W

K

K

η η

η η

η η η η η

η η η

− = − ∂

≤ ∂ −

� � � �

� �

 

from the uniform boundedness of ( )ι Kη η η∂  about ,η  we have 

( )ι

ι ι
3
2

,     1,2,
W

Kη η η∂ ≤ =C   

where 
ι ι,  1,2,=C  are positive constants. Therefore 

( ) ( ) ( ) ( ) ( ) ( )ι ι

ι 3
2

.n n W
η η η η− ≤ −� � C � �   

Thus, we complete the proof of the theorem. 

 

 

Fig. 1. Approximate solution of Example 4.1 for 8n = with            

2,  1.9,  1.8,  and 1.7. = = = =̻ ̻ ̻ ̻  

 

Fig. 2. Comparison of numerical solutions of the RKHS method for 

Example 4.1 by the ERK method at 2.=̻  

 
Table 1. Comparison between the numerical results of RKHS method at 2=̻  and other methods for Example 4.1. 

 
 
 
 
 
 
 

 
 
 
 

 

η  ADM RK RKHSM Absolute error in ADM Absolute error in RKHSM 

0 1.00000000 1.00000000 1.00000000 2.687072810-12 0.0 

0.1 0.99750285 0.99750285 0.99749662 2.464576310-10 6.232421610-6 

0.2 0.99004513 0.99004516 0.99003779 3.637292910-8 7.370046210-6 

0.3 0.97772508 0.97772579 0.97772970 7.133392510-7 3.907011210-6 

0.4 0.96069642 0.96070247 0.96070229 6.051172410-6 1.767216910-6 

0.5 0.93915076 0.93918309 0.93918437 3.232997110-5 1.276788910-6 

0.6 0.91328632 0.91341506 0.91341602 1.287405610-4 9.552918410-7 

0.7 0.88325529 0.88367350 0.88367672 4.182111810-4 3.214591010-6 
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Table 2. Approximate solution of Example 4.1 for some values of order ̻ . 

η  1.9=̻  1.8=̻  1.7=̻  

0 1 1 1 

0.1 0.99657171 0.99532568 0.9936548 

0.2 0.9872057 0.98365046 0.97922534 

0.3 0.9726684 0.96666744 0.95963955 

0.4 0.95324689 0.94474603 0.93518248 

0.5 0.92948456 0.91884116 0.90736383 

0.6 0.90175879 0.88941418 0.87661035 

0.7 0.87048529 0.85699852 0.84354686 

 

4. Numerical Applications and Graphical Results 

We present some numerical results in this section. The reproducing kernel Hilbert space approach is implemented for two 
fractional-order DVP oscillator equations: force and force-free DVP oscillator equation of fractional order. Additionally, we compared 
the numerical results obtained by RKHS method (RKHSM, for short) with the other results found in the literature. 
 
Example 4.1. Let us consider the fractional order forced DVP oscillator equation given by 

( ) ( )( ) ( ) ( ) ( ) ( )

( ) ( )

2 31 cos , 1 2,  0 1,

0 1,  0 0.

D a bη µ η η η η ωη η ′− − + + = < ≤ ≤ < ′= =

̻� � � � � ̻

� �


 

Using the RKHSM, taking 
ι

ι ι/ ,  1,2, ,n nη = = …  and 8,n =  for the situation single-well. Here, we take 0.1,  0.5,aµ = =
0.5,  0.5b= = and 0.79.ω =  In addition, we fixed the fractional derivative at 2=̻  then we compared the numerical results 

obtained via the Adomian decomposition method and RKHSM with the results based on the Explicit Runge-Kutta method (ERK). 
Also, in order to demonstrate the accuracy of the method and its effectiveness, we give Table 1. In this table, the numerical results 
and the absolute errors of Example 4.1 have been presented. While, Table 2 shows the obtained solutions by using the RKHSM for 
various values of ̻  and they are plotted in Fig. 1. The comparison between the numerical results obtained by ERK method and 
RKHS method are depicted in Fig. 2. It is clear that the approximate solutions when 2=̻  coincide with those obtained by ADM 
and ERK. Herein, we can conclude that the solutions depend continuously on the fractional derivative ̻  and the RKHS method is 
more accurate. 
 
Example 4.2. Let us consider the fractional order forced DVP oscillator equation given by 

( ) ( )( ) ( ) ( ) ( )

( ) ( )

2 31 0, 1 2,  0 1,

0 1,  0 0.

D a bη µ η η η η η ′− − + + = < ≤ ≤ < ′= =

̻� � � � � ̻

� �
 

Using the RKHSM, taking 
ι

ι ι/ ,  1,2, ,n nη = = …  and 8,n = for the situation single-well. Here, we take 0.1,  1,aµ = = and 0.01.b=  In 
addition, we fixed the fractional derivative at 2=̻  then we compared the numerical results obtained via the Adomian 
decomposition method and RKHSM with the results based on the ERK method. Also, in order to demonstrate the accuracy of the 
method and its effectiveness, we give Table 3. In this table, the numerical results and the absolute errors of Example 4.2 have been 
presented. Whilst, Table 4 shows the solutions obtained by using the RKHS method for various values of ̻  and they are plotted in 
Fig. 3. The comparison between the numerical results obtained by ERK method and RKHS method are depicted in Fig. 3. It is clear 
that the approximate solutions when 2=̻  coincide with those obtained by ADM and ERK. Herein, we can conclude that the 
solutions depend continuously on the fractional derivative ̻  and the RKHS method is more accurate. 

 

Fig. 3. Approximate solution of Example 4.2 for 8n = with            

2,  1.9,  1.8,  and 1.7. = = = =̻ ̻ ̻ ̻  

 

Fig. 4. Comparison of numerical solutions of the RKHS method for 
Example 4.2 by the ERK method at 
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Table 4. Approximate solution of Example 4.2 for some values of order ̻ . 

η  1.9=̻  1.8=̻  1.7=̻  

0 1 1 1 

0.1 0.9930881 0.99058278 0.98723008 

0.2 0.97409728 0.96683317 0.95772855 

0.3 0.94449563 0.93205904 0.91731167 

0.4 0.90475052 0.886845 0.8663568 

0.5 0.85576801 0.83281744 0.80743264 

0.6 0.79820158 0.77084442 0.74151353 

0.7 0.73279636 0.7019202 0.66980078 

5. Conclusion 

In this work, we have presented an efficient RKHS method for the fractional-order DVP oscillator equations. The approximate 
solution ( )n η� and its derivative converge both uniformly. It was found from the obtained results that the RKHS method gives good 
results for the fractional DVP oscillator equation, which has wide applications in widespread fields of physics and engineering. We 
also provided some plots that show how the obtained solutions behave. The comparisons have been demonstrated a good 
agreement between the RKHS method's results and the results obtained via other methods. It is shown that the RKHS method can 
be easily used to approximate the solution of the considered problem. Additionally, its algorithm is simple, efficient, and can be 
applied in treating systems with nonlinear oscillations arising in many practical physical and engineering applications.  
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