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ABSTRACT

Nonlinear p-Laplacian boundary value problems in the

frame of conformable fractional derivatives

Abstract

Turbulent flow in a porous medium is a fundamental mechanics problem. In 1983, L. S.

Leibenson introduced the p-Laplacian equation as a model to the mentioned problem. As

a result of intensive development of fractional derivative, a natural generalization of the p-

Laplacian differential equation was proposed through the replacement of ordinary derivative

by a fractional derivative yielding fractional p-Laplacian equation.

The objective of this thesis is to develop a p-Laplacian boundary value problems using

fractional calculus. By applying the coincidence degree theory, the existence of at least

one solution for a class type of p-Laplacian in the frame of conformable in the sense of

Caputo at the resonance is subjected to different boundary conditions. Another important

contribution of our thesis is the study of a fourth point singular boundary value problem

class of p-Laplacian with conformable derivative by the upper and lower solutions method

associated with the fixed point theorem in partially ordered sets. Necessary and sufficient

conditions for the existence of at least one positive solution are established. Our work

investigate the dependence of a solution on the parameters and were able to generalize some

earlier results in the literature.

Key Words : Local fractional derivative; nonlocal fractional derivative; conformable deriva-

tive; fractional integral; nonlinear boundary value problem; nonlocal multipoint boundary

value problem; p-Laplacian operator; necessary and sufficient conditions; singular nonlinear

boundary value problem; positive solution; existence; uniqueness; continuous dependence

and continuation of solutions; Green function method; upper and lower solutions method;

fixed point theorems; coincidence theorems; coincidence degree; fredholm operators; index

theories; Mawhin’s continuation theorem; resonance; cone.

2020 Mathematics Subject Classification : 26A33, 34A08, 34A12, 34B15, 34B10,

34B16, 34B18, 47H10, 54H25, 47A53.
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ABSTRACT (Arabic version)

 الإشتقاق حساب باستخدام حدية قيم ذات خطية الغير لابلاس‐p مسائل

 المطابق الكسري

 

 ملخص

 عام في ، المسائل من النوع ھذا لدراسة.  أساسية ميكانيكية مسألة مسامي وسط في المضطرب الجريان يعد

  التعميم ٕفان ، لكسريا التفاضل أو للإشتقاق الملحوظ للتطوير نظرا  .لابلاسp‐ معادلة ليبنسن قدم ، 1983

 ، الكسرية لابلاس p‐معادلة لٕانتاج كسري بمشتق العادي المشتق إستبدال ھو لابلاس‐  pلمعادلة  الطبيعي

  مسألة  تطوير  ھو  الأطروحة  ھذه  من  الھدف . لابلاس p‐ معادلة لتعميم خاصة حالة اعتبارھا يمكن والتي

 أثبتنا ، المصادفة درجة نظرية باستخدام .الكسري لإشتقاقا حساب بواسطة لابلاس p‐لمعادلة  الحدية  القيم

 التفاضلية للمعادلات كيبتو بمفھوم للتوافق قابل لابلاس‐  p معادلات من لصنف الأقل على واحد حل وجود

 ، ذلك إلى بالإضافة .مختلفة حدية لقيم تخضع أن يمكن والتي نقاط ثلاث أو بنقطتين الرنين عند الخطية غير

 مطابق مشتق مع لابلاس‐ pلمؤثر النقاط رباعية الحرجة الحدية القيم مسائل من أخرى فئة بدراسة قمنا

 أين ، ًجزئيا مرتبة مجموعات في الثابتة النقطة بنظرية المرتبطة والسفلية العلوية لالحلو طريقة بواسطة

 ارتباط عن تحرينا ، ًأيضا .الأقل على واحد موجب حل لوجود والكافية اللازمة الشروط وضع إلى توصلنا

ُعملنا. المطابقة التفاضلية المعادلة بدرجة الحل َ   .السابقة النتائج بعض يعمم الأطروحة ھذه في َ
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ABSTARCT(French version)

Problèmes du p-Laplacien non linéaires à valeurs aux

limites dans le cadre des dérivées fractionnaires

conformables

Résumé

L’écoulement turbulent dans un milieu poreux est un problème mécanique fondamental. Pour

étudier ce type de problème, en 1983, L. S. Leibenson a introduit l’équation p-Laplacienne.

Comme conséquence du développement intensif du dérivé fractionnaire, une généralisation

naturelle de l’équation différentielle p-Laplacienne est de remplacer le dérivé ordinaire par

un dérivé fractionnaire pour donner l’équation p-laplacienne fractionnaire, qui peut être

considérée comme un cas particulier de la généralisation du p -Équation différentielle Lapla-

cienne. L’objectif de cette thèse est de développer un problème de valeurs aux limites

p-laplaciennes par un calcul fractionnaire. En utilisant la théorie du degré de cöıncidence,

l’existence d’au moins une solution pour un type de p-Laplacien avec dérivée conformable au

sens de Caputo, les équations différentielles non linéaires à résonance à deux ou trois points

peuvent être soumises à différentes conditions aux limites. De plus, nous étudions une autre

classe de problème singulier de quatre valeurs limites de l’opérateur p-Laplacien avec dérivée

conformable par la méthode des solutions supérieure et inférieure associée au théorème

du point fixe dans des ensembles partiellement ordonnés, une condition nécessaire et suff-

isante pour l’existence d’au moins une solution positive est établie. Aussi, nous étudions

la dépendance de la solution par rapport à l’ordre de l’équation différentielle conformable.

Notre travail généralise certains résultats antérieurs de la littérature.
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LIST OF ACRONYMS

BVP : Boundary Value Problem;

CBVP : Conformable Boundary Value Problem;

CCFD : Conformable -Caputo Fractional Derivative;

CD : Conformable Derivative;

CFD : Conformable Fractional Derivative;

DE : Differential Equation;

FBVP : Fractional Boundary Value Problem;

FC : Fractional Caculus;

FDE : Fractional Differential Equation;

FPLE : Fractional p-Laplacian Equation;

FPT : Fixed Point Theorems;

IVP : Initial Value Problem;

LFD : Local Fractional Derivative;

NLFD : Nonlocal Fractional Derivative;

ODE : Ordinary Differential Equation;

PLE : p-Laplacian Equation.
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1.1. Introduction

1.1 Introduction

The turbulent flow in a porous medium is a fundamental mechanics problem. For studying

this type problem, Leibenson [1] introduced the following model

ut =
∂

∂x

(
∂ (um)

∂x

∣∣∣∣∂ (um)

∂x

∣∣∣∣p−1
)
, (1.1)

where m ≥ 2, 1/2 ≤ p ≤ 1. Generally, when m > 1, equation (1.1) is called porous medium

equation [2]; when 0 < m < 1, called diffusion equation; when m = 1, called heat equation,

which often appears in non-Newtonian liquid [3]. For the study of equation (1.1), ones

reduced equation (1.1) into the following p-Laplace equation

(ϕp (u′ (t)))
′
= f (t, u (t) , u′ (t)) , t ∈ (0, 1) , (1.2)

where ϕp (s) = |s|p−2 s, ∞ > p > 1, s ∈ R. Obviously, when p = 2, equation (1.2) becomes

to the general second order differential equation.

The equations with p-Laplacian operator (1.2) arise in the modeling of different physical

and natural phenomena, e.g., non-Newtonian mechanics, nonlinear elasticity and glaciology,

population biology, combustion theory, nonlinear flow laws, system of Monge-Kantorovich

partial differential equations.

p-Laplacian equation have been studied extensively over many years. This study investigates

on the existing PLE, their analysis in the field of FC(1) using fractional derivatives, and finally

proposes an extension of conformable derivative with fractional order.

On the other hand, multi-point BVPs of ordinary differential equations arise in a variety of

different areas of applied mathematics and physics. For example, the vibrations of a guy

(1)Math keywords and entries in the new Mathematics Subject Classification 2010, related to FC.

26A33 Fractional derivatives and integrals.

05C72 Fractional graph theory, fuzzy graph theory.

33E12 Mittag Leffler functions and generalizations.

34A08 Fractional ordinary differential equations.

34K37 Functional-differential equations with fractional derivatives.

35R11 Fractional partial differential equations.

60G22 Fractional stochastic processes, including fractional Brownian motion.
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1.2. Problem statement

wire of a uniform cross-section composed of N parts of different densities can be set up as

a multi-point BVP [4]. Many problems in the theory of elastic stability can also be handled

by the method of multi-point problems. In recent years, some researchers used coincidence

degree theorem to study the existence of at least one solution for some multi-point BVPs

[5]. Singular differential BVP arise from many branches of applied mathematics and physics

[6, 7]; for example, gas dynamics, Newtonian fluid mechanics, nuclear physics, engineering

sciences and so on can all be described using the above problems. In particular, the study

of positive solutions for multi-point BVPs has attracted much attention in recent years.

1.2 Problem statement

Fractional calculus is a generalization of classical calculus. Due to the fractional order

modeling in different physical fields, scientists have shown their interests in the exploration

of its different features. The demand of FC is increasing day by day due to accuracy in

modeling of hereditary problems in physics and engineering in the last two decades. Some of

the recently well considered aspects are including; existence of positive solutions, analytical

solutions numerical solutions of FDEs involving integral boundary conditions, local boundary

conditions, non local boundary conditions, periodic boundary conditions, anti boundary

conditions and multi points boundary conditions of fractional order.

Fractional-order derivatives have been extensively studied for many years in various fields

such as physics, engineering, applied mathematics including mathematical models and anal-

ysis of solutions of fractional differential equations characterizing the behaviors of dynamic

systems. Considerable development in the field of FDEs can be found in the literature

[8, 9, 10]. The PLE is extended in the field of fractional calculus by the equation defined by

Dα0+,t

[
ϕp

(
Dβ0+,τ [u]

)]
= f

(
t, u (t) ,−Dβ0+,t [u]

)
, t ∈ (0, 1) , (1.3)

where Dα0+ and Dβ0+ are the fractional derivatives, with ϕ−1
p = ϕq, 1/p + 1/q = 1, with f

continuous (but not necessarily locally Lipschitz continuous).

Another important property of FDs is that they are nonlocal : a function’s fractional deriva-

tive at a particular point is not just influenced by the function’s behavior near that point.

This novelty arising in fractional but not classical calculus has led to many applications in

3



1.2. Problem statement

fields such as control theory and dynamical systems.

The generalized derivative constitutive relation (equation 1.3) may be viewed as an extension

of the standard model (equation 1.2) in the sense that the derivatives are no longer limited

to being of integer order.

Fractional order DEs with ϕp operator extensively attract the attentions of researchers of

various fields such as physics, mechanics, electrodynamics and dynamical systems. Three

types of generalized differential operators were applied to the FPLE in the state of-the-art,

producing the fractional conformable in the sense of Caputo and the conformable differential

equations.

In the past few decades, many important results relative to (1.3) with certain boundary value

conditions have been obtained. However, to the best of our knowledge, there are relatively

few results on boundary value problems for FPLEs.

However, the newly introduced CFD has never been applied to FPLE despite its numerous

applications in physics, natural sciences and engineering [11, 12, 13]. An analysis of PLE

modeled with CFD will definitely enrich further the literature on p−Laplacian equations.

In this thesis, we analyze p−Laplacian equations modeled with the recently developed new

CCFD, also referred to as the fractional calculus. This implies that the problem of well

posedness related to the new CCFD model applied to PLE is addressed here.

The innovations of this thesis can be shown in two points: firstly, comparing with the lit-

erature, we consider more general nonlinear p-Laplacian boundary value problems involving

the conformable derivative.

Secondly, by using the coincidence degree theory of Mawhin-Ge, lower and upper solutions

method and Guo-Krasnosel’skii theorem, we study the p-Laplacian equation with three kinds

of boundary value conditions and obtain new existence result of solutions. A study of exis-

tence results, our targets are to get existence of solutions for fractional differential equations

involving nonlinear operator ϕp with two types of fractional derivatives that is the con-

formable derivative and conformable derivative in the sense of Caputo.

Noting that when p = 2, it will degenerate into a linear problem, so this thesis enriches the

existing results.

4



1.3. Motivation

1.3 Motivation

Originated from a complaint made on previous CFD whose mathematical expressions ap-

peared cumbersome [14, 15, 16], the CFD was developed as a simplified expression with non

singular kernel. The use of conformable removed difficulties previously experienced by the

older fractional (non-integer) order derivatives in solving fractional related models. Another

benefit of the CFD is its suitability for analysis tools such as Laplace and Fourier transforms,

and also the effective description of behavior in applications such as viscoelastic media, ther-

mal media, and electromagnetic systems. Contrary to the CFD, previous fractional-order

derivatives including the old Caputo and other variant of fractional-order derivatives fitted

more at modeling mechanical phenomena such as damage, plasticity, fatigue and fluid flow.

The well-posedness of a PLFE model with the new CD will be investigated. The existing

literature in the field of fractional calculus indicates that there is still more to be done. New

approaches in proving the existence of generalized PLE have been studied. Our main focus

is then on the investigation and evaluation of the new CFD and its possible subsequent

remnements on PLE. Consequently, two needs drive our interest in the proposed research.

There are as follows:

– The need to demonstrate that the PLE modeled with the new CFD is a wellposed problem

and emphasize on a potential application in the field of applied sciences. Thus various

techniques used in the literature will be investigated to prove the well-posedness of the PLE

modeled with the new CFD.

– The need to investigate the existence, uniqueness of solutions ( primarily positive solutions)

and the dependence of the solution proofs of the recently developed fractional derivative

equations. Recent extensions of the original fractional derivative equations such Riemann-

Liouville and Caputo fractional derivative equations to the newly developed CFD will also

be investigated.

The intended demonstration of the well-posedness for the problem formulated with the new

CFD in modelling PLE is a valuable contribution in the state-of-the-art of fractional calculus

for the reason that, to the best our knowledge, such demonstration for PLE with CFD has not

been done. Our studies is only directed to the FPLE though non-linear evolution equation

can be object of future work.

5



1.4. Research aim and objectives

1.4 Research aim and objectives

It is generally known that the p-Laplacian equations are derived from nonlinear elastic me-

chanics and non-Newtonian fluid theory. In view of their significance in theory and practice,

more and more attention is being paid to the existence of solutions for some fractional

p-Laplacian problems. Thus, many important results have been achieved in this regard.

As already indicated in Section 1.1, the purpose of this study is to prove the well-posedness

for the newly developed CFD model applied to PLE by taking advantage of the fact that

the integral in CFD. Once well-posedness established, advanced analysis of derived solutions

can be effected.

A problem is well-posed if it satisfies the following three properties which are: (1) existence

of a solution, (2) the existing solution is unique, and (3) the behavior’s solution depends

continuously on the data and parameters i.e., the dependence of the solution. These three

properties summarizes our research objectives as each of them will be investigated and

demonstrated with respect to the PLE with CFD.

The main objectives of this thesis are:

(i) to analyze the basis of the method. This covers the first and second chapters which deal

with the fractional operators, the functions used in fractional calculus, p-Laplacian operator,

upper and lower solutions and fixed point theorems.

(ii) to develop new nonlinear p -Laplacian two -point local boundary value problems at

resonance with FCD, we use the Green function method to obtain a general representation

of solutions, Guo-Krasnosel’skii theorem and lower and upper solutions.

(iii) to develop new nonlinear p -Laplacian three -point boundary value problems with FCD,

by using the coincidence degree theory of Mawhin..

(iv) to develop new nonlinear singular p -Laplacian four- point nonlocal boundary value

problems with conformable derivative, by using the coincidence degree theory of Mawhin-

Ge.

Our main results are contained in Chapters 4 and 5. Our work generalizes some earlier

results in the literature.

6



1.5. Research Methodology

1.5 Research Methodology

Various related topics such as applied functional analysis, classical calculus, fractional cal-

culus, differential equations with linear p-Laplacian equations in particular are investigated.

A literature review on the FCs and on the fractional differentiation in particular is included

in the thesis for good understanding of the history and development of this field of study.

Strengths, weaknesses and limitations related to FDs and their applications are identified

and elaborated. We have also reviewed the full literature on differential equations and in

particular the non linear PLEs. The evaluation methods applied to these p-Laplacian equa-

tions are presented and related theorems, existence, uniqueness (positive solutions) and the

dependence of solutions established. The concepts of lower and upper solution have been

considered for this matter, especially that the upper and lower method provides the nec-

essary and sufficient conditions to determine well-posedness. Hence we have made use of

both methods and mathematical tools at our disposal to establish the well-posedness of the

conformable fractional derivative model as applied to non linear p- Laplacian equations. Our

investigation has used, as a departure point, the FPLE defined as

cDα,ρ0+,t

[
ϕp

(
cDβ,ρ0+,τ [u]

)]
= g (t) , t ∈ (0, 1) , (1.4)

where f
(
t, u (t) ,−cDβ,ρ0+,τ [u]

)
is replaced by g (t). Then the concepts of fixed point theorems,

upper and lower solutions have been used to our models and establish conditions for existence

and uniqueness of positive solutions.

1.6 Dissertation outline

This doctoral dissertation is structured as follows:

The first chapter summarizes the goal of our work. The subject and aims of a research

are introduced in Chapter 1. Motivation and problem statement for the concept of FBVPs

and FPLEs with CFDs are considered. An overview of research methodology is given. The

structure of the thesis is presented.

In Chapter 2, we introduce the theory of fractional calculus, we give the definitions of

terminologies used as well as state the basic tool employed in the proof of our results. This

7



1.6. Dissertation outline

chapter consists of four Sections. In Section one, we present ”A brief visit to the history

of the fractional calculus”, and in Section two, we gives some ”Functions used in fractional

calculus”. In Section three, we present some ”Non local fractional derivatives” Finally, in

the last Section, we present some ”Local fractional derivatives”.

In Chapter 3, we introduce notations and some preliminary notions.: some basic concepts,

and useful famous theorems and results (notations, definitions, lemmas, p Laplacian, and

fixed point theorems, ...) which are used throughout this thesis.

While Chapter 4 , here, some results for a class of boundary value problems for nonlinear

fractional differential equations and for non local boundary value problem in Banach space

with fractional conformable derivative in sense Caputo are discussed. An example is given

to illustrate the applicability of our main results. By using the coincidence degree theory due

to Mawhin and constructing the suitable operators, the existence of solutions for boundary

value problems of fractional differential equations at resonance, we investigate the existence

of solutions for the fractional differential equation at resonance

cDα,ρ0+,t

[
ϕp

(
cDβ,ρ0+,τ [u]

)]
= f

(
t, u (t) ,−cDβ,ρ0+,t [u]

)
, t ∈ (0, 1) , (E1)

can be subjected to different boundary conditions:

- with the condition for (E1) is

u(0) = u(1), cDβ,ρ0+,t [u] (0) = 0, 0 < β < α ≤ 1, (C1)

- we also consider the boundary condition of the type

u (0) = u (η) , cDβ,ρ0+,t [u] (1) = 0, 0 < β ≤ 1 < α ≤ 2, (C2)

where cDα,ρ0+ and cDβ,ρ0+ are the conformable derivatives in the sense of Caputo with 0 <

ρ,.ϕ−1
p = ϕq, 1/p+ 1/q = 1, with f continuous (but not necessarily locally Lipschitz contin-

uous).

By employing a fractional conformable integral operator and the coincidence degree theory

due to Mawhin and constructing the suitable operators, the existence of at least one solution

for a type of boundary value problem with p-Laplacian of fractional conformable in the

sense of Caputo differential equations at resonance with Dirichlet condition is obtained. An

examples are given to illustrate our results.

8



1.7. List of Publication and Manuscripts

The existence results of nonlinear classical p-Laplacian equation follow as a special case of

our results. We also aim at showing important connections of the results here with those

including Riemann–Liouville fractional and classical integrals.

In Chapter 5, is based on the published works“Nonlinear singular p -Laplacian four- point

nonlocal boundary value problems with conformable derivative ” (M. Bouloudene et al.).

This chapter studies a class of fourth point singular boundary value problem of p -Laplacian

operator with conformable derivative nonlinear differential equations.

We investigate the following boundary value problems of conformable nonlinear differen-

tial equations with p-Laplacian operator and a nonlinear term dependent on the fractional

derivative of the unknown function

Tβ
0+

(
ϕp
(
Tα

0+u
))

(t) = f
(
t, u (t) ,−Tα

0+u (t)
)
, t ∈ (0, 1) , (E2)

with the four-point boundary conditions

u (0) = 0, u (1) = b1u (ξ1) , Tα
0+u (0) = 0, Tα

0+u (1) = b2T
α
0+u (ξ2) , (C3)

where Tβ
0+ and Tα

0+ are the conformable derivatives with 1 < α, β ≤ 2, 1 < α ≤ α+β−1, 0 ≤

b1, b2 ≤ 1, 0 < ξ1, ξ2 < 1.

By using the upper and lower solutions method and Krasnosel’skii’s fixed point theorems on

cones, necessary and sufficient conditions for the existence of C2 ([0, 1]) positive solutions are

obtained. Our nonlinearity f may be singular at t = 0 and/or t = 1. Example is given to

illustrate the main results. At the end of this chapter, we investigate the dependence of the

solution on the order of the conformable differential equation and on the initial condition.

Lastly, conclusion and possible directions for future work with a bibliography at the end.

1.7 List of Publication and Manuscripts

The work is presented as a series of one published paper ( see [17]), one submitted manuscript,

and one manuscript in preparation.

– Nonlinear singular p-Laplacian boundary value problems in the frame of conformable

derivative Discrete & Continuous Dynamical Systems - S doi: 10.3934/dcdss.2020442
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1.7. List of Publication and Manuscripts

– Nonlinear p -Laplacian two -point local boundary value problems with fractional con-

formable derivative in the sense of Caputo, with F. Jarad, Y. Adjabi and T. Abdeljawad,

submitted on 2021.

– Nonlinear p -Laplacian three-point local boundary value problems with fractional con-

formable derivative in the sense of Caputo, with Y. Adjabi and F. Jarad, To be submitted.
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2.1. A brief overview of generalized derivatives

2.1 A brief overview of generalized derivatives

Fractional calculus is the field of mathematical analysis which deals with the investigation

and application of integrals and derivatives of arbitrary order. It may be considered as an

old but novel topic. It is an old topic since, starting from the speculations of Liebnitz (1695)

and Euler (1738), it has been developed up to the current level.

Many known mathematicians contributed to this theory over the years. Thus, 30 September

1695 is the exact date of birth of the “fractional calculus”. Therefore, the fractional calculus

it its origin in the works by Leibnitz, L’Hopital (1695), Bernoulli (1697), Euler (1730), and

Lagrange (1772). Some years later, Laplace (1812), Fourier (1822), Abel (1823), Liouville

(1832), Riemann (1847), Grunwald (1867), Letnikov (1868), Nekrasov (1888), Hadamard

(1892), Heaviside (1892), Hardy (1915), Weyl (1917), Riesz (1922), P. Levy(1923), Davis

(1924), Kober (1940), Zygmund (1945), Kuttner (1953), J. L. Lions (1959), and Liverman

(1964)... have developed the basic concept of fractional calculus.

But it is a novel topic since only around 30 years ago it has become an object of special-

ized conferences and treatises. In June 1974, Ross has organized the “First Conference on

Fractional Calculus and its Applications” at the University of New Haven, and edited its

proceedings in 1974. Thereafter, Oldham and Spanier published the first monograph de-

voted to “Fractional Calculus” (1974). The integrals and derivatives of non-integer order,

and the fractional integrodifferential equations have found many applications in recent stud-

ies in theoretical physics, mechanics and applied mathematics. There exists the remarkably

comprehensive encyclopedic-type monograph by Samko, Kilbas and Marichev which was

published in Russian in 1987 and in English in 1993 (for more details see [10, 11, 12, 13])

The works devoted substantially to fractional differential equations are : the book of Nishi-

moto (1991), Miller and Ross (1993), Kiryakova (1994), Rubin (1975), of Podlubny (1999),

by Kilbas et al. (2006), by Diethelm (2010), by Ortigueira (2011), by Abbas et al. (2012),

and by Baleanu et al. (2012).

Fractional calculus is a generalization of differentiation and integration to arbitrary order

(non-integer) fundamental operator Da+ where ; a ∈ R. Several approaches to fractional

derivatives exist (1): Riemann-Liouville, Hadamard, Grunwald-Letnikov, Weyl and Caputo

(1)A differential equation is fractional if it involves an operator that can be considered to be between a

12



2.1. A brief overview of generalized derivatives

etc. The Caputo fractional derivative is well suitable to the physical interpretation of initial

conditions and boundary conditions. We refer readers, for example, to the books such as

[11] and references therein. Fractional derivatives of a function with respect to another

function have been considered in the classical monograph by Samko et al. [10] and Kilbas

et al. [11] as generalization of Riemann-Liouville. This fractional derivative is different from

the other classical fractional derivative because the kernel is in terms of function. Recently

they were reconsidered by Almeida in [18] where the Caputo-type regularization of the

existing definition and some interesting properties are provided. Several properties of this

operator could be found in [11, 10, 19, 20, 21]. For some special cases of ψ, we obtain the

Caputo fractional derivative [11], the Caputo-Hadamard fractional derivative [22] and the

Caputo–Erdélyi–Kober fractional derivative [23]. Nevertheless, the complexity and the lack

of some basic properties satisfied by usual derivative have leaded the scientists to improve

new local fractional derivatives and integrals. The authors in [14, 15] introduced the so-called

conformable derivative. Very recently, a new variant of the fractional conformable integral

operator was introduced by F. Jarad et al. in [16, 2017]. Later, many different definitions of

fractional derivatives were derived and presented in [24].

The research on fractional differential equations is very important in both theory and ap-

plications [25]. By using nonlinear analysis tools, some scholars established the existence,

uniqueness, multiplicity and qualitative properties of solutions, we refer the readers to

[26, 27, 28] and the references therein for fractional differential equations, [29, 30, 31]

for fractional differential systems, fractional two-point boundary value problems [32], frac-

tional boundary value problems at resonance [33, 34], fractional multi-point problems with

nonresonance [35, 36], fractional initial value problems [37], fractional impulsive problems

[38], fractional inclusion problems [39, 40, 41], fractional integral boundary value prob-

lems [42, 43, 44, 45, 46, 47, 48, 49, 50], fractional problems with lower and upper solution

[51, 52, 53], fractional control problems [25, 54, 55, 56] and fractional integro-differential

equations [37, 40, 57, 58, 59, 60, 62].

The boundary value problems defined by fractional differential equations have been exten-

sively studied over the last years. Particularly, the study of solutions of fractional differential

(k−1)th and kth order differential operator, for some positive integer k, and it is said to be of fractional-order

if this operator is the highest order operator in the equation.
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2.2. Functions used in fractional calculus

and integral equations is the key topic of applied mathematics research. Many interesting

results have been reported regarding the existence, uniqueness, multiplicity and stability of

solutions or positive solutions by means of some fixed point theorems, such as the Kras-

nosel’skii fixed point theorem, the Schaefer fixed point theorem and the Leggett-Williams

fixed point theorem.

2.2 Functions used in fractional calculus

Mathematically, special functions are functions defined on R or C and they possess not only

series representations, but also integral representations. So we need some various special

functions that have appeared in this thesis.

2.2.1 Gamma function Γ (z)

A gamma function Γ (z) can be defined in many ways. The Gamma function Γ (z) is the

most widely used of all the special functions: it is usually discussed first because it appears

in almost every integral or series representation of other advanced mathematical functions.

We take as its definition the integral formula

Let z ∈ R∗+, the representation of the Gamma function is

Γ(z) =

∫ ∞
0

tz−1e−tdt (2.1)

and

Γ(z + 1) = zΓ(z). (2.2)

The relation (2.2), yields the useful result

Γ(n+ 1) = n!, n = 0, 1, 2, ...

which shows that gamma function is the generalization of factorial function.

14



2.2. Functions used in fractional calculus

2.2.2 Beta function B(z, w)

Let z, w > 0, the standard representation of the Beta function is

B(z;w) =

∫ 1

0

tz−1(1− t)w−1dt. (2.3)

The Beta function is a complex function of two complex variables whose analyticity properties

will be deduced later, as soon as the relation with the Gamma function has been established.

B(w; z) = B(z;w)

and

∀z, w > 0, B(z, w) =
Γ(z)Γ(w)

Γ(z + w)
.

This relation is of fundamental importance. Furthermore, it allows us to obtain the analytical

continuation of the Beta function. The proof of (2.3) can easily be obtained by writing the

product Γ(z)Γ(w) as a double integral that is to be evaluated introducing polar coordinates.

2.2.3 Mittag–Leffler function Eα,β (z)

Recently, Mittag-Leffler functions show its close relation to fractional calculus and especially

to fractional problems which come from applications. This new era of research attract many

scientists from different point of view (see, for example, [11, 12, 13]).

In 1903, the Swedish mathematician G. Mittag-Leffler introduced the one parametric Mittag-

Leffler function Eα (z) defined as

Eα (z) =
∞∑
k=0

zk

Γ (αk + 1)
, α > 0, z ∈ C. (2.4)

A first generalization of this function was proposed by Wiman in 1905, and he defined as

Eα,β (z) =
∞∑
k=0

zk

Γ (β + kα)
, α > 0, β ∈ R, z ∈ C.

When α, β > 0 the series is convergent. Later, this function was rediscovered and intensively

studied by R. P. Agarwal in 1953 and others, This generalization is referred to as two-

parameter Mittag-Leffler function.

Another generalization of the Mittag-Leffler function (2.4) can be found in the contemporary

monographs of R. Gorenflo et al. [63, 2014].
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2.3. Non local fractional derivatives

2.3 Non local fractional derivatives

Fractional-order operators are nonlocal, i.e. the value of a fractional derivative of a function

at a point in the domain depends on values of the function throughout the domain.

2.3.1 Fractional derivatives with singular kernel

In the NLFD, there are several definitions for the operators of integration and differentiation

of arbitrary order with singular kernel.

Grunwald-Letnikov fractional derivative

The Grunwald-Letnikov fractional derivative with fractional order α is defined as follows

GLDαu (t) = lim
h→0

1

hα

∞∑
k=0

(−1)k
(
α

k

)
u (t− kh) (2.5)

= lim
h→0

1

hα

∞∑
k=0

Γ (k − α)

Γ (k + 1) Γ (−α)
u (t− kh) , α > 0,

with

(−1)k
(
α

k

)
=
−α (1− α) (2− α) ... (k − 1− α)

k!
=

Γ (k − α)

Γ (k + 1) Γ (−α)
, 0 ≤ n− 1 < α < n.

(2.6)

Consequently, if u ∈ Cn [a, t] and by applying the integration by parts, we get

GLDαu (t) =
n−1∑
k=0

u(k) (a) (t− a)k−α

Γ (k − α + 1)
+

1

Γ (n− α)

t∫
a

(t− τ)n−α−1 u(n) (τ) dτ, (2.7)

where n− 1 < α < n ∈ Z+.

Riemann-Liouville fractional operators

The Riemann-Liouville fractional integral is most frequently used definition of fractional

calculus [64].

The left-sided Riemann-Liouville integral operator of order β > 0, of a continuous function

u : [0,∞) −→ R is given by

Jβt u (t) =
1

Γ (β)

∫ t

a

(t− τ)β−1 u (τ) dτ, (2.8)
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2.3. Non local fractional derivatives

provided that the right side is pointwise defined on R+.

The corresponding left-sided Riemann–Liouville NLFD of order n− 1 ≤ α < n, of a contin-

uous function u : [0,∞) −→ R is given by

Dα
a+u (t) ≡ dαu(t)

d (t− a)α
=

1

Γ (n− α)

(
d

dt

)n ∫ t

a

(t− τ)n−α−1 u (τ) dτ, (2.9)

provided that the right side is pointwise defined on R+.

Caputo fractional derivative

In the development of the theory of both fractional integration and derivation, as well in

the related applications in pure mathematics, the Riemann-Liouville NLFD as defined in

(2.9) played a important role. However, the solutions of problems in physics have required a

revision of Riemann-Liouville fractional derivative which is difficult to be interpreted phys-

ically. Hence the Caputo fractional derivative was proposed in [65]. The Caputo fractional

derivative with fractional order of u (t) is defined as follows

cDα
a+u (t) =

1

Γ (n− α)

∫ t

a

(t− τ)n−1−α u(n) (τ) dτ. (2.10)

This definition is more practical for analytic purpose than the Grunwald-Letnikov fractional

derivative. Moreover, the initial conditions in the Caputo approach takes the same form as

in the classical differential equations.

Remark 1 The two definitions of Reimann-Liouville and Caputo are not equivalent and

their relation is correlated by the following expression

cDα
a+u (t) = Dα

a+

[
u (τ)−

n−1∑
k=0

u(k) (a)

k!
(τ − a)k

]
(t) (2.11)

=
(
In−αa+ (Dnu)

)
(t) , (a < t < b) .

Since there is no clear physical meaning for which the initial conditions are expressed in

fractional derivatives, it is preferable to use the Caputo definition in a wide class of practical

applications, depending on the nature of the material of system at hand [11].
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2.3. Non local fractional derivatives

Hadamard fractional operators

J. Hadamard [66], introduced a new definition of NLFDs and integrals in which he claims:(
Dαa+u

)
(t) =

1

Γ (n− α)
δn
∫ t

a

(
ln
t

τ

)n−α−1

u (τ)
dτ

τ
, α ∈ [n− 1, n) (2.12)

and (
J α
a+u
)

(t) =
1

Γ (α)

∫ t

a

(
ln
t

τ

)α−1

u(τ)
dτ

τ
, (0 ≤ a) , 0 < α ≤ 1, (2.13)

where δ = t
d

dt
is the so-called δ-derivative.

Generalized fractional integral operator

The generalized fractional integral operator of order for α ∈ (0, 1] , ρ > 0, a ≥ 0 and t ∈

(a,∞[ given by [67]

(J α,ρ
a+ u) (t) =

ρ1−α

Γ (α)

∫ t

a

(tρ − τ ρ)α−1 u (τ)
dτ

τ 1−ρ , (2.14)

and the generalized fractional derivative operator

(Dα,ρa+u) (t) =
ρα

Γ (n− α)
γn
∫ t

a

(tρ − τ ρ)n−α−1 u (τ)
dτ

τ 1−ρ , α ∈ [n− 1, n) , (2.15)

where γ =
(
t1−ρ d

dt

)
is the so-called γ-derivative.

The relation between these two fractional latter operators is as follows:

(Dα,ρa+u) (t) = γn
(
J n−α,ρ
a+ u

)
(t) , α ∈ [n− 1, n) . (2.16)

The generalized operators (2.14)-(2.15) depend on extra parameter ρ > 0, which by taking

ρ→ 0+ reduces to the Hadamard fractional operator and for parameter ρ = 1 becomes the

Riemann–Liouville fractional operator.

The left-sided Caputo type generalized fractional derivatives of u of order α defined by

(cDα,ρa+u) (t) = J n−α,ρ
a+ (γnu) (t) , α ∈ [n− 1, n) . (2.17)

Fractional conformable operators

The left-sided FC integral operator of order for α ∈ (0, 1] , ρ > 0, a ≥ 0 and t ∈ (a,∞[ given

by

Jα,ρa+,t [u] =
1

Γ (α)

∫ t

a

(
(t− a)ρ − (τ − a)ρ

ρ

)n−α−1

u (τ)
dτ

(τ − a)1−ρ (2.18)
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2.3. Non local fractional derivatives

and the left-sided FCD operator in Riemann-Liouville setting, respectively, by

Dα,ρa+,t [u] =
1

Γ (n− α)
(T ρ,na )

∫ t

a

(
(t− a)ρ − (τ − a)ρ

ρ

)n−α−1

u (τ)
dτ

(τ − a)1−ρ , α ∈ [n− 1, n) ,

(2.19)

where T ρ,n = T ρ◦T ρ◦...◦T ρ n times and n = [α]+1 and T ρ,n is the left and right conformable

differential operators presented in (2.34).

The left FCDs in the sense of Caputo is given by

cDα,ρa+,t [u] = Jn−α,ρa+ (T ρ,na+ u) (t) (2.20)

=
1

Γ (n− α)

∫ t

a

(
(t− a)ρ − (τ − a)ρ

ρ

)n−α−1

(T ρ,na )u (τ)
dτ

(τ − a)1−ρ .

Lemma 1 [16]Let n ≥ α > n− 1, α /∈ N.

Jα,ρa+,t

(
cDα,ρa+,τ [u]

)
= u (t)−

n−1∑
k=0

(
Tα,ka u

)
(a)

ρkk!
(t− a)ρk , for t ∈ (a, b] . (2.21)

Lemma 2 For β > 0, the general solution of the Caputo fractional differential equation(
cDβ,ρ0+,t [u]

)
= 0, (2.22)

is given by

u (t) = c0 + c1t+ ...+ cn−1t
n−1, (2.23)

where ci (i = 1, ..., n− 1) and n = [β] + 1.

Lemma 3 [16] when u (t) = (t− a)ρ(β−1) and β > 0, we have(
Jα,ρa+,t [u]

)
=
ρ1−α

Γ (α)

∫ t

a

((t− a)ρ − (τ − a)ρ)
α−1

u (τ)
dτ

(τ − a)1−ρ (2.24)

=
Γ (β)

ραΓ (α + β)
(t− a)ρ(α+β−1) .

ψ−Generalized fractional integral operator

The left-sided factional integrals and fractional derivatives of a function U with respect to

another function ψ in the sense of Riemann-Liouville are defined as follows [11](
Jα,ψa+,t

)
[u] =

1

Γ (α)

∫ t

a

ψ′ (τ) (ψ (t)− ψ (τ))α−1 u (τ) dτ (2.25)
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2.3. Non local fractional derivatives

and (
Dα,ψ
a+,t

)
[u] =

(
1

ψ′ (t)

d

dt

)n (
Jn−α,ψa+,t

)
[u] , (2.26)

respectively, where n = [α] + 1, where u, ψ ∈ Cn[a, T ] two functions such that ψ is increasing

and ψ′(t) 6= 0, for all t ∈ [a, T ].

We propose the remarkable paper [21] in which some generalizations using ψ-fractional in-

tegrals and derivatives are described. In particular, we have
if ψ(t) −→ t, then Jα,ψa+,t −→ Jαa+,t,

if ψ(t) −→ ln t, then Jα,ψa+,t −→ HJαa+,t,

if ψ(t) −→ tρ, then Jα,ψa+,t −→ ρJαa+,t, ρ > 0,

where Jαa+,t,
H Jαa+,t,

ρ Jαa+,t are classical Riemann–Liouville, Hadamard and Katugampola frac-

tional operators.

2.3.2 Fractional derivatives with non-singular kernel

Caputo-Fabrizio fractional derivative

Among existing NLFDs, the most commonly used are the Riemann-Liouville fractional

derivative and the Caputo fractional derivative also known as the old Caputo derivative.

The new Caputo-Fabrizio fractional derivative without singular kernel is simply an exten-

sion of the old Caputo fractional derivative where the kernel of the integral is reformulated.

The definition of the new Caputo-Fabrizio fractional derivative presented in this section is

extracted from [68].

For n = 1 and a being an initial value other than 0 such that a ∈ (−∞, t], the equation

(2.10) then becomes

cDα
a+u (t) =

1

Γ (1− α)

∫ t

a

(t− τ)−α u′ (τ) dτ, (2.27)

with u ∈ H1 (a, b) .

By changing the kernel (t− τ)−α with the function exp
(
− α

1−α(t− τ)α
)

and 1/Γ (1− α) with

M(α)/ (1− α), the CFFD is defined by

CFDα
t [u] =

M(α)

(1− α)

∫ t

a

exp

[
− α

1− α
(t− τ)α

]
Dτ [u] dτ, (2.28)
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2.4. Local fractional derivatives

with α ∈ [0, 1] and u ∈ H1 (a, b) and M(α) is a normalization function such that M(0) =

M(1) = 1.

When u does not belong to H1 (a, b), the equation (2.28) is re-formulated for u ∈ L1 (−∞, b)

and for α ∈ [0, 1], and gives

CFDα
t [u] =

αM(α)

(1− α)

∫ t

−∞
exp

[
− 1

1− α
(t− τ)

]
(u (t)− u (τ)) dτ. (2.29)

Atangana-Baleanu fractional derivative

Atangana and Baleanu published an article [69] in which they proposed a new fractional

derivative with a kernel that is non-local and non-singular. They introduced two versions,

i.e:

ABCDα
t [u] =

B(α)

(1− α)

∫ t

a

Eα

[
− α

1− α
(t− τ)α

]
Dτ [u] dτ, (2.30)

where u ∈ H1(0, 1), 0 < α < 1 and B(α) is normalization function which satisfy the

properties B(0) = 1, B(1) = 1 and

B(α) = 1− α +
α

Γ (α)
.

The fractional integral associate to the ABC-fractional derivative with no-singular and non-

local kernel is defined by

Iαt [u] =
(1− α)

B(α)
u(t) +

α

B(α)
Jαt [u] , 0 < α < 1, (2.31)

where Jαt is the left Riemann−Liouville fractional integral given in (2.8).

The Atangana−Baleanu in Riemann−Liouville fractional derivative of u of order α ∈ (0, 1),

defined by

ABRDα
a+u(t) =

B(α)

1− α
d

dt

∫ t

a

u(s)Eα (−γ(t− s)α) ds,

where u ∈ H1(a, b), γ = α/(1− α) and Eα(.) is the Mittag−Leffler function.

2.4 Local fractional derivatives

Local fractional calculus (is also called Fractal calculus) was first introduced by Kolwankar

and Gangal. It is explain the behavior of continuous but nowhere differentiable function.
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2.4. Local fractional derivatives

They proposed particular notation that they had used in their publication for the LFD of a

function defined on fractal sets [70, 71].

Unfortunately, as noted in section 2.3, fractional derivatives are not local in nature. On the

other hand it is desirable and occasionally crucial to have local character in wide range of

applications ranging from the structure of differentiable manifolds to various physical models.

Secondly the fractional derivative of a constant is not zero, consequently the magnitude of

the fractional derivative changes with the addition of a constant. The appropriate new notion

of fractional differentiability must bypass the hindrance due to these two properties. These

difficulties were remedied by introducing the notion LFD in [72] as follows.

Definition 1 If, for a function u : [0, 1] −→ R, the limit

Dαu(t) = lim
t→τ

dα (u(t)− u(τ))

d (t− τ)α
, (2.32)

exists and is finite, then we say that the local fractional derivative (LFD) of order α (0 < α < 1),

at t = τ , exists.

Advantage of defining LFD in this manner lies in its local nature and hence allowing the

study of pointwise behaviour of functions ( also see [73] and the references therein ).

2.4.1 Conformable operators

Among the inconsistencies of the existing fractional derivatives are:

(1) Most of the fractional derivatives except Caputo-type derivatives, do not satisfy cDα
a (1) =

0 , if α is not a natural number.

(2) All fractional derivatives do not obey the familiar Product Rule for two functions.

(3) All fractional derivatives do not obey the familiar Quotient Rule for two functions.

(4) All fractional derivatives do not obey the Chain Rule.

(5) Fractional derivatives do not have a corresponding Rolle’s Theorem.

(6) Fractional derivatives do not have a corresponding Mean Value Theorem.

(7) All fractional derivatives do not obey: Dα
aD

β
au = Dα+β

a u, in general.
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2.4. Local fractional derivatives

(8) The Caputo definition assumes that the function u is differentiable.

To overcome some of these and other difficulties, Khalil et al. [14], came up with an inter-

esting idea that extends the familiar limit definition of the derivative of a function given by

the following.

Definition 2 The left-sided conformable derivative of order α ∈ (0, 1] is given by

Tα0+u(t) = lim
ε→0

u(t+ εt1−α)− u(t)

ε
, Tα0+u(0) = lim

t→0+
Tα0+u(t). (2.33)

The properties of
(
Tα0+u

)
can be found in [14, 15].

Definition 3 Let α ∈ (0, 1]. A differential operator Tα0+ is conformable if and only if T 0 is

the identity operator and T 1 is the classical differential operator.

Definition 4 Let α ∈ (n, n+ 1] and u be a n -differentiable function at t > 0, then the left

sided conformable derivative of order α at t > 0 is given by

(
Tα

0+u
)

(t) =
(
Tα−n

)
u(n) (t) = lim

δ→0
[u(n)(t+ δtn+1−α)− u(n)(t)]/

(
δtn+1−α) . (2.34)

Lemma 4 Let t > 0, α ∈ (n, n+ 1]. The function u is (n + 1)-differentiable if and only if

u is α-differentiable, moreover,
(
Tα

0+u
)

(t) = tn+1−αu(n+1) (t)

Remark 2 As a basic example, given α ∈ (n, n+ 1] , we have, Tα
0+

(
tk
)

= 0 where k =

0, 1, ..., n.

Definition 5 Let α ∈ (n, n+ 1]. The left sided conformable integral of order α at t > 0 of

a function u ∈ C ((0,+∞) ,R) is given by

Iα0+u (t) = Jn+1
0+

(
tα−n−1u (t)

)
=

1

n!

∫ t

0

(t− s)n sα−n−1u (s) ds, (2.35)

when u(n) (t) exists.

The following lemma play a fundamental role in obtaining an equivalent integral represen-

tation to the BVP (E2-C3 ).
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2.4. Local fractional derivatives

Lemma 5 Let α ∈ (n, n+ 1]. If u ∈ C (0, 1] and Tα
0+u ∈ L1 [0, 1], then

Iα0+Tα
0+u = u (t) +

n−1∑
k=0

u(k) (0)

k!
tk = u (t) + c0 + c1t+ ...+ cn−1t

n−1, for t ∈ (0, 1] , (2.36)

where ck = u(k)(0)
k!

and n is the smallest integer greater than or equal to α (n = [α] + 1).

Lemma 6 Let t2 > t1 ≥ 0 and u : [t1, t2]→ R be a function with the properties that

(i) u is continuous on [t1, t2]

(ii) u is α-differentiable on (t1, t2) for some α ∈ (0, 1) . Then there exists τ ∈ (t1, t2) such

that (
Tα0+u

)
(τ) =

u (t2)− u (t1)
1
α

(tα2 − tα1 )
. (2.37)

Lemma 7 Let α ∈ (0, 1] and u, v be α -differentiable at a point t > 0. Then

(i)
(
Tα0+

)
(r1u+ r2v) = r1

(
Tα0+u

)
+ r2

(
Tα0+v

)
, r1, r2 ∈ R.

(ii)
(
Tα0+

)
(r1) = 0 for all constant functions u (t) = r1.

(iii)
(
Tα0+

)
(fg) = v

(
Tα0+u

)
+ u

(
Tα0+v

)
.

2.4.2 Local non conformable fractional derivative

Definition 6 Given a function u : [0,+∞) −→ R. Then the N-derivative of u of order α

is defined by [74, 75]

Nu
(α)
U (t) = lim

ε→0

u(t+ εU (t, α))− u(t)

ε
, (2.38)

for all t > 0, α ∈ (0, 1) being U (t, α) is some function. Here we will use some cases of U

defined in function of Eα,β the classic definition of Mittag-Leffler function with α, β > 0.

For example, if U (t, α) = tαEα,α+1 (at), then

lim
α→1

Nu
(α)
U (t) = u′ (t) tE1,2 (at) , (2.39)

i.e., a non-conformable derivative.
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2.4. Local fractional derivatives

2.4.3 Other definitions for local fractional derivatives

For example, in [76], a concept similar to the Caputo fractional derivative is presented, but

the first order derivative u′(t) is replaced by another operator:

u(α)(t) = lim
ε→0

u(t+ εt)− u(t)

εα
. (2.40)

In [77], the LFD is given by

u(α)(t) = lim
ε→0

u(t exp (εt−α))− u(t)

ε
(2.41)

and some fundamental properties like the algebraic rules or the mean value theorem are

obtained.

In [78], the same concept of LFD is considered and an anti-derivative operator is defined, as

well some applications to quantum mechanics; in [70], the LFD is defined by the expression

u(α)(t) = lim
τ→t

Dα (u(τ)− u(t)) , (2.42)

where Dα denotes the Riemann–Liouville fractional derivative.

In [79], the LFD is given by

u(α)(t) = lim
ε→0

u(t+ εk (t)1−α)− u(t)

ε
. (2.43)

In [80], Anderson et al. introduces conformable fractional as follows.

Definition 7 Let α ∈ [0, 1] and let the functions k0 , k1 : [0, 1]× R→ [0,∞) be continuous

such that

lim
α→0+

k1(α, t) = 1 , lim
α→0+

k0(α, t) = 0 ∀t ∈ R

and

lim
α→1−

k1(α, t) = 0 , lim
α→1−

k0(α, t) = 1 ∀t ∈ R,

with

k1(α, t) 6= 0 , α ∈ [0, 1) , k0(α, t) 6= 0 , α ∈ [0, 1) , ∀t ∈ R.

Then the following differential operator cTα, defined via

cTαu(t) = k1(α, t)u(t) + k0(α, t)u′(t). (2.44)
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3.1. Introduction

3.1 Introduction

Various methods for evaluating FDEs including ODEs exist in the literature [81] and is

explored in the thesis. To name few, we have [82]: the interactive method which is effective

in solving only simple FDEs with real order,

(2) the Laplace transform method which is suitable for evaluating the FDE based IVPs.

(3) In spite of Adomian decomposition method, Homotopy analysis method, explicit numer-

ical method and the Variational iterative method.

(4) In the Theory of DFs, the concept of fixed point and fixed point theorems are indispens-

able as they are deployed to show the existence of solutions to given problems. In common

practice, given a BVP to establish the existence of solutions one transforms the given BVP

as an equivalent fixed point problem to a integral operator

Fu (t) =

∫ 1

0

G (t, s) f (s, u (s)) ds, (3.1)

primarily in the function space C ([0, 1]). So that the problem of existence of solutions

reduces to seeking fixed points to the operator, F so defined.

(5) The theory of lower and upper solutions is known to be an easy, elementary method

to deal with second order boundary value problems. The premises of the lower and upper

solutions method can be traced back to Picard. In 1890 for partial differential equations and

in 1893 for ordinary differential equations, he introduced monotone iterations from a lower

solution. The method of upper and lower solutions is extensively developed for lower order

equations; see Ako [83], Gaines [84], Jackson [85], Mawhin [86], and Nagumo [87]. More

recently, Thompson [88] has continued the development of these methods with applications

to fully nonlinear BVPs. Working applications, the use of lower and upper solutions method

faces the difficulty to exhibit such functions. It replaces a difficult problem, “how to find a

solution of a boundary value problem”, by a no way easier problem, “how to find lower and

upper solutions”.

(6)Topological degree theory is a very powerful tool used in proving various existence results

for nonlinear partial differential equations and it has received a lot of attention in the liter-

ature, see the references in [89]. Gaines and Mawhin introduced coincidence degree theory

in 1970s in analyzing functional and differential equations [4, 90]. Mawhin has continued
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3.2. p-Laplacian operator

studies on this theory later on and has made so important contributions on this subject

since then this theory is also known as Mahwin’s coincidence degree theory. Coincidence

theory is very powerful technique especially in existence of solutions problems in nonlinear

equations. It has especially so broad applications in the existence of periodic solutions of

nonlinear differential equations so that many researchers have used it for their investigations

see [91] and references therein .

3.2 p-Laplacian operator

The classical p-Laplacian operator is a well known nonlinear operator mostly used in non-

linear analysis. The nonlinear p-Laplacian operator is defined as 1
p

+ 1
q

= 1 then ϕp (s) =

|s|p−2 s, ∞ > p > 1, s ∈ R and ϕq = ϕ−1
p . Let some properties for ϕp operator. Then

Lemma 8 [36]For any u, v ∈ R and 1 < p, q <∞, 1/p+ 1/q = 1, we have ϕq = ϕ−1
p ,

(i) If 1 < p ≤ 2, uv > 0 and |u| , |v| ≥ l > 0 then

|ϕp (u)− ϕp (v)| ≤ (p− 1) lp−2 |u− v| . (3.2)

(ii) If p > 2, |u| , |v| < L then

|ϕp (u)− ϕp (v)| ≤ (p− 1)Lp−2 |u− v| . (3.3)

Lemma 9 [92]For any u, v ≥ 0 ,

(i) If 1 < p < 2 then

|ϕp (u+ v)| ≤ ϕp (v) + ϕp (v) . (3.4)

(ii) If p ≥ 2 then

|ϕp (u+ v)| ≤ 2p−2 (ϕp (v) + ϕp (v)) . (3.5)

Lemma 10 [92]Let t, τ ∈ [t1, t2], we have
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3.2. p-Laplacian operator

(i) If 1 < q ≤ 2, then

|ϕq (t+ τ)− ϕq (τ)| ≤ 22−q |t|q−1 . (3.6)

(ii) If q > 2, then

|ϕq (t+ τ)− ϕq (τ)| ≤ (q − 1) (|t|+ |τ |)q−2 |t| . (3.7)

From the definition of ϕp then for any t, τ ∈ R, we have

ϕq (|t|+ |τ |) ≤ Cp (ϕq (|t|) + ϕq (|τ |)) ,

where

Cp =

 1 if p > 2

2
2−p
p−1 if 1 < p ≤ 2.

We also need the following lemma to obtain our results.

Lemma 11 If a, b ≥ 0, r > 0, then

(a+ b)r ≤ max
{

2r−1, 1
}

(ar + br)

or

(a+ b)r ≤ λr−1ar + µr−1br, λ+ µ = 1. (3.8)

Proof. Obviously, without loss of generality, we can assume that a, b > 0, r 6= 1. Let

h (t) = tr, t ∈ [0,+∞)

(i) If r > 1, then h (t) is convex on (0,+∞), and so(
λ
a

λ
+ µ

b

µ

)r
≤ λ

(a
λ

)r
+ µ

(
b

µ

)r
,

1

λ
+

1

µ
= 1.

(ii) If 0 < r < 1, then h (t) is concave on [0,+∞), and so

h (a) = h

(
b

a+ b
0 +

a

a+ b
(a+ b)

)
≥ b

a+ b
h (0) +

a

a+ b
h (a+ b) =

a

a+ b
h (a+ b) ,

h (b) = h

(
a

a+ b
0 +

b

a+ b
(a+ b)

)
≥ a

a+ b
h (0) +

b

a+ b
h (a+ b) =

b

a+ b
h (a+ b) .

Thus, h (a) + h (b) ≥ h (a+ b) namely,

(a+ b)r ≤ ar + br.

By (i), (ii) above, we know that the conclusion of Lemma 11 is true.
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3.3. Solution and positive solution

3.3 Solution and positive solution

By a solution of a BVP, we mean a function u satisfying the given DE together with the

boundary conditions imposed. The solution is called positive if u(t) > 0 for all t, except at

the endpoints.

3.4 Lower and upper solutions

The method of lower and upper solutions is an elementary but powerful tool in the existence

theory of initial and periodic problems for semilinear DEs for which a maximum principle

holds, even in cases where no special structure is assumed on the nonlinearity.

Now, we introduce the following definitions of a couple of the lower and upper solutions for

fourth-order p-Laplacian conformable boundary value problem (E2-C3). Denote

E =
{
u : u ∈ C2 ([0, 1]) and ϕp

(
Tα

0+u
)
∈ C2 ([0, 1])

}
.

Definition 8 Let u (t) , u (t) ∈ E, we say that u(t) is called a lower solution of operator F

if u(t) ≤ Fu(t),and u (t) is called an upper solution of operator F if u(t) ≥ Fu(t).

Definition 9 A function u is called a lower solution of the conformable boundary value

problem (E2-C3), if u (t) ∈ E and u (t) satisfies
Tβ

0+

(
ϕp
(
Tα

0+u (t)
))

(t)− f
(
t, u (t) ,Tγ

0+u (t)
)
≤ 0, t ∈ (0, 1) ,

u (0) ≤ 0, u (1)− b1u (ξ1) ≤ 0,
(
Tα

0+

)
u (0) ≥ 0,

(
Tα

0+

)
u (1)− b2

(
Tα

0+

)
u (ξ2) ≥ 0.

(3.9)

This condition is motivated by the fact that an lower solution for an equation of the type

Tβ
0+

(
ϕp
((

Tα
0+

)
u (t)

))
(t) = f

(
t, u (t) ,Tγ

0+u (t)
)

can be obtained if one has an lower solution

for another equation of the form

Tβ
0+

(
ϕp
((

Tα
0+

)
u (t)

))
(t) = g

(
t, u (t) ,Tγ

0+u (t)
)
, 0 < α, β ≤ 2 and 0 < γ < α + β,

with

g
(
s, u (s) ,Tγ

0+u (s)
)
≤ f

(
s, u (s) ,Tγ

0+u (s)
)

for all s.
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3.5. Some basic fixed point theorems

An upper solution u is defined by reversing inequalities in the previous definition.

The existence of a lower solution over the upper solution implies the existence of solutions

lying between both functions.

3.5 Some basic fixed point theorems

In the existence results of fractional differential equations, scientists are utilizing various

types of fixed point approaches. We concerned in this section to give some FPTs which will

be used throughout in this thesis.

3.5.1 Schauder fixed point theorem

Theorem 1 (Schauder’s fixed point theorem) Let E be a Banach space and D ⊂ E, a

convex, closed and bounded set. If T : D → D is a continuous operator such that T (D) ⊂

E, T (D) is relatively compact, then T has at least one fixed point in D.

Let Y be a closed bounded convex subset of a normed space X. Let T : Y −→ X be a

compact map such that T (Y ) ⊂ Y . Then there is a point u ∈ Y.such that Tx = u.

3.5.2 Guo-Krasnosel’skii theorem

Lemma 12 (Guo-Krasnosel’skii theorem) [93]Let P be a positive cone in a real Banach

space E. Let Ω1, Ω2 be bounded open balls of E centered at the origin with 0 ∈ Ω1, Ω̄1 ⊂ Ω2.

Suppose that A : P ∩
(
Ω̄2\Ω1

)
→ P is a completely continuous operator such that

‖Au‖ ≤ ‖u‖ ∀u ∈ P ∩ ∂Ω1 and ‖Au‖ ≥ ‖u‖ ∀u ∈ P ∩ ∂Ω2,

or

‖Au‖ ≥ ‖u‖ for P ∩ ∂Ω1 and ‖Au‖ ≤ ‖u‖ for P ∩ ∂Ω2,

hold. Then A has a fixed point in P ∩
(
Ω̄2\Ω1

)
.

For u ∈ C [0, 1], the corresponding norm is ‖u‖0 = max {|u (t)| : t ∈ [0, 1]}. And for u ∈

C2 [0, 1], the corresponding norm is

‖u‖ = max
{
‖u‖0 ,

∥∥T 2
0+u
∥∥

0

}
. (3.10)
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3.5. Some basic fixed point theorems

3.5.3 Leray-Schauder degree theory

Let Ω ∈ Rn be open and bounded and u ∈ C1(Ω̄). If p /∈ u (∂Ω) then the Brouwer degree

deg (u,Ω, p) is a tool that describes the number of solutions for equation u(t) = p.

Definition 10 [89]Let u ∈ C1(Ω̄), p ∈ Rn be given with p /∈ u (∂Ω), and p /∈ u (Su). The

Brouwer degree of u at p with respect to Ω, deg(u,Ω, p), is defined by

deg (u,Ω, p) =
∑

t∈u−1(p)

sgnJu(t), (3.11)

where deg(u,Ω, p) = 0 if u−1(p) = φ, Ju(t) is the Jacobian of u at t and Su
(
Ω̄
)

is the set of

all critical points of u in Ω̄

Su
(
Ω̄
)

= {t ∈ Ω : Ju(t) = 0} . (3.12)

Theorem 2 [89]The Leray-Schauder degree has the following properties:

(i) (Normality). deg(I,Ω, 0) = 1 if and only if 0 ∈ Ω

(ii).(Solvability). If deg(I −M,Ω, 0) 6= 0, then Mu = u has a solution in Ω .

(iii) (Homotopy). Let H(u, λ) : Ω̄× [0, 1] −→ X be continuous compact and H(u, λ) 6= u for

all (u, λ) ∈ ∂Ω̄× [0, 1]. Then deg(I − H(., λ),Ω, 0) 6= 0 doesn’t depend on λ ∈ [0, 1].

Lemma 13 [90]The Leray-Schauder degree of a linear isomorphism is equal to ±1.

3.5.4 Coincidence degree theory of Mawhin

Coincidence degree theory provides a method for proving the existence of solution of the

equation Lu = Nu where L : domL ⊂ X −→ Y is a linear Fredholm mapping of index

equal to zero and N is a (completely continuous, possibly nonlinear) mapping represents

a wide variety of problems including nonlinear ordinary, partial and functional differential

equations, which is defined on the closure of a bounded open subset of X and takes values

from Y,X and Y being Banach spaces over the real. When L−1 exists, then this equation

reduces to u = L−1Nu which is included in the class of Hammerstein operators and is under

the scope of fixed point theory.
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3.5. Some basic fixed point theorems

Some nonlinear problems arising in many areas of the applied sciences can be formulated

under a mathematical point of view involving the study of solutions of equations of the form

Find u ∈ X such that Lu = Nu, (3.13)

where X is a nonempty set, Y is a Banach space, and L,N : X → Y are two mappings. The

problem of finding a solution for equation (3.13) is known as a coincidence problem.

Equations of the form Lu = Nu, where L : domL ⊂ X −→ Y is linear and N : domN ⊂

X −→ Y not necessarily linear, with X and Y vector spaces, appear in the abstract for-

mulation of many problems of analysis or applied mathematics and have been extensively

studied.

Continuation theorem for linear operator

An operator P : X → X is said to be an algebraic projection if P is linear and idempotent,

i.e. P 2 = P . Let P : X → X and Q : Y → Y be two algebraic projections.

Now, we briefly recall some notations and an abstract existence result, which can be found

in [36].

Let X, Y be real Banach spaces, L : domL ⊂ X → Y be a Fredholm operator with index

zero, where the index of a Fredholm operator L is defined by,

Index L := dim kerL− co dim Im L

and P : X → X, Q : Y → Y be projectors such that ImP = ker L, Im L = kerQ. then

X = ker L⊕ kerP, Y = Im L⊕ ImQ, and

L|domL ∩ kerP : domL ∩ kerP → Im L,

is invertible. We denote the inverse by KP .

If Ω is an open bounded subset of X such that domL ∩ Ω̄ 6= 0, then the map N : X → Y

will be called L-compact on Ω̄ if QN
(
Ω̄
)

is bounded and KP (I−Q)N : Ω̄→ X is compact.

In this section, we take Y = C [0, 1], with the norm ‖y‖∞ = max {|y(t)| : t ∈ [0, 1]}, and

X =
{
u : u,

(
Dα,ρ0+

)
u ∈ Y

}
with the norm ‖u‖X = max

{
‖u‖∞ ,

∥∥(Dα,ρ0+

)
u
∥∥
∞

}
. By means of

the linear functional analysis theory, we can prove that X is a Banach space.
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3.5. Some basic fixed point theorems

Definition 11 Let X and Y be normed spaces. A linear operator L : dom L ⊂ X −→ Y is

said to be a Fredholm operator of index zero provided that

(i) ImL is a closed subset of Y ,

(ii) dim kerL = co dim Im(L) < +∞.

Definition 12 Let X be a normed space. A linear operator P : X −→ X is said to be a

projection if P ◦ P = P . In this case, I − P : X −→ X is also a projection and ker(P ) =

Im(I − P ), Im(P ) = ker(I − P ), where I is the identity operator on X.

It follows from Mawhin’s equivalent theorem Lu = Nu for u ∈ Ω̄ that the equation is

equivalently converted into the fixed point equation u = φ (u) for u ∈ Ω̄ where φ = P +

(JQ + KP ,QN) is a completely continuous operator. This can be solvable thanks to the

following theorem, called Mawhin’s continuation theorem.

Theorem 3 (Mawhin’s theory of coincidence) [4]Let X, Y be real Banach spaces, L :

dom ⊂ X −→ Y be a Fredholm operator of index zero and N : X −→ Y be L-compact on Ω.

Assume that the following conditions are satisfied

(C1) Lu 6= λNu for every (u, λ) ∈ [(Dom L� ker L) ∩ ∂Ω]× (0, 1) ;

(C2) Nu /∈ ImL, for every u ∈ kerL∩∂Ω;

(C3) deg(JQN|ker L ,Ω ∩ ker L, 0) 6= 0 where, Q : Y → Y is a projection such that ImL=

kerQ, J : ImQ −→ ker L be a linear isomorphism with J (θ) = θ;

Then the equation Lu = Nu has at least one solution in dom L ∩ Ω̄.

Continuation theorem for quasi-linear operator

First, we recall Mawhin’s continuation theorem which our study is based upon.

Next we introduce an extension of Mawhin’s continuation theorem [36] which allows us

to deal with the more general abstract operator equations, such as BVPs of p-Laplacian

equations.
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A new continuation theorem for the existence of solutions to p-Laplacian BVP at resonance

Now, we briefly recall some notations and an abstract existence result, which can be found

in [36].

Definition 13 Let X be a real Banach space and let X1 ⊂ X.The operator P : X → X1 is

said to be a projector provided that for P 2 = P and P (ax1 + bx2) = aP (u1) + bP (u2), for

u1, u2 ∈ X and a, b ∈ R. The operator Q : Y → Y1 is said to be a semi-projector provided

Q2 = Q.

Let X, Y be real Banach spaces, M : domM ⊂ X → Y be a map and P : X → X1 be a

projector, Q : Y → Y1 be semi-projector, such that ImP = ker M, Im M = kerQ. then

X = ker M⊕ kerP, Y = Im M⊕ ImQ, and

M|domM ∩ kerP : domM ∩ kerP → Im M,

is invertible. We denote the inverse by KP .

If Ω is an open bounded subset of X with the origin θ ∈ Ω such that domM ∩ Ω̄ 6= 0,

then the map Nλ : X → Y will be called M -compact on Ω̄ if QNλ

(
Ω̄
)

is bounded and

KP (I−Q)Nλ : Ω̄→ X is compact.

In this thesis, we take Y = C [0, 1], with the norm ‖y‖∞ = max {|y(t)| : t ∈ [0, 1]}, and

X =
{
u : u,

(
Dα,ρ0+,t

)
u ∈ Y

}
with the norm ‖u‖X = max

{
‖u‖∞ ,

∥∥(Dα,ρ0+,t

)
u
∥∥
∞

}
. By means

of the linear functional analysis theory, we can prove that X is a Banach space.

Definition 14 Let Y1 be a subspace of Y . An operator Q : Y → Y1 is said to be a semi-

projector provided that

(i) Q2y = Qy,∀y ∈ Y,

(ii) Q(λy) = λQy,∀y ∈ Y, λ ∈ R.

Definition 15 [94]Let X and Y be two Banach spaces with norms ‖.‖X and · ‖.‖Y , respec-

tively. A continuous operator

M : X ∩ domM→ Y, (3.14)
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is said to be quasi-linear if

(i) ImM = M (X ∩ domM) is a closed subset of Y ;

(ii) kerM = {u ∈ X ∩ domM : Mx = 0} is linearly homeomorphic to Rn;n <∞.

Definition 16 [94]Let X and Y be to real Banach spaces and let M : X ∩domM → Y be a

map. Assume that X1 = kerM is a linear subspace of X and denote by X2 its complement

subspace, i. e.,X = X1 ⊕X2.Likewise, let Y1 and Y2 be two complementary linear subspaces

of Y so that Y = Y1 ⊕ Y2. Assume that dimX1 = dimY1. Let P : X → X1 and Q : Y → Y1

be the corresponding orthogonal projectors. Denote by J : Y1 → X1 a homeomorphism with

J(0) = 0.The operator M is said to be quasi-linear if

(i) dim kerM = dimM − 1(0) = n <∞; where “dim” denotes dimension;

(ii) R(M) = ImM = M(X ∩ domM) is a closed subset in Y2.

Definition 17 [94]Let Ω be a bounded open subset of X,with θ ∈ Ω, and consider a param-

eter family of perturbation (generally nonlinear) Nλ : Ω̄ → Y with N1 = N, λ ∈ [0, 1]. The

continuous operator Nλ is said to be M-compact in Ω̄ if there exists subset Y1 of Y satisfying

dimY1 = dim kerM and an operator R : Ω̄× [0, 1]→ X2 being continuous and compact such

that for λ ∈ [0, 1] ,

(i) (I −Q)Nλ(Ω̄) ⊆ ImM ⊂ (I −Q)Y ;

(ii) QNλu = θ, λ ∈ (0, 1)⇐⇒ QNx = θ, ∀u ∈ Ω;

(iii) R(0, u) = 0 and R(0, λ)|∑
λ

= (I − P )|∑
λ

;

(iv) M(P + R(., λ)) = (I −Q)Nλ, λ ∈ [0, 1], where X2 is a the complement space of kerM

in X, i.e., X = kerM ⊕X2; P,Q are two projectors satisfying ImP = kerM ; ImQ = Z1;

N = N1;
∑

λ =
{
u ∈ Ω̄ : Mu = Nλu, u ∈ Ω̄, λ ∈ (0, 1]

}
.

Theorem 4 (Continuation theorem for quasi-linear operator) [94]Let X, Y be real

Banach spaces. Suppose M : dom(L) ⊂ X −→ Y be a is a quasi-linear operator and Nλ :

Ω̄ −→ Y, λ ∈ [0, 1] be M-compact on Ω̄. Assume that the following conditions are satisfied

(C1) Mu 6= Nλu ∀ (u, y) ∈ [(dom M/ ker M) ∩ ∂Ω]× (0, 1) , where ∂Ω denotes the boundary

of Ω;
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(C2) Nλu /∈ ImM , λ ∈ (0, 1) , ∀u ∈ kerL∩∂Ω or QNu 6= 0, ∀u ∈ kerM∩∂Ω;

(C3) deg(JQN,Ω ∩ ker M, 0) 6= 0 where N = N1 and Q : Y → Y is a projection such that

ImM= kerQ and J : ImQ −→ kerM is a homeomorphism.

Then the abstract equation Mu = Nu has at least one solution in dom M ∩ Ω̄.

Remark 3 If M = L is a linear operator, then the requirement that L is a Fredholm operator

of index zero, N is L-compact on Ω̄ and K is inverse operator of LP = M|domM∩Im M as is

defined in Mawhin’s theorem, implies Nλ=λN.

Remark 4 We can write the BVPs with the form (4.2). If L is invertible, or KerL = {0},

(4.2) is called non-resonant problem. Otherwise, if KerL is not a trivial space, then it is

called resonant problem.
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4.1. Introduction

4.1 Introduction

Over the years, there have been a surge in the study of second order nonlinear ODEs of the

form

u′′ (t) = f (t, u (t)) , 0 < t < T (4.1)

see ([66]) subject to different boundary conditions based on interest.

Hairong Lian et al. (see [95]) considered a three-point BVP of differential equation with a

p-Laplacian given by

(ϕp (u′ (t)))
′
= f (t, u (t) , u′ (t)) , 0 < t < T (4.2)

and

u (0) = u (η) , u′ (T ) = 0, T ∈ (0,∞] .

The equation (4.2) subjected to different boundary condition has been studied by many

authors.

A boundary value problem of differential equation is said to be at resonance if its correspond-

ing homogeneous one has nontrivial solutions. For (4.2), it is easy to see that the following

BVP

(ϕp (u′ (t)))
′
= 0, 0 < t < T (4.3)

and

u (0) = u (η) , u′ (T ) = 0, T ∈ (0,∞] .

has solutions {u(t) = c, c ∈ R}. When c 6= 0 they are nontrivial solutions. For multi-point

BVP at resonance without p-Laplacian, there have been many existence results available in

the references [5, 94]

This chapter considers the existence of solutions for two boundary value problems of FPLE

at resonance. we investigate the existence of solutions for FPLE of the form

cDα,ρ0+,t

[
ϕp

(
cDβ,ρ0+,τ [u]

)]
= f

(
t, u (t) ,−cDβ,ρ0+,t [u]

)
, t ∈ (0, 1) , (4.4)

subject to either boundary value conditions

u(0) = u(1),cDβ,ρ0+,τ [u] (0) = 0, 0 < β < α ≤ 1, (4.5)
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4.1. Introduction

or

u (0) = u (η) ,cDβ,ρ0+,τ [u] (1) = 0, 0 < β ≤ 1 < α ≤ 2. (4.6)

Bai and Lü [43] studied the existence and multiplicity of positive solutions of nonlinear

fractional boundary value problem (Dα
t )u (t) = f (t, u (t)) in (0, 1) , 1 < α ≤ 2,

u (0) = 0 = u (1) .
(4.7)

The Dirichlet boundary conditions are used in paper [96]. When the boundary values are

not zero, Riemann-Liouville fractional derivative is not suitable.

In [97], Agarwal et al. have investigated the following the fractional boundary value problem

(Dα
t )u (t) = −f

(
t, u (t) ,−

(
Dβ
t

)
u (t)

)
in (0, 1) (4.8)

and boundary conditions

u(0) = u(1) = 0, (4.9)

where Dβ
t , Dα

t are Riemann-Liouville fractional operators with 0 < β < α ≤ 1, They

established the existence results by the FPT in a cone. Related results for the case can

be found in [97] and the references in these chapiter. As we shall see, a more specific

result, which establishes the existence of solution continua of (4.8) which satisfy the above

conditions, may be obtained also.

For fractional boundary value problems at resonance, Chen et al. (see [76]) considered a

two-point BVP with p-Laplacian operator given by

Dα0+,t

[
ϕp

(
Dβ0+,τ [u]

)]
= f

(
t, u (t) ,−Dβ0+,t [u]

)
, t ∈ (0, 1) , 0 < β, α ≤ 1, (4.10)

with the condition

Dβ0+,t [u] (0) = 0 = Dβ0+,t [u] (1). (4.11)

They obtained the existence results by using the coincidence degree theory.

However, there are few papers consider the boundary value problem for fractional order

at resonance. Many works have been done to discuss the existence of solutions, positive

solutions subject to Dirichlet, Sturm-Liouville, or nonlinear boundary value conditions.
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The above result naturally prompts one to ponder if it is possible to establish similar existence

results for BVP at resonance with a p-Laplacian under at most linearly increasing condition

and other suitable conditions imposed on the nonlinear term.

Motivated by the work above, we consider the existence of solutions for two (or three)

point boundary value problem for FPLE ( E1-C1) (or (E1-C1) ) at resonance. By using

the coincidence degree theory, a new result on the existence of solutions for above FBVP (

E1-C1) (or (E1-C1) ) is obtained. These results extend the corresponding ones of ordinary

differential equations of integer order.

In this section, we consider the following second order quasi-linear differential equation (E1),

subject to one of the following boundary conditions (C1) and (C1)

Our assumptions on the nonlinearity f will be the following:Let f : [0, 1] × R2 → R be

continuous. Assume that

(A1) there exist nonnegative functions a, b, c ∈ Y such that

|f(t, u, v)| ≤ a(t) + b(t)|u|p−1 + c(t)|v|p−1,∀t ∈ [0, 1], (u, v) ∈ R2.

(A2) There is B > 0 such that for all |u| > B, either

uf(t, u, 0) < 0,∀t ∈ [0, 1]

or

uf(t, u, 0) > 0,∀t ∈ [0, 1].

(A3) There is E > 0 such that for all |u| > E and v ∈ R, either

f(t, u, v) < 0,∀t ∈ [0, 1]

or

f(t, u, v) > 0,∀t ∈ [0, 1].

(A4) There exists constant A > 0 such that ∀u ∈ domM ∩ ker M; satisfying |u (t)| > A, for

all t ∈ [0, 1], we have

Iβ,ρ0+,η

[
ϕq

(
Iα,ρ0+,τ

[
f
(
τ, u (τ) ,−cDβ,ρ0+,τ [u]

)]
− Iα,ρ0+,1

[
f
(
τ, u (τ) ,−cDβ,ρ0+,τ [u]

)])]
6= 0.
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(A5) There exists constant D > 0 such that for all |c| > D, either

cIβ,ρ0+,η

[
ϕq
(
Iα,ρ0+,τ [f (τ, c, 0)]− Iα,ρ0+,1 [f (τ, c, 0)]

)]
< 0

or

cIβ,ρ0+,η

[
ϕq
(
Iα,ρ0+,τ [f (τ, c, 0)]− Iα,ρ0+,1 [f (τ, c, 0)]

)]
> 0.

4.2 p -Laplacian two -point local boundary value prob-

lems with fractional conformable derivative in the

sense of Caputo

4.2.1 Introduction

Motivated by the results of [1, 16, 97, 98, 99], in this section, by using the coincidence degree

theory, we investigate the existence of solutions for the fractional differential equation at

resonance

cDα,ρ0+,t

[
ϕp

(
cDβ,ρ0+,τ [u]

)]
= f

(
t, u (t) ,−cDβ,ρ0+,t [u]

)
, t ∈ (0, 1) , 0 < β, α ≤ 1, (4.12)

with the condition for (4.12) is

u(0) = u(1),cDβ,ρ0+,t [u] (0) = 0, (4.13)

where
(
cDα,ρ0+,τ

)
and

(
cDβ,ρ0+,τ

)
are the conformable in the sense of Caputo derivative with

0 < β ≤ β + α < 1, 0 < ρ,.with f continuous (but not necessarily locally Lipschitz

continuous).

In this section, we establish sufficient conditions to guarantee the existence of at least one

solution of nonlocal BVPs consisting of the fractional order differential equation with p-

Laplacian (4.12) and one of following boundary conditions (4.13).

Note that, the nonlinear operator cDα,ρ0+

[
ϕp

(
cDβ,ρ0+,τ

)]
is reduced to the linear operator(

cDα+β,ρ
0+,τ

)
when p = 2 and the additive index law

cDα,ρ0+,t

[
cDβ,ρ0+,τ [u]

]
=c Dα+β,ρ

0+,t [u] ,
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holds under some reasonable constraints on the function u (t) (see [81]).

Furthermore, since cDα,ρ0+

[
ϕp

(
cDβ,ρ0+,τ

)]
is a nonlinear operator, the coincidence degree theory

for linear differential operators with PBCs is invalid in the direct application to it.

In the special case p = 2 and β = α = 1, the problem ( 4.12-4.13) becomes the two

point BVPs of second order ordinary differential equation. When f is continuous, problem

is nonsingular, the existence and uniqueness of positive solutions in this case have been

studied by papers [42, 100]. The theorems we present include and extend some previous

results.

When ρ = 1, Problem (4.12), (4.13) is reduced to second order two point BVP, which has

been studied by many authors; see [11, 12].

In this section, we take

X =
{
u : u ∈ C ([0, 1]) and ϕp

(
cDβ,ρ0+,τ [u]

)
∈ C ([0, 1])

}
. (4.14)

For u ∈ C[0, 1], the corresponding norm is ‖u‖0 = max {|u (t)| : t ∈ [0, 1]} and for u ∈ X,

the corresponding norm is

‖u‖ = max
{
‖u‖0 ,

∥∥∥cDβ,ρ0+,τ [u]
∥∥∥

0

}
. (4.15)

4.2.2 The solutions for the problem (E1-C1)

The problem (4.12-4.13) is equivalent to the following problem

cDβ,ρ0+,t [u] = ϕq

(
Iα,ρ0+,t

[
f
(
τ, u (τ) ,−cDβ,ρ0+,τ [u]

)]
+ ϕp

(
cDβ,ρ0+,τ [u] (0)

))
, (4.16)

with the initial condition for (4.16) is (4.13).

Define the operator L : Dom L ⊂ X −→ Y by

Lu =c Dβ,ρ0+,t [u] , (4.17)

where

DomL =
{
u ∈ X : u(0) = u(1),cDβ,ρ0+,τ [u] (0) = 0

}
. (4.18)

Let N : X −→ Y be the Nemytski operator

Nu = ϕq

(
Iα,ρ0+,t

[
f
(
τ, u (τ) ,−cDβ,ρ0+,τ [u]

)])
∀t ∈ [0, 1] . (4.19)
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Then (4.16) is equivalent to the operator equation

Lu = Nu, u ∈ DomL. (4.20)

The main goal in the coincidence degree theory is to search the existence of a solutions of

the operator equation (4.16) in some bounded and open set Ω in some Banach space for L

being a linear operator and N nonlinear operator using Leray-Schauder degree theory.

In this subsection, we need the following auxiliary lemmas to prove the existence of solutions

to (4.16-4.13).

Lemma 14 Let L be defined by (4.17), then

ker L = {c, c ∈ R} (4.21)

and

Im L =

{
y ∈ Y :

∫ 1

0

(1− τ ρ)β−1 y (τ)
dτ

τ 1−ρ = 0

}
. (4.22)

Proof. (i) By Lemma 2,

Lu = 0, cDβ,ρ0+,τ [u] = 0, (4.23)

has solution

u (t) = u (0) = c, ∀t ∈ [0, 1] . (4.24)

Combining with the boundary value conditions of (4.13), one has (4.21) hold.

(ii) If y ∈ ImL, then there exists a function u ∈ Dom L such that Lu = y

u (t)− u (0) = Iα,ρ0+,t [y] , (4.25)

u (t) =

∫ t

0

(
tρ − τ ρ

ρ

)β−1

y (τ)
dτ

τ 1−ρ + u (0) . (4.26)

From condition

u (1) =

∫ 1

0

(
1− τ ρ

ρ

)β−1

y (τ)
dτ

τ 1−ρ = u (0) . (4.27)

Thus, we get (4.22).

On the other hand, suppose y ∈ Y and satisfies (4.22).
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Let u (t) = Iβ,ρ0+,t [y] then u ∈ Dom L and

Lu (t) =
(
cDβ,ρ0+,t

) [
Iβ,ρ0+,τ [y]

]
= y (t) ∈ DomL.

Lemma 15 Let L be defined by (4.17); then L is a Fredholm operator of index zero, and the

linear continuous projector operators P : X → X and Q : Y → Y can be defined as

(Pu) (t) = u (0) , ∀t ∈ [0, 1] (4.28)

and

(Qy) (t) = w
(
Iα,ρ0+,1

)
y (t) = ρβ

∫ 1

0

(1− τ ρ)ρ−1 y (τ)
dτ

τ 1−ρ , (4.29)

where

w = ρβ.

Proof. (i) For any u ∈ X, we have

(Pu) (t) = u (0) and kerP = {u ∈ X : u (0) = 0} . (4.30)

Obviously, ImP = kerL and it is clear that (P 2u) (t) = (Px) (t). ∀u ∈ X, it follows from

u = (u− Pu) + Pu, that X = ker L + kerP.

Since, for u ∈ kerL∩ kerP =⇒ u = 0, which implies ker L ∩ kerP = {0}. Then we get

X = ker L⊕ kerP. (4.31)

(ii) For any y ∈ Y , we have

Q2y (t) = Q (Qy (t)) = ρβ

∫ 1

0

(1− τ ρ)β−1Qy (τ)
dτ

τ 1−ρ

= Qy (t) ρβ

∫ 1

0

(1− τ ρ)β−1 dτ

τ 1−ρ

= Qy (t) . (4.32)

The next step is to prove kerQ = Im L, It is clear that Im L ⊂ kerQ If y ∈ kerQ ⊂ Y then

Qy = 0 =⇒ ρβ

∫ 1

0

(1− τ ρ)β−1 y (τ)
dτ

τ 1−ρ = 0.
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Thus we get

y ∈ Im L and kerQ = Im L. (4.33)

Let y ∈ Y , y = (y −Qy) + Qy where (y −Qy) ∈ kerQ = Im L,Qy ∈ ImQ It follows from

y = kerQ+ Im L = Im L + kerQ.

If y ∈ ImL∩ ImQ then ∫ 1

0

(1− τ ρ)β−1 y (τ)
dτ

τ 1−ρ = 0,

which implies that

y (t)

∫ 1

0

(1− τ ρ)β−1 dτ

τ 1−ρ =
y (t)

ρβ
= 0, ∀t ∈ [0, 1] .

Thus, we have

y = 0.

We can get that Im L ∩ ImQ = {0}. Then, we have

Y = Im L⊕ ImQ. (4.34)

Thus

dim ker L = dim Im Q =co dim Im L = 1.

This means that L is a Fredholm operator of index zero.

Ind L = dim ker L− co dim L = 1− 1 = 0.

Furthermore, the operator KP : ImL→ DomL ∩ kerP can be written by

KPy =
(
Iβ,ρ0+,τ

)
y (t) (4.35)

and

LP : L\dom (L) ∩ kerP −→ Im L,

LPu = Lx. (4.36)

Now, we will prove that KP is the inverse of (L|DomL∩kerP )−1 From the definitions of P,KP

, it is easy to see that the generalized inverse of L is KP .

In fact, for y ∈ ImL, we have

LPKPy =c Dβ,ρ0+,τ

[
Iβ,ρ0+,τ [y]

]
= y. (4.37)
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Moreover, for u ∈ Dom L ∩ kerP, we have

u ∈ dom (L) ∩ kerP =⇒ u (0) = 0 and Px = 0.

By Lemma 1, we obtain that

KPLPu = Iβ,ρ0+,t

[
cDβ,ρ0+,τ [u]

]
= u (t)− u (0) , (4.38)

which together with u(0) = 0 yields that

Iβ,ρ0+,t [LPu] = u (t) . (4.39)

Combining (4.37) with (4.39), we know that KP = L−1
P .

Lemma 16 Assume Ω ⊂ X is an open bounded subset such that Dom L∩ Ω̄ 6= ∅; then N is

L-compact on Ω̄.

Proof. Let

KP,Q = KP (I −Q)N, (4.40)

where I is identity operator. By the continuity of f and the definition of the operator N,

there exists a constant M > 0 such that∣∣∣f (t, u (t) ,−cDβ,ρ0+,t [u]
)∣∣∣ ≤M, (4.41)∣∣∣Iα,ρ0+,t

[
f
(
τ, u (τ) ,−cDβ,ρ0+,τ [u]

)]∣∣∣ ≤M (4.42)

and

‖(Nu) (t)‖ ≤M,∀u ∈ Ω̄, t ∈ [0, 1]. (4.43)

|(QNu) (t)| ≤ w

∫ 1

0

(1− τ ρ)β−1 |(Nu) (τ)| dτ

τ 1−ρ ≤ |Nu (t)| ≤M. (4.44)

So, we get that QN
(
Ω̄
)

is bounded.

|KP (I −Q)Nu| ≤M, ∀u ∈ Ω̄, t ∈ [0, 1]. (4.45)

So, we get that KP,Q

(
Ω̄
)

is bounded.

Thus, in view of the Arzelà–Ascoli theorem, we need only prove that KP,Q

(
Ω̄
)

= KP (I −

Q)N(Ω̄) ⊂ X is equicontinuous.
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For 0 ≤ t1 < t2 ≤ 1, u ∈ Ω̄, we have

|KP,Qu (t2)−KP,Qu (t1)| ≤ |KPNu (t2)−KPNu (t1)|+ |KPQNu (t2)−KPQNu (t1)| ,

(4.46)

|KPNu (t2)−KPNu (t1)| ≤

∣∣∣∣∣ 1
Γ(β)

∫ t2

0

(
tρ2 − τ ρ

ρ

)β−1

Nu (τ) dτ
τ1−ρ
−
∫ t1

0

(
tρ1 − τ ρ

ρ

)β−1

Nu (τ) dτ
τ1−ρ

∣∣∣∣∣
≤ 1

Γ (β)

∣∣∣∣∣
∫ t1

0

[(
tρ2 − τ ρ

ρ

)β−1

−
(
tρ1 − τ ρ

ρ

)β−1
]

Nu (τ)
dτ

τ 1−ρ

∣∣∣∣∣
+

∣∣∣∣∣
∫ t2

t1

(
tρ2 − τ ρ

ρ

)β−1

Nu (τ)
dτ

τ 1−ρ

∣∣∣∣∣ (4.47)

|KPNu (t2)−KPNu (t1)| ≤ M

Γ (β)

∣∣∣∣∣
∫ t1

0

[(
tρ2 − τ ρ

ρ

)β−1

−
(
tρ1 − τ ρ

ρ

)β−1
]

dτ

τ 1−ρ

∣∣∣∣∣
+

∣∣∣∣∣
∫ t2

t1

(
tρ2 − τ ρ

ρ

)β−1
dτ

τ 1−ρ

∣∣∣∣∣
≤ M

ρβΓ (β + 1)

∣∣∣[tβρ2 − (tρ2 − t
ρ
1)β − tβρ1

]
+ (tρ2 − t

ρ
1)β
∣∣∣

≤ M

ρβΓ (β + 1)

∣∣∣∣∣∣tβρ2 − t
βρ
1

∣∣∣+ 2 |tρ2 − t
ρ
1|
β
∣∣∣

≤ M

ρβρΓ (β)

∣∣∣tβρ2 − t
βρ
1

∣∣∣ .
|KP,Qu (t2)−KP,Qu (t1)| = |KPQNu (t2)−KPQNu (t1)| (4.48)

≤
∣∣∣∣ 1

Γ(β)

∫ t2

0

(
tρ2−τρ
ρ

)β−1

QNu (τ) dτ
τ1−ρ
−
∫ t1

0

(
tρ1−τρ
ρ

)β−1

QNu (τ) dτ
τ1−ρ

∣∣∣∣
≤ M

ρβΓ (β + 1)

∣∣∣∣∣∣tβρ2 − t
βρ
1

∣∣∣+ 2 |tρ2 − t
ρ
1|
β
∣∣∣ .

Since tβρ is uniformly continuous on [0, 1], we can obtain that KP,Q(Ω̄) ⊂ C[0, 1] is equicon-

tinuous.

Similar proof can show that cDβ,ρ0+,τ

[
KP (I−Q)N(Ω̄)

]
⊂ C[0, 1]is equicontinuous. This,

together with the uniformly continuity of ϕq(s) on [−M,M ], yields that cDβ,ρ0+,τ

[
KP,Q(Ω̄)

]
=

ϕq(
cDβ,ρ0+,τ

[
KP (I−Q)N)(Ω̄))

]
⊂ C[0, 1] is also equicontinuous.

We divide the prove into the following two cases.

Case 1. 1 < p ≤ 2, by Lemma 8 and (4.40-4.45), we have∣∣∣cDβ,ρ0+,τ [KP,Qu] (t2)−c Dβ,ρ0+,τ [KP,Qu] (t1)
∣∣∣ ≤ |Nu (t2)− Nu (t1)|+ |QNu (t2)−QNu (t1)| .

(4.49)
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|Nu (t2)− Nu (t1)| ≤
∣∣∣ϕq (Iα,ρ0+,τ [fu] + ϕp

(
cDβ,ρ0+,τ [u]

)
(0)
)
− ϕq

(
Iα,ρ0+,τ [fu] + ϕp

(
cDβ,ρ0+,τ [u]

)
(0)
)∣∣∣

≤ (q−1)Mq−2

Γ(α)

∣∣∣∣∫ t2

0

(
tρ2−τρ
ρ

)ρα−1

fu (τ) dτ
τ1−ρ
−
∫ t1

0

(
tρ1−τρ
ρ

)α−1

fu (τ) dτ
τ1−ρ

∣∣∣∣
≤ (q − 1)M q−1

ραΓ (α + 1)
[2 |tρ2 − t

ρ
1|
α + |tαρ2 − t

αρ
1 |] . (4.50)

Case 2. p > 2, by (4.40-4.45), we have

(i) Suppose that (
Iα,ρ0+,t1

)
[fu] = 0,

then ∃δ1 > 0, for t2 ∈ [0, 1] such that 0 < t2 − t1 < δ1 and u ∈ Ω̄ , we have

(
Iα,ρ0+,t2

)
[fu] > 0

and∣∣∣cDβ,ρ0+,τ [KP,Qu] (t2)−c Dβ,ρ0+,τ [KP,Qu] (t1)
∣∣∣ ≤ |Nu (t2)− Nu (t1)|+ |QNu (t2)−QNu (t1)|

≤ |Nu (t2)− Nu (t1)| . (4.51)

|Nu (t2)− Nu (t1)| ≤ |Nu (t2)| (4.52)

≤
∣∣ϕq (Iα,ρ0+,t2

[fu]
)∣∣

≤
∣∣(Iα,ρ0+,t2

[fu]
)∣∣q−1

≤
∣∣Iα,ρ0+,t2

[fu]− Iα,ρ0+,t1
[fu]
∣∣q−1

.

≤ 1

(Γ (α))q−1

∣∣∣∣∣
∫ t2

0

(
tρ2 − τ ρ

ρ

)α−1

fu (τ)
dτ

τ 1−ρ −
∫ t1

0

(
tρ1 − τ ρ

ρ

)α−1

fu (τ)
dτ

τ 1−ρ

∣∣∣∣∣ (4.53)

≤ M q−1

ρ(q−1)(α−1) (Γ (α))q−1

∣∣∣∣∫ t1

0

[
(tρ2 − τ ρ)

α−1 − (tρ1 − τ ρ)
α−1
] dτ

τ 1−ρ +

∫ t2

t1

(tρ2 − τ ρ)
α−1 dτ

τ 1−ρ

∣∣∣∣q−1

≤ M q−1

ρ(q−1)α (Γ (α + 1))q−1 |t
αρ
2 − t

αρ
1 |

q−1 .

(ii) If

Iα,ρ0+,t1
[fu] 6= 0,

then, there exists two positives constants δ2 and l > 0 such that

(
Iα,ρ0+,t2

)
[fu] ≥ l > 0, ∀t2 ∈ ]t1 − δ2, t1 + δ2[ . (4.54)
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By Lemma 8, we have∣∣∣(cDβ,ρ0+,τ

)
KP,Qu (t2)−

(
cDβ,ρ0+,τ

)
KP,Qu (t1)

∣∣∣ ≤ |Nu (t2)− Nu (t1)|+ |QNu (t2)−QNu (t1)|

≤ |Nu (t2)− Nu (t1)| . (4.55)

|Nu (t2)− Nu (t1)| ≤
∣∣ϕq (Iα,ρ0+,t2

[fu]
)
− ϕq

(
Iα,ρ0+,t1

[fu]
)∣∣ (4.56)

≤ (q − 1) lq−2
∣∣Iα,ρ0+,t2

[fu]− Iα,ρ0+,t1
[fu]
∣∣

≤ (q − 1) lq−2 M

ρα+1 (Γ (α))
|tαρ2 − t

αρ
1 | , ∀t2 ∈ ]t1, t1 + δ2[ ,

where δ = max {δ1, δ2} this inequality hold for t2 ∈ ]t1 − δ, t1 + δ[ .

(iii) If

Iα,ρ0+,t1
[fu] < 0,

we have similar proof.

From 4.53) and (4.56) we see that KP,Q : Ω̄ → X is equicontinuous. Thus, we get that

KP (I −Q)N : Ω̄→ X is compact.

Lemma 17 Suppose (A1), (A2) and (A3) hold; then the set

Ω1 = {u ∈ DomL\ ker L : Lu = λNu for some λ ∈ (0, 1)} , (4.57)

is bounded.

Proof. Take u ∈ Ω1, then Lu = λNu, and Nu ∈ ImL = kerQ.

By (4.22), we have

Iβ,ρ0+,1 [fu] = 0,

then by the integral mean value theorem, there exists a constant ξ ∈ (0, 1) such that

f
(
ξ, u (ξ) ,−cDβ,ρ0+,ξ [u]

)
= 0

So from (A3), we get

|u (ξ)| ≤ E.

From u ∈ domL, we have

Iβ,ρ0+,t

[
cDβ,ρ0+,τ [u]

]
− Iβ,ρ0+,ξ

[
cDβ,ρ0+,τ [u]

]
= u (t)− u (ξ) (4.58)

50



4.2. p -Laplacian two -point local boundary value problems with fractional conformable
derivative in the sense of Caputo

and ∣∣∣Iβ,ρ0+,t

[
cDβ,ρ0+,τ [u]

]∣∣∣ =
1

Γ (β)

∣∣∣∣∣
∫ t

0

(
tρ − τ ρ

ρ

)β−1c

Dβ,ρ0+,τ [u]
dτ

τ 1−ρ

∣∣∣∣∣
≤ tρβ

ρβΓ (β + 1)

∥∥∥cDβ,ρ0+,t [u]
∥∥∥
∞
.

Thus, we have

|u (t)| =
∣∣∣u (ξ) + Iβ,ρ0+,t

[
cDβ,ρ0+,τ [u]

]
− Iβ,ρ0+,ξ

[
cDβ,ρ0+,τ [u]

]∣∣∣ (4.59)

≤ E +
2

ρβΓ (1 + β)

∥∥∥cDβ,ρ0+,t [u]
∥∥∥
∞
,

then

‖u‖∞ ≤ E +
2

ρβΓ (1 + β)

∥∥∥cDβ,ρ0+,t [u]
∥∥∥
∞
. (4.60)

By Lu = λNu, we get

cDβ,ρ0+,t [u] = λϕq
(
ρIα0+,t [fu]

)
. (4.61)

Applying the operator ϕp to the two sides of (4.61), one has

ϕp

(
cDβ,ρ0+,t [u]

)
= ϕp

(
λϕq

(
Iα,ρ0+,t [fu]

))
(4.62)

= ϕp (λ)
(
Iα,ρ0+,t [fu]

)
= λp−1Iα,ρ0+,t [fu] .

From (A1) and (4.62), we get∣∣∣ϕp (cDβ,ρ0+,t [u]
)∣∣∣ = λp−1

∣∣Iα,ρ0+,t [fu]
∣∣ (4.63)

≤ λp−1

Γ (α)

∫ t

0

(
tρ − τ ρ

ρ

)α−1

[fu] (τ)
dτ

τ 1−ρ

≤ λp−1

Γ(α)

[
‖a‖∞ + ‖b‖∞ ‖u‖

p−1
∞ + ‖c‖∞

∥∥∥cDβ,ρ0+,t [u]
∥∥∥p−1

∞

] ∫ t

0

(
tρ−τρ
ρ

)α−1
dτ
τ1−ρ

≤ 1
ραΓ(α+1)

 ‖a‖∞ + ‖b‖∞
(
E +

2‖cDβ,ρ0+,t[u]‖∞
ρβΓ(β+1)

)p−1

+ ‖c‖∞
∥∥∥cDβ,ρ0+,t [u]

∥∥∥p−1

∞

 .
If 1 < p < 2, from Lemma 9, we have∣∣∣ϕp (cDβ,ρ0+,t [u]

)∣∣∣ ≤ (‖a‖∞+‖b‖∞Ep−1)
ραΓ(α+1)

+ 1
ραΓ(α+1)

[(
‖b‖∞

(
2

ρβΓ(β+1)

)p−1

+ ‖c‖∞
)∥∥∥cDβ,ρ0+,t [u]

∥∥∥p−1

∞

]
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Moreover
∣∣∣ϕp (cDβ,ρ0+,t [u]

)∣∣∣ =
∣∣∣cDβ,ρ0+,t [u]

∣∣∣p−1

then∥∥∥cDβ,ρ0+,t [u]
∥∥∥p−1

∞
≤ ‖a‖∞ + ‖b‖∞Ep−1

ραΓ (α + 1)
(4.64)

+ 1
ραΓ(α+1)

[(
‖b‖∞

(
2

ρβΓ (β + 1)

)p−1

+ ‖c‖∞

)∥∥∥cDβ,ρ0+,t [u]
∥∥∥p−1

∞

]
.

So (
1− 1

ραΓ(α+1)

(
‖b‖∞

(
2

ρβΓ(β+1)

)p−1

+ ‖c‖∞
))∥∥∥cDβ,ρ0+,t [u]

∥∥∥p−1

∞
≤ ‖a‖∞+‖b‖∞Ep−1

ραΓ(α+1)
.

If 0 < R1 =

(
1− 1

ραΓ(α+1)

(
‖b‖∞

(
2

ρβΓ(β+1)

)p−1

+ ‖c‖∞
))

then

∥∥∥cDβ,ρ0+,t [u]
∥∥∥
∞
≤ L1 =

(
‖a‖∞ + ‖b‖∞Ep−1

ραΓ (α + 1)R1

)1−p

(4.65)

and ,

‖u‖∞ ≤ L2 = E +
2

ρβΓ (β + 1)
L1. (4.66)

If p ≥ 2 then∥∥∥cDβ,ρ0+,t [u]
∥∥∥p−1

∞
≤ ‖a‖∞ + 2p−2 ‖b‖∞Ep−1

ραΓ (α + 1)
(4.67)

+ 1
ραΓ(α+1)

[(
‖b‖∞

(
2p−2

ρβΓ(β+1)

)p−1

+ ‖c‖∞
)∥∥∥cDβ,ρ0+,t [u]

∥∥∥p−1

∞

]
.

So (
1− 1

ραΓ(α+1)

(
‖b‖∞

(
2

ρβΓ(β+1)

)p−1

+ ‖c‖∞
))∥∥∥cDβ,ρ0+,t [u]

∥∥∥p−1

∞
≤ ‖a‖∞+2p−2‖b‖∞Ep−1

ραΓ(α+1)
.

If 0 < R2 =

(
1− 1

ραΓ(α+1)

(
‖b‖∞

(
2p−2

ρβΓ(β+1)

)p−1

+ ‖c‖∞
))

then

∥∥∥cDβ,ρ0+,t [u]
∥∥∥
∞
≤ l1 =

(
‖a‖∞ + 2p−2 ‖b‖∞Ep−1

ραΓ (α + 1)R2

)1−p

(4.68)

and ,

‖u‖∞ ≤ l2 = E +
2

ρβΓ (β + 1)
l1. (4.69)

Using (4.65), (4.66), (4.68) and (4.69), we have

‖u‖X ≤ max
{
‖u‖∞ ,

∥∥∥cDβ,ρ0+,τ [u]
∥∥∥
∞

}
≤ max {L2, L1, l2, l1} = L3. (4.70)

Therefore Ω1 is bounded.
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Lemma 18 Suppose (A2) holds, then the set

Ω2 = {u : u ∈ ker L,Nu ∈ Im L}, (4.71)

is bounded.

Proof. For u ∈ Ω2, we have u(t) = c, c ∈ R and Nu ∈ ImL= ker Q.Then we get

QN (u) = ρβ

∫ 1

0

(1− τ ρ)β−1 |Nu| dτ

τ 1−ρ = 0. (4.72)

Then by the integral mean value theorem, there exists a constant ξ ∈ (0, 1) such that

Nu (ξ) = 0 that implies ∫ ξ

0

(ξρ − τ ρ)β−1 f (τ, c, 0)
dτ

τ 1−ρ = 0.

By same mean value theorem, we obtain s ∈ (0, ξ) such that f (s, c, 0) = 0 which together

with (A2) implies |c| ≤ B. Thus, we have

‖u‖X ≤ max {B, 0} = B. (4.73)

Hence, Ω2 is bounded. The proof is complete.

Lemma 19 Suppose the first part of (A2) holds; then

Ω+
3 = {u ∈ ker L : λx+ (1− λ)QNu = 0, λ ∈ [0, 1]}, (4.74)

is bounded.

Proof. For u ∈ Ω+
3 , we have u(t) = c, c ∈ R and which implies ϕp

(
cDβ,ρ0+,t [u]

)
(0) = 0 and

Nu = Nc = ϕq
(
Iα,ρ0+,t [f (τ, c, 0)]

)
. (4.75)

If λ = 1, then u = c = 0.

If λ = 0, by same analysis of Lemma 17 we have Ω+
3 is bounded, i.e., |c| ≤ B because of the

first part of (A2).

If λ ∈ (0, 1), we have

λc+ (1− λ)Q
(
ϕq
(
Iα,ρ0+,t [f (τ, c, 0)]

))
= 0, (4.76)
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thus we obtain Q
(
ϕq
(
Iα,ρ0+,t [f (τ, c, 0)]

))
= 0. According the similar prof of Lemma 17 , we

have Ω+
3 is bounded, we can also obtain |c| ≤ B. Otherwise,

if |c| > B, in view of the first part of (A2), one has

λc2 + (1− λ)

∫ 1

0

(1− τ ρ)α−1 cf (τ, c, 0)
dτ

τ 1−ρ > 0, (4.77)

which contradicts to (4.76). Therefore, Ω+
3 is bounded. The proof is complete.

Remark 5 If the second part of (A2) holds, then the set

Ω−3 = {u ∈ ker L : −λIx+ (1− λ)JQNu = 0, λ ∈ [0, 1]}, (4.78)

is bounded.

Theorem 5 Let f : [0, 1]×R2 −→ R be continuous. Assume that (A1) and (A2) hold, then

Then BVP (4.12-4.13) has at least one solution, provided that

1

ραΓ (α + 1)

(
‖b‖∞

(
2p−2

ρβΓ (β + 1)

)p−1

+ ‖c‖∞

)
< 1, if p ≥ 2,

or
1

ραΓ (α + 1)

(
‖b‖∞

(
2

ρβΓ (β + 1)

)p−1

+ ‖c‖∞

)
< 1, if 1 < p < 2.

Proof of Theorem 5. Set

Ω = {u ∈ X : ‖u‖X < κ = max{L3, B}+ 1}. (4.79)

Obviously, Ω1 ∪ Ω2 ∪ Ω3 ⊂ Ω, or Ω1 ∪ Ω2 ∪ Ω−3 ⊂ Ω. It follows from Lemmas 15 and 16

that L (defined by (4.17) is a Fredholm operator of index zero and N (defined by (4.19))

is L-compact on Ω. By Lemmas 17 and 18, we get that the following two conditions are

satisfied

(i) Lu 6= λNu ∀ (u, y) ∈ [(DomL/ ker L) ∩ ∂Ω]× (0, 1)

(ii) Nu /∈ ImL, ∀u ∈ kerL∩∂Ω

It remains verifying the condition (C3) of Theorem 3. In order to do that, let

H(u, λ) = ±λx+ (1− λ)QNu. (4.80)
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Basing on Lemma 19, we have

H(u, λ) 6= 0, ∀u ∈ ∂Ω ∩ ker L. (4.81)

Thus, by the homotopy property of degree, we have

deg(QN|ker L ,Ω ∩ ker L, 0) = deg(H(·, 0),Ω ∩ ker L, 0) (4.82)

= deg(H(·, 1),Ω ∩ ker L, 0)

= deg(±I,Ω ∩ ker L, 0) 6= 0.

Consequently, by using Theorem 3, the operator equation Lu = Nu has at least one solution

in Dom L ∩ Ω. Namely, BVP (4.12-4.13) has at least one solution in X. The proof is

complete.

4.2.3 Example

In this subsection, we present one example to indicate how our theorem can be applied

to concrete problems.

Example 1 Let us consider the following fractional differential equation at resonance

cD2/3,1/2
0+

[
ϕ3

(
cD3/4,1/2

0+,τ [u]
)]

= −1

2
t+

t

2
u2 (t) +

t

4
sin2

(
cD3/4,1/2

0+,t [u]
)
. (4.83)

Corresponding to BVP (4.83-C1), we have that p = 3, ρ = 2, α = 2/3, β =, 3/4.

Choose a(t) = −1
2
t, b(t) = t

2
, c(t) = 1

4
t and B = E = 1. By simple calculation, we can get

that ‖a‖∞ = ‖b‖∞ = 1/2, ‖c‖∞ = 1/4 and

0 <
1

ραΓ (α + 1)

(
‖b‖∞

(
2p−2

ρβΓ (β + 1)

)p−1

+ ‖c‖∞

)
= 0.76 < 1. (4.84)

Obviously, the boundary value problem (4.83-C1) satisfies all conditions of Theorem 5.

Hence, it has at least one solution.
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4.3 p -Laplacian three -point boundary value problems

with fractional conformable derivative in the sense

of Caputo

4.3.1 Introduction

Inspired and motivated by earlier works of authors like Hul et al. [101] and Z. Bai [102], In

this section, the following problem for the fractional differential equation at resonance

cDα,ρ0+,t

[
ϕp

(
cDβ,ρ0+,τ [u]

)]
= f

(
t, u (t) ,−cDβ,ρ0+,t [u]

)
, t ∈ (0, 1) , 0 < β, α ≤ 1, (4.85)

with the condition for (4.85) is

u (0) = u (η) ,cDβ,ρ0+,t [u] (1) = 0, (4.86)

is considered. By using the coincidence degree theory, some existence results of solutions are

established.

FBVP (4.85-4.86) happens to be at resonance in the sense that its associated linear homo-

geneous boundary value problem

cDα,ρ0+,t

[
ϕp

(
cDβ,ρ0+,τ [u]

)]
= 0, (4.87)

with the condition (4.86) has a nontrivial solution u (t) = c, where c ∈ R.

Due to the fact that the classical Mawhin’s continuation theorem can’t be directly used to

discuss the BVP with nonlinear differential operator, in this section, we investigate the BVP

(4.85-4.86) by applying an extension of Mawhin’s continuation theorem due to Ge et al. [94].

We denote

Y = C [0, 1] and X =
{
u ∈ Y :c Dβ,ρ0+,t [u] ∈ Y

}
. (4.88)

Define the operator M : Dom M ⊂ X −→ Y by

(Mu) (t) =
(
cDα,ρ0+,t

) [
ϕp

(
cDβ,ρ0+,τ [u]

)]
, t ∈ [0, 1] . (4.89)

where

DomM =
{
u ∈ X : u (0) = u (η) ,cDβ,ρ0+,τ [u] (1) = 0

}
. (4.90)
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Let

X1 = ker M , X2 = {u ∈ X : u (0) = u (η) = 0} (4.91)

and

Y1 = R , Y2 = Im M. (4.92)

Let Nλ : Y −→ Y be the Nemytski operator

(Nλu) = λf, λ ∈ [0, 1] , ∀t ∈ [0, 1] . (4.93)

Then BVP (4.85-4.86) is equivalent to the operator equation

Mu = Nu, u ∈ DomM. (4.94)

In this section, we need the following auxiliary lemmas to prove the existence of solutions to

(4.94).

4.3.2 The solutions for the problem (E1-C2)

In order to obtain our main result, we firstly present and prove the following lemmas.

Lemma 20 The operator M defined by (4.89) is quasi-linear and

ker M = {u ∈ Dom M ∩X : u (t) = c, c ∈ R, t ∈ [0, 1]} (4.95)

and

Im M =
{
y ∈ Y : Iβ,ρ0+,η

[
ϕq
(
Iα,ρ0+,s [y]− Iα,ρ0+,1 [y]

)]
= 0
}
. (4.96)

Proof. The proof will be given in the following two steps.

Step 1. kerM is linearly homeomorphic to R. By Lemma 1, the homogeneous equation

(Mu) (t) = 0⇐⇒c Dα,ρ0+,t

[
ϕp

(
cDβ,ρ0+,τ [u]

)]
= 0, (4.97)

has solution

u (t) = Iβ,ρ0+,t [ϕq (c0)] + c1 =
ϕq (c0)

ρβΓ (β + 1)
tρβ + c1. (4.98)

Combining with the boundary value condition (4.86), one has that (4.95) holds.
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It is easy to get (4.95). Thus dim ker M = 1, i.e., (ker M ' R).

Step 2. Im M is a closed subset of Y . If y ∈ ImM , then there exists a function u ∈ Dom

M such that (Mu) (t) = y (t) , then

y (t) =c Dα,ρ0+,t

[
ϕp

(
cDβ,ρ0+,τ [u]

)]
, (4.99)

Basing on Lemma 1, we have

Iα,ρ0+,t [y] = Iα,ρ0+,t

[
cDα,ρ0+,s

[
ϕp

(
cDβ,ρ0+,τ [u]

)]]
,

then

Iα,ρ0+,t [y] = ϕp

(
cDβ,ρ0+,τ [u]

)
(t)− ϕp

(
cDβ,ρ0+,τ [u]

)
(0) .

From condition (
cDβ,ρ0+,t [u]

)
(1) = 0, (4.100)

we obtain that (4.96).

On the other hand, suppose y ∈ Y and satisfies (4.96) and let

u (t) = Iα,ρ0+,t

[
ϕq

(
Iβ,ρ0+,τ [y]

)]
, (4.101)

then u ∈ DomM and Mu =c Dα,ρ0+,t

[
ϕp

(
cDβ,ρ0+,τ [u]

)]
= y, so y ∈ Im M, (4.96) is satisfied.

Then Im M = M (DomM) is closed subset of Y. Therefore, M is quasi-linear operator.

Lemma 21 Let M be defined by (4.89); then M is quasi-linear operator and let the projector

P and semi-projector Q by P : X → kerM and Q : Y → R can be defined as

(Pu) (t) = u (0) (4.102)

and

(Qy) (t) = wϕp

(
Iβ,ρ0+,η

[
ϕq
(
Iα,ρ0+,s [y]− Iα,ρ0+,1 [y]

)])
, (4.103)

where

w = ϕp

(
Iβ,ρ0+,η

[
ϕq
(
Iα,ρ0+,s [1]− Iα,ρ0+,1 [1]

)])−1

. (4.104)

The operator R : Ω× [0, 1]→ Dom M ∩ kerP can be written by (Nλu = λf)

R (u, λ) (t) = Iβ,ρ0+,t

[
ϕq
(
Iα,ρ0+,s [(I −Q) Nλu]− Iα,ρ0+,1 [(I −Q) Nλu]

)]
. (4.105)
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Proof.

(i) For any u ∈ X, we have

(Pu) (t) = u (0) .

It is clear that

P 2u (t) = Pu (t) , ∀t ∈ [0, 1] ,

then P is a projector.

It follows from

∀u ∈ X : u = (u− Pu) + Pu,

X = ker M + kerP. (4.106)

Since

ker M ∩ kerP = {0} , (4.107)

we have

X = ker M⊕ kerP. (4.108)

(ii) For any y ∈ Y , we have

∀y ∈ Y : Q : Y −→ Y,

Qy (t) = wϕp

{(
Iβ,ρ0+,η

) [
ϕq
((
Iα,ρ0+,sy

)
−
(
Iα,ρ0+,1y

))]}
. (4.109)

Then we get

(Q (λy) (t)) = (λQy (t))

and

Q2y (t) = Q (Qy (t)) = Qy (τ) ,

that is, Q is semi-projector. Moreover, X1 = ImP and Im M = kerQ.

Lemma 22 Let Ω be an open bounded set. Then X1 = ImP , Im M = kerQ.and Nλ defined

by (4.93) is M compact.

Proof. Choose X2 = kerP and Y1 = ImQ. Thus

dimX1 = dimY1 = 1. (4.110)
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The remainder of the proof will be given in the following two steps.

Step 1. From f ∈ C ([0, 1]× R2 × R,R) ,∀λ ∈ [0, 1] , R is continuous and compact. By the

definition of R, we obtain

cDα,ρ0+,t [R (u, λ)] = ϕq
(
Iα,ρ0+,t [(I −Q) Nλu]− Iα,ρ0+,1 [(I −Q) Nλu]

)
. (4.111)

Clearly, the operators R, cDα,ρ0+,t [R] are compositions of the continuous operators. So R,

cDα,ρ0+,t [R] are continuous in Y . Hence R is a continuous operator, and R
(
Ω̄
)
, cDα,ρ0+ [R]

(
Ω̄
)

are bounded in Y .

∣∣∣f (τ, u (τ) ,−cDβ,ρ0+,τ [u]
)∣∣∣ ≤ K, for u ∈ Ω̄, t ∈ [0, 1] . (4.112)

Furthermore, there exists a constant K > 0 such that∣∣Iα,ρ0+,t [(I −Q) Nλu]− Iα,ρ0+,1 [(I −Q) Nλu]
∣∣ ≤ K, ∀u ∈ Ω̄, t ∈ [0, 1] . (4.113)

Thus, based on the Arzelà-Ascoli theorem, we need only to show R
(
Ω̄
)
⊂ X is equicontin-

uous.

For 0 ≤ t1 ≤ t2 ≤ 1

|R (u, λ) (t2)−R (u, λ) (t1)| =
∣∣∣Iβ,ρ0+,t2

[1]− Iβ,ρ0+,t2
[1]
∣∣∣ (4.114)

× ϕq
[
Iα,ρ0+,τ [(I −Q) Nλu]− Iα,ρ0+,1 [(I −Q) Nλu]

]
≤ Kq−1

ρβΓ (β + 1)

[∣∣∣tρβ2 − t
ρβ
1

∣∣∣+ 2 (tρ2 − t
ρ
1)β
]
.

As tρβ is uniformly continuous in [0, 1], we obtain R
(
Ω̄
)
⊂ Y is equicontinuous. With similar

proof we obtain

Iα,ρ0+t [(I −Q) Nλ]
(
Ω̄
)
− Iα,ρ0+,1 [(I −Q) Nλ]

(
Ω̄
)
, (4.115)

is equicontinuous.

ϕq is uniformly continuous on [−K,K], then
(
cDα,ρ0+

)
R (u, λ) is equicontinuous.Thus, R is

compact.

Step 2. Equations (i) and (ii) of Definition 17 are satisfied.

Step 2.1 By Q2 = Q, For u ∈ Ω̄, Q (I −Q) Nλ (u) = QNλ (u) − Q2Nλ (u) = 0 so

(I −Q) Nλ (u) ∈ kerQ = ImM. On the other hand, ∀y ∈ ImM , clearly Qy = 0, so
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y = y −Qy = (I −Q) y then y ∈ (I −Q)Y. Namely

(I −Q) Nλ

(
Ω̄
)
⊂ ImM ⊂ (I −Q)Y. (4.116)

Hence (i) of Definition 17 holds.

Step 2.2 It is easy to verify that: QNλu = 0, λ ∈ (0, 1) ⇐⇒ QNu = 0,∀u ∈ Ω. Since

QNλu = λQNu. Hence (ii) of Definition 17 holds too.

Step 2.3 ∀u ∈
∑

λ, we have Mu = Nλu ∈ kerQ = ImM So QNλu = 0

Thus we obtain

R (u, λ) (t) = Iβ,ρ0+,t

[
ϕq
(
Iα,ρ0+,τ [(I −Q) Nλu]− Iα,ρ0+,1 [(I −Q) Nλu]

)]
= Iβ,ρ0+,t

[
ϕq
(
Iα,ρ0+,τ [Nλu]− Iα,ρ0+,1 [Nλu]

)]
(4.117)

= Iβ,ρ0+,t

[
ϕq
(
Iα,ρ0+,τ [Mu]− Iα,ρ0+,1 [Mu]

)]
= Iβ,ρ0+,t

[
ϕp

(
cDβ,ρ0+,τ [u]

)]
= u (t)− u (0)

= [(I − P )u] (t) .

Then

R (u, λ) (t) = [(I − P )u] (t) , (4.118)

which implies that

R(., λ)|∑
λ

= (I − P )|∑
λ
. (4.119)

When λ = 0, we have Nλu (t) = 0, which yields

R(u, 0) (t) = 0, ∀u ∈ Ω̄. (4.120)

Hence (iii) of Definition 17 holds

Step 2.4. ∀u ∈ Ω̄, we have

M(Px+R(u, λ)) (t) =c Dα,ρ0+,t

[
ϕp

(
cDβ,ρ0+,τ [Pu+R(u, λ)]

)]
(4.121)

=c Dα,ρ0+,t

[
ϕp

(
cDβ,ρ0+,τ [(R(u, λ)]

)]
=c Dα,ρ0+,t

[
ϕp
(
ϕq
[
Iα,ρ0+,s [(I −Q) Nλu]− Iα,ρ0+,1 [(I −Q) Nλu]

])]
=
(
cDα,ρ0+,t

) [
Iα,ρ0+,s [(I −Q) Nλu]− Iα,ρ0+,1 [(I −Q) Nλu]

]
= (I −Q)Nλu (t) ,
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which implies that (iv) of Definition 17 holds. Hence, Nλ is M-compact in Ω̄.

Remark 6 By the definition of Q we can easily obtain that Q is not a projector but satisfies

Q(I −Q)y = Q(y −Qy) = 0, y ∈ Y.

Lemma 23 Suppose (A1), (A4) hold; then the set

Ω1 = {u ∈ dom (M) \ ker M : Mu = Nλu, λ ∈ (0, 1)} , (4.122)

is bounded.

Proof. Take u ∈ Ω1, then Mu = Nλu, and Nλu ∈ ImM . then QNλ = 0. By (4.96), we have

Iβ,ρ0+,η

[
ϕq

(
Iα,ρ0+,τ

[
f
(
τ, u,−cDβ,ρ0+,τ [u]

)]
− Iα,ρ0+,1

[
f
(
τ, u,−cDβ,ρ0+,τ [u]

)])]
= 0. (4.123)

From (A4) ∃A and ∃ζ ∈ [0, 1] such that u (ζ) ≤ A. Moreover,

u (t)− u (ζ) = Iβ,ρ0+,1

[
cDβ,ρ0+,τ [u]

]
− Iβ,ρ0+,ζ

[
cDβ,ρ0+,τ [u]

]
, (4.124)

then

|u (t)| ≤ |u (ζ)|+
∣∣∣Iβ,ρ0+,1

[
cDβ,ρ0+,τ [u]

]
− Iβ,ρ0+,ζ

[
cDβ,ρ0+,τ [u]

]∣∣∣
≤ A+

2

ρβΓ (β + 1)

∥∥∥cDβ,ρ0+,τ [u]
∥∥∥
∞
.

So, we have

‖u‖∞ ≤ A+
2

ρβΓ (β + 1)

∥∥∥cDβ,ρ0+,τ [u]
∥∥∥
∞
, (4.125)

since Mu = Nλu and cDβ,ρ0+,τ [u] (1) = 0

Iα,ρ0+,t [Mu]− Iα,ρ0+,1 [Mu] = Iα,ρ0+,t [Nλu]− Iα,ρ0+,1 [Nλu] = ϕp

(
cDβ,ρ0+,t [u]

)
, (4.126)

then ∣∣∣ϕp (cDβ,ρ0+,t [u]
)∣∣∣ ≤ 2λ ‖Nu‖ Iα,ρ0+,1 [1] (4.127)

≤
(

2

ραΓ (α + 1)

)[
‖a‖∞ + ‖u‖p−1

∞ ‖b‖∞ + ‖c‖∞
∥∥∥cDβ,ρ0+,t [u]

∥∥∥p−1

∞

]
.

If p < 2(
1− 2

ραΓ(α+1)

[(
2

ρβΓ(β+1)

)p−1

‖b‖∞ + ‖c‖∞
])∥∥∥cDβ,ρ0+,t [u]

∥∥∥p−1

∞
≤
(

2
ραΓ(α+1)

) [
‖a‖∞ + Ap−1 ‖b‖∞

]
.
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Thus from 2
ραΓ(α+1)

[(
2

ρβΓ(β+1)

)p−1

‖b‖∞ + ‖c‖∞
]
< 1 we obtain

∥∥∥cDβ,ρ0+,t [u]
∥∥∥
∞
≤ T1 (4.128)

and

‖u‖∞ ≤ A+
2T1

ρβΓ (β + 1)
. (4.129)

If p ≥ 2 we obtain(
1− 2

ραΓ(α+1)

[
1
2

(
4

ρβΓ(β+1)

)p−1

‖b‖∞ + ‖c‖∞
])∥∥∥cDβ,ρ0+,t [u]

∥∥∥p−1

∞
≤
(

2
ραΓ(α+1)

) [
‖a‖∞ + 2p−2Ap−1 ‖b‖∞

]
,

has from 2
ραΓ(α+1)

[
1
2

(
4

ρβΓ(β+1)

)p−1

‖b‖∞ + ‖c‖∞
]
< 1 we obtain

∥∥∥cDβ,ρ0+tτ [u]
∥∥∥
∞
≤ T2 (4.130)

and

‖u‖∞ ≤ A+
2T2

ρβΓ (β + 1)
. (4.131)

Combining (4.130) with (4.131), we have

‖u‖X ≤ max

{
T1, T2, A+

2T1

ρβΓ (β + 1)
, A+

2T2

ρβΓ (β + 1)

}
= T. (4.132)

Therefore, Ω1 is bounded. The proof is complete.

Lemma 24 Suppose (A5) holds, then the set

Ω2 = {u ∈ ker M : Nλu ∈ Im M} = {u ∈ ker M : QNλu = 0}, (4.133)

is bounded.

Proof. For u ∈ Ω2, we have u(t) = c, c ∈ R and Nλu ∈ ImM . Then we get QNλu = 0 and

Iβ,ρ0+,η

[
ϕq
(
Iα,ρ0+,τ [f (τ, c, 0)]− Iα,ρ0+,1 [f (τ, c, 0)]

)]
= 0, (4.134)

with (A5) implies |c| ≤ D

‖u‖X = D. (4.135)

Hence, Ω2 is bounded. The proof is complete.
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Lemma 25 Suppose the first part of (A2) holds; then the set

Ω+
3 = {u ∈ ker M : λx+ (1− λ)QNu = 0, λ ∈ [0, 1]}, (4.136)

is bounded.

Proof. For u ∈ Ω+
3 , we have u(t) = c, c ∈ R and

Nu = Nc = ϕq
(
Iα,ρ0+,τ [f (τ, c, 0)]

)
. (4.137)

If λ = 1, we have c = 0. If λ = 0 and by the same analysis of lemma 23, |c| ≤ B, then Ω+
3 is

bounded.

If λ ∈ [(0, 1) then

Case 1: cf (τ, c, 0) > 0. In this case Ω+
3 = {u ∈ ker M : λx+ (1− λ)QNu = 0} then

λc+ (1− λ)QNc = 0, ∀λ ∈ [(0, 1) =⇒ |c| ≤ B. (4.138)

Otherwise, if |c| > B then cNc > 0 and

λc2 + (1− λ)QcNc = c (λc+ (1− λ)QcNc) > 0, (4.139)

which contradicts to (4.138). Therefore, Ω+
3 is bounded. From the above Case 1 and Case

2, we can know that Ω+
3 is bounded. The proof is complete.

Remark 7 If the second part of (A2) holds, then the set

Ω−3 = {u ∈ ker M : −λx+ (1− λ)QNu = 0, λ ∈ [0, 1]}, (4.140)

is bounded.

Theorem 6 Let f : [0, 1] × R × R −→ R be continuous. Assume that (A1- A5) hold, then

Then BVP (4.85-4.86) has at least one solution, provided that(
2

ραΓ (α + 1)

)[
1
2

(
4

ρβΓ (β + 1)

)p−1

‖b‖∞ + ‖c‖∞

]
< 1, if p ≥ 2,

or (
2

ραΓ (α + 1)

)[(
2

ρβΓ (β + 1)

)p−1

‖b‖∞ + ‖c‖∞

]
< 1, if 1 < p < 2.

64



4.3. p -Laplacian three -point boundary value problems with fractional conformable
derivative in the sense of Caputo

Proof of Theorem 6. Set

Ω = {u ∈ X : ‖u‖X < max{K,B}+ 1}. (4.141)

Obviously, Ω1 ∪Ω2 ∪Ω+
3 ∪Ω−3 ⊂ Ω,.∀ (u, λ) ∈ ∂Ω× (0, 1) It follows from Lemmas 21 and 22

that M (defined by (4.89) is quasi-linear operator and Nλ (defined by (4.93) is M-compact

on Ω̄.

By Lemmas 23 and 24, we get that the following two conditions are satisfied

(i) Mu 6= Nλu ∀ (u, y) ∈ [(DomM/ ker M) ∩ ∂Ω]× (0, 1)

(ii) Nλu /∈ ImM , ∀u ∈ kerL∩∂Ω

It remains verifying the condition (C3) of Theorem 4. In order to do that, Take the homotopy

H(u, λ) = λx+ (1− λ)JQNu, u ∈ Ω̄ ∩ ker M, λ ∈ [0, 1] , (4.142)

where J : ImQ −→ ker M is a homeomorphism with J (c) = c, c ∈ R, ∀u ∈ ∂Ω ∩ ker M we

have u = c0, |c0| = B̄ > B1, then

H(u, λ) = λc0 + (1− λ)Q (−f) (c0) , c0 ∈ Ω̄ ∩ ker M, λ ∈ [0, 1] . (4.143)

If λ = 1, then H(u, λ) = c0 6= 0.

If λ 6= 1, suppose H(u, λ) = 0, then Q (−f) =
−λc0

1− λ
. From (I −Q) (−f) ∈ Im M,

By using assumption (A2) cf(t, u, c) < 0, ∀t ∈ [0, 1], whenever.|c| ≥ B1, it is a contradiction,

so H(u, λ) 6= 0, ∀u ∈ ∂Ω ∩ ker M.

Thus, by the homotopy property of degree, we have

deg(QN| ker M,Ω ∩ ker M, 0) = deg(H(·, 0),Ω ∩ ker M, 0) (4.144)

= deg(H(·, 1),Ω ∩ ker M, 0)

= deg(±I,Ω ∩ ker M, 0) 6= 0.

So that, the condition (C3) of Theorem 4 is satisfied.

Consequently, by using Theorem 4 , the operator equation Mu = Nu has at least one

solution in Dom M∩Ω. Namely, BVP (4.85-4.86) has at least one solution in X. The proof

is complete.
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Remark 8 If denote the homotopy

H(u, λ) = −λx+ (1− λ)JQNu, u ∈ Ω̄ ∩ ker M, λ ∈ [0, 1] . (4.145)

By using assumption (A2) cf(t, u, c) > 0,∀t ∈ [0, 1], whenever.|c| ≥ B1, we also have

H(u, λ) 6= 0, ∀u ∈ ∂Ω ∩ ker M.

4.3.3 Example

Example 2 Consider the following BVP for conformable fractional p-Laplacian equation

cDα,ρ0+,t

[
ϕp

(
cDβ,ρ0+,τ [u]

)]
=
t

8
+

1

16
u (t)

1
3 +

1

32
sin2

(
cDβ,ρ0+,t [u]

)
, t ∈ (0, 1) . (4.146)

we have

|f (t, u, y)| =
∣∣∣∣ t8 +

1

16
u (t)

1
3 +

1

32
sin2 y (t)

∣∣∣∣ ≤ 5

32
+

1

16
|u (t)|

1
3 , (4.147)

then

a (t) =
5

32
, b (t) =

1

16
, c (t) = 0.

Corresponding to BVP (4.146-4.86), we get that p = 4
3
, α = 1/2, β = 3/4, ρ = 1/2.

Choose a (t) = 5
32
, b (t) = 1

16
, c (t) = 0. By a simple calculation, we can obtain that

‖a‖∞ =
5

32
, ‖b‖∞ =

∥∥∥∥ 1

16

∥∥∥∥
∞
, ‖c‖∞ = 0.

and (
2

ραΓ (α + 1)

)[(
2

ρβΓ (β + 1)

)p−1

‖b‖∞ + ‖c‖∞

]
= 0.307 < 1.

(i) Take D = 9 and |c| > 9

cf (t, c, 0) > 0, ∀t ∈ [0, 1] , |c| > 9. (4.148)

If c > 9 then

cf (t, c, 0) =
tc

8
+

1

16
c

4
3 > 0, ∀t ∈ [0, 1] , c > 9. (4.149)

If c < −9 then

f (t, c, 0) <
1

8
+

1

16
(−9)

1
3 < 0 =⇒ cf (t, c, 0) > 0 ∀t ∈ [0, 1] , c < −9. (4.150)

66



4.3. p -Laplacian three -point boundary value problems with fractional conformable
derivative in the sense of Caputo

Thus

cf (t, c, 0) > 0, ∀t ∈ [0, 1] , |c| > 9.

From (4.149) and (4.150), we have

c
(
Iβ,ρ0+,η

[
ϕq
(
Iα,ρ0+,τ [f (τ, c, 0)] + Iα,ρ0+,1 [f (τ, c,−0)]

)])
(4.151)

=
1

c2

(
Iβ,ρ0+,η

[
ϕq
(
Iα,ρ0+,τ [cf (τ, c, 0)] + Iα,ρ0+,1 [cf (τ, c,−0)]

)])
< 0.

So, the condition (A5) holds.

(ii) Take A = 16,

If u (t) > A holds for any t ∈ [0, 1] , then

f
(
t, u,cDβ,ρ0+,t [u]

)
≥ 1

16
u (t)

1
3 >

1

16
A

1
3 > 0, (4.152)

so

Iα,ρ0+,τ

[
f
(
τ, u (τ) ,−cDβ,ρ0+,τ [u]

)]
− Iα,ρ0+,1

[
f
(
τ, u (τ) ,−cDβ,ρ0+,τ [u]

)]
< 0, (4.153)

we obtain

Iβ,ρ0+,η

[
ϕq

(
Iα,ρ0+,τ

[
f
(
τ, u (τ) ,−cDβ,ρ0+,τ [u]

)]
− Iα,ρ0+,1

[
f
(
τ, u (τ) ,−cDβ,ρ0+,τ [u]

)])]
< 0.

(4.154)

If u (t) < −A holds for any t ∈ [0, 1] , then

f
(
t, u,cDβ,ρ0+,t [u]

)
≤ 5

32
+

1

16
u (t)

1
3 <

5

32
− 1

16
A

1
3 < 0, (4.155)

so

Iα,ρ0+,τ

[
f
(
τ, u (τ) ,−cDβ,ρ0+,τ [u]

)]
− Iα,ρ0+,1

[
f
(
τ, u (τ) ,−cDβ,ρ0+,τ [u]

)]
> 0, (4.156)

then

Iβ,ρ0+,η

[
ϕq

(
Iα,ρ0+,τ

[
f
(
τ, u (τ) ,−cDβ,ρ0+,τ [u]

)]
− Iα,ρ0+,1

[
f
(
τ, u (τ) ,−cDβ,ρ0+,τ [u]

)])]
> 0.

(4.157)

From (4.154) and (4.157), if |u (t)| > A, we have

Iβ,ρ0+,η

[
ϕq

(
Iα,ρ0+,τ

[
f
(
τ, u (τ) ,−cDβ,ρ0+,τ [u]

)]
− Iα,ρ0+,1

[
f
(
τ, u (τ) ,−cDβ,ρ0+,τ [u]

)])]
6= 0.

(4.158)

Thus, the condition (A4) holds. Obviously, BVP (4.146-4.86) satisfies all assumptions of

Theorem 6. Hence, BVP (4.146-4.86) has at least one solution.
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Remark 9 The contents of this chapter is communicated in the form of two paper as men-

tioned below:

- p -Laplacian two -point local boundary value problems with fractional conformable derivative

in the sense of Caputo, communicated for publication.

- p -Laplacian three -point local boundary value problems with fractional conformable deriva-

tive in the sense of Caputo, communicated for publication.
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5.1. Introduction

5.1 Introduction

The theory of singular BVPs has become an important area of investigation in recent years

(see [103] and references therein). The search for the existence of positive solutions and

multiple positive solutions to nonlinear FBVPs with p-Laplacian operator by the use of

techniques of nonlinear analysis, have been studied by several authors (see [43, 44] ).

For example, in [33, 34], Zhang and Liu considered the following fourth-order four-point

boundary value problem

(ϕp (u′′ (t)))
′′

= f (t, u (t)) , t ∈ (0, 1) , (5.1)

with the four-point boundary conditions

u (0) = 0, u (1) = b1u (ξ1) , u′′ (0) = 0, u′′ (1) = b2u
′′ (ξ2) . (5.2)

Z. Bai and H. Lü [43] studied nonlocal FDEs with BVPs with p-Laplacian for existence and

uniqueness of solutions and multiple solutions by using Avery-Peterson FPT for the problem

((ϕp (Dα
t u)) (t))′′ = −f

(
t, u (t) ,−

(
Dβ
t

)
u (t)

)
in (0, 1) , (5.3)

where Dα
t , Dβ

t represent Caputo derivative sense.

In recent years, some results have been obtained under different assumptions on f [43, 44,

50, 51, 52], as for FBVPs, in [104], J. Wang and H. Xiang have investigated the following

the fractional boundary value problem(
Dβ
t

)
(ϕp (Dα

t u)) (t) = f (t, u (t)) in (0, 1) , (5.4)

and boundary conditions

u (0) = 0, u (1) = b1u (ξ1) , Dα
t u (0) = 0, Dα

t u (1) = b2Dα
t u (ξ2) , (5.5)

where Dα
t , Dβ

t are Riemann-Liouville fractional operators with 1 < α, β ≤ 2, (see also [105]).

Motivated by the above-mentioned works, we investigate the following BVPs of conformable

nonlinear differential equations with p-Laplacian operator and a nonlinear term dependent

on the fractional derivative of the unknown function

Tβ
0+

(
ϕp
(
Tα

0+u
))

(t) = f
(
t, u (t) ,−Tα

0+u (t)
)
, t ∈ (0, 1) , (5.6)
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with the four-point boundary conditions

u (0) = 0, u (1) = b1u (ξ1) , Tα
0+u (0) = 0, Tα

0+u (1) = b2T
α
0+u (ξ2) , (5.7)

where Tβ
0+ and Tα

0+ are the conformable derivatives with 1 < α, β ≤ 2, 1 < α ≤ α+β−1, 0 ≤

b1, b2 ≤ 1, 0 < ξ1, ξ2 < 1.

In the special case p = α = β = 2 and b1 = b2 = 0, the problem ( E2-C3) becomes

the two point BVPs of fourth order ODE. When f is continuous, problem is nonsingular,

the existence and uniqueness of positive solutions in this case have been studied by papers

[42, 100]. The theorems we present include and extend some previous results.

The remainder of the thesis is organized as follows: Firstly, we present some necessary defi-

nitions and Lemmas that are needed in the subsequent sections. In Section 3, we construct

the Green functions for the homogeneous CBVP corresponding to (E2-C3) and estimate the

bounds for the Green functions. One of the difficulties here is that the corresponding Green’s

function is singular at s = 0. By applying the upper and lower solutions method associated

with the Krasnosel’skii’s fixed point theorem in a cone, the existence of at least one positive

solution are established is dealt with in section 4. Furthermore, example is presented to

illustrate the main results. In the final subsection of the this section, we look at the question

as to how the solution u varies when we change the order of the conformable differential

operator or the initial values and the dependence on parameters of nonlinear term f is also

established.

It is well known that a powerful tool for proving existence results for nonlinear problems is

the upper and lower solution method [51, 52, 106].

Our assumptions on the nonlinearity f will be the following:

A. The function f fulfill a Lipschitz condition with respect to the second and third variables,

|f (t, u1, v1)− f (t, u2, v2)| ≤ L1 |u1 − u2|+ L2 |v1 − v2| , (5.8)

such that L1, L2 > 0, ( f is locally Lipschitz in (0, 1)× (0,+∞)× (−∞, 0]).

For convenience, we suppose that the following hypotheses are satisfied:
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H. f : ((0, 1)× (0,+∞)× R −→ R+) is continuous. There exist constants λi, µi, i = 1, 2,

0 < λ1 ≤ µ1, 0 ≤ λ2 ≤ µ2 < p− 1, λ1 + λ2 > p− 1, such that

σµ1f (t, u, v) ≤ f (t, σu, v) ≤ σλ1f (t, u, v) if 0 < σ ≤ 1,

σµ2f (t, u, v) ≤ f (t, u, σy) ≤ σλ2f (t, u, v) if 0 < σ ≤ 1.
(5.9)

It can be easily seen that f (t, u, v) is non-decreasing with respect to u, v, and (5.9) are

equivalent to

σλ1f (t, u, v) ≤ f (t, σu, v) ≤ σµ1f (t, u, v) if σ ≥ 1,

σλ2f (t, u, v) ≤ f (t, u, σy) ≤ σµ2f (t, u, v) if σ ≥ 1.
(5.10)

for (t, u, v) ∈ (0, 1)× [0,+∞)× [0,+∞) . From (5.9-5.10), we have

f (t, u1, v1) ≤ f (t, u2, v2) for u1 ≤ u2, t ∈ (0, 1) . (5.11)

We say u1 ≤ u2 if u1 (t) ≤ u2 (t) for t ∈ [0, 1].

Now we present the Green’s function for boundary value problem of fractional differential

equation.

5.2 Construction of Green’s function of problem (E2-

C3)

In this section, we obtain Green’s function corresponding to the FDEs (E2) with 1 < α, β ≤ 2

subject to four-point boundary conditions (C3) and estimate bounds for Green’s function

that will be used to prove our main theorems.

To study the nonlinear problem (E2-C3), we first consider the associated linear problem and

obtain its solution.

Lemma 26 Suppose v (t) ≥ 0, α ∈ (1, 2]. The corresponding Green’s function for the prob-

lem 
Tα

0+u(t) + v(t) = 0,

u (0) = 0, u (1) = b1u (ξ1) ,

t ∈ (0, 1) , (5.12)
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is given by

Gα(t, s) = Gα (t, s) +
b1t

1− b1ξ1

Gα (ξ1, s) , (5.13)

where

Gα(t, s) =


(1− t)sα−1 if 0 ≤ s ≤ t ≤ 1,

t(1− s)sα−2 if 0 ≤ t ≤ s ≤ 1,

(5.14)

where we assume the parameters satisfy 0 ≤ b1 ≤ 1, 0 < ξ1 < 1.

Moreover, if v is not identically 0 on (0, 1), then u is concave, decreasing, u (t) > 0 and

u (t) ≥ ψ1 (t) ‖u‖0 for t ∈ [0, 1] , where ψ1 (t) = t
(
b1(1−ξ1)
1−b1ξ1 t+ 1

)
.

Proof. We will show that

u(t) =

∫ 1

0

Gα(t, s)v(s)ds, (5.15)

for Gα given by (5.13), is a unique solution to the linear BVP (E2-C3).

By applying Lemma 5, we may reduce (E2) to an equivalent integral equation

u (t) = −Iαv (t) + c0 + c1t, c0, c1 ∈ R. (5.16)

From u (0) = 0 and (5.16), we have c0 = 0. Consequently the general solution of (E2) is

u (t) = −Iα0+v (t) + c1t = −
∫ t

0

(t− s) sα−2v (s) ds+ c1t. (5.17)

By (5.17), one has

u (1) = −
∫ 1

0

(1− s) sα−2v (s) ds+ c1, u (ξ1) = −
∫ ξ1

0

(ξ1 − s) sα−2v (s) ds+ c1ξ1.

And from u (1) = b1u (ξ1), then we have

c1 =
1

1− b1ξ1

[∫ 1

0

(1− s) sα−2v (s) ds− b1

∫ ξ1

0

(ξ1 − s) sα−2v (s) ds

]
.
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So, the unique solution of problem (E2-C3) is

u (t) = −
∫ t

0

(t− s) v (s)
ds

s2−α +
t

1− b1ξ1

[∫ 1

0

(1− s) v (s)
ds

s2−α − b1

∫ ξ1

0

(ξ1 − s) v (s)
ds

s2−α

]
= −

∫ t

0

(t− s) v (s)
ds

s2−α +
1

1− b1ξ1

∫ 1

0

t (1− s) v (s)
ds

s2−α − b1

∫ ξ1

0

(ξ1 − s) v (s)
ds

s2−α

= −
∫ t

0

(t− s) v (s)
ds

s2−α +
1

1− b1ξ1

(∫ t

0

t (1− s) v (s)
ds

s2−α +

∫ 1

t

t (1− s) v (s)
ds

s2−α

)
+

b1t

1− b1ξ1

[∫ ξ1

0

(ξ1 (1− s)− (ξ1 − s)) v (s)
ds

s2−α +

∫ 1

ξ1

ξ1 (1− s) v (s)
ds

s2−α

]
=

∫ t

0

(1− t) v (s) ds

s1−α +

∫ 1

t

t (1− s) v (s) ds

s2−α

+
b1t

1− b1ξ1

[∫ ξ1

0

(1− ξ1) v (s) ds

s1−α +

∫ 1

ξ1

ξ1 (1− s) v (s) ds

s2−α

]
=

∫ 1

0

[
Gα (t, s) +

b1t

1− b1ξ1

Gα (ξ1, s)

]
v (s) ds

=

∫ 1

0

Gα(t, s)v (s) ds,

where Gα(t, s) is defined in (5.13).

For t ∈ [0, 1] we have Gα (t, s) ≥ 0 and Gα(t, s) ≥ 0 for s ∈ (0, 1) , hence, when v is not

identically 0 on [0, 1], it follows that u (t) > 0.

Furthermore,

Gα(t, s) =


bt (1− s) sα−2 if 0 ≤ t ≤ s ≤ 1,

(ct+ 1) sα−1 if 0 ≤ s ≤ t ≤ 1,

(5.18)

where

a =
b1

1− b1ξ1

, b = 1 + aξ1, c = a (1− ξ1)− 1, (5.19)

when 0 ≤ s ≤ t ≤ 1 then

Gα(t, s) = (ct+ 1) sα−1 ≥ (ct+ 1) (cs+ 1) sα−1 = (ct+ 1)Gα (s) with 0 < (ct+ 1) < 1,

(5.20)

and when 0 ≤ t ≤ s ≤ 1 then

Gα(t, s) = bt (1− s) sα−2 ≥ bts (1− s) sα−2 = tGα (s) , s ∈ (0, 1) . (5.21)

From (5.20) and (5.21), we get

Gα(t, s) ≥ ψ1 (t)Gα (s) ,with ψ1 (t) = t (ct+ 1) , (5.22)
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and

u(t) =

∫ 1

0

Gα(t, s)v(s)ds ≥ ψ1 (t)

∫ 1

0

Gα (s) v(s)ds ≥ ψ1 (t) ‖u‖0 , (5.23)

where

‖u‖0 = max |u(t) : t ∈ [0, 1]| ≤
∫ 1

0

Gα (s) v(s)ds, (5.24)

with Gα (.) ≡ Gα(., .) as in (5.13 ). The proof is completed.

Lemma 27 Suppose U (t) ≥ 0, 1 < α, β ≤ 2, 0 ≤ b1, b2 ≤ 1 and 0 < ξ1, ξ2 < 1. Then the

unique solution of the following CBVP with the p-Laplacian operator
Tβ

0+(ϕp
(
Tα

0+u
)

(t)) + U(t) = 0,

Tα
0+u (0) = 0,Tα

0+u (1) = b2T
α
0+u (ξ2)

t ∈ (0, 1) , (5.25)

is given by

ϕp
(
Tα

0+u
)

(t) =

∫ 1

0

Gβ (t, s)U (s) ds,

where

Gβ(t, s) = Gβ(t, s) +
b0t

1− b0ξ2

Gβ(ξ2, s) (5.26)

and b0 = bp−1
2 and Gβ(t, s) is defined in (5.14) with α replaced by β.

Moreover, if U is not identically 0 on (0, 1), then u is concave, decreasing, u (t) > 0 and

u (t) ≥ ψ2 (t) ‖u‖0 for t ∈ [0, 1], where ψ2 (t) = t
(
b0(1−ξ2)
1−b0ξ2 t+ 1

)
.

Proof. By a similar argument in the proof of Lemma 27, we can get Lemma 26.

Lemma 28 Suppose u (t) ≥ 0, 1 < α, β ≤ 2, 0 ≤ b1, b2 ≤ 1 and 0 < ξ1, ξ2 < 1. Then the

unique solution of the following CBVP with the p-Laplacian operator (E2-C3) given by

u(t) =

∫ 1

0

Gα(t, s)ϕq

(∫ 1

0

Gβ(s, τ)f(τ, u (τ) ,−Tα
0+u (τ))dτ

)
ds, (5.27)

where Gα(t, s) and Gβ(t, s) defined by (5.13) and ( 5.26) respectively.

Remark 10 From the expression of (5.15) and (5.27), we can see that if all the conditions

in Lemmas 26, 27 and 28 are satisfied, the solution is a C2 [0, 1] solution of the CBVP (E2-

C3). Furthermore, if we denote −ϕp
(
Tα

0+u
)

(t) = U (t), there holds U ≥ ψ1 (t) ‖U‖0 for

t ∈ [0, 1], where ψ1 (t) is defined in Lemma 26.
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The properties of Gα and Gα are collected in the following lemma.

Lemma 29 Let 1 < α ≤ 2, 0 ≤ b1 ≤ 1 and 0 < ξ1 < 1. Then

(i) Let Gα be as in (5.14). Then Gα (0, s) = 0 = Gα (1, s) for s ∈ [0, 1].

Gα(t, s) ≤ Gα (s) or Gα (t) for all t, s ∈ [0, 1] (5.28)

and if δ ∈
(
0, 1

2

)
then

min {Gα(t, s) : δ ≤ t ≤ 1− δ} ≥ Gα (1− δ)Gα (s) , (5.29)

with Gα (.) ≡ Gα(., .) is defined in (5.14).

(ii) Function Gα defined by (5.13) is continuous on [0, 1]× [0, 1] satisfying

(a) For all t, s ∈ [0, 1], Gα(t, s) ≥ 0 and

φ1 (s) t ≤ Gα(t, s) ≤ φ2 (s) t, (5.30)

where

φ1 (s) =
b1Gα (ξ1, s)

1− b1ξ1

and φ2 (s) = sα−2 + φ1 (s) . (5.31)

(b) For all t, s ∈ [0, 1],

Gα (t)Gα (s) ≤ Gα(t, s) ≤ Gα (s) or Gα (t) (5.32)

and

Gα(t, s) ≤
(

1 +
b1t

1− b1ξ1

)
Gα (s) ≤

(
1− b1 (1− ξ1)

1− b1ξ1

)
Gα (s) . (5.33)

(c) If δ ∈
(
0, 1

2

)
then

min {Gα(t, s) : δ ≤ t ≤ 1− δ} ≥ Gα (1− δ)Gα (s) . (5.34)

Proof. (i) Observing the expression of Gα(t, s), it is clear that Gα(t, s) > 0 for t, s ∈ (0, 1) ,

with

Gα(t, s) =


G1
α(t, s) if 0 ≤ s ≤ t ≤ 1,

G2
α(t, s) if 0 ≤ t ≤ s ≤ 1.

(5.35)
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Next, for given s ∈ (0, 1) we consider the partial derivative of Gα (t, s) with respect to t,

∂tGα(t, s) =

 −sα−1 if 0 ≤ s ≤ t ≤ 1,

(1− s)sα−2 if 0 ≤ t ≤ s ≤ 1.
(5.36)

This shows that Gα(t, s) is decreasing with respect to t for s ≤ t, and increasing for t ≤ s.

So,

Gα(t, s) ≤ Gα (s) or Gα (t) for all t, s ∈ (0, 1)

and if δ ∈
(
0, 1

2

)
then it is easily to see that

min {Gα(t, s) : δ ≤ t ≤ 1− δ} =


G1
α(1− δ, s), if s ∈ [0, δ] ,

min {G1
α(1− δ, s),G2

α(δ, s)} , if s ∈ [δ, 1− δ] ,

G2
α(δ, s), if s ∈ [1− δ, 1] ,

(5.37)

or

min
t∈[δ,1−δ]

{
Gα(t, s) : δ ∈

(
0, 1

2

)}
=


G1
α(1− δ, s), if s ∈ [0, θ] ,

G2
α(δ, s), if s ∈ [θ, 1] ,

(5.38)

with θ ∈ [δ, 1− δ] is a solution of the equation Gα(1− δ, θ) = 0.

Consequently,

min {Gα(t, s) : δ ≤ t ≤ 1− δ} ≥ Gα (1− δ)Gα (s) .

(ii) It is easy to verify properties (ii-a).

(ii-b1) If Gα(t, s) = t(1− s)sα−2 for all t ∈ [0, s] , then from ( 5.18) and (5.19), we have

G1
α(t, s) = bt (1− s) sα−2, s ∈ (0, 1) . (5.39)

Continuity of G1
α clearly follows from the definition of G1

α. We start by differentiation

G1
α (t, s) with respect to s ∈ [t, 1] for every fixed t ∈ (0, 1), we can get

∂sG
1
α(t, s) = (1 + aξ1) tsα−3 ((1− α) s+ (α− 2)) .

This together with the fact that G1
α(t, 1) = 0 implies that G1

α(t, s) < 0.

By fixing an arbitrary s ∈ (0, 1). Differentiating G1
α (t, s) with respect to t, we get

∂tG
1
α(t, s) = (1 + aξ1) tsα−3 ((1− α) s+ (α− 2)) > 0, G1

α(0, s) = 0.
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Hence G1
α(t, s) has maximum at point t = s,.we get

G1
α(t, s) ≤ G1

α(t, t) or G1
α(t, s) ≤ G1

α(s, s), (5.40)

also we observe that

G1
α(t, s) = bt (1− s) sα−2 ≥ bts (1− s) sα−2 = tG(s, s), for all t ≤ s, s ∈ [0, 1] . (5.41)

To prove (ii-c2) if Gα(t, s) = (1− t)sα−1 for all s ∈ [0, t] , then we have

G2
α(t, s) = (ct+ 1) sα−1, 0 < (ct+ 1) < 1, s ≤ t. (5.42)

In an entirely similar manner to (ii-c1), we get

∂sG
2
α(t, s) = (α− 1) (ct+ 1) sα−2 > 0, G2

α(t, 0) = 0.

The other cases can be deal similarly. Now,

∂tG
2
α(t, s) = (α− 1) (ct+ 1) sα−2 < 0, G2

α(1, s) > 0,

we deduce that

G2
α(t, s) ≤ G2

α(t, t) or G2
α(t, s) ≤ G2

α(s, s), (5.43)

also we observe that

G2
α(t, s) = (ct+ 1) sα−1 ≥ (ct+ 1) (cs+ 1) sα−1 = (ct+ 1)Gα (s) , 0 < (ct+ 1) < 1. (5.44)

So, from (ii-b1) and (ii-b2) we conclude that

ψ1 (t)Gα (s) ≤ Gα(t, s) ≤ Gα (s) or Gα (t) where ψ1 (t) = t (ct+ 1) for all t, s ∈ [0, 1] .

(5.45)

To prove (c), if δ ∈
(
0, 1

2

)
then from (i), it is easily to see that

min
t∈[δ,1−δ]

{
Gα(t, s) : δ ∈

(
0, 1

2

)}
=


G1
α(1− δ, s), if s ∈ [0, θ] ,

G2
α(δ, s), if s ∈ [θ, 1] ,

with θ ∈ [δ, 1− δ] .

Consequently,

min
{
Gα(t, s) : δ ≤ t ≤ 1− δ when δ ∈

(
0, 1

2

)}
≥ Gα (1− δ)Gα (s) . (5.46)
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Lemma 30 Suppose that (H) holds. Let u (t) be a C2 ([0, 1]) positive solution of (E2-C3).

Then there are constants a1 and a2, 0 < a1 < 1 < a2 such that

a1Gα (t) ≤ u (t) ≤ a2Gα (t) or a1t ≤ u (t) ≤ a2t for t ∈ [0, 1] . (5.47)

Proof. Assume that u(t) is a C2 ([0, 1]) positive solution of (E2-C3) By Lemma 26, u(t)

given by

u(t) =

∫ 1

0

Gα(t, s)
(
−Tα

0+u (s)
)

ds, (5.48)

or

u(t) =

∫ 1

0

Gα (t, s)
(
−Tα

0+u (s)
)

ds+
b1t

1− b1ξ1

∫ 1

0

Gα (ξ1, s)
(
−Tα

0+u (s)
)

ds. (5.49)

From (5.49) and (C3), we have

u(0) =

∫ 1

0

Gα (0, s)
(
−Tα

0+u (s)
)

ds = 0, (5.50)

u(1) =

∫ 1

0

Gα (1, s)
(
−Tα

0+u
)

ds+ b1
1−b1ξ1

∫ 1

0

Gα (ξ1, s)
(
−Tα

0+u
)

ds = b1u (ξ1) . (5.51)

Thus, it follows from (5.50) and (5.51) that

b1

1− b1ξ1

∫ 1

0

Gα (ξ1, s)
(
−Tα

0+u (s)
)

ds = b1u (ξ1) , Gα (0, s) = Gα (1, s) . (5.52)

Noticing
(
Tα

0+u (s)
)
≤ 0, t ∈ [0, 1] and (5.52), we have

u(t) =

∫ 1

0

Gα (t, s)
(
−Tα

0+u (s)
)

ds+ tb1u (ξ1) ≥ tb1u (ξ1) .

On the other hand, from (5.32) and (5.48), we have

u(t) =

∫ 1

0

Gα (t, s)
(
−Tα

0+u (s)
)

ds ≤ Gα (t)

∫ 1

0

(
−Tα

0+u (s)
)

ds.

Now we choose

a1 < min {1, b1u (ξ1)} and a2 > max

{
1,

∫ 1

0

(
−Tα

0+u (s)
)

ds ≥ 1

}
. (5.53)

Therefore, we get (5.47). This completes the proof.

From Lemmas 26 and 27, it is easy to obtain the following lemma.

Lemma 31 Suppose that u ∈ C2 [0, 1] is a function with Tα
0+u (t) ≥ 0, 1 < α ≤ 2, u (0) ≥

0, Tα
0+u (0) ≥ 0, u (1) ≤ b1u (ξ1) and Tα

0+u (1) ≤ b2T
α
0+u (ξ2). Then u (t) ≥ 0 and Tα

0+u (t) ≤

0 for any t ∈ [0, 1] .
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5.3 A necessary and sufficient condition for the exis-

tence of positive solution

In this section, by using the upper and lower solutions technique, Arzela-Ascoli theorem and

Krasnosel’skii FPT, we establish the existence of positive solution to CBVP (E2-C3).

Theorem 7 Suppose that (H) holds, f (s,Gα (s) , s2−α) does not vanish identically on (0, 1) . Then

a necessary and sufficient condition for problem (E2-C3 ) to have C2[0, 1] positive solutions

is that the following integral condition holds

0 <

∫ 1

0

Gβ (s) f
(
s,Gα (s) , s2−α) ds < +∞, (5.54)

where Gα(.) ≡ Gα(., .) and Gβ(.) ≡ Gβ(., .) defined by (5.13) and (5.14 ) respectively.

The proof is divided into two parts, necessity and sufficiency.

Necessary. First we prove
∫ 1

0
Gβ (s) f (s,Gα (s) , s2−α)ds < ∞. Assume that u is a C2[0, 1]

positive solution of (E2-C3). By Lemma 30, there exist constants a1 and a2, 0 < a1 < 1 < a2

such that (5.47) holds. Choose σ > 0 such that

0 < σ ≤ 1, M = sups∈[0,1]

∣∣T 2
0+u (s)

∣∣ and σM ≤ 1. (5.55)

Then, from (H) and (5.55) , we have

f
(
s, u (s) ,−Tα

0+u (s)
)
≥ f

(
s, a1Gα (s) ,−s2−αT 2

0+u (s)
)

= f
(
s, a1Gα (s) ,−σ−1σs2−αT 2

0+u (s)
)

≥ aµ11 σ
−λ2
(
−σT 2

0+u (s)
)µ2 f (s,Gα (s) , s2−α)

≥ aµ11 σ
−λ2 (σM)µ2 f

(
s,Gα (s) , s2−α) ,

which implies for s ∈ (0, 1)

f
(
s, u (s) ,−Tα

0+u (s)
)
≥ ω1f

(
s,Gα (s) , s2−α) , where ω1 = aµ11 σ

µ2−λ2Mµ2 > 0, (5.56)
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we also have

f
(
s, u (s) ,−Tα

0+u (s)
)
≤ f

(
s, a2Gα (s) ,−s2−αT 2

0+u (s)
)

≤ aµ12 f
(
s,Gα (s) ,−σ−1σs2−αT 2

0+u (s)
)

≤ aµ12 σ
λ2−µ2

(
−T 2

0+u (s)
)λ2 f (s,Gα (s) , s2−α)

≤ aµ12 σ
λ2−µ2 (M)λ2 f

(
s,Gα (s) , s2−α) ,

which implies for s ∈ (0, 1)

f
(
s, u (s) ,−Tα

0+u (s)
)
≤ ω2f

(
s,Gα (s) , s2−α) , where ω2 = aµ12 σ

λ2−µ2Mλ2 > 0. (5.57)

According to (E2), we have

ω1f
(
s,Gα (s) , s2−α) ≤ f

(
s, u (s) ,−Tα

0+u (s)
)

= Tβ
0+

(
ϕp
(
Tα

0+u
))

(s) . (5.58)

By applying Lemmas 5, 7, we have

ω1I
β
0+

(
f
(
s,Gα (s) , s2−α)) (t) ≤

(
ϕp
(
Tα

0+u
))

+
(
ϕp
(
Tα

0+u
))∣∣

t=0+
+ t

d

dt

(
ϕp
(
Tα

0+u (s)
))∣∣∣∣

t=0+
.

Moreover

ϕp
(
Tα

0+u (t)
)

= −
∫ 1

0

Gβ(t, τ)f(τ, u (τ) ,−Tα
0+u (τ))dτ for t ∈ (0, 1) , (5.59)

which implies that

d

dt

(
ϕp
(
Tα

0+u (t)
))

= −
∫ t

0

∂

∂t
Gβ(t, τ)f(τ, u,−Tα

0+u)dτ −
∫ 1

t

∂

∂t
Gβ(t, τ)f(τ, u,−Tα

0+u)dτ.

(5.60)

By (E2), we have

∂tGβ(t, s) ≤ 1 +
b0

1− b0ξ2

,

which implies that

d

dt
ϕ
(
p

(
Tα

0+u (t)
))
≤
(

1+b0(1−ξ2)
1−b0ξ2

)∫ 1

0

Gβ(τ)f(τ, u (τ) ,−Tα
0+u (τ))dτ.

Thus, from (E2) and (5.59), we have ϕp
(
Tα

0+u (s)
)
< 0 and Tβ

0+

(
ϕp
(
Tα

0+u
))

(s) ≥ 0 for

t ∈ (0, 1) , combining this with ϕp
(
Tα

0+u (s)
)

(t) ∈ C1 [0, 1] , we obtain

d
dt

(
ϕp
(
Tα

0+u (s)
))

(t)
∣∣
t=0+

< 0 and d
dt

(
ϕp
(
Tα

0+u (s)
))

(t)
∣∣
t=1−

> 0,
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with (
ϕp
(
Tα

0+u
))

(t)
∣∣
t=0+

= 0⇐⇒ Tα
0+u (0) = 0, ϕ−1

p (0) = 0,

we deduce that

Iβ0+

(
f
(
s,Gα (s) , s2−α)) (t) =

∫ t

0

(t− s) sβ−2f
(
s,Gα (s) , s2−α) ds (5.61)

≤ 1

ω1

[
ϕp
(
Tα

0+u
)

(t) + t
d

dt

(
ϕp
(
Tα

0+u (s)
))

(t)

∣∣∣∣
t=0+

]
.

Letting t −→ 1 in (5.61) we have∫ 1

0

(1− s) sβ−2f
(
s,Gα (s) , s2−α) ds ≤ 1

ω1

[
ϕp
(
Tα

0+u
)∣∣
t=1−

+ t
d

dt

(
ϕp
(
Tα

0+u (s)
))∣∣∣∣

t=0+

]
<∞.

Second, we prove
∫ 1

0
(1− s) sβ−2f (s,Gα (s) , s2−α)ds > 0. The function f (s,Gα (s) , s2−α) 6=

0 for all s ∈ (0, 1) yield ∫ 1

0

Gβ (s) f
(
s,Gα (s) , s2−α) ds > 0.

Therefore, we immediately get (5.54). The proof is complete.

Sufficiency. Suppose that (5.54) holds, we will divide our proof into tow steps.

Step 1. Auxiliary problem of ( E2-C3)

∀u (t) ∈ C2 [0, 1] ∩ C4 [0, 1] = F , t ∈ [0, 1] we define an auxiliary function

F (u) (t) ≡ F
(
t, u,− Tα

0+u
)

=


f
(
t, u (t) ,−Tα

0+u (t)
)

if u (t) < u (t) ,

f
(
t, u (t) ,−Tα

0+u (t)
)

if u (t) ∈ [u (t) , u (t)] ,

f
(
t, u (t) ,−Tα

0+u (t)
)

if u (t) > u (t) .

(5.62)

The function F
(
t, u (t) ,−Tα

0+u (t)
)

is called a modification of f
(
t, u (t) ,−Tα

0+u (t)
)

associated with the coupled of lower and upper solutions u (t) and u (t) . By the hypoth-

esis (H) we have F : F−→ [0,+∞) is continuous.(i.e., F : (0, 1)×(0,+∞)×(−∞, 0) −→

R+ is continuous.). Consider the auxiliary problem of (E2-C3)
Tβ

0+

(
ϕp
(
Tα

0+u
))

(t) = F
(
t, u (t) ,−Tα

0+u
)
, t ∈ (0, 1) ,

u (0) = 0, u (1) = b1u (ξ1) ,Tα
0+u (0) = 0, Tα

0+u (1) = b2T
α
0+u (ξ2) .

(5.63)

For convenience, we define linear operators as follows [6], [7]

A2u (t) =

∫ 1

0

Gβ (t, s)u (s) ds and A1u(t) =

∫ 1

0

Gα(t, s)u(s)ds. (5.64)
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Obviously, by the proof of Lemma 28, the problem (5.63) is equivalent to the integral

equation

u (t) = (A1ϕq (A2F ))u (t) , t ∈ (0, 1) . (5.65)

By the definition (5.62) of F , we can get that A1ϕq (A2f) : F → F and F (F) is

bounded. By the continuity of Gα(t, s), we can show that A1ϕq (A2) is a compact

operator. So, (A1ϕq (A2F )) (F) is a relatively compact set. So A1ϕq (A2) : F −→

F is a compact operator. Moreover, u ∈ F is a solution of (5.63) if and only if

(A1ϕq (A2F ))u = u. Using the Schauder’s FPT, we assert that A1ϕq (A2F ) has at least

one fixed point u ∈ C2 [0, 1] , by u (t) = (A1ϕq (A2F ))u (t), we can get u ∈ C4 [0, 1] .

1.1 Consider the problem
Tβ

0+

(
ϕp
(
Tα

0+v
))

(t) = f(t, Gα (t) , t2−α), t ∈ [0, 1] ,

v (0) = 0, v (1) = b1v (ξ1) ,Tα
0+v (0) = 0, Tα

0+v (1) = b2T
α
0+v (ξ2) .

(5.66)

Let

v (t) =

∫ 1

0

Gα(t, s)ϕq

(∫ 1

0

Gβ(s, τ)f(τ,Gα (τ) , τ 2−α)dτ

)
ds, t ∈ [0, 1] .

From the Lemma 30, (5.54) implies that

∃0 < a3 < 1 < a4 : 0 < v (t) <∞ and a3Gα (t) ≤ v (t) ≤ a4Gα (t) . (5.67)

We will prove that the functions

u (t) = k1v (t) , u (t) = k2v (t) , t ∈ [0, 1] , (5.68)

are lower and upper solutions of (E2-C3), respectively, here

k1 ≤ min

{
1,

1

a3

,
1

a4

,
(
aµ13 σ

µ2−λ2Mµ2
) 1

1−µ1+µ2

}
, (5.69)

k2 ≥ max

{
1,

1

a3

,
1

a4

,
(
aµ24 σ

λ2−µ2Mλ2
) 1

1−λ1+λ2

}
. (5.70)

This, by virtue of the assumption of the Lemma 29, (5.67) and (5.68), shows that

k1a3Gα (t) ≤ u (t) ≤ k1a4Gα (t) (5.71)

and

k1a3 ≤
u (t)

Gα (t)
≤ k1a4 ≤ 1,

1

k2a4

≤ Gα (t)

u (t)
≤ 1

k2a3

.
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By Lemma 7, shows that

− k1a3T
α
0+Gα (t) ≤ − Tα

0+u (t) ≤ −k1a4T
α
0+Gα (t) (5.72)

and

− k2a4T
α
0+Gα (t) ≤ − Tα

0+u (t) ≤ −k2a3T
α
0+Gα (t) . (5.73)

Choose 0 < k1 < 1 small enough, and from (5.55), (5.71), (5.72) and (H) yield that

f
(
t, u (t) ,−Tα

0+u (t)
)

= f(t,

(
u (t)

Gα (t)

)
Gα (t) ,−u′′ (t) t2−α) (5.74)

≥ f(t, k1a3Gα (t) ,−σ−1σk1yt
2−α)

≥ kµ1+µ2
1 aµ13 σ

µ2−λ2Mµ2f(t, Gα (t) , t2−α)

≥ k1f(t, Gα (t) , t2−α), t ∈ (0, 1) .

Similarly, choose k2 > 1 large enough, we have

f
(
t, u (t) ,−Tα

0+u (t)
)
≤ f(t,

u (t)

Gα (t)
Gα (t) ,−u′′ (t) t2−α) (5.75)

≤ f(t, k1a4Gα (t) ,−σ−1σk1yt
2−α)

≤ kλ1+λ2
1 aµ24 σ

λ2−µ2Mλ2f(t, Gα (t) , t2−α)

≤ k2f(t, Gα (t) , t2−α), t ∈ (0, 1) .

Consequently, by Lemma 7, for t ∈ (0, 1)

Tβ
0+

(
ϕp
(
Tα

0+u
))

(t) = k1T
β
0+

(
ϕp
(
Tα

0+v
))

= k1f(t, Gα (t) , t2−α) ≤ f
(
t, u,−Tα

0+u
)

(5.76)

and

Tβ
0+

(
ϕp
(
Tα

0+u
))

(t) = k2T
β
0+

(
ϕp
(
Tα

0+v
))

= k2f(t, Gα (t) , t2−α) ≥ f
(
t, u,−Tα

0+u
)
.

(5.77)

From (5.76) and (5.77), we obtain that for such choice of k1 and k2, u (t) and u (t)

are, respectively, lower and upper solutions of (E2-C3) satisfying 0 < u (t) ≤ u (t) for

t ∈ (0, 1) .

1.2. Let X be the Banach space C2 [0, 1] and the cone P in X be

P =


u : u ∈ X,ϕp

(
Tα

0+u
)
∈ X,−ϕp

(
Tα

0+u
)

is concave on t ∈ (0, 1) ,

u (t) ≥ 0,−Tα
0+u (t) ≥ 0 for t ∈ [0, 1] , u satisfies (C3)
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If u ∈ P , then, it follows from Lemmas 26, 28 and (H) that

u(t) =

∫ 1

0

Gα (t, s)
(
−Tα

0+u (s)
)

ds (5.78)

≤
∫ 1

0

Gα (s)
(
s2−α ‖u′′‖0

)
ds ≤ ‖u′′‖0

∫ 1

0

Gα (s)
(
s2−α) ds.

Thus, it is clear that

‖u‖ = ‖u′′‖0 ∀u ∈ P. (5.79)

From Lemma 28 we have

u(t) =

∫ 1

0

Gα (t, s)
(
−Tα

0+u (s)
)

ds (5.80)

≤
∫ 1

0

Gα (t)
(
s2−α ‖u′′‖0

)
ds ≤ 1

3− α
Gα (t) ‖u′′‖0 for t ∈ [0, 1] .

Moreover, Remark 10 implies that

− ϕp
(
Tα

0+u
)

(t) ≥ ψ (t) t2−αϕp (‖u′′‖0) for t ∈ [0, 1] . (5.81)

From (5.54), there exists an interval [δ, 1− δ] ⊂ (0, 1) such that

0 <

∫ 1−δ

δ

Gβ (s) f
(
s,Gα (s) , s2−α) ds < +∞, where δ ∈

(
0, 1

2

)
. (5.82)

Note that from (5.13) and (5.14) we have

Gα (t, s) ≥ Gα (t, s) ≥ δ for t, s ∈ [δ, 1− δ] . (5.83)

Noting the continuity of Gβ and F , we can choose [δ1, δ2] ⊂ (0, 1) such that∫ 1

0

Gβ(s, τ)F (τ, u,−Tα
0+u) dτ ≥

∫ δ2

δ1

Gβ(s, τ)F (τ, u,−Tα
0+u)dτ > 0.

Then, from (5.81) and (5.83), we obtain

u(t) =

∫ 1

0

Gα (t, s)
(
−Tα

0+u (s)
)

ds ≥ δ ‖u′′‖0

∫ 1−δ

δ

ϕq
(
s2−α) ds ≥ m1 ‖u′′‖0 for t ∈ [δ, 1− δ] .

(5.84)

where

m1 = δ

∫ 1−δ

δ

ϕq
(
s2−α) ds ∈ (0, 1) . (5.85)

For any fixed u ∈ P , choose a positive number θ = 1
‖u‖+1

< 1 Then, (5.83) yields

θu (t)

Gα (t)
≤ θ ‖u′′‖0 = θ ‖u‖ ≤ 1 for t ∈ (0, 1) . (5.86)
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Thus, (5.55) and (H), imply

f(t, u (t) ,−Tα
0+u (t)) = f(t,

θu (t)

θGα (t)
Gα (t) , θ−1θ (−u′′ (t)) t2−α)

≤ θλ2−µ1−µ2Mλ2f(t, Gα (t) , t2−α) for t ∈ (0, 1) .

Therefore, from (5.32), we have∫ 1

0

Gβ(t, s)f(s, u (s) ,−Tα
0+u (s))ds ≤ θλ2−µ1−µ2Mλ2

(
1+b0(1−ξ2)

1−b0ξ2

)∫ 1

0

Gβ(s)f(s,Gα (s) , s2−α) <∞.

(5.87)

Now we prove that problem (5.63) has a positive solution u∗ ∈ X with 0 < u (t) ≤ u∗ ≤ u (t) .

We consider the operator A : X −→ X defined as follows

(Au) (t) =

∫ 1

0

Gα (t, s)ϕq

(∫ 1

0

Gβ(s, τ)F (τ, u (τ) ,−Tα
0+u (τ))dτ

)
ds. (5.88)

It is well known that a fixed point of the operator A is a solution of the problem (5.63). The

following fixed point result of cone compression type due to Krasnosel’skii is fundamental

for the solvability of problem (5.63).

From (5.88), Lemmas 26, 26 and 28 it is easy to see that u ∈ P is a C2 [0, 1] nonnegative

solution of the problem (5.63) if and only if u is a fixed point of A. Moreover

−Tα
0+ (Au) (t) = ϕq

(∫ 1

0

Gβ(t, τ)F (τ, u (τ) ,−Tα
0+u (τ))dτ

)
for t ∈ [0, 1] . (5.89)

In the following, we divide the proof of the existence of fixed point of A : X −→ X into

three steps.

(S1) The operator A : P −→ P is completely continuous.

(S11) A : P −→ P

If u ∈ P, it is clear that Au ∈ X,

Tβ
0+

(
ϕp
(
Tα

0+ (Au)
))

(t) ≥ 0, for t ∈ (0, 1) and
(
Tα

0+ (Au)
)

(t) ≤ 0, (Au) (t) ≥ 0 for t ∈ [0, 1] ,

(Au) (0) = 0, (Au) (1) = b1 (Au) (ξ1) ,Tα
0+ (Au) (0) = 0, Tα

0+ (Au) (1) = b2T
α
0+ (Au) (ξ2) .

(5.90)

(S12) A is pre-compact in P .

Let Ω be a bounded set on u. Then there is ρ > 0 such that ‖u‖ ≤ ρ for all u ∈ Ω. We show
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that (AΩ) is a pre-compact set in P . Denote θρ = 1
1+ρ

. For all u ∈ Ω

|(Au) (t)| =
∣∣∣∣∫ 1

0

Gα (t, s)ϕq

(∫ 1

0

Gβ(s, τ)F (τ, u (τ) ,−Tα
0+u)dτ

)
ds

∣∣∣∣ (5.91)

≤
∣∣∣∣∫ 1

0

Gα (s)ϕq

(∫ 1

0

Gβ(τ)F (τ, u (τ) ,
(
−Tα

0+u
)

(τ))dτ

)
ds

∣∣∣∣
≤
(∫ 1

0

Gα (s) ds

)(
ϕq

(∫ 1

0

Gβ(τ)f(τ, u (τ) ,
(
−Tα

0+u
)

(τ))dτ

))
≤
(
θλ2−µ1−µ2ρ Mλ2k2

) 1
p−1

(∫ 1

0

Gα (s) ds

)
ϕq

(∫ 1

0

Gβ(τ)f(τ,Gα (τ) , τ 2−α)dτ

)
≤
(
θλ2−µ1−µ2ρ Mλ2k2

) 1
p−1(

1+b0(1−ξ2)
1−b0ξ2

) 1
1−p

(∫ 1

0

Gα (s) ds

)
ϕq

(∫ 1

0

Gβ(τ)f(τ,Gα (τ) , τ 2−α)dτ

)

≤ Lρ
(∫ 1

0

Gα (s) ds

)
<∞,

where

Lρ =
(
θλ2−µ1−µ2ρ Mλ2k2

) 1
p−1

(
1+b0(1−ξ2)

1−b0ξ2

) 1
p−1

ϕq

(∫ 1

0

Gβ(τ)f(τ,Gα (τ) , τ 2−α)dτ

)
(5.92)

and

∣∣Tα
0+ (Au) (t)

∣∣ =

∣∣∣∣ϕq (∫ 1

0

Gβ(t, τ)F (τ, u (τ) ,−Tα
0+u (τ))dτ

)∣∣∣∣ (5.93)

≤ ϕq

(∫ 1

0

Gβ(τ)f(τ, u (τ) ,
(
−Tα

0+u
)

(τ))dτ

)
≤
(
θλ2−µ1−µ2ρ Mλ2k2

) 1
p−1 ϕq

(∫ 1

0

Gβ(τ)f(τ,Gα (τ) , τ 2−α)dτ

)
≤ Lρ <∞.

Then (Au) is uniformly bounded in X.

For all u ∈ Ω, t1, t2 ∈ [0, 1] ,

|(Au) (t2)− (Au) (t1)| =
∫ 1

0

|Gα (t2, s)−Gα (t1, s)|ϕq
(∫ 1

0

Gβ(s, τ)F (τ, u,−Tα
0+u)dτ

)
ds

(5.94)

≤
∫ 1

0

|Gα (t2, s)−Gα (t1, s)|ϕq
(∫ 1

0

Gβ(s, τ)f(τ, u,
(
−Tα

0+u
)

dτ

)
ds

≤ Lρ
(∫ 1

0

|Gα (t2, s)−Gα (t1, s)| ds
)

≤ Lρ |t2 − t1| <∞.
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For arbitrary ε > 0. Let δ1 = ε
Lρ , then

|(Au) (t2)− (Au) (t1)| < ε if |t2 − t1| < δ1. (5.95)

At the same time, from

∣∣ϕp (Tα
0+ (Au)

)
(t)
∣∣ =

∣∣∣∣∫ 1

0

Gβ(s, τ)F (τ, u (τ) ,−Tα
0+u)dτ

∣∣∣∣ (5.96)

≤
∣∣∣∣∫ 1

0

Gβ(s, τ)f
(
τ, u (τ) ,

(
−Tα

0+u
)

(τ)
)

dτ

∣∣∣∣
≤
(
θλ2−µ1−µ2ρ Mλ2k2

)(∫ 1

0

Gβ(τ)f(τ,Gα (τ) , τ 2−α)dτ

)
<∞,

it follows that for ε > 0, there is δ2 > 0 such that ∀u ∈ Ω, t ∈ [0, 1]∫ 1

1−δ2
Gβ(s, τ)F (τ, u,−Tα

0+u)dτ <

∫ 1

0

Gβ(s, τ)f
(
τ, u (τ) ,

(
−Tα

0+u
)

(τ)
)

dτ <
ε

3
. (5.97)

On the other hand, (5.54) imply that for u ∈ Ω, t ∈ [0, 1− δ2]

d

dt
ϕp
(
Tα

0+ (Au)
)

(t) =

∫ t

0

d2

dτ 2

(
ϕp
(
Tα

0+ (Au)
)

(τ)
)

dτ (5.98)

=

∫ t

0

τβ−2τ 2−β d2

dτ 2

(
ϕp
(
Tα

0+ (Au)
)

(τ)
)

dτ

=

∫ t

0

τβ−2Tβ
0+

(
ϕp
(
Tα

0+ (Au)
)

(τ)
)

dτ

=

∫ t

0

τβ−2F (τ, (Au) (τ) ,−Tα
0+ (Au))dτ

≤
∫ t

0

τβ−2f(τ, (Au) (τ) ,−Tα
0+ (Au))dτ

≤
(
θλ2−µ1−µ2ρ Mλ2k2

)(∫ 1−δ2

0

τβ−2f(τ,Gα (τ) , τ 2−α)dτ

)
= m2.

where k2 is defined in (5.70).

Let δ = min
{
δ1, δ2,

ε
3m2

}
. Then for u ∈ Ω, t1, t2 ∈ [0, 1] , 0 ≤ t2 − t1 ≤ δ.

Moreover, by mean value theorem, Lemma 6 ensures that, for any t2, t1 in [0, 1] with t1 < t2,

there exists a point t in (t1, t2) such that

ϕp
(
Tα

0+ (Au)
)

(t2)− ϕp
(
Tα

0+ (Au)
)

(t1) =
1

β − 1

(
tβ−1
2 − tβ−1

1

) [
T β−1

0+ ϕp
(
Tα

0+ (Au)
)]

(t) .
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This, together with (5.98), yields

W =
∣∣ϕp (Tα

0+ (Au)
)

(t2)− ϕp
(
Tα

0+ (Au)
)

(t1)
∣∣

=

∣∣∣∣ 1

β − 1

(
tβ−1
2 − tβ−1

1

) [
T β−1

0+ ϕp
(
Tα

0+ (Au)
)]

(t)

∣∣∣∣
=

∣∣∣∣ 1

β − 1

(
tβ−1
2 − tβ−1

1

)[
tβ−2 d

dt
ϕp
(
Tα

0+ (Au)
)

(t)

]∣∣∣∣
≤
∣∣∣∣ 1

β − 1

(
tβ−1
2 − tβ−1

1

)[
tβ−2

∫ t

0

τβ−2f(τ, (Au) (τ) ,−Tα
0+ (Au) (τ))dτ

]∣∣∣∣
≤M1k2

∣∣∣tβ−1
2 − tβ−1

1

∣∣∣ ≤ ε

3
< ε, t1 ∈ [0, 1− δ2] .

In the same way, we can show that

W =
∣∣ϕp (Tα

0+ (Au)
)

(t2)− ϕp
(
Tα

0+ (Au)
)

(t1)
∣∣ (5.99)

≤
∫ 1

0

|Gβ (t2, τ)−Gβ (t1, τ)|F (τ, u (τ) ,−Tα
0+u)dτ

≤
∫ 1−δ2

0

|Gβ (t2, τ)−Gβ (t1, τ)|Fu(τ)dτ +

∫ 1

1−δ2
|Gβ (t2, τ)−Gβ (t1, τ)|Fu(τ)dτ

≤
∫ 1−δ2

0

|t2 − t1|Fu(τ)dτ +

∫ 1

1−δ2
|Gβ (t2, τ)|Fu(τ)dτ +

∫ 1

1−δ2
|Gβ (t1, τ)|Fu(τ)dτ

≤ ε

3
+
ε

3
+
ε

3
= ε, t1 ∈ [1− δ2, 1] .

Then ϕp
(
Tα

0+ (Au)
)

(t) is equi-continuous on [0, 1]. Since ϕ is uniformly continuous on

arbitrary closed interval of R.
(
Tα

0+ (Au)
)

(t) is also equi-continuous on [0, 1] .

(S13) A is continuous in P : Let un −→ u as n −→ ∞ in P. Then there exists ρ̄ > 0 such

that supn∈N ‖un‖ ≤ ρ̄. Then by (5.62), there holds

(Aun) (t) =

∫ 1

0

Gα (t, s)ϕq

(∫ 1

0

Gβ(s, τ)F (τ, un (τ) ,−Tα
0+un)dτ

)
ds (5.100)

≤
∫ 1

0

Gα (s)ϕq

(∫ 1

0

Gβ(τ)F (τ, un (τ) ,−Tα
0+un)dτ

)
ds

≤
∫ 1

0

Gα (s)ϕq

(∫ 1

0

Gβ(τ)f(τ, un (τ) ,−Tα
0+un (τ))dτ

)
ds

≤
(
θλ2−µ1−µ2ρ̄ Mλ2k2

) 1
p−1

(∫ 1

0

Gα (s) ds

)(∫ 1−δ2

0

Gβ(τ)f(τ,Gα (τ) , τ 2−α)dτ

)
≤ Lρ̄

(∫ 1

0

Gα (s) ds

)
<∞,

where Lρ̄ is given by (5.92) with ρ replaced by ρ̄ . By Lebesgue’s dominated convergence
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theorem,

(Aun) (t) =

∫ 1

0

Gα (t, s)ϕq

(∫ 1

0

Gβ(s, τ)F (τ, un (τ) ,−Tα
0+un)dτ

)
ds (5.101)

−→
∫ 1

0

Gα (t, s)ϕq

(∫ 1

0

Gβ(s, τ)F (τ, u (τ) ,−Tα
0+u)dτ

)
= (Au) (t) as n −→∞, t ∈ [0, 1] .

which means (Aun) −→ (Au) as n −→∞.

Similarly, Tα
0+ (Aun) −→ Tα

0+ (Au) as n −→ ∞. Therefore, by Arzelá Ascoli Theorem,

A : P −→ P is completely continuous.

(S2) If Ω1 = {u ∈ X : ‖u‖ < r1}, then

‖Au‖ ≤ ‖u‖ for u ∈ P ∩ ∂Ω1, (5.102)

where r1 > 0 satisfies

r1 < min
{

1, r
p−1

p−(λ1+λ2+1)

}
, (5.103)

where

r =

((
k2

(3−α)λ1

) 1
p−1

(∫ 1

0

Gα (s) ds

)(
1+b0(1−ξ2)

1−b0ξ2

) 1
p−1

ϕq

(∫ 1

0

Gβ(τ)f(τ,Gα (τ) , τ 2−α)dτ

))
.

If u ∈ P ∩ ∂Ω1, then from (H), (5.63), (5.69) and (5.103), we have

F (t, u (t) ,−Tα
0+u (t)) ≤ F (t, u (t) , t2−α

d2

dt2
u (t)) (5.104)

= k2f(t, v (t) , t2−α
d2

dt2
v (t))

≤ k2f(t,
1

3− α
Gα (t) ‖v′′‖0 , t

2−α ‖v′′‖0)

≤ k2

(
1

3− α

)λ1
(‖v′′‖0)

λ1+λ2 f(t, Gα (t) , t2−α)

≤ k2

(
1

3− α

)λ1
‖v‖λ1+λ2 f(t, Gα (t) , t2−α)

≤ k2

(
1

3− α

)λ1
rλ1+λ2

1 f(t, Gα (t) , t2−α), for t ∈ (0, 1) ,
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where k2 is defined in (5.70). From Lemmas 29,30, (5.103) and (5.104), we obtain

(Au) (t) =

∫ 1

0

Gα (t, s)ϕq

(∫ 1

0

Gβ(τ)F (τ, u,−Tα
0+u)dτ

)
ds (5.105)

≤
(∫ 1

0

Gα (s) ds

)
ϕq

(∫ 1

0

Gβ(τ)F (τ, u,−Tα
0+u)dτ

)

≤

((
1

3− α

)λ1
rλ1+λ2

1 k2

) 1
p−1 (

1+b0(1−ξ2)
1−b0ξ2

) 1
p−1

×
(∫ 1

0

Gα (s) ds

)
ϕq

(∫ 1

0

Gβ(τ)f(τ,Gα (τ) , τ 2−α)dτ

)
≤ r1 = ‖u‖

and∣∣Tα
0+ (Au) (t)

∣∣ =

∣∣∣∣ϕq (∫ 1

0

Gβ(t, τ)F (τ, u,−Tα
0+u)dτ

)∣∣∣∣
≤ ϕq

(∫ 1

0

Gβ(τ)F (τ, u,−Tα
0+u)dτ

)

≤

((
1

3− α

)λ1
rλ1+λ2

1 k2

) 1
p−1 (

1+b0(1−ξ2)
1−b0ξ2

) 1
p−1

ϕq

(∫ 1

0

Gβ(τ)f(τ,Gα (τ) , τ 2−α)dτ

)
≤ r1 = ‖u‖ ,

for t ∈ [0, 1] and thus .(Au) satisfies (5.102).

(S3) If Ω2 = {u ∈ X : ‖u‖ < r2}, then

‖Au‖ ≥ ‖u‖ for u ∈ P ∩ ∂Ω2, (5.106)

where r2 > 0 satisfies

r2 > max

{
1,

1

εm1

,
1

d
,

1

(δ2α)
1
p−1

}
, (5.107)

m1 is as defined in (5.85), ε ∈ (0, 1) is a fixed number small enough such that

δ (c (1− δ) + 1) ≤ Gα (t) ≤ (1− δ) (cδ + 1) , c < 0

and

ψ1 (t) = t (ct+ 1) ≥ εGα (t) for t ∈ [δ, 1− δ] . (5.108)

Setting

d = k
1
p−1

1 (1− 2δ)p−1 (δ2α
) 1
λ1+λ2+p−1 (εm1)λ1 (δ (c (1− δ) + 1))

λ2
p−1 (5.109)

×
(∫ 1−δ

δ

Gβ(τ)f(τ,Gα (τ) , τ 2−αdτ

) 1
λ1+λ2+p−1

.
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Now if u ∈ P ∩ ∂Ω2, from (5.79), 5.81) and (5.107), we have

−
(
Tα

0+u
)

(t) ≥ (ψ1 (t))
1
p−1 ‖u′′‖0 (5.110)

≥ (δ (c (1− δ) + 1))
1
p−1 ‖u′′‖0

≥ (δ (c (1− δ) + 1))
1
p−1 ‖u‖ > 1 for t ∈ [δ, 1− δ] .

Similarly, from (5.84) and (5.107), we have

εx (t) ≥ εm1 ‖u′′‖0 = εm1 ‖u‖ > 1 for t ∈ [δ, 1− δ] . (5.111)

Moreover, for t ∈ [δ, 1− δ] by Lemma 26 and (5.108),

u (t) ≥ ψ (t) ‖u‖0 ≥ εGα (t) ‖u‖0 . (5.112)

Hence, for t ∈ [δ, 1− δ], from (H), (5.110), (5.111) and (5.112) imply

F (t, u,−Tα
0+u) ≥ f(t, u,−Tα

0+u) = f(t, k1v,−k1T
α
0+v) (5.113)

≥ k1f(t, v (t) ,−t2−α d2

dt2
v (t))

≥ k1f(t, εGα (t) ‖v‖0 , (δ (c (1− δ) + 1))
1
p−1 t2−α ‖v‖)

≥ k1 (ε ‖v‖0)λ1
(

(δ (c (1− δ) + 1))
1
p−1 ‖v‖

)λ2
f(t, Gα (t) , t2−α)

≥ k1 (εm1)λ1 (δ (c (1− δ) + 1))
λ2
p−1 ‖v‖λ1+λ2 f(t, Gα (t) , t2−α)

= k1 (εm1)λ1 (δ (c (1− δ) + 1))
λ2
p−1 rλ1+λ2

2 f(t, Gα (t) , t2−α), m1 ∈ [0, 1] ,

where k1 is defined in (5.69).

Since Gα (t, s) ≥ Gα (t, s) ≥ δδα−1 = δα ≥ δαGα (s) for t, s ∈ [δ, 1− δ], it then follows from

(5.88), (5.107) and (5.113), we have

(Au) (t) =

∫ 1

0

Gα (t, s)ϕq

(∫ 1

0

Gβ(s, τ)F (τ, u (τ) ,−Tα
0+u)dτ

)
ds (5.114)

≥ δα
∫ 1−δ

δ

ϕq

(∫ 1−δ

δ

Gβ(s, τ)F (τ, u (τ) ,−Tα
0+u)dτ

)
ds

≥ δα (δα)
1
p−1

(∫ 1−δ

δ

ds

)(
ϕq

(∫ 1−δ

δ

Gβ (τ) f(τ, u (τ) ,−Tα
0+u (τ))dτ

))
≥ k1 (1− 2δ) δα (δα)

1
p−1 (εm1)

λ1
p−1 (δ (c (1− δ) + 1))

λ2
(p−1)2 r

λ1+λ2
p−1

2

× ϕq
(∫ 1−δ

δ

Gβ(τ)f(τ,Gα (τ) , τ 2−αdτ

)
)

≥ r2 = ‖u‖ .
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Hence,

‖Au‖0 ≥ ‖u‖ . (5.115)

From (5.89), (5.107), (5.109) and (5.113), we have

Tα
0+ (Au) (t) = ϕq

(∫ 1

0

Gβ(s, τ)F (τ, u (τ) ,−Tα
0+u)dτ

)
(5.116)

≥ (δα)
1
p−1

(
ϕq

(∫ 1−δ

δ

Gβ(τ)F (τ, u (τ) ,−Tα
0+u)dτ

))
≥ (δα)

1
p−1

(
ϕq

(∫ 1−δ

δ

Gβ(τ)f(τ, u (τ) ,−Tα
0+u (τ))dτ

))
≥ k1 (δα)

1
p−1 (εm1)

λ1
p−1 (δ (c (1− δ) + 1))

λ2
(p−1)2 r

λ1+λ2
p−1

2

× ϕq
(∫ 1−δ

δ

Gβ(τ)f(τ,Gα (τ) , τ 2−αdτ

)
)

≥ r2 = ‖u‖ .

Hence, ∥∥Tα
0+ (Au)

∥∥ ≥ ‖u‖ . (5.117)

In view of (5.115) and (5.117), we see that (5.106) holds.

Therefore, by steps one to three, and Lemma 7, we see that A has at least one fixed point

u ∈ P ∩ Ω̄2�Ω1. It can be verified that for u ∈ P , there holds u (t) ≥ Gα (t) ‖u‖0. Thus,

u (t) is a solution of problem (5.63).

Step 2. Finally, we will prove that the CBVP (E2-C3) has at least one positive solution.

Suppose that u∗(t) is a solution of ( E2-C3), we only need to prove that u (t) ≤ u∗ (t) ≤ u (t) ,

t ∈ [0, 1] . The method is similar for the two inequalities. We only prove u∗ (t) ≤ u (t) for

t ∈ [0, 1] .

In fact, since u∗ is fixed point of A and (5.90), we get

u∗ (0) = 0 u∗ (1) = b1u
∗ (ξ1) Tα

0+u
∗ (0) = 0 Tα

0+u
∗ (1) = b2T

α
0+u

∗ (ξ2) ,

u (0) = 0 u (1) = b1u (ξ1) Tα
0+u (0) = 0 Tα

0+u (1) = b2T
α
0+u (ξ2) .

(5.118)

Otherwise, suppose by contradiction that u∗ (t) > u (t). According to the definition of F ,

one verifies that

Tβ
0+

(
ϕp
(
Tα

0+u
∗)) (t) = F

(
t, u∗ (t) ,−Tα

0+u
∗ (t)

)
= f

(
t, u (t) ,−Tα

0+u (t)
)
, t ∈ (0, 1) .

(5.119)
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On the other hand, since u is an upper solution to (E2), we obviously have

Tβ
0+

(
ϕp
(
Tα

0+u
))

(t) ≥ f
(
t, u (t) ,−Tα

0+u (t)
)
, t ∈ (0, 1) . (5.120)

Setting

z (t) = ϕp
(
Tα

0+u (t)
)
− ϕp

(
Tα

0+u
∗ (t)

)
, t ∈ (0, 1) . (5.121)

From (5.119) and (5.120), we can get

Tβ
0+z (t) = Tβ

0+

(
φp
(
Tα

0+u
))

(t)−Tβ
0+

(
ϕp
(
Tα

0+u
∗)) (t)

≥ f
(
t, u (t) ,−Tα

0+u (t)
)
− f

(
t, u (t) ,−Tα

0+u (t)
)

= 0, t ∈ (0, 1) ,

with

z (0) = 0 and z (1) = ϕp (b2) z (ζ1) .

Thus, by Lemma 31, we have z (t) ≤ 0, t ∈ [0, 1], which implies that

ϕp
(
Tα

0+u
)

(t) ≤ ϕp
(
Tα

0+u
∗) (t) , t ∈ [0, 1] .

Since ϕp is monotone increasing, we obtain

Tα
0+u (t) ≤ Tα

0+u
∗ (t) =⇒ Tα

0+ (u (t)− u∗ (t)) ≤ 0, t ∈ [0, 1] .

Combining Lemma 31 and (5.118), we have u (t) ≥ u∗ (t) This contradiction proves the

validity of u (t) < u∗ (t) , t ∈ [0, 1] .

Similarly, suppose by contradiction that u (t) > u∗ (t). By the same way, we also have

u∗ (t) ≥ u (t) on t ∈ [0, 1] so,

u (t) ≤ u∗ (t) ≤ u (t) , t ∈ [0, 1] , (5.122)

that is, u∗ (t) is a positive solution of the conformable boundary value problem (E2-C3).

Furthermore, u (t) , u (t) ∈ P implies that there exist two positive constants 0 < a1 < 1 < a2

such that

0 < a1Gα (t) ≤ u (t) < u (t) < u (t) ≤ a2Gα (t) , t ∈ [0, 1] .

Thus, we have finished the proof of Theorem 7.

From the theorem 7, we can easily derive the following corollary.
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Corollary 1 Suppose that condition (H) are satisfied, then the CBVP (E2-C3) with the

Lidstone boundary conditions

u (0) = 0, u (1) = 0,Tα
0+u (0) = 0, Tα

0+u (1) = 0,

has at least one positive solution u.

we present the following theorem without proof because the proof are similar to Theorem 7.

Theorem 8 If f
(
t, u,Tα

0+u (t)
)
∈ C ([0, 1]× (0,+∞)× (−∞, 0) , [0,+∞)) is creasing in u

and f (t, Gα(t), t2−α) 6= 0 for any Gα(t) > 0, then the CBVP (E2-C3) has at least one positive

solution u, and there exist two positive constants 0 < a1 < 1 < a2 such that a1Gα(t) < u(t) <

a2Gα(t).

5.3.1 Example

We conclude this section with an example as an application of our discussion. Typical

functions that satisfy the above sub-linear hypothesis are those taking the form

f (t, u, v) =
n∑
l

m∑
k

Ql,k (t)uµkvµl ,

here Ql,k (t) ∈ C (0, 1) , Ql,k (t) > 0 on (0, 1) , µk ∈ R, µl < 1.

To obtain the approximate solutions of (E2-C3), the assumption of f (t, u, v) ≤N0(t)N1(u)N2(v)

is usually needed. Now, we give one example to illustrate the above results.

Example 3 Consider the following p-Laplacian conformable boundary value problem (E2-

C3) where

f (t, u, v) = tµ0 (1− t)µ1 uµ2vµ3 , 0 < t < 1, (5.123)

where p > 1, µ0, µ1 ∈ R and µ2, µ3 > 0, µ2 + µ3 > p− 1.

Clearly, f is nonincreasing relative to u. This shows that (H) holds. Theorem 7 implies that

the CBVP (5.123) has at least one positive solution.

Conclusion 1 A necessary and sufficient condition for problem (5.123) to have at least one

C2 [0, 1] positive solution is

(β − 1) + µ0 + (2− α)µ3 + (α− 1)µ2 > −1 and µ1 > −2,
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or

(β − 1) + µ0 + (2− α)µ3 + (α− 1)µ2 > −1 and µ1 + µ2 > −2.

5.4 Dependence of solution on the parameters

For f Lipschitz in the second and third variables, the solution’s dependence on the order of

the differential operator, the boundary values, and the nonlinear term f are also discussed.

In the following, suppose that (A) holds and for any u ∈ X, we let

(fu) (t) := f
(
t, u (t) ,−Tα

0+u (t)
)
, (fuε) (t) := f

(
t, uε (t) ,−Tα

0+uε (t)
)
, t ∈ (0, 1) . (5.124)

5.4.1 The dependence on parameters of the left-hand side of (E2)

We show that the solutions of two equations with neighboring orders will (under suitable

conditions on their right hand sides f) lie close to one another.

Theorem 9 Suppose that the conditions of Theorem 7 hold. Let u (t) , uε (t) be the solutions,

respectively, of the problems (E2-C3) and

Tβ
0+

(
ϕp
(
Tα−εu

))
(t) = f

(
t, u (t) ,−Tα

0+u (t)
)
, t ∈ (0, 1) , ε > 0, (5.125)

with the boundary conditions (C3), where 1 < α − ε < α ≤ 2. Then ‖u− uε‖ = O (ε) , for ε

sufficiently small.

Proof. By the above theorems, we can obtain the following results. Let

uε (t) =

∫ 1

0

Gαε(t, s)ϕq

(∫ 1

0

Gβ(t, s) (fuε) (t)

)
ds. (5.126)

be the solution of (E2-C3), where

Gαε(t, s) = kα−ε (t, s) +
b1t

1− b1ξ1

kα−ε (ξ1, s) . (5.127)

On one hand, from (5.27) and (5.126) yields

|u (t)− uε (t)| =
∣∣∣∣∫ 1

0

Gα(t,s)ϕq

(∫ 1

0

Gβ(t,s) (fu) ds

)
dt−

∫ 1

0

Gαε(t,s)ϕq

(∫ 1

0

Gβ(t,s) (fuε) ds

)
dt

∣∣∣∣
(5.128)
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=

∣∣∣∣∣∣∣
∫ 1

0
Gα(t,s)ϕq

(∫ 1

0
Gβ(t,s) (fu) (t) ds

)
dt−

∫ 1

0
Gα(t,s)ϕq

(∫ 1

0
Gβ(t,s) (fuε) (t) ds

)
dt

+
∫ 1

0
Gα(t,s)ϕq

(∫ 1

0
Gβ(t,s) (fuε) (t) ds

)
dt−

∫ 1

0
Gαε(t,s)ϕq

(∫ 1

0
Gβ(t,s) (fuε) (t) ds

)
dt

∣∣∣∣∣∣∣
|u (t)− uε (t)| ≤

∫ 1

0

Gα(t,s)

∣∣∣∣ϕq (∫ 1

0

Gβ(t,s) (fu) ds

)
dt− ϕq

(∫ 1

0

Gβ(t,s) (fuε)

)
ds

∣∣∣∣ (5.129)

+

∫ 1

0

∣∣Gα(t,s) −Gαε(t,s)

∣∣ϕq (∫ 1

0

Gβ(t,s) (fuε) (t) ds

)
dt.

On the other hand, in a similar manner, we can get

∣∣Tα
0+u (t)−Tα

0+uε (t)
∣∣

=

∣∣∣∣t1−α(∫ 1

0

d

dt
Gα(t,s)ϕq

(∫ 1

0

Gβ(τ,s) (fuε)

)
dτ −

∫ 1

0

d

dt
Gα(t,s)ϕq

(∫ 1

0

Gβ(τ,s) (fuε)

)
dτ

)∣∣∣∣
=

∣∣∣∣∣∣∣
t1−α

(∫ 1

0
d
dt
Gα(t,s)ϕq

(∫ 1

0
Gβ(τ,s) (fuε)

)
dτ −

∫ 1

0
d
dt
Gα(t,s)ϕq

(∫ 1

0
Gβ(τ,s) (fuε)

)
dτ
)

+t1−α
(∫ 1

0
d
dt
Gα(t,s)ϕq

(∫ 1

0
Gβ(τ,s) (fuε)

)
dτ −

∫ 1

0
d
dt
Gαε(t,s)ϕq

(∫ 1

0
Gβ(τ,s) (fuε)

)
dτ
)
∣∣∣∣∣∣∣

∣∣Tα
0+u (t)−Tα

0+uε (t)
∣∣ (5.130)

≤
∫ 1

0

d

dt
Gα(t,s)

∣∣∣∣ϕq (∫ 1

0

Gβ(t,s) (fu) (t) ds

)
dt− ϕq

(∫ 1

0

Gβ(t,s) (fuε) (t)

)
ds

∣∣∣∣
+

∫ 1

0

∣∣∣∣ d

dt
Gα(t,s) −

d

dt
Gαε(t,s)

∣∣∣∣ϕq (∫ 1

0

Gβ(t,s) (fuε) (t) ds

)
dt.

Moreover, from (5.129), (5.130), we have

‖u− uε‖ ≤ ϕq

(∫ 1

0

Gβ(t,s)ds

)
(5.131)

×


∫ 1

0

∣∣Gα(t,s) + d
dt
Gα(t,s)

∣∣ |ϕq ((fu) (t) ds) dt− ϕq ((fuε) (t)) ds|

+
∫ 1

0

∣∣(Gα(t,s) −Gαε(t,s)

)
+
(

d
dt
Gα(t,s) − d

dt
Gαε(t,s)

)∣∣ϕq ((fuε) ds) dt.


From (5.26), that∫ 1

0

Gβ(t, s)ds ≤
∫ t

0

(1− t) sβ−1ds+

∫ 1

t

t (1− s) sβ−2ds ≤ 1−t
β

+ t
β(β−1)

≤ 1
β−1

,

by using the analogous argument it holds that∫ 1

0

∣∣Gα(t,s)

∣∣ ds ≤ 1
α−1

(
1 + b1

1−b1ξ1

)
and

∫ 1

0

∣∣∣∣ d

dt
Gα(t,s)

∣∣∣∣ ds ≤ 1

α− 1

(
1 + b1

1−b1ξ1

)
, (5.132)
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similarly, it holds that∫ 1

0

∣∣Gα(t,s) −Gαε(t, s)
∣∣ ds ≤ ε

(α−1)(α−ε−1)

(
1 + b1

1−b1ξ1

)
and ∫ 1

0

Gβ(t,s)ds ≤ 1
β−1

[
1 + b0

1−b0ξ2

]
and

∫ 1

0

Gβ(ξ2,s)ds ≤ 1
β−1

[
1 + b0ξ2

1−b0ξ2

]
. (5.133)

i) In case 1 < q ≤ 2 we apply (3.6). From (5.129),we have

|ϕq ((fu) (t)) ds− ϕq ((fuε) (t))|

≤ 22−q |(fu) (t)− (fuε) (t)|q−1

≤ 22−qLq−1 ‖u− uε‖q−1 ,

(5.134)

where

|(fu) (t)− (fuε) (t)| ≤ L ‖u− uε‖ .

From (5.129), we get

‖u− uε‖ ≤ 22−qLq−1

(α−1)

(
1 + b1

1−b1ξ1

)(
1

(β−1)

(
1 + b0

1−b0ξ2

))q−1

‖u− uε‖q−1 (5.135)

+ 22−q
(
‖f‖ 1

(β−1)

(
1 + b0

1−b0ξ2

))q−1
ε

(α−1)(α−ε−1)

(
1 + b1

1−b1ξ1

)
.

Consequently, we obtain

‖u− uε‖ ≤
22−q

(
|||f |||
(β−1)

(
1+

b0
1−b0ξ2

))q−1(
1+

b1
1−b1ξ1

)
[
1− 22−qLq−1

(α−1)

(
1+

b1
1−b1ξ1

)(
1

(β−1)

(
1+

b0
1−b0ξ2

))q−1
] ε

(α− 1) (α− ε− 1)
, (5.136)

where

|||f ||| = sup
0<ε<α−1

{
max

∣∣f (t, uε,−Tα
0+uε

)∣∣ : t ∈ (0, 1)
}

and

0 <

[
1− 22−qLq−1

(α−1)

(
1 + b1

1−b1ξ1

)(
1

(β−1)

(
1 + b0

1−b0ξ2

))q−1
]
≤ 1.

ii) In case q > 2, we apply (3.7).and the inequality (3.8), we obtain

|ϕq ((fu) (t)) ds− ϕq ((fuε))| ≤ (q − 1)
[
|(fu)− (fuε)|+ |(fuε)|q−2 (|(fu)− (fuε)|)

]
≤ (q − 1)

[
|(fu) (t)− (fuε) (t)|+ |(fuε) (t)|q−2 (|(fu) (t)− (fuε) (t)|)

]
≤ (q − 1) [L ‖u− uε‖+ ‖f‖]q−2 (L ‖u− uε‖)

≤ (q − 1)
(
λ3−qLq−2 ‖u− uε‖q−2 + µ3−q ‖f‖q−2) (L ‖u− uε‖) .
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Hence

|ϕq ((fu) (t)) ds− ϕq ((fuε) (t))| ≤ (q − 1)
(
λ3−qLq−2 + µ3−q ‖f‖q−2) (L ‖u− uε‖) .

Thus, by (5.129), we have

‖u− uε‖ ≤ C1

(
λ3−qLq−2 + µ3−q ‖f‖q−2) (5.137)

+ ε
(α−1)(α−ε−1)

(
1 + b1

1−b1ξ1

)(
‖f‖ 1

(β−1)

(
1 + b0

1−b0ξ2

))q−1

,

where

C1 = (q−1)
(α−1)

(
1 + b1

1−b1ξ1

)( 1

(β − 1)

(
1 +

b0

1− b0ξ2

))q−2

.

Thus, in accordance with (5.136) and (5.137) we obtain ‖u− uε‖ = O (ε) .

Theorem 10 Suppose that the conditions of Theorem 7 hold. Let u (t) , uε (t) be the solu-

tions, respectively, of the problems (E2-C3) and

T β−εt

(
ϕp
(
Tα

0+u
))

(t) = f
(
t, u (t) ,−Tα

0+u (t)
)
, t ∈ (0, 1) , ε > 0, (5.138)

with the boundary conditions (C3), where 1 < β − ε < β < 2. Then ‖u− uε‖ = O (ε) .

Proof. Let

uε (t) =

∫ 1

0

Gα(t,s)ϕq

(∫ 1

0

Gβε(t,s) (fuε) (t)

)
ds, (5.139)

be the solution of (E2-C3), where

Gβε(t, s) = kβ−ε(t, s) +
b0t

1− b0ξ2

kβ−ε(ξ2, s), b0 = bp−1
2 . (5.140)

Then (5.139) and (5.140) yields

Observing that∫ 1

0

Gβ(t,s)ds ≤ 1
β−1

[
1 + b0

1−b0ξ2

]
and

∫ 1

0

Gβ(ξ2,s)ds ≤ 1
β−1

[
1 + b0ξ2

1−b0ξ2

]
. (5.141)

Similarly of Theorem 9, we also have ‖u− uε‖ = O (ε) .
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5.4.2 The dependence on parameters of initial conditions

Let us introduce small changes in the initial conditions of (E2-C3) and consider (E2) with

boundary conditions

u (0) = 0, u (1) = b1u (ξ1) , Tα−ε0+ u (0) = 0, Tα−ε0+ u (1) = b2T
α−ε
0+ u (ξ2) , 1 < α− ε < α < 2.

(5.142)

Theorem 11 Assume the conditions of Theorem 7 hold. Let u (t) , uε (t) be respective so-

lutions, of the problems (E2-C3) and the boundary conditions (E2-5.142). Then ‖u− uε‖ =

O (ε) .

Proof. Let

uε (t) =

∫ 1

0

Gα(t,s)ϕq

(∫ 1

0

Gβε (t, s) (fuε) (t)

)
ds, (5.143)

solutions of the problem (E2-5.142), where

Gβε (t, s) = Gβ(t, s) + b0t
1−b0ξ2Gβ(ξ2, s), b0 = ϕp (b2ξ

ε
2) . (5.144)

It is easy to see that ‖u− uε‖ = O (ε) .

5.4.3 The dependence on parameters of the right-hand side of (E2)

Theorem 12 Suppose that the conditions of Theorem 7 hold. Let u1 (t) , u2 (t) be the solu-

tions, respectively, of the problems (E2-C3) and

Tβ
0+

(
ϕp
(
Tα

0+u
))

(t) = f
(
t, u (t) ,−Tα

0+u (t)
)

+ ε, t ∈ (0, 1) , (5.145)

with boundary conditions (C3), where 1 < α ≤ 2. Then ‖u− uε‖ = O (ε) .

Proof. In accordance with Lemma 26, we have

uε (t) =

∫ 1

0

Gα(t,s)ϕq

(∫ 1

0

Gβ(t,s) [(fuε) (t) + ε] ds

)
dt. (5.146)

i) In case 1 < q ≤ 2 we apply (3.6). From (5.129), we have

|ϕq ((fu) (t))− ϕq ((fuε) (t) + ε)|

≤ 22−q (|(fu) (t)− (fuε) (t)|+ ε)q−1

≤ 22−q (λ2−qLq−1 ‖u− uε‖q−1 + µ2−qεq−1
)
.

(5.147)

100



5.4. Dependence of solution on the parameters

Therefore, by taking

R01 = (q − 1)
[
(λ1µ1)q−3 + (λ1µ2)q−3 εq−2 + λq−3

2 ε+ λq−3
2 |(fuε) (t)|

]
,

R02 = (q − 1)
[
(λ1µ1)q−3 + (λ1µ2)q−3 εq−2 + λq−3

2 ε+ λq−3
2 |(fuε) (t)|

]
,

we get

|ϕq ((fu) (t))− ϕq ((fuε) (t) + ε)| ≤ R01 ‖u− uε‖+R02.

ii) When q > 2, we apply (3.7), we have

|ϕq ((fu) (t))− ϕq ((fuε) (t) + ε)|

≤ (q − 1) (|(fu)− (fuε)− ε|+ |(fuε) + ε|)q−2 × (|(fu)− (fuε)− ε|)

≤ (q − 1)
(
λ3−q |(fu)− (fuε)− ε|q−2 + µ3−q |(fuε) + ε|q−2)× (|(fu)− (fuε)− ε|)

≤ (q − 1)
(
λ3−q |(fu)− (fuε)− ε|q−2 + µ3−q |(fuε) + ε|q−2)× (|(fu)− (fuε)− ε|)

≤ R11 ‖u− uε‖+R12.

(5.148)

Therefore, by taking

R11 = (q − 1)
[
(λ1µ1)q−3 (1 + ε) + (λ1µ2)q−3 εq−2 + λq−3

2 ε+ λq−3
2 |(fuε) (t)|

]
R12 = (q − 1)

[
(λ1µ2)q−3 εq−1 + λq−3

2 ε2 + λq−3
2 |(fuε) (t)| ε

]
,

we get

|ϕq ((fu) (t))− ϕq ((fuε) (t) + ε)| ≤ R11 ‖u− uε‖+R12.

It is easy to see that ‖u− uε‖ = O (ε) .

Remark 11 The contents of this chapter is published in the form of single paper as men-

tioned below:

- Nonlinear singular p-Laplacian boundary value problems in the frame of conformable deriva-

tive Discrete & Continuous Dynamical Systems - S doi: 10.3934/dcdss.2020442
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Conclusion

The p- Laplacian equation has been proposed to describe non-Newtonian fluid theory, non-

linear elastic mechanics, and so forth. However, it has been realized that the classical PLE

failed to describe such a complex systems. Thus, the consideration of PLE in the frame of

fractional derivatives became compulsory. As a result of this interest, several results have

been revealed and different versions of PLE have been under study.

Throughout this doctoral dissertation, mathematical analysis of generalized PLEs with CFD

was presented. Techniques used here showcased the well-posedness of the extended PLE with

CFD. Illustrative examples of applications validated this extension.

We have considered the following nonlinear fractional differential equations (E1) and (E2)

subjected to different boundary conditions ( C1), ( C2) and (C3) respectively, we plan to

study the same question such as existence, uniqueness and the dependence of the solution

in the case where the derivatives are of type LFD and NLFD in the sense of Caputo.

Firstly, we provided a literature review on fractional calculus. Basic fractional derivatives

such as Riemann–Liouville, Caputo, Hadamard, Grünwald–Letnikov and CFD were pre-

sented. Related properties governing these derivatives were also presented. The concept of

fixed point theorems, upper and lower solutions were introduced.

Secondly, the concept of well-posedness as applied to generalized PLEs has been elaborated

in this thesis. This included the demonstration of existence, uniqueness and the dependence

of the solution of the CFE and existence of the CFE in the sense of Caputo types of PLEs.

Under necessary and sufficient conditions proceeding from various definitions and theorems,

the well-posedness of FPLE with CFD was established.

Thirdly, the generalized PLE was defined with the CFD and its well-posedness investigated.

It was demonstrated that the generalized PLE admits a solution by proving the existence

and uniqueness. Analysis results in each applications were provided.

Lastly, the mathematical analysis conducted in this thesis has demonstrated that PLEs are

certainly extendable with the new CFD. The results obtained in Chapters 4 and 5 justified

that a generalized PLE has a solution, which is unique with respect to associated parameters.

In Chapter 4, the FBVP for PLE at resonance is investigated. In view of the FBVP (4.85-
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4.86) is equivalent to the operator equation (4.94); we only need to find a fixed point of

the operator equation (4.94). Firstly, we established the sufficient conditions of existence

of FBVP for p-Laplacian equation. Then, by using the extension of Mawhin’s continuation

theorem due to Ge, we got the fixed point of operator equation (4.94). This result extends

many existent results and generalizes many related problems in the literature.

In Chapter 5, we have studied a class of fourth point singular BVP of p-Laplacian operator

in the setting of a LFD, namely a newly defined CD. By using the upper and lower solutions

method and FPTs on cones, necessary and sufficient conditions for the existence of positive

solutions were obtained. We present an example to demonstrate the consistency to the

theoretical findings. We have also investigated the continuous dependence of solutions all

on its right side function, initial value condition. Using these results, the properties of the

solution process can be discussed through numerical simulation.

We claim that the results of this thesis is new and generalize some earlier results. For

example, by taking p = α = β = 2 and b2 = 0, in the results of chapiter 5 which can be

considered a special case of a simple Jerk Chaotic circuit equation see [107].

Reported results in this thesis can be considered as a promising contribution to the theory

of fractional integral equations. These results can be used to study and develop further

quantitative and qualitative properties of generalized fractional differential equations.

Future work

Although it was shown that an application of a nonlinear p-Laplacian equation also com-

plied with the analysis approach presented for PLE, one could explore the concept of well-

posedness for generalized nonlinear PLEs. Since the proposed analysis only assumed for

linear operators, then an investigation of the well-posedness for non-homogeneous fractional

p- Laplacian with CFD can be subject to future work.

Results obtained in this thesis can be considered as a contribution to the developing field of

FC with generalized fractional derivative operators. We also remark that the extension of

the previous results to the nonlinearity depending on the time delayed differential system or

inclusion differential equation taking into account that sometimes the corresponding research
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when the FD with non-singular kernels are considered is interesting, in the future work, we

will focus our concentration on the Caputo-Fabrizio derivative, Atangana-Baleanu, fractional

derivatives of a function with respect to another function and try to mix idea of this work

with q-fractional derivatives.

Also, the reader can find some new methods for approximate solutions of fractional integro-

differential equations involving the Caputo-Fabrizio derivative or extended fractional Caputo-

Fabrizio derivative. The approximation solutions are interesting and need more concentra-

tion.

At the end of this work we also anticipate that the methods and concepts here can be

extended to the systems with economic processes such as risk model, the CIR model, and

the Gaussian model. We hope to consider these problems in future works.
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