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Abstract
Dragonfly algorithm (DA) is a novel swarm intelligence meta-heuristic optimization algorithm inspired by the dynamic and

static swarming behaviors of artificial dragonflies in nature. It has proved its effectiveness and superiority compared to

several well-known meta-heuristics available in the literature. This paper presents a comprehensive review of DA and its

new variants classified into modified and hybrid versions. It also describes the main diverse applications of DA in several

fields and areas such as machine learning, neural network, image processing, robotics, and engineering. Finally, the paper

suggests some possible interesting research on the applications and hybridizations of DA for future works.
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1 Introduction

Meta-heuristics are approximate optimization algorithms

that have attracted great interest from many researchers in

several fields such as computer science, operation research,

bio-informatics, and engineering. This interest is due to

their simplicity, flexibility, and robustness to solve a vari-

ety of optimization problems in a reasonable time.

According to Fister et al. [1], meta-heuristics can be

divided into two categories: non-nature-inspired meta-

heuristics and nature-inspired meta-heuristics.

Nature-inspired meta-heuristic algorithms can be clas-

sified into five main categories: evolutionary-based, phy-

sics-based, chemistry-based, human-based, and swarm

intelligence-based.

Evolutionary algorithms are inspired by the concept of

biological evolution in nature using the operators of

selection, crossover, mutation, and reproduction to find

better candidate solutions. Genetic algorithm (GA) [2],

developed by Holland in 1992, is regarded as the best

evolutionary algorithm. Some other popular evolutionary

algorithms are: differential evolution (DE) [3], evolution-

ary programming (EP) [4], evolution strategy (ES) [5],

genetic programming (GP) [6], probability-based incre-

mental learning (PBIL) [7], and biogeography-based opti-

mizer (BBO) [8, 9].

The second category of nature-inspired meta-heuristic

algorithms includes physics-based algorithms. These opti-

mization algorithms mimic physical rules in the universe.

Some of the popular physics-based algorithms are: simulated

annealing (SA) [10], central force optimization (CFO)

[11–13], gravitational search algorithm (GSA) [14, 15], and

Big Bang–Big Crunch (BBBC) [16]. Other recently devel-

oped physics-based algorithms are: electromagnetic field

optimization (EFO) [17], water evaporation optimization

(WEO [18], optics-inspired optimization (OIO) [19], multi-

verse optimizer (MVO) [20], thermal exchange optimization
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(TEO) [21], sonar-inspired optimization (SIO) [22], and

vibrating particles system algorithm (VPSA) [23].

The third category is chemistry-based algorithms that

imitate chemical rules. Some of the most well-known

chemistry-based algorithms are: artificial chemical process

(ACP) [24], chemical reaction optimization (CRO) [25],

artificial chemical reaction optimization (ACRO) [26],

gases Brownian motion optimization (GBMO) [27], and

chemotherapy science algorithm (CSA) [28].

The fourth category is human-based algorithms that are

inspired from several phenomena commonly associated

with the behaviors and the perception of human beings

[29]. Some of the most well-known human-based algo-

rithms are: harmony search (HS) [30], imperialist com-

petitive algorithm (ICA) [31], firework algorithm (FWA)

[32], teaching–learning-based algorithm (TLBA) [33], and

football game-inspired algorithm (FGIA) [34].

The fifth and last category includes swarm intelligence

(SI) optimization algorithms. These algorithms are inspired

from the collective social behavior of swarms or systems or

communities such as herds of animals, schools of fish,

colonies of insects, and flocks of birds. The two most

Fig. 1 Classification of nature-inspired meta-heuristic algorithms
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popular SI algorithms are particle swarm optimization

(PSO) [35, 36] and ant colony optimization (ACO)

[37, 38]. Other SI optimization algorithms are: cuckoo

search algorithm (CS) [39], firefly algorithm (FA) [40–42],

bat algorithm (BA) [43, 44], krill herd (KH) [45, 46],

dolphin echolocation (DE) [47], grey wolf optimizer

(GWO) [48, 49], moth-flame optimization (MFO) algo-

rithm [50], whale optimization algorithm (WOA) [51], ant

lion optimizer (ALO) [52], crow search algorithm (CSA)

[53], salp swarm algorithm (SSA) [54], dragonfly algo-

rithm (DA) [55], and many others. Figure 1 shows the

general classification of nature-inspired meta-heuristic

algorithms.

DA is one of the recent swarm intelligence optimization

algorithms that was introduced by Mirjalili [55] in 2016. It

is used to solve a large variety of different optimization

problems such as image processing, robotics, medical,

computer science, engineering, and many others. DA is

inspired from the natural behavior of the artificial drag-

onflies and showed its effectiveness and robustness com-

pared to several well-regarded optimization algorithms

existing in the literature. Similar to other SI, DA has some

advantages such as [56]:

• Few control parameters as compared to EA.

• The information about the position of the individuals

can be maintained at the time of iterations.

• Memory space is less utilized by SI compared to EA.

However, DA has lower probability to trap into local

optima as compared to other algorithms. This paper pre-

sents a review of DA, its variants, and its applications in

different areas. The review considers various well-known

databases such as Springer, Elsevier, IEEE, Taylor &

Francis, World Scientific, and others. Figure 2 shows the

number of related publications ranked by scientific data-

bases. Figure 3 shows the distribution of DA publications

by year. Table 1 presents the top ten countries ranked by

the number of DA publications. The top ten DA-related

keywords are presented in Table 2. As it is illustrated in

these figures and tables, the interest on the study of DA has

Table 1 Top ten countries ranked by the number of DA-related

publications

Country Rank Number of publications

India 1 51

China 2 16

Egypt 3 6

Algeria 4 4

Iran 5 4

Jordan 6 3

Palestine 7 3

Germany 8 2

Turkey 9 2

Irak 10 2

Table 2 Top ten DA-related keywords

Rank Keywords Count

1 Dragonfly algorithm 78

2 Optimization 12

3 Feature selection 8

4 Optimization algorithms 7

5 Particle swarm optimization 6

6 Meta-heuristics 6

7 Support vector machine 5

8 Neural network 5

9 Swarm intelligence 4

10 Differential evolution 4

Fig. 2 Number of related publications of DA by scientific databases

Fig. 3 Number of DA-related publications per year
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enormously increased in the last 4 years. Since the intro-

duction of DA in 2016, more than 100 DA-related papers

have been published. The number of articles published in

Springer is higher than other databases, and 2019 repre-

sents the highest use of DA compared to other years.

This paper is organized as follows: Section 2 describes

the general structure and the main steps of DA. Section 3

provides a review of recent variants of the original DA.

Section 4 gives an extensive overview of the application of

DA in several areas. Finally, Sect. 5 concludes the paper

and discusses some possible research applications of DA

for future works.

2 Dragonfly algorithm

Dragonfly algorithm (DA), developed by Mirjalili in 2016

[55], is a recent and interesting nature-inspired meta-

heuristic optimization algorithm used to solve a large

variety of optimization problems. Dragonflies are small

flying carnivorous insects that hunt and eat a wide variety

of small insects like butterflies, bees, ants, and mosquitoes

[55, 57, 58]. There are 3000 different species of dragon-

flies, and their life cycle includes two stages called nymph

and adult [55, 59]. DA is based on the natural dynamic

(migratory) and static (feeding) swarming behaviors of

dragonflies [55, 60]. The dynamic and static swarms,

illustrated in Fig. 4, constitute the exploitation and explo-

ration phases of DA, respectively. In the exploitation

phase, a large number of dragonflies make the swarms

migrate in one direction over long distances and distract

from enemies. In the exploration phase, however, dragon-

flies make small groups and fly back and forth over a small

area to search for food and attract flying preys.

Five basic primitive principles, presented in Fig. 5, are

utilized to model the swarm behaviors of dragonflies as

follows [55, 60–62]. In the following equations, P

represents the position of the current individual, Pj the

position of the jth neighboring individual, and M the

number of neighboring individuals

1. Separation represents the static collision avoidance

that individuals follow to avoid collision with other

individuals in the neighborhood; it is mathematically

modeled as follows:

Si ¼ �
XM

j�1

P� Pj ð1Þ

2. Alignment indicates the individual’s velocity matching

between other neighborhood individuals of the same

group. The alignment is represented as follows:

Ai ¼
PM

j�1 Vj

M
ð2Þ

where vj denotes the velocity of the jth individual.

3. Cohesion represents the tendency of individuals toward

the center of the swarms group. It is defined as follows:

Ci ¼
PM

j�1 Pj

M
� P ð3Þ

4. Attraction toward the food source (F) is mathemati-

cally modeled by:

Fi ¼ Fp � P ð4Þ

where Fi represents the food source of the ith indi-

vidual and Fp is the position of the food source.

5. Distraction from the enemies is modeled mathemati-

cally by:

Ei ¼ Ep þ P ð5Þ

where Ei denotes the position of the enemy of the ith

individual and Ep denotes the enemy’s position.

Positions of artificial dragonflies inside their search space

are updated considering the step vector DP and the position

Fig. 4 The static and dynamic

swarming behaviors of

dragonflies
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vector P. The step vector DP is similar to the velocity

vector in PSO algorithm. It is given and updated as follows:

DPtþ1
i ¼ ðsSi þ aAi þ cCi þ fFi þ eEiÞ þ xDPt

i ð6Þ

where s represents the separation weight, S1 is the sepa-

ration of the ith individual, a represents the alignment

weight, Ai denotes the alignment of the ith individual, c is

the cohesion weight, Ci is the cohesion of the ith individ-

ual, f represents the food factor, Fi is the food source of the

ith individual, e represents the enemy factor, Ei represents

the enemy position of the ith individual, w is the inertia

weight, and t is the iteration number. Then, the position of

the ith dragonfly at t þ 1 is updated as follows:

Ptþ1
i ¼ Pt

i þ DPtþ1
i ð7Þ

The exploration is assured by using high alignment and low

cohesion weights; however, the exploitation is assured by

using low alignment and high cohesion weights [62]. The

convergence rate of DA can be controlled by tuning the

weights s, a, c, f, e, and w adaptively. In order to enhance

the exploration, the randomness, and the exploitation of the

artificial dragonflies, random walk (Levy flight) is intro-

duced when there are no neighboring solutions. Therefore,

the position of the ith dragonfly at iteration t þ 1 is updated

as follows:

Ptþ1
i ¼ Pt

i þ LevyðdÞ � Pt
i ð8Þ

where d represents the dimension of the position vectors.

Levy flight is calculated by:

LevyðdÞ ¼ 0:01� r1 � r

jr2j
1
b

ð9Þ

where r1 and r2 are random vectors uniformly distributed in

the range [0,1], b is a constant, and c r represents the

gamma function. c is calculated as follows:

r ¼
Cð1þ bÞ � sinðPb

2
Þ

C� 2ð
b�1
2 Þ � b� ð1þb

2
Þ

 !1
b

ð10Þ

CðaÞ ¼
Z 1

0

ðta�1e�tÞdt ð11Þ

When a is an integer, we have:

CðaÞ ¼ ða� 1Þ! ð12Þ

Algorithm 1 [55] gives the pseudo-code of the original

dragonfly algorithm. Its corresponding flowchart is repre-

sented in Fig. 6. The MATLAB code of DA can be

downloaded from: http://www.alimirjalili.com/DA_down

load.html.

Fig. 5 Primitive corrective patterns between dragonflies in a swarm (different steps of the artificial dragonfly algorithm)
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3 Recent variants of dragonfly algorithm

A number of recent variants of standard DA have been

suggested in order to provide a good balance between

exploration and exploitation, increase the diversity of the

solutions, and improve the performance of the classical

DA. The variants of DA are categorized into modified and

hybrid versions. Figure 7 shows these variants as a pie

chart. According to the results shown in this figure, mod-

ified versions of DA have more percentage compared to

hybridization versions.

3.1 Modified versions of dragonfly algorithm

Some recent modified versions of DA are given in Table 3.

The details of each modified version are shown below.

3.1.1 Binary dragonfly algorithm

Abdel-Basset et al. [63] presented a binary version of

dragonfly algorithm (BDA). BDA is based on V-shaped

transfer function for solving the 0–1 knapsack problem

(0–1 KP) which is a well-known combinatorial optimiza-

tion NP-hard problem. Experimental results showed the

strong convergence and stability of BDA for solving (0–1

KP) compared to other algorithms existing in the literature.

Sawhney and Jain [64] proposed a modified binary DA

for solving feature selection problem. A penalty function

was incorporated in the binary DA to enhance the feature

selection performance. Simulation results showed the

efficiency of the proposed method compared to fuzzy rule-

based systems, GA, and random forest classifiers.

Mafarja et al. [65] integrated eight time-varying transfer

functions (S-shaped and V-shaped functions) into DA to

investigate the impact of the step vector on balancing the

exploration and exploitation behavior of BDA. To assess

the effectiveness of the proposed approach, the task of

feature selection was considered using eighteen benchmark

datasets taken from the UCI data repository. Simulation

Fig. 6 Flowchart of the dragonfly algorithm

Fig. 7 The variants of DA
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results showed the superior performance of the proposed

approach compared to binary grey wolf algorithm

(BGWO), binary gravitational search algorithm (BGSA),

binary bat algorithm (BBA), PSO, and GA. Abuomar and

Al-Aubidy [66] adopted a binary DA for swarm mobile

robots taking into account obstacle avoidance and com-

munication constraints. Simulation results demonstrated

the performance of the proposed robotic BDA to obtain an

optimal simple solution with a shorter time compared with

other rescue algorithms.

3.1.2 Chaotic dragonfly algorithm

Sayed et al. [67] proposed an improved chaotic dragonfly

algorithm (CDA) based on the integration of chaos in DA

for solving the feature selection problem. The chaotic

method was used to adjust the random parameters of DA

and accelerate its convergence rate. The performance of

CDA was evaluated in comparison with PSO, CSO, GWO,

and ABC based on 553 drugs taken from DrugBank data-

base. Experimental results showed the robustness and

performance of the proposed algorithm to find the optimal

feature subset compared to other existing optimization

algorithms.

Baiche et al. [60] proposed an enhanced binary drag-

onfly algorithm (EBDA) for solving the graph coloring

problem. The Gaussian random selection method and

chaotic method were introduced into BDA to determine the

value of the inertia weight w and the random parameters,

respectively. Results showed the performance of the pro-

posed algorithm compared to some well-known meta-

heuristics in the literature.

3.1.3 Adaptive dragonfly algorithm

Sambandam and Jayaraman [68] proposed a self-adaptive

dragonfly algorithm (SADFO) for solving the multilevel

segmentation problem. A self-adaptive mechanism was

applied to tune the DFO parameters in order to land at the

global best solution with minimum execution time. The

performance of SADFO was evaluated based on real-life

and medical images. Experimental results demonstrated the

performance of SADFO to obtain the global best solution.

Jadhav and Joshi [69] proposed a new adaptive drag-

onfly algorithm (ADF) with test-driven development

(TDD) proprieties for model transformation problem. The

proposed ADF used an optimal objective function with

three UML class diagrams (CLD). Simulation results

showed the performance of ADF compared to other

existing algorithms such as standard DA, SA, and PSO.

Apare and Gujar [70] proposed an adaptive DA (ADF)

for data privacy preservation in Internet of things (IoT).

Table 3 Modified versions of DA

Name Research works

Binary dragonfly algorithm Abdel-Basset et al. [63], Sawhney and Jain [64], Mafarja et al. [65],

Abuomar and Al-Aubidy [66]

Chaotic dragonfly algorithm Sayed et al. [67], Baiche et al. [60]

Adaptive dragonfly algorithm Sambandam and Jayaraman [68], Jadhav and Joshi [69],

Apare and Gujar [70]

Fuzzy-based dragonfly algorithm Kouba et al. [71]

Elite opposition-based dragonfly algorithm Peng et al. [72], Song and Li [73]

Clustering-based dragonfly algorithm Aadil et al. [74], Bhavani et al. [75], Hema et al. [76]

Dragonfly algorithm with support vector machine Tharwat et al. [77], Elhariri et al. [78], Feng et al. [79], Li et al. [80],

Li et al. [81]

Dragonfly algorithm with support vector regression Li et al. [82], Amroune et al. [57]

Dragonfly algorithm with neural network Yasen et al. [83], VeeraManickam et al. [84], Chatra et al. [85],

Nair and Linda [86]

Multi-objective dragonfly algorithm Li et al. [87], Khalilpourazari and Khalilpourazary [88], Vikram et al. [89],

Weijia et al. [90]

Dragonfly with extreme learning machine Abdul Salam et al. [91], Wu et al. [92]

Other ameliorated dragonfly algorithms Sudabattula et al. [93], Kumar et al. [94], Acı and Gulcan [95],

Suresh et al. [96], Sugave et al. [97], Mafarja et al. [98],

Shelke and Prasad [99], Patil and Atique [100], Yuan et al. [101],

Murugaperumal et al. [102]
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The performance of ADF was evaluated based on 18 dif-

ferent physical activities. Simulation results demonstrated

the effectiveness of ADF compared to GA, PSO, ABC, FA,

and DA.

3.1.4 Fuzzy-based dragonfly algorithm

Kouba et al. [71] proposed an optimal combined fuzzy PID

controller using DA for solving the automatic generation

control (AGC) problem in power systems. The superiority

of the proposed method was tested investigating two equal

areas of non-reheat thermal power system. Simulation

results showed the efficiency of the proposed method and

its robustness to improve the frequency regulation loop of

linear and nonlinear power systems compared to previous

AGC techniques reported in the literature such as GA,

PSO, PS, BF, and DE.

3.1.5 Elite opposition-based dragonfly algorithm

Peng et al. [72] proposed a modified DA based on optimal

multilevel thresholding to address color image segmenta-

tion and determine the optimal thresholds values. Elite

opposition-based learning (EOBL) strategy and chaotic

map method were used to enhance the randomness of the

initial population of DA. The performance of the algorithm

was evaluated based on ten color images taken from the

Berkley segmentation dataset. Experimental results showed

the effectiveness and accuracy of DA compared to nine

meta-heuristic algorithms exiting in the literature.

Song and Li [73] proposed an enhanced DA, called

EOEDA, based on EOBL strategy and exponential function

adaptive step. The authors gave two contributions. The first

contribution was the introduction of elite individual to

generate the opposite solutions by EOBL; the second

contribution was the use of adaptive step with exponential

function to replace the original random step. Simulation

results showed that EOEDA has faster convergence speed

and higher convergence accuracy compared to the standard

DA and some other algorithms.

3.1.6 Clustering-based dragonfly algorithm

Aadil et al. [74] proposed a method, called CAVDO, based

on DA and clustering algorithm. CAVDO is proposed to

construct ideal clustering solution of Internet of vehicle

(IoV) routing and ensure the stability of topology. CAVDO

was compared with comprehensive learning particle swarm

optimization (CLPSO) and progressive baseline techniques

ant colony optimization (PBTACO) algorithms. Simulation

results demonstrated that CAVDO gives a minimum

number of clusters according to current channel condition

in many cases compared to CLPSO and PBTACO.

Bhavani et al. [75] proposed an efficient clustering

method based on the combination of DA with tri-level

ontology construction model for solving fair semantic web

content retrieval. The performance of the proposed method

was evaluated based on human diseases datasets in the

dimension of 757� 9. Simulation results showed the per-

formance of the proposed clustering method compared to

the well-known clustering approaches existing in the lit-

erature in terms of surfing time and retrieval accuracy.

Hema et al. [76] proposed a DA-based clustering pro-

tocol (DCP) to enhance the data transmission in radio

frequency identification (RFID) networks. Simulation

results demonstrated the performance of the proposed

algorithm compared to FA and LEACH algorithm in terms

of residual energy, lifetime, and the number of packets sent

to the base station.

3.1.7 Dragonfly algorithm with support vector machine

Tharwat et al. [77] proposed a combined method based on

DA and support vector machine (SVM), called DA-SVM,

for optimizing the SVM parameters and decreasing clas-

sification error. DA-SVM was tested using six datasets

obtained from the UCI machine learning data repository.

Simulation results showed that DA-SVM achieves com-

petitive performance compared to PSO-SVM and GA-

SVM algorithms. DA-SVM is able to find optimal values

of SVM parameters.

Elhariri et al. [78] applied two optimization techniques,

namely DA and GWO, combined with SVM classification

algorithm for solving the electromyography (EMG) signal

classification problem. Simulation results showed that

GWO-SVM outperformed the DA-SVM approach and the

typical SVM classifier with an accuracy of 93.22%.

Feng et al. [79] proposed a combined approach (DA-

SVM) based on the hybridization of DA with SVM for

predicting the short-term load forecasting of an offshore oil

field micro-grids in the Bohai Sea of China. Experimental

results demonstrated that DA-SVM has better global search

ability and higher prediction accuracy compared to GA-

SVM, PSO-SVM, and BPNN models.

Li et al. [80] proposed a hybrid method (IDA-SVM)

based on the combination of IDA with SVM for short-term

wind power forecasting. The performance of IDA-SVM

was tested using real datasets derived from la Haute Borne

wind farm in France. Simulation results showed that IDA-

SVM gives better performance compared to GA-SVM,

DA-SVM, Grid-SVM, back-propagation neural network

(BPNN), and Gaussian process regression (GPR) models.

Li et al. [81] proposed a hybrid method (DA-HKRVM)

based on the combination of DA with kernel relevant

vector machine (KRVM) to predict the tourist flow in

different periods and different regions of the scenic spot.
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Simulation results demonstrated that DA-HKRVM is a

guidance for the efficient development of tourism

economy.

3.1.8 Dragonfly algorithm with support vector regression

Li et al. [82] proposed a hybrid method, named ADA-SVR,

based on the combination of adaptive DA with a support

vector regression (SVR) model for an accurate prediction

of porosity. The performance of ADA-SVR was evaluated

based on the log data of geophysical conventional logging

through neural network modeling and compared with

conventional algorithms such as DA-SVR, BP, and ELM

algorithms. Experimental results showed the feasibility and

performance of ADA-SVR compared to conventional

existing methods.

Amroune et al. [57] proposed another hybrid approach

(DFS-SVR) based on the combination of DA with SVR for

online voltage stability assessment. DFS-SVR was com-

pared to the adaptive neuro-fuzzy inference system

(ANFIS) using the IEEE 30-bus and the Algerian 59-bus

systems. Experimental results demonstrated that DFS-SVR

provides better performance compared to ANFIS.

3.1.9 Dragonfly algorithm with neural network

Yasen et al. [83] proposed an approach based on the

hybridization of DA with artificial neural network (ANN),

called ANN-DA, for medical prediction. Five real medical

datasets were used to train and test its performance.

Experimental results demonstrated the efficiency of ANN-

DA compared to ANN-ABC and other well-known

classifiers.

VeeraManickam et al. [84] proposed a method, named

CDF-NN. It is based on the hybridization of the cumulative

DA with neural network (NN) for predicting optimally the

performance of the students. CDF-NN was compared with

other existing algorithms such as back-prorogation algo-

rithm and dragonfly NN, taking into account the MSE and

RMSE metrics. Simulation results revealed the perfor-

mance of CDF-NN compared to other algorithms in the

literature. It obtained the values of 16.944 and 4.665 for the

MSE and RMSE, respectively.

Chatra et al. [85] developed a hybrid approach called

BDADNN. It is based on the hybridization of binary DA

with deep neural network using a fitness function for tex-

ture image classification. The performance of BDADNN

was verified using the two datasets: textured surfaces and

KTH-TIPS. Simulation results demonstrated the superior

performance of BDADNN compared to SVM in terms of

accuracy, sensitivity, and specificity.

Nair and Linda [86] proposed a combined technique

(MDA-RNN) based on the hybridization of modified DA

with recurrent neural network (RNN) for an efficient

maximum power point tracking in hybrid solar and wind

energy system. The performance of MDA-RNN was

evaluated under variation of irradiance, wind speed change,

and variation of load. Simulation results showed the

effectiveness of MDA-RNN compared to ACO, BA, and

MDA.

3.1.10 Multi-objective dragonfly algorithm

Li et al. [87] proposed a multi-objective DA based on

reference point decomposition (RMODA) to solve the

wind–solar–hydropower optimal scheduling. The effec-

tiveness of the proposed algorithm was tested taking as

example the large-scale hydropower station in Southwest

China and compared with NSGAIII. Simulation results

showed the superiority of RMODA compared to NSGAIII

in terms of convergence and distribution of the solutions.

Khalilpourazari and Khalilpourazary [88] proposed an

efficient meta-heuristic algorithm, named multi-objective

dragonfly algorithm (MODA). MODA aims to solve a real-

work grinding optimization problem and provide efficient

Pareto optimal solutions. The authors also implemented a

constraint handling (static penalty) technique to handle

complex operational constraints of the problem. Simulation

results revealed the capability of MODA to find non-

dominated Pareto optimal solutions and to give efficient

enhancement compared to NSGAII.

Vikram et al. [89] used multi-objective DA for evalu-

ating the performance of process parameters in turn–mill

operations. The performance of MODA was evaluated

considering three process parameters: tool speed, feed rate,

and depth of cut. Simulation results showed the perfor-

mance of MODA compared to grey relational analysis

(GRA) algorithm.

Weijia et al. [90] proposed an improved multi-objective

dragonfly algorithm (DMODA) for annual power cut plan

arrangement. The external archiving maintenance strategy

and the niche sharing mechanism under crowed distance

were added to enhance the performance of MODA. Sim-

ulation results showed the performance of DMODA com-

pared to the original MODA and MOPSO in terms of

convergence speed.

3.1.11 Dragonfly algorithm with extreme learning machine

Salam et al. [91] developed a new hybrid approach, called

DA-ELM, based on the hybridization of extreme learning

machine (ELM) with DA to solve the prediction problem.

DA was exploited to obtain optimal input weights and

hidden layer biases. The authors tested the performance of

DA-ELM based on ten regression datasets taken from the

Neural Computing and Applications (2020) 32:16625–16646 16633

123



UCI repository; they found that DA-ELM outperformed

both GA-ELM and PSO-ELM algorithms.

Wu et al. [92] proposed a novel ship classification

model, called BDA-KELM, based on the combination of

the binary DA with kernel extreme learning machine

(KELM) for high-resolution synthetic-aperture radar

(SAR) images. The performance of BDA-KELM was

evaluated based on six high-resolution TerraSAR-X SAR

imagery in comparison with Bayes, k-nearest neighbor

(kNN), back-propagation neural network (BPNN), and

support vector machine (SVM). Simulation results showed

that BDA-KELM achieves better classification perfor-

mance compared with other existing models; it achieved

the classification accuracy of 97%.

3.1.12 Other enhanced dragonfly algorithms

Sudabattula et al. [93] proposed a method based on DA and

loss sensitivity factor to solve the renewable distributed

generators and capacitors allocation problem. The method

was tested on a large-scale 119-bus system and compared

with simulated annealing (SA). Simulation results showed

the ability of the method to solve the problem compared to

SA.

Kumar et al. [94] proposed a method called fractional

dragonfly load balancing algorithm (FDLA) to solve the

load balancing problem in cluster–cloud computing envi-

ronments. FDLA was designed by hybridizing fractional

calculus (FC) theory with DA and evaluated based on the

load values and number of tasks allocated. Experimental

results showed the effectiveness of FDLA compared to

other existing methods such as PSO, HBB-LB, and stan-

dard DA. FDLA attains a minimum load of 0.2133 with the

number of tasks allocated as 14.

Acı and Gulcan [95] proposed a modified dragonfly

algorithm based on Brownian motion for single- and multi-

objective problems. The randomization stage of DA was

enhanced using the Brownian motion. The modified DA

was evaluated in the optimization of 15 single-objective

and six multi-objective problems and compared with the

original DA. Numerical results showed that DBG achieves

highly competitive results compared to the standard DA.

Suresh et al. [96] proposed an enhanced dragonfly

algorithm (ADFA) for solving static and dynamic eco-

nomic dispatch problems (EDP) considering renewable

energy resources and demand response. Static economic

dispatch using DFA was carried out on 6-, 17-, and

40-thermal generator test systems. Further, dynamic eco-

nomic dispatch was carried out on 6- and 17-thermal

generator test systems. Simulation results showed that

ADFA obtained better results compared to other algorithms

existing in the literature.

Sugave et al. [97] proposed an optimization algorithm,

named diversity dragonfly algorithm (DDF), for deter-

mining the optimal test suites with minimum execution

times. The performance of DDF was carried out using five

subject programs and compared with TBAT algorithm,

systolic genetic search algorithm, and greedy irreplace-

ability algorithm. Simulation results showed that DDF

possesses a higher degree of reduction capacity and gives a

lower variance value compared to other existing methods.

Mafarja et al. [98] employed BDA with K-nearest

neighborhood (KNN) for solving the feature selection

problem. The performance of BDA was evaluated based on

nine large-scale medical datasets with a low number of

samples, in comparison with BGA, BPSO, BGSA, BBA,

and BGWO. Simulation results showed the superiority of

BDA compared to other well-known wrapper feature

selection methods.

Shelke and Prasad [99] proposed a combined approach,

called dragonfly Bayes fusion system (DBFS), based on

incorporating DA with Naive Bayes (NB) classifier for

detecting the tampered JPEG image for forensic analysis.

The performance of DBFS was realized based on 100

uncompressed TIFF images taken from the UCID database

in comparison with rule-based classification, fuzzy theory-

based classification, average method, and weighted average

method. Experimental results showed that DBFS outper-

formed other existing approaches by obtaining minimum

FPR of 0.0490, maximum TPR of 0.8720, and maximum

accuracy of 0.9519.

Patil and Atique [100] proposed an adaptive autore-

gressive model (AA-CDNB) by the integration of the

CAVIAR dragonfly algorithm and the Naive Bayes model

for identifying the reasons behind tweets provided by

various users. The performance of AA-CDNB was evalu-

ated based on the standard BITS PILANI dataset which

contains tweets from the online users. Simulation results

revealed that AA-CDNB outclassed other models such as

NBDF, NB, CDNB, and SentiWordNet algorithms with the

values of 1, 0.888, and 0.920 for the sensitivity, specificity,

and accuracy metrics, respectively.

Yuan et al. [101] proposed a hybrid method (CFSSDA)

based on the combination of DA with Coulomb force

search strategy (CFSS) for solving structural optimization

problems with stress constraints. The effectiveness of

CFSSDA was tested based on three widely used benchmark

numerical examples in comparison with DA, BDA, and

elite opposition-based DA (EOEDA). Numerical results

showed that CFSSDA achieves a significant enhanced

convergence rate and a higher accuracy compared to other

well-known optimization methods.

Murugaperumal et al. [102] proposed a combined

method (ANFMDA) based on the combination of ANFIS

with modified DA for optimal energy management of
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micro-grid-connected system with low cost. Experimental

results demonstrated the effectiveness of ANFMDA com-

pared to ABC, DA, and HOMER techniques.

3.2 Hybridized versions of dragonfly algorithm

Many hybrid optimization algorithms based on the

hybridization of DA with other optimization meta-heuristic

algorithms have been proposed in order to enhance the

performance, efficiency, and robustness of the classical

DA. Table 4 presents the well-known hybrid DA algo-

rithms in the literature. The details of these hybrid algo-

rithms are given below.

3.2.1 Hybridization with genetic algorithm

Veeramsetty et al. [103] proposed a hybrid genetic drag-

onfly algorithm (HGDA) based on optimal power flow

(OPF) to compute the locational marginal price (LMP) at

distributed generation (DG) buses for improving the reli-

ability in radial distribution systems (RDS). HGDA has

been implemented on 38-bus RDS and Pacific Gas and

Electric Company (PG&E) and 69-bus RDS. Simulation

results showed that HGDA enables the distribution com-

pany (DISCO) to vastly improve the reliability of the

network.

Guo et al. [104] proposed a novel adaptive engine cal-

ibration optimization algorithm based on the combination

of multi-objective DA, multi-objective GA, fuzzy-based

inference system, and sub-structured artificial neural net-

work (SSANN) for controlling the engine parameters. The

performance of the proposed model was evaluated based

on 15 working points based on different engine speeds.

Simulation results revealed that the proposed model

improves engine performance and reduces greenhouse

emissions.

3.2.2 Hybridization with simulated annealing

Han et al. [105] proposed a hybrid method (IDA) based on

the hybridization of DA with SA for solving the limited-

buffer flexible flow-shop scheduling problem (LBFFSP).

The effectiveness of IDA was tested using four sets of

small-scale and four sets of large-scale FFSP standard

examples. Experimental results showed that IDA gives a

better solution for LBFFSP compared to the original DA

and PSO algorithms.

3.2.3 Hybridization with quantum evolutionary algorithm

Mahseur et al. [106] proposed a combined approach based

on the combination of DA with quantum evolutionary

algorithm (QEA) to solve the quality-of-service multicast

routing problem (QoSMRP). In the proposed approach, the

equation of DA was used to calculate Dh in QEA and a

quantum representation of the solution by a vector of

continuous real values was adopted to avoid discretization

of DA. Experimental results showed the scalability of the

proposed approach compared to other existing algorithms

such as GA, QEA, and DA.

Table 4 Hybridization versions of DA

Hybridization version Research works

Hybridization with genetic algorithm Veeramsetty et al. [103] , Guo et al. [104]

Hybridization with simulated annealing Han et al. [105]

Hybridization with quantum evolutionary algorithm Mahseur et al. [106]

Hybridization with differential evolution Xu et al. [107], Duan et al. [108]

Hybridization with ant colony algorithm Jadhav and Joshi [109]

Hybridization with particle swarm optimization algorithm Ranjini and Murugan [110], Trivedi et al. [111],

Tawhid and Dsouza [113], Shilaja and Ravi [112],

Bharanidharan and Rajaguru [114]

Hybridization with crow search algorithm More and Ingle [115], Kumar and Vimala [116]

Hybridization with bat algorithm Sureshkumar and Ponnusamy [117], Gonal and Sheshadri [118]

Hybridization with grey wolf optimizer Shilaja and Arunprasath [119]

Hybridization with ABC algorithm Ghanem and Jantan [121]

Hybridization with glowworm swarm optimization algorithm Vinodhini and Gomathy [122]

Hybridization with other algorithms Xu and Yan [123], Khadanga et al. [124], Ramadhani et al. [126],

Elhoseny and Shankar [127]
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3.2.4 Hybridization with differential evolution

Xu et al. [107] proposed a method known as improved DA

(IDA) based on the hybridization of DA and DE for mul-

tilevel color image segmentation. The performance of IDA

was tested based on eight color images taken from the

Berkeley database and compared with five other existing

algorithms such as standard DA, SCA, HSO, BA, and PSO.

Simulation results revealed that IDA outperformed these

algorithms in terms of standard deviation, structural simi-

larity index, feature similarity index, peak signal-to-noise

ratio, and average fitness values.

Duan et al. [108] proposed a hybrid method based on the

combination of DA with DE for global optimization

problems. The hybrid method combined the exploitation

capability of DE and exploration capability of DA to

achieve optimal solution. The performance of DA-DE was

evaluated using 30 classical benchmark functions in com-

parison with 16 optimization algorithms. Simulation results

demonstrated the effectiveness of DA-DE compared to

other existing optimization techniques.

3.2.5 Hybridization with ant colony algorithm

Jadhav and Joshi [109] proposed a hybrid approach

(ACADF) based on the hybridization of ACO with adap-

tive DA for an effective model transformation. The effec-

tiveness of ACADF was evaluated using two measure

factors: automatic correctness (AC) and related fitness

function. Experimental results showed that ACADF pro-

vides better performance for the model transformation

compared to other meta-heuristics such as original DA,

ADA, and PSO.

3.2.6 Hybridization with particle swarm optimization
algorithm

Ranjini and Murugan [110] proposed a memory-based

hybrid dragonfly algorithm (MHDA) for solving numerical

optimization problems. MHDA combined the exploration

capability of DA and exploitation capability of PSO to give

optimal solutions. The performance of MHDA was evalu-

ated based on two benchmark functions: basic uncon-

strained benchmark functions and CEC 2014 test functions.

Simulation results demonstrated the efficiency of MHDA

compared with some state-of-the-art algorithms.

Trivedi et al. [111] proposed a hybrid approach based on

the combination of DA with PSO for global numerical

optimization. The hybrid approach used PSO for the

exploitation phase and DA for the exploration phase.

Simulation results validated the effectiveness of PSO-DA

compared to standard DA and PSO.

Shilaja and Ravi [112] proposed a hybrid optimization

method based on the hybridization of DA with aging par-

ticle swarm optimization (APSO) for handling the optimal

power flow (OPF) problem in renewable energy resources.

The performance of this hybrid method was tested based on

IEEE 30-bus test systems in comparison with improved GA

and PSO. Simulation results yielded better results com-

pared to other existing optimization methods.

Tawhid and Dsouza [113] proposed a hybrid method

called hybrid binary dragonfly enhanced particle swarm

optimization algorithm (HBDESPO) for solving the feature

selection. The performance of HBDESPO was evaluated

based on 20 standard datasets taking from the UCI repos-

itory, and results proved the ability of HBDESPO to give

high classification accuracy compared to BDA and EPSO.

Bharanidharan and Rajaguru [114] proposed a method

based on the hybridization of DA with SI algorithms such

as PSO, ACO, and ABC algorithms for dementia classifi-

cation. The effectiveness of the method was evaluated

based on 65 non-dementia and 52 dementia subjects taken

from the OASIS database. Simulation results showed the

better effectiveness of the hybrid method in comparison

with classical SI algorithms. Hybrid DA-PSO method gives

the highest accuracy of 87.18%.

3.2.7 Hybridization with crow search algorithm

More and Ingle [115] proposed a hybrid optimization

algorithm, called D-Crow, based on the integration of CSA

into DA for getting optimal energy-aware virtual machine

migration (VMM). D-Crow was evaluated based on three

metrics such as energy consumption, migration cost, and

load. Simulation results showed that D-Crow outperformed

the basic DA and other existing algorithms such as ACO,

modified exponential gravitational search algo-

rithm(MEGSA-VMM), and LR by achieving the minimum

values of 11.0639%, 7.3719%, and 10.0368% for the

migration cost, load, and energy consumption,

respectively.

Kumar and Vimala [116] proposed a hybrid method (C-

FDLA) based on the hybridization of the crow search

algorithm with integrated fractional dragonfly algorithm

for load balancing in cloud computing environments. The

authors introduced also the multi-objective model based on

the frequency scaling parameters integrated machine

capacity, selection probabilities, and data length of the

task. C-FDLA was analyzed based on the load values and

the number of reallocated tasks. Simulation results proved

the effectiveness of C-FDLA compared to other algorithms

such as classical DA, FDLA, PSO, and ABC algorithms.

C-FDLA gives minimum load value of 0.0913 and the

number of tasks reallocated as 11.
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3.2.8 Hybridization with bat algorithm

Sureshkumar and Ponnusamy [117] proposed an efficient

hybrid approach (MDABSA) based on the hybridization of

modified DA with bat search algorithm (BSA) for the

power flow management of hybrid renewable energy

source in the micro-grid system. The effectiveness of

MDABSA was tested in balanced and unbalanced supply

of the system during any load changes in comparison with

MEHOTSA, GA, PSO, and PI controller. Simulation

results showed the effectiveness of MDABSA to manage

the power flow compared to other existing algorithms.

Gonal and Sheshadri [118] proposed a hybrid method

(HBDFA) based on the combination of DA with BA to

provide optimal power flow control in a grid-connected

wind–solar system. Experimental results demonstrated that

HBDFA gives better performance compared to other

existing optimization approaches.

3.2.9 Hybridization with grey wolf optimizer

Shilaja and Arunprasath [119] proposed a hybrid approach

based on the hybridization of DA with enhanced grey wolf

optimization (GWO) algorithm for solving the optimal load

power flow issue. The performance of this approach was

evaluated based on IEEE 30-bus system, and results proved

that the hybrid approach is more efficient in terms of cost

reduction and power loss minimization compared to other

existing optimization algorithms.

3.2.10 Hybridization with whale optimization algorithm

Jadhav and Joshi [120] proposed a combined method based

on the combination of adaptive DA with WOA for trans-

forming class diagrams to relational schema. The perfor-

mance of WOADF was evaluated using automatic

correctness (AC) and fitness values, and results showed the

robustness and effectiveness of WOADF compared to other

optimization methods existing in the literature. WOADF

gives maximum AC value of 0.812 and fitness value of

0.897, respectively.

3.2.11 Hybridization with ABC algorithm

Ghanem and Jantan [121] proposed a hybrid approach

(HAD) based on the combination of ABC algorithm with

DA for training multilayer perceptrons (MLPs). HAD was

evaluated based on six standard classification datasets

taken from the UCI machine learning repository in com-

parison with nineteen other meta-heuristic algorithms.

Simulation results showed that HAD outperformed the

other algorithms in terms of greater classification accuracy

and smaller mean squared error (MSE).

3.2.12 Hybridization with glowworm swarm optimization
algorithm

Vinodhini and Gomathy [122] proposed a hybrid approach,

called DA-GSO, based on the hybridization of DA with

glowworm swarm optimization (GSO) algorithm for

energy-efficient routing in wireless sensor network (WSN).

Simulation results showed the superiority of DA-GSO

compared to PSO-PSO and PSO-GSO. It improves the

lifetime of the network and reduces the network energy

consumption.

3.2.13 Hybridization with other algorithms

Xu and Yan [123] proposed a hybrid method (INMDA)

based on the hybridization of DA and improved Nelder–

Mead simplex algorithm for training multilayer percep-

trons (MLPs). INMDA was tested on several well-known

benchmark functions with low and large dimensions.

Additionally, it was applied for training MLP through three

classical classification problems. Simulation results

revealed the effectiveness of INMDA to find optimal

weight and biases for MLPs compared to other algorithms

such as GWO, PSO, GA, ES, and PBIL.

Khadanga et al. [124] proposed a method based on the

hybridization of DA with pattern search algorithm (hDF-

PS) for studying a tilt integral derivative (TID) controller in

an island micro-grid (MG) for frequency control. The

robustness of hDF-PS was assessed by considering differ-

ent disturbances and parametric variations in comparison

with GA, PSO, and DA. Simulation results showed that

hDF-PS gives superior results compared to conventional

algorithms existing in the literature.

Ranjini [125] proposed a memory-based hybrid DA

(MHDA) for training multilayer perceptron (MLP). The

effectiveness of MHDA was evaluated using five classifi-

cation datasets and three approximation functions in com-

parison with GA, ACO, PSO, ES, back-propagation (BP),

and DA. Simulation results demonstrated the performance

of MHDA to provide optimum set of weight and biases at a

higher convergence rate compared to other existing train-

ing optimization algorithms.

Ramadhani et al. [126] proposed a nonlinear optimiza-

tion method called memory-based DA (MHDA) for solving

the vertical electrical sounding (VES) data inversion

problem. The performance of MHDA was tested using the

noise-contaminated synthetic VES data. Experimental

results showed the efficiency of MHDA compared to the

original DA. MHDA is proved to be an innovative method

for solving VES data inversion problem.

Elhoseny and Shankar [127] proposed a combined

method (K-Medoid?EDA) based on the hybridization of

enhanced DA with K-Medoid clustering model for energy-
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efficient optimal routing in vehicular ad hoc network

(VANET). The performance of K-Medoid?EDA was tes-

ted by examining four network parameters: throughput,

packet delivery ratio, energy consumption, and network

lifetime. Simulation results showed that K-Medoid?EDA

gives minimum energy consumption and minimum exe-

cution times when compared with existing algorithms.

4 Applications of dragonfly algorithm

DA has been applied to solve a large variety of optimiza-

tion problems in several fields and areas of research cate-

gorized into combinatorial, constrained, and continuous

optimization. Some of the applications of DA are sum-

marized in Table 5. The details are given in the following

sections.

4.1 Combinatorial optimization

4.1.1 Feature selection

Mafarja et al. [128] proposed a wrapper feature selection

method based on BDA and KNN with two objective

functions: minimizing the number of selected features and

maximizing the classification accuracy. The authors com-

pared their approach with GA and PSO algorithms based

on 18 benchmark datasets taken from the UCI data

repository. Experimental results showed the superiority of

the approach compared to GA and PSO algorithms.

Hariharan et al. [61] proposed an improved binary

dragonfly optimization algorithm (IBDFO) based on fea-

ture selection for infant cry signals classification. The

authors proposed also a feature set using wavelet packet-

based nonlinear features. The performance of IBDFO was

tested with its basic BDFO algorithm and PSO algorithm.

Simulation results showed that IBDFO yields a very

promising classification accuracy compared to other

existing works algorithms.

4.1.2 Optimal power flow

Bashishtha and Srivastava [129] used DA to solve the

optimal power flow (OPF) problem in power systems. The

performance of DA was realized based on IEEE 30-bus test

systems in comparison with GA, DE, ABC, PSO, and

teaching–learning-based optimization (TLBO) algorithms.

Numerical results revealed the superiority and effective-

ness of DA compared to other approaches available in the

literature.

4.1.3 Travel salesman

Hammouri et al. [130] used DA for solving the traveling

salesman problem (TSP). The efficiency of DA was

assessed based on ten well-known datasets (TSPLIB) with

various sizes and complexity levels in comparison with

GA, PSO, ACO, and BH. Experimental results showed the

superiority of the DA compared to other optimization

algorithms available in the literature.

4.1.4 Resource allocation

Amini et al. [131] applied DA for establishing proper

resource allocation and providing load balance in cloud

computing. The performance of DA was evaluated taking

into account the execution time, response time, tasks

migration, and load balance. Experimental results proved

that DA provided considerable improvements in load bal-

ancing, resource allocation, and task scheduling when

compared to other methods such as ACO and ACO-PSO.

4.1.5 PID control

Guha et al. [132] employed DA to optimize the controller

parameters of the 3-degree-of-freedom (3DOF) propor-

tional–integral–derivate (PID) for the hybrid energy dis-

tributed power system (HEDPS). The effectiveness of DA

was evaluated in comparison with PSO, DE, BBO, TLBO,

krill herd algorithm, and GWO. Computational results

revealed better performances of DA compared with the

aforementioned algorithms in terms of convergence rate,

minimum fitness value, and dynamic performance of the

system.

Simhadri et al. [133] used DA to tune the controller

parameters of the 2-degree-of-freedom PID (2DOF-PID)

for multi-area power system. The performance of DA was

evaluated in terms of tie-line power of control areas in

power system and settling time of the deviations in fre-

quency. Simulation results showed the superiority of DA

compared to other existing optimization methods.

Mishra and Mohanty [134] applied DA to provide

optimal parameters of the fractional order PID controller.

Optimized FOPID obtained using DA was employed to

control the step-back of pressurized heavy water reactor.

Simulation results showed that DA-INFOPID outperforms

the conventional INFOPID. It reduces the steady-state error

and the system settling time.

4.1.6 Vehicle routing problem

Liu et al. [135] used DA for solving the vehicle routing

problem with time windows constraints (VRPTW). The

effectiveness of DA was tested based on three cost factors:
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freight transportation costs, overtime penalty costs, and

warehouse resident costs. Simulation results proved the

efficiency and feasibility of DA to solve the VRPTW.

4.2 Constrained optimization

4.2.1 Economic dispatch

Pathania et al. [136] used DA to solve the economic load

dispatch problem with value point effect. The performance

of DA was tested based on a modified IEEE 30-bus system

containing six thermal generating units and one wind farm

in comparison with other meta-heuristics such as QPSO,

ABC, and SQO-PSO. Simulation results showed the

capability of DA to find the global optimum solution and

manage the system constraints compared to other algo-

rithms existing in the literature.

Das et al. [137] used DA for solving the probabilistic

economic load dispatch (PED) problem taking into account

uncertainties of solar and wind energy. The performance of

DA was validated using four test systems in comparison

with CSA, ALO, oppositional real-coded chemical reaction

optimization, BBO, PSO, and GA. Simulation results

showed the effectiveness of DA compared to other well-

known optimization algorithms in terms of total generation

cost and execution time.

Suresh and Sreejith [138] used DA to solve the static

economic dispatch problem with the incorporation of solar

energy. DA was evaluated using 6-generator, 15-generator,

and 17-generator operational South Indian systems. Simu-

lation results revealed that DA gives minimum cost and

converges in low running time compared to some other

optimization algorithms available in the literature.

Bhesdadiya et al. [139] applied DA to solve the emis-

sion constrained economic dispatch (ECED) problem using

a price penalty factor method. The performance of DA was

evaluated based on IEEE 30-bus system with six opera-

tional generators. Simulation results proved the capability

of DA for solving the ECED problem with different price

penalty factors.

Palappan and Thangavelu [140] employed DA for

solving the optimal reactive power dispatch problem in

power systems. The effectiveness of DA was tested based

on standard IEEE 14-bus and 30-bus systems and

Table 5 Applications of DA

Category Problem Research works

Combinatorial

optimization

Feature selection Mafarja et al. [128], Hariharan et al. [61]

Optimal power flow Bashishtha and Srivastava [129]

Travel salesman Hammouri et al. [130]

Resource allocation Amini et al. [131]

PID control Guha et al. [132], Simhadri, et al. [133], Mishra and Mohanty [134]

Vehicle routing problem Liu et al. [135]

Constrained optimization Economic dispatch problem Pathania et al. [136], Das et al. [137], Suresh and Sreejith [138]

Bhesdadiya et al. [139], Palappan and Thangavelu [140]

Distributed generator Suresh and Belwin [141], Arulraj and Kumarappan [142]

Optimal VAR reactive power compensation Vanishree and Ramesh [143]

Access point deployment Debnath et al. [144]

Stress concentration factor Jafari et al. [59]

Global maximum power point tracking Raman et al. [145]

Continuous optimization Trainer artificial neural network Abdulameer [146]

Concentric circular antenna array Babayigit [58]

Optimal harmonic passive filter Ismael et al. [147]

Wireless node localization Daely and Shin [148]

Image segmentation Dı́az Cortés et al. [149]

Optimal IIR filter design Singh et al [150]

Thermal parameters estimation Mallick et al. [151]

RFID network Hema et al. [152]

Bearing capacity assessment of footings Moayedi et al. [153]

Medical images Hemamalini and Nagarajan [154], Sarvamangala and Kulkarni [155]

Multilayer perceptrons Khishe and Safari [156]
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compared with IP, PSO, and DEA algorithms. Simulation

results showed the superior performance of DA in solving

the reactive power dispatch problem compared to other

existing popular algorithms.

4.2.2 Distributed generator

Suresh and Belwin [141] employed DA to determine the

optimal size of the distributed generation units at different

power factors and improve the voltage profile of the sys-

tem. Experiments were conducted based on typical IEEE

15-, 33-, and 69-bus radial distribution systems. Simulation

results revealed that DA gives best results compared to

other optimization algorithms existing in the literature.

Arulraj and Kumarappan [142] employed DA for mul-

tiple allocation of distribution generation and capacitor in

distribution systems. The performance of DA was tested

based on the standard 33-bus distributed systems. Results

demonstrated the effectiveness of DA compared to other

existing optimization techniques.

4.2.3 Optimal VAR reactive power compensation

Vanishree and Ramesh [143] used DA to optimize the cost

and the size of the static VAR compensator (SVC) for

voltage profile improvement in power transmission sys-

tems. The effectiveness of DA was tested based on IEEE

14- and 30-bus systems and compared with other opti-

mization algorithms such as PSO, TLBO, and hybrid PSO

(PSO?SA). Simulation results showed the high suitability

of DA for optimal location and size of SVC compared to

other existing algorithms.

4.2.4 Access point deployment

Debnath et al. [144] applied DA for the deployment of

access points (AP) in a disaster geographic location. The

performance of DA was tested to determine the optimal

solution of AP allocation, considering the coverage and

capacity of AP as constraints. Simulation results showed

that DA is 98% accurate.

4.2.5 Stress concentration factor

Jafari et al. [59] adopted DA to optimize the parameters of

perforated orthotropic infinite plates involved in the stress

analysis with the quasi-triangular cutout. DA was used to

evaluate the stress distribution based on Lekhnitskii’s

analytical solution in comparison with GA and PSO algo-

rithms. Numerical results showed the superiority of DA in

optimizing perforated orthotropic plates compared with

GA and PSO.

4.2.6 Global maximum power point tracking

In the work of Raman et al. [145], DA was applied to track

the global maximum power point of photovoltaic systems.

Experimental results demonstrated the superiority of DA

compared to PSO algorithm in terms of tracking speed and

reducing energy loss during the tracking process.

4.3 Continuous optimization

4.3.1 Trainer artificial neural network

Abdulameer [146] used DA as trainer algorithm for artifi-

cial neural network. The performance of DA was evaluated

based on a real human brain MRI dataset in comparison

with GA and PSO algorithms. Simulation results revealed

that DA-based ANN outperforms GA and PSO algorithms

in terms of sensitivity, specificity, and accuracy evaluation

metrics.

4.3.2 Concentric circular antenna array

Babayigit [58] applied DA for solving the concentric cir-

cular antenna array (CCAA) design problem in order to

provide maximum sidelobes level (MSL) reduction. The

performance of DA was evaluated in two different three-

ring design cases with and without center element. Simu-

lation results proved that DA provides the highest MLS

reduction for all design cases in comparison with other

algorithms such as BBO, SOS, OGSA, SQP, CSO, FA, and

EP.

4.3.3 Wireless node localization

Daely and Shin [148] employed DA to estimate the

localization of unknown wireless nodes deployed randomly

in a designed area. The performance of DA was evaluated

in two scenarios: localization with varying the noise per-

centage of distance measurement and localization with

varying the number of unknown nodes. Simulation results

indicated that DA produces a low error for range-based

localization compared to PSO algorithm.

4.3.4 Image segmentation

Dı́az Cortés et al. [149] proposed a segmentation method

based on DA for thermographic images to divide them into

homogeneous regions with clear borders. The two typical

segmentation techniques: Otsu’s method and Kapur’s

entropy, were used as objective functions on DA. The

method was compared with GA, PSO, krill herd algorithm

(KH), and runner-root algorithm (RRA). Simulation results
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exhibited a well performance of the proposed method to

generate clear images with sharp borders.

4.3.5 Optimal IIR filter design

Singh et al. [150] used DA to solve the infinite impulse

response (IIR) filter design problem. The goal was to

determine the optimal set of the unknown IIR filter

parameters. Experimental results demonstrated the effi-

ciency of DA compared to PSO, BA, and cat swarm

optimization (CSO) algorithms.

4.3.6 Thermal parameters estimation

Mallick et al. [151] employed DA to estimate the inverse

variable thermal parameters in a functionally graded

annular fin. The performance of DA was evaluated for

dimensional and non-dimensional temperature field. Sim-

ulation results showed that DA obtained the desired ther-

mal parameters without compromising the volume of the

fin.

4.3.7 RFID network

Hema et al. [152] used DA to develop a centralized energy-

efficient cluster-based protocol to extend the radio fre-

quency identification (RFID) network. The proposed pro-

tocol used a high-energy node as cluster head to devote less

energy while transmitting aggregated data to base stations.

Simulation results showed the efficiency of the proposed

protocol compared to LEACH protocol.

4.3.8 Bearing capacity assessment of footings

Moayedi et al. [153] applied DA to investigate the bearing

capacity of footing in the position of a classification issue.

The performance of DA was tested based on three well-

known accuracy indices of MAE, AUC, and MSE in

comparison with Harris hawks optimization (HHO) and

typical MLP methods. Simulation results showed that DA

outperformed HHO and typical PLM methods by obtaining

minimum AUC of 0.942 and MSE of 0.1171.

4.3.9 Medical images

Hemamalini and Nagarajan [154] applied DA to provide

security to the medical images and determine the effective

pixels. The performance of DA was evaluated using max-

imum objective function (ENeGW) that depends on the

maximum wavelet energy, maximum gradient energy,

minimum edge level, and the minimum neighborhood pixel

strength. Numerical results showed the robustness of DA

compared to GA, PSO, and random selection (RS). DA

obtained a maximum PSNR of 63.0281 dB and a maximum

correlation coefficient at a rate of 0.9830.

Sarvamangala and Kulkarni [155] used DA for solving

the medical image registration problem. Simulation results

showed that DA gives higher quality image registration

compared to ABC and PSO algorithms, but it suffers from

longer convergence time.

4.3.10 Multilayer perceptrons

Khishe and Safari [156] used DA for training an MLP NN

to classify sonar targets. The effectiveness of DA was

evaluated in terms of precision of classification and con-

vergence speed. Experimental results demonstrated the

accuracy and efficiency of DA compared to ACO, GSA,

BBO, GWO, ALO, and MVO algorithms.

5 Discussion and future works

DA has been used to solve a large variety of different

problems. The reasons of its effectiveness and successful-

ness are mainly the simple inspiration and the use of few

control parameters. Similar to other SI, DA has some

restrictions and weaknesses. The strength and weaknesses

of DA are summarized in Table 6. The main restriction is

that the no free lunch (NFL) theorem confirms that an

optimization algorithm cannot solve all optimization

problems. Moreover, DA may stuck in local optima due to

the poor tuning of its control parameters. To overcome that,

researchers have proposed a variant of DA as summarized

in Tables 3 and 4.

However, there are still a lot of possibilities that can be

suggested as future works such as:

• Hybridization of DA with other evolutionary algorithms

and meta-heuristics like FA, CS, HS, BBO, and ALO

algorithms taking advantages of their operators to

enhance the balance between the exploration and

exploitation.

• Development of adaptive versions of DA to tune their

control parameters.

• Development of modified versions of DA to deal with

some complex optimization problems.

• Comparison of the performance of DA with other meta-

heuristics such as HS, CS, SSA, and SCA algorithms.

• Application of DA to solve other practical problems in

computer science fields (Intrusion detection, text sum-

marization, wireless mesh network planning, visual

tracking), electrical engineering (photoelectronic detec-

tion, renewable energy optimization, annual energy

loss), civil engineering (dam scheduling, optimum

design of truss structures, soil stability analysis),
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mechanical engineering (parameter calibration, steel

making), and real-world applications (timetabling, self-

driving cars, water distribution network optimization).

6 Conclusion

DA is a recent and promising nature-inspired algorithm

that has drawn increasing attention from researchers since

it was introduced in 2016. This paper gives the literature

review of this algorithm. The related studies are organized

according to its modifications, hybridizations, and appli-

cations. However, there are still many research areas that

can be suggested as future works. In the area of DA

hybridization, new hybrid algorithms based on the

hybridization of DA with other evolutionary algorithms

and meta-heuristics should be proposed to enhance both

exploitation and exploration. In the area of modified DA,

additional studies are needed to develop other DA variants.

One interesting research area is parameters tuning, which is

very important for all meta-heuristics to solve real-world

problems. DA-modified versions are needed to tune its

parameters so that a large variety of optimization problems

can be solved effectively. Another possible area for future

research is the application of this algorithm to solve other

practical optimization problems.
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IEEE world congress on nature and biologically inspired com-

puting (NaBIC). IEEE, pp 210–214

40. Yang XS (2009) Firefly algorithms for multimodal optimization.

In: International symposium on stochastic algorithms. Springer,

Berlin, pp 169–178

41. Yang XS (2010) Firefly algorithm, stochastic test functions and

design optimisation. Int J Bio-Inspir Comput 2:78–84

42. Fister I, Fister I Jr, Yang XS, Brest J (2013) A comprehensive

review of firefly algorithms. Swarm Evol Comput 13:34–46

43. Yang XS (2010) A new metaheuristic bat-inspired algorithm. In:

Nature inspired cooperative strategies for optimization (NICSO

2010). Springer, Berlin, pp 65–74

44. Yang XS (2013) Bat algorithm: literature review and applica-

tions. Int J Bio-Inspir Comput 5(3):141–149

45. Gandomi AH, Alavi AH (2012) Krill herd: a new bioinspired

optimization algorithm. Commun Nonlinear Sci Numer Simul

17(12):4831–4845

46. Wang GG, Gandomi AH, Alavi AH, Gong D (2019) A com-

prehensive review of krill herd algorithm: variants, hybrids and

applications. Artif Intell Rev 51(1):119–148

47. Kaveh A, Farhoudi N (2013) A new optimization method:

Dolphin echolocation. Adv Eng Softw 59:53–70

48. Mirjalili S, Mirjalili SM, Lewis A (2014) Grey wolf optimizer.

Adv Eng Softw 69:46–61

49. Faris H, Aljarah I, Al-Betar MA, Mirjalili S (2018) Grey wolf

optimizer: a review of recent variants and applications. Neural

Comput Appl 30(2):413–435

50. Mirjalili S (2015) Moth-flame optimization algorithm: a novel

nature-inspired heuristic paradigm. Knowl Based Syst

89:228–249

51. Mirjalili S, Lewis A (2016) The whale optimization algorithm.

Adv Eng Softw 95:51–67

52. Mirjalili S (2015) The ant lion optimizer. Adv Eng Softw

83:80–98

53. Askarzadeh A (2016) A novel metaheuristic method for solving

constrained engineering optimization problems: crow search

algorithm. Comput Struct 169:1–12

54. Mirjalili S, Gandomi AH, Mirjalili SZ, Saremi S, Faris H,

Mirjalili SM (2017) Salp swarm algorithm: a bio-inspired

optimizer for engineering design problems. Adv Eng Softw

114:163–191

55. Mirjalili S (2016) Dragonfly algorithm: a new metaheuristic

optimization technique for solving singleobjective, discrete, and

multi-objective problems. Neural Comput Appl

27(4):1053–1073

56. Gharehchopogh FS, Gholizadeh H (2019) A comprehensive

survey: whale optimization algorithm and its applications.
Swarm Evol Comput 48:1–24

57. Amroune M, Bouktir T, Musirin I (2018) Power system voltage

stability assessment using a hybrid approach combining drag-

onfly optimization algorithm and support vector regression.

Arab J Sci Eng 43(6):3023–3036

58. Babayigit B (2018) Synthesis of concentric circular antenna

arrays using dragonfly algorithm. Int J Electron 105(5):784–793

59. Jafari M, Chaleshtari MHB (2017) Using dragonfly algorithm

for optimization of orthotropic infinite plates with a quasi-tri-

angular cut-out. Eur J Mech A Solids 66:1–14

60. Baiche K, Meraihi Y, Hina MD, Ramdane-Cherif A, Mahseur M

(2019) Solving graph coloring problem using an enhanced bin-

ary dragonfly algorithm. Int J Swarm Intell Res (IJSIR)

10(3):23–45

61. Hariharan M, Sindhu R, Vijean V, Yazid H, Nadarajaw T,

Yaacob S, Polat K (2018) Improved binary dragonfly opti-

mization algorithm and wavelet packet based non-linear features

for infant cry classification. Comput Methods Progr Biomed

155:39–51

62. Rahman CM, Rashid TA (2019) Dragonfly algorithm and its

applications in applied science survey. Comput Intell Neurosci.

https://doi.org/10.1155/2019/9293617

63. Abdel-Basset M, Luo Q, Miao F, Zhou Y (2017) Solving 0–1

knapsack problems by binary dragonfly algorithm. In: Interna-

tional conference on intelligent computing. Springer, Cham,

pp 491–502

64. Sawhney R, Jain R (2018) Modified binary dragonfy algorithm

for feature selection in human papillomavirus-mediated disease

Neural Computing and Applications (2020) 32:16625–16646 16643

123

https://doi.org/10.1155/2017/3082024
https://doi.org/10.1155/2017/3082024
https://doi.org/10.1155/2019/9293617


treatment. In: 2018 IEEE international conference on commu-

nication, computing and internet of things (IC3IoT), pp 91–95

65. Mafarja M, Aljarah I, Heidari AA, Faris H, Fournier-Viger P, Li

X, Mirjalili S (2018) Binary dragonfly optimization for feature

selection using time-varying transfer functions. Knowl Based

Syst 161:185–204

66. Abuomar L, Al-Aubidy K (2018) Cooperative search and rescue

with swarm of robots using binary dragonfly algoritlnn. In :

IEEE 15th international multi-conference on systems, signals an

devices (SSD), pp 653–659

67. Sayed GI, Tharwat A, Hassanien AE (2019) Chaotic dragonfly

algorithm: an improved metaheuristic algorithm for feature

selection. Appl Intell 49(1):188–205

68. Sambandam RK, Jayaraman S (2018) Self-adaptive dragonfly

based optimal thresholding for multilevel segmentation of dig-

ital images. J King Saud Univers Comput Inf Sci 30(4):449–461

69. Jadhav PP, Joshi SD (2018) ADF: adaptive dragonfly opti-

mization algorithm enabled with the TDD properties for model

transformation. Int J Datab Theory Appl 11(4):41–58

70. Apare RS, Gujar SN (2019) Implementing adaptive dragonfly

optimization for privacy preservation in IoT. J High Speed Netw

25(4):331–348

71. Kouba NEY, Menaa M, Hasni M, Boudour M (2018) A novel

optimal combined fuzzy PID controller employing dragonfly

algorithm for solving automatic generation control problem.

Electr Power Compon Syst 46(19–20):2054–2070

72. Peng X, Jia H, Lang C (2019) Modified dragonfly algorithm

based multilevel thresholding method for color images seg-

mentation. Math Biosci Eng 16(6):6467–6511

73. Song J, Li S (2017) Elite opposition learning and exponential

function steps-based dragonfly algorithm for global optimiza-

tion. In: 2017 IEEE international conference on information and

automation (ICIA). IEEE, pp 1178–1183

74. Aadil F, Ahsan W, Rehman ZU, Shah PA, Rho S, Mehmood I

(2018) Clustering algorithm for internet of vehicles (IoV) based

on dragonfly optimizer (CAVDO). J Supercomput

74(9):4542–4567

75. Bhavani R, Prakash V, Chitra K (2019) An efficient clustering

approach for fair semantic web content retrieval via tri-level

ontology construction model with hybrid dragonfly algorithm.

Int J Bus Intell Data Min 14(1–2):62–88

76. Hema C, Sankar S (2016) Energy efficient cluster based protocol

to extend the RFID network lifetime using dragonfly algorithm.

In : International conference on IEEE communication and signal

processing (ICCSP), pp 0530–0534

77. Tharwat A, Gabel T, Hassanien AE (2017) Parameter opti-

mization of support vector machine using dragonfly algorithm.

In: International conference on advanced intelligent systems and

informatics. Springer, Cham, pp 309–319

78. Elhariri E, El-Bendary N, Hassanien AE (2016) Bioinspired

optimization for feature set dimensionality reduction. In : 3rd

international conference on IEEE advances in computational

tools for engineering applications (ACTEA), pp 184–189

79. Feng Y, Zhang P, Yang M, Li Q, Zhang A (2019) Short term

load forecasting of offshore oil field microgrids based on DA-

SVM. Energy Proc 158:2448–2455

80. Li LL, Zhao X, Tseng ML, Tan RR (2020) Short-term wind

power forecasting based on support vector machine with

improved dragonfly algorithm. J Clean Prod 242:118447. https://

doi.org/10.1016/j.jclepro.2019.118447

81. Li D, Deng L, Cai Z (2019) Statistical analysis of tourist flow in

tourist spots based on big data platform and DA-HKRVM

algorithms. Pers Ubiquitous Comput. https://doi.org/10.1007/

s00779-019-01341-x

82. Li Z, Xie Y, Li X, Zhao W (2019) Prediction and application of

porosity based on support vector regression model optimized by

adaptive dragonfly algorithm. Energy Sour Part A Recov Util

Environ Eff. https://doi.org/10.1080/15567036.2019.1634775

83. Yasen M, Al-Madi N, Obeid N (2018) Optimizing neural net-

works using dragonfly algorithm for medical prediction. In:

2018 8th IEEE international conference on computer science

and information technology (CSIT), pp 71–76

84. VeeraManickam MRM, Mohanapriya M, Pandey BK, Akhade

S, Kale SA, Patil R, Vigneshwar M (2018) Mapreduce frame-

work based cluster architecture for academic student’s perfor-

mance prediction using cumulative dragonfly based neural

network. Cluster Comput 22(1):1259–1275

85. Chatra K, Kuppili V, Edla DR (2019) Texture image classifi-

cation using deep neural network and binary dragonfly opti-

mization with a novel fitness function. Wirel Pers Commun

108(3):1513–1528

86. Nair SP, Mary Linda M (2019) An efficient maximum power

point tracking in hybrid solar and wind energy system: a com-

bined MDA-RNN technique. J Intell Fuzzy Syst

37(4):5495–5514

87. Li J, Lu J, Yao L, Cheng L, Qin H (2019) Wind-Solar-Hydro

power optimal scheduling model based on multiobjective

dragonfly algorithm. Energy Proc 158:6217–6224

88. Khalilpourazari S, Khalilpourazary S (2018) Optimization of

time, cost and surface roughness in grinding process using a

robust multi-objective dragonfly algorithm. Neural Comput

Appl. https://doi.org/10.1007/s00521-018-3872-8

89. Vikram KA, Ratnam C, Lakshmi VVK, Kumar AS, Ramakanth

RT (2018) Application of dragonfly algorithm for optimal per-

formance analysis of process parameters in turn-mill opera-

tions—a case study. In: IOP conference series: materials science

and engineering 310(1): 012154. IOP Publishing

90. Weijia L, Jiahui X, Dong X, Yifeng W, Yuanwen J, Yang L

(2018) Multi-objective optimization method of annual power cut

plan based on DMODA algorithm. In: 2018 IEEE China inter-

national conference on electricity distribution (CICED). IEEE,

pp 393–397

91. Salam MA, Zawbaa HM, Emary E, Ghany KKA, Parv B (2016)

A hybrid dragonfly algorithm with extreme learning machine for

prediction. In: 2016 IEEE international symposium on innova-

tions in intelligent systems and applications (INISTA). IEEE,

pp 1–6

92. Wu J, Zhu Y, Wang Z, Song Z, Liu X, Wang W, Zhou J (2017)

A novel ship classification approach for high resolution SAR

images based on the BDA-KELM classification model. Int J

Remote Sens 38(23):6457–6476

93. Sudabattula SK, Kowsalya M, Velamuri S, Melimi RK (2018)

Optimal allocation of renewable distributed generators and

capacitors in distribution system using dragonfly algorithm. In:

2018 IEEE international conference on intelligent circuits and

systems (ICICS). IEEE, pp 393–396

94. Kumar CA, Vimala R, Britto KA, Devi SS (2019) FDLA:

fractional dragonfly based load balancing algorithm in cluster

cloud model. Cluster Comput 22(1):1401–1414
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