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Abstract
In this work, a study on thermal comfort in building is presented as it has great interest given its impact on the quality of 
indoor environments. The thermal comfort depends on several parameters such as air temperature and velocity, relative 
humidity and so on. With this in mind, numerical investigation is carried out on natural convection induced by tempera-
ture gradient between the lower and upper walls in a square enclosure filled with a Newtonian fluid. To approach the real 
case of underfloor heating subject to real weather conditions, periodic time varying temperature is imposed on the lower 
wall of the enclosure. The mathematical problem has been formulated by considering the Boussinesq’s approximation, 
and the resulted governing equations are solved using the Lattice Boltzmann Method. The study has been carried out 
for Rayleigh numbers in the range  103 ≤ Ra ≤ 106, while Prandtl number and aspect ratio are kept constant at 0.71 and 1, 
respectively. The results obtained show that the flow’s behaviour is strongly dependent on the values of Rayleigh num-
bers and heating amplitude. The temporal evolution of the spatially averaged Nusselt number indicate that the transfer 
regime is periodic for low values of Ra and switches to a perturbed unsteady flow for hight values.
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1 Introduction

A large amount of energy is used for the space heating/
cooling of buildings. The heating/cooling energy con-
sumption depends on the characteristics of building 
(exterior conditions, physical properties, energy effi-
ciency of inner sub-systems and occupancy). Thermal 
analysis is necessary to assess the building energy per-
formance. Furthermore, the analysis permits to predict 
thermal responses and calculate heating/cooling loads of 
buildings.

It is also helpful to achieve the energy efficiency and 
the thermal comfort of buildings. Several numerical and 
experimental studies have been carried out on ther-
mal comfort in the building [1–3].The lattice Boltzmann 
method (LBM) that has been rapidly progressing in 

developing new models and applications in many fields 
has attracted much attention and interest [4–7]. Unlike 
traditional methods which solve macroscopic equations, 
the LBM simulates fluid flow based on microscopic mod-
els or mesoscopic kinetic equations. This intrinsic feature 
enables LBM to incorporate easily a multitude of essential 
physics at microscopic or mesoscopic level [8].

The Rayleigh–Bénard convection has been extensively 
studied experimentally and theoretically because of its 
frequent occurrence in various domains. A full account 
of the linearized theory is given in Chandrasekhar [9] and 
Drazin and Reid [10]. Osman [11] study numerically the 
laminar Rayleigh–Bénard convection in a square cavity, the 
Rayleigh values are between  103 and  106, Prandlt range 
from 0.1 to 100, he presented the current lines and iso-
therms; he also calculates the Nusselt number for different 
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Rayleigh value. Raji [12] presented numerical results of 
natural convection in a square cavity filled with air. For the 
Rayleigh number  103 < Ra< 106, three different solutions: 
single-stream, bicellular vertical flow, and bicellular hori-
zontal flow are obtained. The aim of the present work is 
to contribute to a better understanding of some transient 
phenomena including heat transfer in a square enclosure 
filled with a Newtonian fluid.

The configuration under study is showed in Fig. 1, a 
varying temperature profile is imposed on the lower wall 
of the enclosure (underfloor heating), where the vertical 
walls are insulated adiabatic.

The bibliographical research shows that Ray-
leigh–Bénard convection has been widely studied in 
the past, the main result is: the identification of a critical 
Rayleigh number, the birth of vortex convection, and this 
according to different control parameters. Our contribu-
tion is to simulate this last convection with a periodic 
boundary condition in order to approach the case of air 
movements in a underfloor heated room (thermal com-
fort in the habitat). In the next section, the problem for-
mulation and assumptions are presented, followed by the 
adopted numerical resolution methodology in Sect. 2, the 
results and discussions are presented in Sect. 3. We finish 
with conclusions in Sect. 4.

2  Lattice Boltzmann method

The advantage of lattice Boltzmann’s method, in contrast 
to other DNS methods, is that it has no non-linearity in 
its mathematical formulation. Moreover for our study 
the LBM formulation is totally explicitly unsteady and 
can therefore approximate the temporal variation of 
the heating temperature. In this study, we use the lat-
tice Boltzmann method to solve fluid flow and transports 
phenomena. Collisions and advection are determined by 
the lattice Boltzmann equation of the distribution func-
tions [13]:

fi is the distribution function. �
(
fi
)
 is the collision operator 

and Fi is the implemented external forces term. Note that 
the nine discrete velocities ei are given as function of sinus 
and cosinus of quantities depending on i and � [14].The 
collision operator rewritten after linearization and in the 
following indicial form:

(1)fi(x + ei�t , t + �t) − fi(x, t) = �
(
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+ �tFi

(2)
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where in the right hand of the equation, the distribution 
function at the equilibrium is expressed by:

The factors wi  are given as:w0 = 4∕9 ;  w1,4 = 1∕9 ; 
w5,8 = 1∕36 , � is the relaxation time without dimension.

Note that this linearization is the simplest one and 
named the lattice Bhatnagar–Gross–Krook (LBGK): The 
single relaxation time approximation of the collision 
operator.

Numerical instability and fixing a unitary Prandtl 
number appear as a failures of this method. In order to 
solve these limits, D’Humières [15] develops the moment 
approach [Multiple Relaxation Time model (LBM-MRT)], 
which utilizes multiple relaxation time to simulate the 
defined macroscopic physical quantities evolutions. 
Compared to the Bhatnagar–Gross–Krook model, this 
model gives an optimal stability and simulate a large 
values of Prandtl number [16, 17].

In the multiple relaxation time method, the collision 
term is expressed as:

In the flow field formulation, the D2Q9 model is utilized 
in this work:

M is the projection matrix of fi and f eq
i

 into the moment 
space where m = Mf  and meq = Mf eq . The expression of 
theses multiplications are given by (in moment space):
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Fig. 1  Physical model
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here � is the fluid density, e the energy, � the energy 
squared, jx , jy are the momentum components, qx , qy are 
the energy flux in the two directions, and pxx , pxy are the 
diagonal/off-diagonal component of the strain-rate tensor.

Note that the first three expressions are the conserved 
quantities (density and the two direction momentum), 
while the six other moments are non-conserved one and 
are relaxed linearly in time. The collision term (operator) is 
carried out in the moment space and in indicial form:

The D2Q5 model is proposed to simulate the tempera-
ture evolution. This simplification does not diminish the 
accuracy of the model but its simplicity is chosen and vali-
dated by several authors in the literature [18]. The evolu-
tion LB equation is expressed as:

where gi(x, t) is the temperature distribution function 
(second population), N is the orthogonal projection 
matrix, and as the same procedure as for the first popula-
tion n = Ng . N is a projection matrix of gi and geq

i
 into the 

moment space. The transformation matrix N is given by:

The boundary conditions applied to this problem are 
defined as follows:

Velocities boundary conditions

Temperature boundary conditions
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(10)u(0, y, t) = u(1, y, t) = u(x, 0, t) = u(x, 1, t) = 0

(11)v(0, y, t) = v(1, y, t) = v(x, 0, t) = v(x, 1, t) = 0

(12)T (x, 1, t) = 1

where Amp is the amplitude. The instantaneous and aver-
age Nusselt number Nu(t) over the horizontal plane at y = 0 
is obtained as:

It is implemented in the LBM with the bounce-back rule, 
in which all particles hitting the wall are reflected back in 
the direction of the source. Therefore, before analyzing the 
coupled problem, we present in the next section our code 
validation in natural convection situations.

The present code has been validated in the case of a 
square cavity with differentially heated horizontal walls. 
For the natural convection in laminar regime (Ra≤ 106) and 
Amp = 0.

The comparison of the mean Nusselt number values 
with other works [11, 19, 20] is shown in Table 1. It gives 
an excellent agreement with the above studies.

3  Results and discussion

The study of Rayleigh–Bénard’s convection in a square cav-
ity with the periodically heated lower wall is conducted 
using the already validated code. The Rayleigh number is 
taken between  103 and  106 and the amplitude between 
0.2 and 0.8.

The analyses over a time period, of stream functions 
and the isotherms is represented in Fig. 2 for Rayleigh 
number values in the range Ra ∈

[
104, 106

]
 and Amp = 0.3. 

We should remember that for all cases, the results of the 
structures of the isovalues are the same at beginning and 
the end of a period. So, step (a) represents the beginning 
of a period, it is the same as step (e), which represents the 
end of this same period. For Ra = 104 and  105, the flow pro-
file is unicellular with one vortex and the effect of heating 
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Table 1  Comparison of the present results and the previous work 
results

Ra =

103 104 105 106

Present work 1.0035 2.1502 3.9119 6.3207
Ourtatani et al. [19] 1.0004 2.0158 3.9103 6.3092
Bouabdallah et al. [20] 1.0000 2.2000 3.9000 6.4000
Turan [11] 1.0000 2.154 3.907 6.309
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Fig. 2  Evolution of the stream function and isotherms during one cycle for Amp = 0.3



Vol.:(0123456789)

SN Applied Sciences (2020) 2:785 | https://doi.org/10.1007/s42452-020-2600-z Short Communication

Fig. 3  Evolution of the stream function and isotherms during one cycle for Amp = 0.8
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is insignificant. The results follow the same trends as 
the results found in the literature with constant heating 
[20]. For Ra = 106, the values of stream function are more 
intense. Also, we note that the small cells trapped in the 
upper left and lower right corners, widen when in the 
second half of the period following with the increasing 
in temperature at the hot wall (lower wall). The evolution 
of the isotherms is consistent with the flow structure. We 
note that the distortions are more visible in case (b) at τ/2 
and the isotherms are more glued to the active wall at τ/2 
and τ.

Figure 3 gives the current lines and the isotherms for a 
higher amplitude (Amp = 0.8). For Ra= 104, the flow profile 
is identical to that of Fig. 2, represented by a single vortex 
that rotates clockwise.

When the value of the Rayleigh number increases the 
counter cells trapped at the corner underwent expansion 
and R-B cell is thus deformed. These counter-rotating 
cells gain in volume especially in the second half of the 
period. For the isotherms, the results depict that unlike 
the current lines, the isotherms have undergone changes 
over the period for Ra = 104. They are very close to the hot 
wall at τ and the end of the period. The other two times, 
the isotherms are dispersed in the cavity. As the values 
of the Rayleigh number increase, the isotherms are more 
distorted following the shape revealed by the streamlines. 
This result is important in building analogy when for high 
Ra and Amp we have a temperature mixing in the middle 
of the cavity.

Figures 4 and 5 shows the curves of the mean Nusselt 
number as a function of time, for two values amplitude 0.3 
and 0.8. The curves represent the last four periods up to 
the final time t = 9×105.

For Amp = 0.3 (Fig. 4) and low value of Ra the regime is 
periodic. When the Rayleigh number increases (Ra= 106) 
the heat transfer increases and this is due to the intensi-
fication of thermal heating. In this case the curves of Nu 
show that the regime is periodic with small scale pertur-
bations. I the second case (i.e. Amp = 0.8), the results illus-
trated in the Fig. 5 shows that the change in Nusselt values 
is larger than Amp = 0.3.

4  Conclusion

In this paper, we proposed a numerical study of Ray-
leigh–Bénard convection in the square cavity using the 
Lattice-Boltzmann method. Our contribution is to simulate 
the Rayleigh–Bénard convection with a periodic boundary 
condition in order to approach the case of air movements 
in a underfloor heated room (thermal comfort in the habi-
tat). The Rayleigh number value considered is between  103 
and  106, while the amplitude varies from 0.2 to 0.8.

The flow state of the structure as well as the isotherms 
depend on the values of Ra and Amp. One of the most 
important result of our study is the multicellular regime 
of the convection essentially, when Ra and Amp increases. 
For the Nusselt number, various developments have been 
revealed, while the transfer regime is periodic for low 
Rayleigh values and switches to another periodical states 
with small perturbation for Ra = 106. This last regime is 
characterized by a temporal evolution with several Eigen 
frequencies hence the multitudes of peaks on the figure. 
In the perspectives of our work, it is conceivable to make a 
study for the identification of the critical Rayleigh and the 
Eigen frequencies of the studied system.

Fig. 4  Nusselt number evolution for four last periods and Amp = 0.3

Fig. 5  Nusselt number evolution for four last periods and Amp = 0.8
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