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Abstract. In this paper we introduce and study some new types of star-selection principles ((i, j)-NSM,
(i, /)-NSR and (i, j)-NSH) in bitopologivcal spaces. Various properties of these selection properties are
established and their relations with known selection principles are discussed. Several examples are given.

1. Introduction

Selection principles theory is one of most active research areas of topology in the last two-three decades.
Classical concepts and results in this theory appeared in 1920s and 1930s years in works by Menger,
Hurewicz and Rothberger. A systematic study in this field began in 1996 by Scheepers [24]. In 1999,
Ko¢inac [14] introduced star selection principles, and (under different name) neighbourhood star selection
principles [15] which have been studied in details in [2]. In this paper we extend this investigation and
introduce and study neighbourhood star selection (covering) properties in bitopological spaces and so
complement research in bitopological context. Let us mention that bitopological selection principles have
been discussed in a number of papers [16, 17, 20-22].

The paper is organized in the following way. After this short introduction, in Section 2 we give necessary
information about selection principles and bitopological spaces. In Section 3 we consider neighbourhood
star-Lindelof bitopological spaces, and in Section 4 we introduce neighbourhood star selection properties,
which are the main subject of our article, and study neighbourhood star-Menger, star-Hurewicz and star-
Rorhberger properties in bitopological context. Their behavior under known topological operations and
constructions are discussed. In Section 5 we investigate weaker forms of neighbourhood star selection
properties. In particular, we discuss preservation of these properties under certain kinds of mappings.

2. Preliminaries

Throughout the paper N and R denote the set of positive integers and the set of real numbers. Let
X be a topological space, U a collection of subsets of X, A ¢ X. Then UU = U{U : U € U}. The set
StA,U) = U{U e U : UNA # 0} is called the star of A with respect to U. If x € X, we write St(x, U)
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instead of St({x}, U). If A and B are collections of subsets of a space X, then the symbol 8 < A denotes the
fact that for each B € B thereis A € A with B C A.

Our notation and terminology follow [6] (for topological spaces), [5] (for bitopological spaces), [4] (for
star covering properties).

A. Selection principles. Let A and B be collections of sets (in this paper they will be mainly collections
of covers of a (bi)topological space X). Then the symbol S{(A, B) denotes the selection hypothesis that for
each sequence (A, : n € IN) of elements of A there exists a sequence (a, : n € IN) such that for each n € IN,
a, € A, and {a, : n € N} is an element of 8. The symbol Siir (A, B) denotes the selection hypothesis that for
each sequence (4, : n € IN) of elements of A there exists a sequence (B, : n € N) such that for each n € IN,
B, is a finite subset of A,, and |J,,n Br is an element of B ([24]).

In [14] (see also [15]), Ko¢inac introduced star selection hypothesis similar to the previous ones. Let A
and B be collections of covers of a space X. Then:

(1) The symbol Syin*(A, B) denotes the selection hypothesis: for each sequence (U, : n € IN) of elements
of A there exists a sequence (V, : n € IN) such that for each n € IN, V, is a finite subset of U, and
UnenfSt(V,U,) : V € V,)}is an element of B.

(2) The symbol SS;, (A, B) denotes the selection hypothesis: for each sequence (U, : n € IN) of elements
of A there exists a sequence (F,, : n € IN) of finite) subsets of X such that {St(F,, U,) : n € N} € B.

(3) The symbol S1*(A, B) denotes the selection hypothesis: for each sequence (U, : n € IN) of elements
of A there exists a sequence (U, : n € IN) such that for each n € N, U, € U, and |, SH(U,, U,) is an
element of 8.

(4) The symbol SS; (A, B) denotes the selection hypothesis: for each sequence (U, : n € IN) of elements
of A there exists a sequence (x, : n € IN) of elements of X such that {St(x,, U,) : n € N} € B.

Let O denote the collection of all open covers of a space X.

Definition 2.1. ([14]) A space X is said to be star-Menger [resp., star-Rothberger] if it satisfies the selection
hypothesis S¢n (O, O) [resp., S17(0, O)]. X is strongly star-Menger (vesp., strongly star-Rothberger) if it satisfies
SS;. (O, 0) (resp., SS;(0, 0)).

Definition 2.2. ([14], [1]) A space X is said to be star-Hurewicz (resp., strongly star-Hurewicz) if for every
sequence (U, : n € IN) of open covers of X there is for each # a finite set V,, ¢ U, (resp., a finite F, C X) so
that each x € X belongs to St(lJ V,, U,) (resp., St(F,,, U,)) for all but finitely many #.

The following three generalizations of star selection properties have been introduced (in a general form
and under different names) in [15] and studied in details in [2].

Definition 2.3. ([2]) A space X is said to be neighbourhood star-Menger (NSM) if for every sequence (U, : n €
IN) of open covers of X, one can choose finite sets F,, C X, n € IN, so that for every openset O, O F,, n € N,
we have |J,{St(O,, U,) : n € N} = X.

Definition 2.4. ([2]) A space X is said to be neighbourhood star-Rothberger(NSR) if for every sequence (U, :
n € IN) of open covers of X, one can choose a sequence (x, € X : n € IN) so that for every open O, > x,,
n € N, we have ,,cp St(On, U,) = X.

Definition 2.5. ([2]) A space X is said to be neighbourhood star-Hurewicz (NSH) if for every sequence (U, :
n € IN) of open covers of X, one can choose finite F,, C X, n € IN, so that for every open O, O F,, n € N, each
x € X belongs to St(O,,, U,) for all but finitely many 7.

For investigation of star selection principles related to this paper see also [25-27].
In this article we define and study neighbourhood star selection properties in bitopological spaces.

B. Bitopological spaces. A set X endowed with two, in general unrelated, topologies 7; and 75 is called a
bitopological space (or shortly, bispace) and is denoted by (X, 71, 72) (and sometimes simply by X).

For a subset A of X, Cl,(A) and Int,(A) will denote the closure of A and the interior of A in (X, 7)),
i = 1,2, respectively. If f : (X, 71,72) — (Y,01,02) is a mapping between bispaces, then f; denotes the
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mapping f : (X, ;) = (Y,0;). If P is a topological property, then a bispace (X, 71, 72) is double P (or shortly
d-P) if both (X, 1) and (X, 72) have the property $. For example, in [3], d-separability has been defined in
this way.

Definition 2.6. ([23]) Let (X, 71, 72) be a bispace. A subset A of X is said to be:

1. open in X if it is both 71-open and 7,-open;
2. closed in X if it is 71-closed and 7,-closed;
3. (i, j)-clopen if A is t;-closed and 7;-open; F is clopen if it is both (i, j)-clopen and (j, i)-clopen in X.

Selective properties in bitopological spaces have been studied in [17, 20, 21], and for weak covering
properties in the bitopological context the study began with the paper [22] on the almost Menger property
and continued in [7, 8].

3. About (i, /)-NSL bispaces

In this section we consider the class of neighbourhood star-Lindel6f bispaces which is strongly related
to the main topic of this article.

Definition 3.1. A bitopological space (X, 11, 72) is said to be:

(1) (i, j)-neighbourhood star-Lindeldf (shortly, (i, j)-NSL), i, j = 1,2, if for every 7;-open cover U of X one
can choose a countable set F C X so that for every 7;-open set O O F, we have St(O, U) = X;

(2) (i, j)-weakly neighbourhood star-Lindelof (shortly, (i, j)-WwNSL), i, j = 1, 2, if for every 7;-open cover U of
X one can choose a countable set F C X so that for every 7;-open set O O F, we have Cl,(St(O, U)) = X.

The proof of the following theorem is omitted because it is similar to the proof of Theorem 4.7 below.

Theorem 3.2. A bispace X is (i, j)-NSL, i, j = 1,2, if and only if for every t;-open cover U of X there is a countable
F C X such that for every x € X we have Cl. (St({x}, U)) " F # 0.

Example 3.3. Endow the real line R by the two topologies: 7; is the usual topology on R, and 1, is the
Sorgenfrey topology [6]. Then the bispace (R, 71, 72) is (1,2)-NSL. Indeed, let U be an open cover of (R, 7).
Then U is also an open cover of (IR, 72). Since (IR, 1) is separable, for any countable set A dense in (IR, 75)
we have R = St(A, U). Then, clearly, for any t,-neighbourhood O of A it holds St(O, ) = R which means
that (IR, 71, 72) is (1,2)-NSL.

Remark 3.4. The bispace in the previous example is also (2,1)-NSL. Let V be a 7;-open cover of R. Take a
dense countable subset C of (IR, 72). Then St(C, V) = R. Clearly, for any 71-open set O containing C, it holds
R = St(O, V), which means that (IR, 71, 72) is (2,1)-NSL.

We prove now a few properties of (i, j)-NSL bispaces.
Theorem 3.5. Every clopen subspace (Y, T1|Y, 72|Y) of an (i, j)-NSL bispace (X, 71, 12) is also (i, j)-NSL.

Proof. Let U be a t;|Y-open cover of Y. As Y'is 7;-closed, V = U U(X\Y) is a 7;-open cover of X, and since X
is (i, j)-NSL, there is a countable set A C X such that for every 7;-open neighbourhood O of A, St(O, V) = X.
The set B = Y N A is a countable subset of Y. Take any 7;|Y-open set G with G D B. As Y is clopen, the set
H = GU(X\Y)isa tj-open set containing A so that St(H, V) = X. Since G N (X \ Y) = 0 one concludes that
StG,U) =Y, ie (Y, T1lY, 2lY)is (i, j)-NSL. O

Definition 3.6. Let Y be a subspace of a bispace (X, 71,72). Then Y is relatively (i, j)-NSL in X if for each
7;-open cover U of X, there is a countable set F C X, such that for every 7;-open O > Fwehave Y C St(O, U).

Proposition 3.7. If X = (J{Yx : k € IN} and every Yy is relatively (i, j)-NSL in X, then X is (i, j)-NSL.
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Proof. Let U be a t;-open cover of X. Then for each k € IN, U covers Y}, and since Y is relatively (i, j)-NSL,
there is a countable set Fy C X, such that for each 7;-open set O > Fy we have St(O, U) D Yj. Put F = ey Fr-
Then F is a countable subset of X. Let O be any 7;-open set containing F. Using the fact that O contains all
Fi, k € N, we conclude that St(O, U) D Uren Y = X, which means that X is (i, j)-NSL. O

In the literature there is the following wrong definition of (i, j)-Lindelof bispaces: a bispace (X, 71, 72) is
(i, j)-Lindelof if for each 7;-open cover U of X there is a countable 7;-subcover. We give another definition.

Definition 3.8. A bitopological space (X, 71, 72) is called (i, j)-Lindeldf if for every 7;-open cover of X there
is a countable 7;-open refinement.

Definition 3.9. A bispace (X, 71, 72) is said to be:

(1) (i, j)-para-Lindeldf if each 7;-open cover of X has a 7;-open refinement which is 7;-locally countable
[5];

(2) (i, j)-weakly Lindeldf if each t;-open cover U of X has a t;-open countable collection V such that
YV < U and Cl, (UV) = X.

Theorem 3.10. If (X, 71, 72) is an (i, j)-para-Lindelof (i, j)-NSL bispace, then (X, t;) is Lindeldf.

Proof. Let U be a 7;-open cover of X. As X is (i, j)-para-Lindeldf, there is a 7;-open refinement V of U so
that V is 7;-locally countable. Since X is (i, )-NSL, there is a countable set A C X such that for each 7;-open
set G D A we have St(G,V) = X. For each a € A choose a 7j-open set W, intersecting the most countably
many elements in V. Then G(A) = U{W, : a € A}is a Tj-open neighbourhood of A and thus St(G(A), V) = X.
Theset V' = {V € V: VN G(A) # 0} is a countable subset of V and satisfies U{V : V € V’} = X. For each
V € V' pick a set U(V) € U containing V. Then the subset U’ = {U(V) : V € V’} witnesses for U that (X, ;)
is Lindelof. O

Theorem 3.11. Every (i, j)-para-Lindelof, (i, j)-wNSL bispace is (i, j)-weakly Lindelof.

Proof. Let U be a t;-open cover of X. There exists a 7;-locally countable 7;-open refinement V of U. For
each x € X, there exists a 7;-open neighbourhood W, of x such that {V € V: W, NV # 0} is countable.
Since X is (i, j)-WNSL, there exists a countable subset A of X such that for every 7;-open set O D A,
X = Cl;;(St(O,V)). Especially, it is true for 7;-open set Op = J{W, : x € A} D A, ie. ClL;;(St(O4,V)) = X.
SetV ={VeV:VNO, # 0. Then V is a countable subset of V, and clearly we have CIT,.(U V) =X.
For each V € V, choose Uy € U with V C Uy. Then {Uy : V € V} is a countable subcover of U, and
X = Clg,(Uyeq Uy) which shows that X is (i, j)-weakly Lindelof. [

Definition 3.12. ([5]) A mapping f : (X, 71, 72) = (Y, 01, 02) between bispaces is said to be double continuous
(shortly d-continuous) if the induced mappings f; : (X, ;) — (Y, 0;) are continuous fori =1, 2.

Theorem 3.13. Let (X, 11, T2) be an (i, j)-NSL bispace and let (Y, 01, 62) be a bispace. If f : X — Y is a d-continuous
surjection, then Y is an (i, j)-NSL bispace.

Proof. Let V be a o;-open cover of Y. Then U = f(V) = {f(V) : V € V}is a t;-open cover of X. Since X
is (i, j)-NSL, there is a countable F C X such that for each 7;-open O containing F we have X = St(O, U). Let
K = f(F) and let G be a gj-open neighbourhood of K. Then f“(G) is a tj-open neighbourhood of F so that
X = St(f(G), U). We prove Y = St(G, V).

Let y € Y and let x € X be such that y = f(x). Then x € St(f~(G), U). It follows

y = f(x) € f(St(f(G), U)) c SHG, V).
Therefore, K and G witness for V that Y is (i, j)-NSL. [

Proposition 3.14. If (X, 11, T2) is a bispace such that X = \U,en Cle,(Yy) and each Yy is relatively (i, j)-NSL in X,
then X is (i, j)-wNSL.
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Proof. Let U be a t;-open cover of X. Each Y is covered by U. As Y is relatively (i, j)-NSL in X, there is for
each k € IN a countable F; C X such that for each 7;-open O containing F, Y C St(O, U). Let F = Uy Fi
and let G be a 7;-open set containing F. Then

X = U Cly,(Yx) € Cle,(SHG, U))
keN

ie. Xis (i, j)-wNSL. O

Theorem 3.15. Let a bispace (X, 11, T2) be (i, j)-WNSL and let (Y, 01, 02) be a bispace. If f : X — Y is a d-continuous
sutjection, then Y is also (i, j)-WwNSL.

Proof. Let V be aci-opencoverof Y. ThenU = f~(V) ={f~(V): V € V}isa t;-open cover of X. Since X is
(i, )-WNSL, there is a countable F C X such that for each 7;-open O containing F we have X = Cl,(St(O, U)).
Let K = f(F) and let G be a ¢j-open neighbourhood of K. Then f~(G) is a 7j-open neighbourhood of F so
that X = Cl,(St(f ~(G), U)). We prove Y = Cl,(SH(G, V)).

Let y € Y and let x € X be such that y = f(x). Then x € Cl,(St(f(G), U)). It follows,

y = f(x) € Cl (f(St(f(G), U))) € Cly,(SHG, V).
Therefore, K and G witness for V that Y'is (i, j)-wNSL. [

4. Neighbourhood star selection principles in bispaces
In this section we introduce and study (i, j)-NSM, (i, j)-NSR and (i, j)-NSH bitopological spaces.

Definition 4.1. A bitopological space (X, 11, T2) is said to be:

(1) (i, j)-neighbourhood star-Menger (shortly, (i, j)-NSM), 7, j = 1,2, if for every sequence (U, : n € IN) of
T;-open covers of X one can choose finite sets F,, C X, n € IN, so that for every t j-open set O,>F,, neNN,
we have Une]N{St(Om Uyt =X;

(2) (i, j)-neighbourhood star-Rothberger (shortly, (i, j)-NSR), i, j = 1, 2, if for every sequence (U, : n € IN) of
7;-open covers of X, one can choose x, € X, n € IN, so that for every 7;-open set O, D x,, n € N, we have
Unen{SHO,., Uy} = X;

(3) (i, j)-neighbourhood star-Hurewicz (shortly, (i, j)-NSH), i, j = 1,2, if for every sequence (U, : n € IN) of
7;-open covers of X one can choose finite F, C X, n € IN, so that for every 7;-open set O, O F,, n € IN, each
x € X belongs to St(O,,, U,) for all but finitely many n.

Remark 4.2. Of course, every (i, j)-NSR and every (i, j)-NSH bispace is (i, j)-NSM, and every (i, j)-NSM
bispace is (i, j)-NSL.

The following proposition is evident (from the definitions), but useful for the following examples.
Proposition 4.3. If (X, 71, T2) is a bispace such that T1 < T, then:
(1) If (X, T2) is NSM (resp., NSH, NSR), then (X, t1, T2) is (1,2)-NSM (resp., (1,2)-NSH, (1,2)-NSR).
(2) If (X, 71, 72) i5 (1,2)-NSM (resp., (1,2)-NSH, (1,2)-NSR), then (X, t1) is NSM (resp., NSH, NSR).

Example 4.4. Let 71 be the cofinite topology on R and 7, the usual metric topology on IR. Then 7; < 7, and
(R, 1) is an NSH bispace. Therefore, by Proposition 4.3, (IR, 71, 72) is (1,2)-NSH and thus (1,2)-NSM.

Recall that d, b and cov(M) denote the following small combinatorial cardinals: the dominating number,
the unbounded number, and the minimal cardinality of a cover of the real line by meager sets.
We have the following consistent examples.
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Example 4.5. Endow the real line R with the usual metric topology. Let Y be the subspace of R such that
|Y N U| = w; for each open set U in R, and let [0, w] be the ordinal space. Consider the space X = Y X [0, ]
with the following two topologies:

(i) 71 is the product topology.

(ii) 77 is the topology in which a basic neighbourhood of a point < x,n >, x € Y, n < w, is of the form
((YnU)\ C) x {n}, where U is a neighbourhood of x in Y, and C is a countable set with x ¢ C, while a basic
neighbouhood of a point < x, w >, is of the form (Y N U) \ C) X (n,w) U {< x, w >}. Notice that 71 < 75.

1. It is proved in [2] that under assumption w; < d, the space (X, 72) is NSM. By Proposition 4.3, the
bispace (X, 71, 72) is (1,2)-NSM.

2. Under assumption w; < b, the bispace (X, 71, 72) is (1,2)-NSH. It follows from [2] and Proposition 4.3.

3. Under w; < cov(M), (X, 1 < 12) is (1,2)-NSR (see again Proposition 4.3 and [2]).

Example 4.6. Let aD(x) be the Alexandroff one-point compactification of the discrete space of uncountable
cardinality k. Consider the set X = aD(x) X [0, k*) UD(x) X {k*} equipped with the following two topologies:
71 is the subspace topology of the space aD(x) X [0, k*] with the product topology, and 7, is the discrete
topology on X. Then (X, 71, 72) is not (1,2)-NSM. Otherwise, by Proposition 4.3(2), (X, t1) must be NSM.
However, it is not the case because (X, 71) is not an NSL (see [2, Example 3.7]) and thus cannot be NSM

Theorem 4.7. A bispace (X, T1,72) is (i, j)-NSM, i, j = 1,2, if and only if for every sequence (U,, : n € N) of t;-open
covers of X there is a sequence (A, : n € IN) of finite subsets of X such that for every x € X there is n € IN such that
each 7 j-neighbourhood of A, meets St(x, U,).

Proof. Let a bispace X be (i, j)-NSM, i,j = 1,2, and (U, : n € IN) be a sequence of t;-open covers of X.
For each n € N there exists a finite set A, C X such that for every 7;-open set O, > A,, n € N, we have
Unen{St(Oy,, Uy)} = X. Let x € X. Then there exists k € IN fulfilling x € St(Ok, Uy). In other words, x belongs
to some U € Uy which intersects Oy. This means Oy N St(x, Uy) # 0.

Conversely, let (U, : n € N) be a sequence of 7;-open covers of X. By assumption there exists a
sequence (A, : n € IN) of finite subsets of X fulfilling that for every x € X there exists n € IN such that each
7;-neighbourhood O,, of A, intersects St(x, U,,). Therefore, for some U € U,, containing x we have O,NU #
which implies x € St(O,,, U,). This implies that for every 7;-open O, D> A, we have: (St({x}, U,)) (1 O, # 0.
Because O, was an arbitrary 7;-neighbourhood of A, one concludes that (X, 71, 72) is (i, j)-NSM. [

In a similar way one can prove the following two theorems.

Theorem 4.8. A bispace X is (i, j)-NSR, i, j = 1,2, if and only if for every sequence (U, : n € IN) of t;-open covers
of X there is a sequence (x, : n € IN) of points of X such that for every x € X there is n € IN for which we have
xn € Clg;(St(x, Uy)).

Theorem 4.9. A bispace X is (i, j)-NSH, i, j = 1,2, if and only if for every sequence (U, : n € IN) of T;-open covers of
X, there is a sequence (F, : n € IN) of finite subsets of X such that for every x € X we have that every T j-neighbourhood
of F,, meets St(x, Uy,) for all but finitely many n.

Definition 4.10. Let Y be a subspace of a bispace X. Then:

1) Y is relatively (i, j)-NSM (resp., relatively (i, j)-NSH) in X if for every sequence (U, : n € N) of t;-open
covers of X, one can choose finite F, C X, n € IN, so that for every 7;-open O, D F,, n € IN, we have
Y C U,en{St(On, Uy)} (resp., for each y € Y, y € St(O,, U,,) for all but finitely many n);

2) Y is relatively (i, j)-NSR in X if for every sequence (U, : n € IN) of 7;-open covers of X, one can choose
x, € X, n € N, so that for every 7;-open O, 3 x,, n € N, we have Y C |U,,en{St(O,, Uy)}.

Proposition 4.11. If X = U{Yy : k € IN} and Yy is relatively (i, j)-NSM(resp., relatively (i, j)-NSH, relatively
(i, )-NSR) in X, then X is (i, j)-NSM(resp., (i, j)-NSH, (i, j)-NSR)
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Proof. We prove the NSM case; the other two cases can be proved similarly. Let (U, : n € IN) be a sequence
of 7;-open covers of X. Then for each k,n € N, U, covers Yy and since Yy is relatively (i, j)-NSM, there are
finite Fy, C X, such that for each 7;-open Oy, D Fi,, n € N we have Y; C UJ,n{St(Ox ., Uy)} Consider the
sequence (Fy, : k,n € N) and 7;-open (Gy,, : k,n € IN) of neighbourhoods of Fy . Itis easy to conclude that

U St(Grn, Uy) D U Y= X

keIN keN

which means that X is (i, j)-NSM. O

Theorem 4.12. Let a bispace (X, t1, T2) be (i, j)-NSM (resp. (i, j)-NSH, (i, j)-NSR), and let (Y, 01, 02) be a bispace.
If f : X — Y is a d-continuous surjection, then Y is also an (i, j)-NSM (resp., (i, j)-NSH, (i, j)-NSR) bispace.

Proof. We prove only the (i, )-NSM case. Let (V,, : n € IN) be a sequence of g;-open covers of Y. For each
n € N, the set U, == {f(V) : V € V,} is a t;-open cover of X. Since X is (i, j)-NSM, there are finite sets
F, c X, n € N, so that for every 7;-open O, D F,;, n € N, {St(O,,, U,) : n € N} is a cover of X. The sets f(F,),
n € IN, are finite in Y. For each 1, let G, be a 0 -open neighbourhood of f(F,). Then f(G,) = H, is a tj-open
subset of X for each n € N and H, D F,,. Thus X = |J,.en St(Hy, U,,). We prove that Y = U,.en SHG, V).

Let y € Y and let x € X such that y = f(x). Then there is k € IN such that x € St(Hy, Ux). Then
y = f(x) € f(St(Hy, Uy)). Because f(St(Hy, Ui)) € f(St(f(Gk), Uy)) C St(Gx, Vi) we have y € St(Gy, V).
Therefore Y = Jgen St(Gk, Vi), ie. Yis (i, )-NSM. O

Theorem 4.13. Let f : (X,71,72) — (Y,01,02) be an open and closed, finite-to-one continuous mapping from a
bispace X onto an (1,2)-NSH bispace Y. Then X is (1,2)-NSH.

Proof. Let (U, : n € IN) be a sequence of open covers of (X, t1) and let y € Y. Since f(y) is finite, for each
n € N there exists a finite U,(y) € U, such that

f(y) cUU,(y) and U N f~(y) # O for each U € U,(y).

Since f : (X, 71) — (Y, 01) is closed, there exists a 01-open neighbourhood V,,(y) of y such that f<(V,(y)) C
UU,(y). Because f : (X,71) = (Y, 01) is open, one can assume that V,(y) c f(U) for each U € U,(y). For
each n € N set V, = {V,(y) : y € Y}]. In this way we have a sequence (V, : n € IN) of open covers of
(Y, 01). As (Y,01,02) is (1,2)-NSH, there is a sequence (B, : n € IN) of finite subsets of Y such that for all
o2-open O, D B, n € N, foreach y € Y, y € St(O,, V,) for all but finitely many n. Since f is finite-to-one,
(Ay = f<(By) : n € IN) is a sequence of finite subsets of X.

We prove that the sequence (A, : n € IN) witnesses for (U, : n € IN) that X is (1,2)-NSH. Let for each
n € IN, G, be a tp-neighbourhood of A,, x € X and y = f(x). Since f : (X,12) — (Y, 02) is closed there
exists a 0,-open set O, containing B, such that f~(0,) C G, for each n € IN. There is n, € N such that
y € St(O,,Vy) for all n > n,. Also, for all n > n,, there exists V,,(y) € V, such that y = f(x) € V,(y) and
Vay) N O, #0. Asx € f=(Vyu(y)) € UU,(y), we can choose U € U, (y) with x € U. Then V,,(y) c f(U), and
thus U N f(0,) # 0, hence UN G, # 0. Thus x € St(G,,, U,), and as x was arbitrary we conclude that X is
(1,2-NSH. O

5. Weaker versions of neighbourhood star selection properties

In this section we introduce and investigate weaker versions of (i, j)-NSM, (i, j)-NSR and (i, j)-NSH
bispaces. We provide a few examples related to the Menger-type properties.

Definition 5.1. A bitopological space (X, 71, 72) id said to be:

(1) @G, j)-almost neighbourhood star-Menger (shortly, (i, j)-aNSM) (resp., (i, j)-weakly neighbourhood star-
Menger (shortly, (i, j)-wNSM), (i, j)-faintly neighbourhood star-Menger (shortly, (i, j)-INSM)), i, j = 1,2, if for
every sequence (U, : n € IN) of t;-open covers of X one can choose finite F, C X, n € IN, so that for
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every tj-open O, D F,, n € IN, we have |,y ClTj(St(O,,,'LIH)) = X (resp., CIT/.(UHE]N St(O,, U,)) = X,
Unen St(ClT,»(On)/ U,) = X);

(2) (i, j)-almost neighbourhood star-Rothberger (shortly, (i, j)-aNSR) (resp., (i, j)-weakly neighbourhood star-
Rothberger (shortly, (i, j)-WNSR), (i, j)-faintly neighbourhood star-Rothberger (shortly, (i, j)-fNSR)), i,j = 1,2,
if for every sequence (U, : n € IN) of t;-open covers of X one can choose x, € X, n € N, so that for
every tj-open O, D x,, n € N we have U,y ClL;;(St(On, Un)) = X, (resp., CIT/.(UHE]N St(0,, U,)) = X,
Unen St(CITj(On)/ U, =X

(3) (G, j)-almost neighbourhood star-Hurewicz (shortly, (i, j)-aNSH), (resp., (i, j)-faintly neighbourhood star-
Hurewicz (shortly, (i, j)-fNSH)), i, j = 1,2, if for every sequence (U, : n € IN) of 7;-open covers of X one can
choose a finite F,, C X, n € IN, so that for every 7;-open O, > F,,, n € IN, each x € X belongs to Cle(St(O,,, Uu,))
(resp., to St(Cl;,(O,), Uy)) for all but finitely many .

Remark 5.2. Every (i, j)-NSM bispace is (i, j)-aNSM, and every (i, j)-aNSM bispace is (7, j)-wNSM. Similarly,
for Rothberger-type and Hurewicz-type properties.

In fact, we have the following relations among classes of bispaces defined above
(i, )-NSR = (i, j)-aNSR = (i, j)-wNSR
y U U

G,)NSM = (i, j)-aNSM = (i, j)-wNSM = (i, j)-wNSL
) )
G, ))-NSH = (i, j)-aNSH

Diagram 1

Recall that a bispace (X, 71, 72) is (i, j)-Menger if for any sequence (U, : n € IN) of t;-open covers there is
a sequence (V, : n € IN) of finite collections of 7;-open sets such that V,, < U, n € N, and U,y UV, = X
(see [17, Definition 29], where the authors used the name 6,-Menger).

Example 5.3. There is an (1,2)-aNSM bispace which is not (1,2)-Menger.

Let X be the Euclidean plane with the following two topologies: 71 is the deleted radius topology (see
[28, Example 77]), and 7, is the usual metric topology.

(1) (X, 71, 72) is (1,2)-aNSM

Let (U, : n € IN) be a sequence of 71-open covers of X. Since (X, 71) is an almost Menger space (see
[12]) there are finite collections V; € Uy, V2 € Uy, ..., such that X = |,,ep Clr, (U Vy). For each n € N
and each V € V, pick a point xy, € V and set F,, = {xy,, : V € V,}. Then each F, is a finite subset of X
and X = U,en Cle, (SH(F,, Uy)). As T1 > 19, this implies that for any 7,-open set O, D F,, n € IN, we have
X = U en Clr, (St(O,, U,,). Therefore, X is an (1, 2)-aNSM bispace.

(2) (X, 11, T2) is not (1, 2)-Menger.

Suppose, to the contrary, that (X, 71, 72) is (1,2)-Menger. We claim that then (X, 71) is a Menger space.
Indeed, let (U, : n € IN) be a sequence of ti-open covers of X. As we supposed that (X, 71, 72) is (1,2)-
Menger, there are finite V4, V5, ... such that for each n, V,, < U, and X = |J,,en U V. For each n and each
V e V, take Uy € U, with V c Uy and put W, = {Uy;V € V,}. Then finite subsets W, of U, n € IN,
witness for (U, : n € IN) that (X, 71) is a Menger space. However, the space (X, 71) is not Lindel6f [28] and
thus it cannot be Menger. This contradiction shows that (X, 71, 72) is not (1, 2)-Menger.

Example 5.4. There is a (1,2)-wNSM bispace which is not (1,2)-Menger.

Let X be the real line endowed with the two topologies: 71 is the rational sequence topology (see [28,
Example 65], and 7, is the usual metric topology.

1) (X, 11, 72) is (1,2)-wNSM
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Let (U, : n € IN) be a sequence of 71-open covers of X. In [13] it was shown that (X, 71) is a weakly
Menger space. Therefore, there is a sequence (V,, : n € IN) such that V, is a finite subset of U, for each
n € N and X = Cl, (Uyen U Vy). Take for each n € N and each V € V,, a point xy;,, € V. Then finite sets
Fo={xy,: VeV,}, neN,satisty X = Cl;, (U,en St(Fn, Uy)). The fact 71 > 75 implies that for any 7,-open
neighbourhood O, of F,, n € IN,it holds X = Cl,(U,en St(On, Uy). This means that X is an (1,2)-wNSM
bispace.

(2) (X, 11, T2) is not (1, 2)-Menger.

Assume, that (X, 71, 72) is (1,2)-Menger. By the argumentation similar to the proof of (2) in the previous
example we prove that in that case (X, 71) is a Menger space which is a contradiction, because (X, 71) is not
Lindelof, hence not Menger. Therefore, one concludes that (X, 71, 1) is not (1,2)-Menger.

Example 5.5. There is a (1,2)-fNSM bispace.

Let X = R equipped with the following two topologies: 7 is the Euclidean topology, and 7, is the
collection of sets of the form O \ C, where O € 11 and C is a countable subset of X.

Let (U, : n € N) be a sequence of 71-open covers of X. Since (X, 71) is a strongly star Menger space there
are finite sets F1, F», . . . in X such that X = |J,,p St(Fy, Y,). Letforeachn, G, = O,\C, be a 1,-neighbourhood
of F,,. Since Cl,(G,) = Cl,(0,) we get X = U,,en St(Clr,(Gp), Uy), ie. (X, T1,72) is (1,2)-INSM.

Observe that the last example is (1, 2)-Menger.

5.1. (i, j)-almost and weakly neighbourhood star properties
We are going now to give a characterization of (i, j)-wNSM bispaces in terms of (i, j)-regular open sets.

Definition 5.6. ([5, 10]) Let (X, 71, 72) be a bitopological space. A set A € X is called (i, j)-regular open (resp.,
(i, j)-regular closed) if A = Int,(Cl;;(A)) (resp., A = Cl;,(Int;;(A)). A is said to be pairwise regular open (resp.,
pairwise regular closed) if it is both (i, j)-regular open and (j, i)-regular open (resp., (i, j)-regular closed and
(j, 7)-regular closed).

Clearly, every (i, j)-regular open set in (X, 71, T2) is T;-open.

Theorem 5.7. A bispace (X, t1,T2) is (i, j)-WNSM if and only if for each sequence (U, : n € IN) of covers of X by
(i, j)-regular open sets there exist finite sets F, C X, n € N, so that for every t;-open O, D F,, n € IN, it holds
CIT]'(UVIEN St(On, Uy)) = X.

Proof. (=): Itis obvious because every (i, j)-regular open set in (X, 71, 72) is 7;-open.

(&): Let (U, : n € N)be asequence of 7;-open covers of X. Putting V), =: {Int;,Cl, (U) : U € U,},n € N,
we obtain a sequence (V,, : n € IN) of covers of X by (i, j)-regular open sets. Then, by assumption, there
exist finite F, C X, n € IN, so that for every 7;-open set O, > F,, n € N, we have CIT].(U%N St(0,,V,)) = X.
For every n € N and every V € V), there exists a Uy € U, such that V = Int(Cl; (Uy)). Consider the
sequence (W, : n € N), where W, = {Uy : V € V,}. We claim that ClT/.(U,,e]N St(O,, U,)) = X.

Let x € X and let G be a neighbourhood of x. There exist k € N and V € V. such that GNV # @ and
VN O #0,ie. thereis U = Uy € Uy such that G N Int,(Cl;;(U)) # 0 and Ok N Int,(Cl;,(U)) # 0. Then
GNU#0and Oy N U # 0. Therefore, x € Cly,(Unen St(On, Un)), that is X is (i, j)-wNSM. [

Theorem 5.8. Every clopen subset of an (i, j)-aNSM bispace is also (i, j)-aNSM.

Proof. Let (Y, 11]Y, 72|Y) be a clopen subset of an (i, j)-aNSM bispace (X, 7;,7;) and let (U, : n € N) be a
sequence of 7;|Y-open covers of Y. As Y is clopen, V, = U, U(X\Y) is a t;-open cover of X for every n € IN.
Since X is (i, j)-aNSM, one can choose finite sets F, C X, n € IN, so that for every 7;-open O, D F,,, n € N,
we have (,en Cli; (St(O,, Vi) = X.

Define now H, = YNF, if YNF, # 0, and H, = any finite subset of Y, otherwise. We claim that
(Hy : n € IN) witnesses for (U, : n € N) that Y is (7, j)-aNSM.

Let G, bea7j|Y-opensetin Y containing H,, n € N. Then W, = G,U(X\Y)is a 7;-open set in X containing
Fy,n € N, and thus U,en Cle,(St(W,,, Vi) = X. Because Y is closed in X, H, N (X\ Y) = @ and Cl;(G,) C Y.
We conclude that {,,en Cle,jy(St(Gy, U,)) = Y, which means that (Y, 71|Y, 72|Y) is (i, j)-aNSM. O
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Proposition 5.9. Let (X, t1,72) be a bispace. Then:

(1) If X = U{Cl;(Yx) : k € N}, and each Y is relatively (i, j)-NSM (resp., relatively (i, j)-NSR in X), then X is
(i, )-wNSM (resp., (i, j)-WwNSR);

(@) If X = U{Yk : k € IN} and each Yy is (i, j)-WNSM (resp., (i, j)-wNSR) in X, then X is (i, j)-aNSM (resp.,
(i, j)-aNSR)

Proof. We shall prove the (7, j)-NSM case.

(1) Let (U, : n € IN) be a sequence of t;-open covers of X. Each Y is covered by U,,. As Y is relatively
(i, )-NSMin X, there is for each k € IN a sequence (Fy, : n € IN) of finite subsets of X such that for all 7;-open
Ok D Frn we have: Yy C U,en St(Ox,n, Uy). Then X = {J Clg,(Yy) € Cli,(St(Ok.n, Un)), ice. Xis (i, j)-WNSM.

(2) Let (U, : n € IN) be a sequence of t;-open covers of X. Rearrange this sequence to (U, : k,m € IN).
For each k € N, (Ui, : m € IN) is a sequence of covers of Y by 7;-open sets in X. For each k, Yy is (i, j)-
WNSM, and thus there are finite sets Fy,, C X, m € IN, so that for every 7;-open Ok D Fm, m € IN, we have
Cl,(Unen St(Ok,m, Uy,m)) 2 Yi. By the assumption X = (J,en Yk It follows X = Uen le,(UmeN St(Okm,
Uim))ie Xis (i, )-aNSM. O

When an (i, j)-wNSM bispace is (i, j)-aNSM?

Definition 5.10. A topological space (X, 7) is a P-space if the intersection of any countable family of open
sets is again an open set.

In [11], a bitopological space (X, 71, T2) is defined to be (i, j)-weakly P-bispace if for every countable family
{Uy :n € N} of 7;-open subsets of X, Cl;,(Uyen Un) = Unen Clr;(Un).

Theorem 5.11. Let (X, 11, T2) be a bispace such that (X, ;) is a P-space. Then the following statements are equivalent:
(1) Xis an (i, j)-aNSM bispace;

(2) Xisan (i, j)-WNSM bispace.

Proof. (1) = (2) is always true.

(2) = (1): Let X be an (7, j)-wNSM bispace and let (U, : n € IN) be a sequence of t;-open covers of X. As
Xis (i, j)-wNSM there is a sequence (F,, : n € IN) of finite subsets of X such that for any 7;-open set O, > F;,
n € N, it holds X = Cly; (U,en St(On, Uy)). The set on the right side of the previous equality is the smallest
7;-closed set containing |, St(O,, U,). Because (X, 7;) is a P-space, the set |, n CI(St(O,, U,,) is Tj-closed
and thus it contains Cl, (U en StH(O,, Uy)). Tt follows X = U,.en Cl, (St(0,, Uy)), ie. Xis (i, j)-aNSM. O

We can prove the following theorem.

Theorem 5.12. In (i, j)-weakly P-bispaces (i, j)-wNSM and (i, j)-aNSM are equivalent. Similarly for the Rothberger
case.

Proof. Let (X, 11, 72) be an (i, j)-wNSM bispace and let (U, : n € IN) be a sequence of 7;-open covers of X.
There is a sequence (F, : n € IN) of finite subsets of X such that for any 7;-open set O, > F,, n € N, it
holds X = ClT].(UneN St(On, Uy)). As {St(O,, Uy) : n € N} is a countable family of 7;-open sets and X is
(i, j)-weakly P-bispace, we have Cl;,(U,en St(On, Un)) = Uyen Clr,(SH(O,, Uy)). This means that X is an
(i, j)-aNSM bispace. O

Definition 5.13. ([11]) A bitopological space X is said to be (i, j)-nearly paracompact if every family U of
T;-open sets admits a 7;-locally finite 7;-open refinement.

Theorem 5.14. If an (i, j)-nearly paracompact bispace X is (i, j)-WNSM, then X is (i, j)-aNSM.
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Proof. Let (U, : n € IN) be a sequence of open covers of X. Since X is (7, j)-WNSM one can choose finite
F, c X, so that for every t;-open O, D F,, n € IN, we have CIT].(U%N 5t(O,, U,)) = X. By the assumption,
{St(On, Uy,) : n € IN} has a 7j-locally finite 7;-open refinement W. Then W = (U,en St(O,, U,)) and
therefore Cl,(U,en St(On, Uy)) = Cl (U W), ie. |JW is 7j-dense in X. As ‘W is a 1;-locally finite family,
we have that Cl;, (U W) = Upew Clr;(W).

Since forevery W € ‘W thereisk = k(W) € N suchthat W c St(Oy, Uy), it follows X = ,,en Clz;(St(O,, Un)),
ie. Xis (i, j)-aNSM. O

Theorem 5.15. Let a bispace (X, T1, T2) be (i, j)-aNSM and let (Y, 01, 02) be a bispace. If f : X — Y is a d-continuous
surjection, then Y is also (i, j)-aNSM.

Proof. Let (V, : n € N)be a sequence of g;-open covers of Y. For eachn € N, the set U, := {f (V) : V € V,}
is a 7;-open cover of X. Since X is (i, j)-aNSM, there are finite sets F,, C X, n € IN, so that for every 7;-open
O,D>F,, neN, {Cle(St(On,(LIn)) :n € N} is a cover of X. The sets f(F,), n € N, are finite in Y. For each #,
let G, be a gj-open neighbourhood of f(F,). Then f~(G,) = H, is a 7j-open subset of X for each n € N and
H, D F,. Thus X = U,,en Cle,(St(Hn, Un)). We prove that Y = Unen Cly;(SUGn, Vi)

Let y € Y and let x € X be such that y = f(x). Then there is k € N such that x € Cl(St(Hy, Uy)).
Then y = f(x) € Cly;(f(St(Hx, Uy)). Because f(St(Hy, Ux)) < f(St(f~(Gk), Ur)) C St(Gx, Vi), we have
y € Cl,(St(Gy, Vi)). Therefore Y = {,en Cly(SH(Gy, Vi), ie. Yis (i, j)-aNSM. O

Theorem 5.16. Let (X, T1,72) bean (i, j)-aNSR bispace and let (Y, 01, 02) be a bispace. If f : X — Y isa d-continuous
sutjection, then Y is also (i, j)-aNSR.

Theorem 5.17. Let (X, Ty, T2) be an (i, j)-aNSH bispace and let (Y, 01, 02) bea bispace. If f : X — Y isad-continuous
surjection, then Y is also (i, j)-aNSH.

5.2. (i, j)-faintly neighbourhood star properties

In this subsection we consider faintly versions of weaker forms of neighbourhood star properties in
bispaces. In particular, we investigate preservation of the properties that we consider in this article under
some kinds of mappings.

First, recall some definitions for topological spaces.

Definition 5.18. A mapping f from a topological space X into a topological space Y is called weakly continu-
ous [18] (resp., O-continuous [9], strongly O-continuous [19]) if for each x € X and each open neighbourhood V
of f(x) there is an open neighbourhood U of x such that f(U) c CI(V) (resp., f(CL(U])) c CL(V), f(CL(U)) C V).

Theorem 5.19. Let (X, 11, 72) and (Y, 01,02) be bispaces such that X is (i, j)-fINSR. If f : X — Y is a surjective
mapping such that f; is weakly continuous and f; is O-continuous, then Y is also (i, j)-fNSR.

Proof. Let (V, : n € N) be a sequence of g;-open covers of Y. Fix x € X. For each n € IN, there is a set
Vi € V, such that f(x) € V;. As f; is weakly continuous there is an open set U C X containing x and
satisfying f(U}) c Cl,, (V). The set U, := {U : x € X} is a 7;-open cover of X for each n € IN. Since X is
(i, ))-fNSR there is a sequence (a, : n € IN) of points in X such that for any sequence (S, : n € IN) of 7;-open
neighbouhoods of a,, UneN{St(ClTj(Sn), Uu,) = X.

Consider the sequence (b, = f(a,) : n € IN) of points in Y and a sequence (T,, : n € IN) of o;-open
neighbourhoods of b,, n € N. As f, is O-continuous, for each n there exists a Tj-open set O, 3 a, so that
f(Cl;,(0y)) € Cly(Ty). Then X = [yen SHCle,(0,), Uy) implies Y = (e St(Cly (T), V). It follows that Y
is an (i, j)-fNSR bispace. O

Similarly, we can prove the following.

Theorem 5.20. If f : (X, 11, 72) — (Y, 01, 02) is a mapping from an (i, j)-INSM (resp., (i, j)-INSH) bispace X onto Y
such that f; is weakly continuous and f; is O-continuous, then Y is also (i, j)-fNSM (resp., (i, j)-INSH).
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The following results show relationships between (i, j)-NSM (resp., (i, ))-NSH, (i, /)-NSR) bispaces and
(i, )-INSM (resp., (i, j)-INSH, (i, j)INSR) bispaces.

Theorem 5.21. If a bispace (Y, 01,07) is the image of an (i, j)-NSM bispace (X, t1, T2) under a d-weakly continuous
mapping f, then Y is (i, j)-TNSM.

Proof. Let (V, : n € IN) be a sequence of g;-open covers of Y. Working as in the first part of the proof of
Theorem 5.19 one constructs a sequence (U, : n € IN) of t;-open covers of X, where U, = {U} : x € X}.
Apply the fact that X is an (i, /)-NSM bispace to the sequence (U, : n € IN) and find a sequence (A, : n € IN)
of finite subsets of X such that for any 7;-open sets G, > A,, n € N, X = ,,en SH(Gy, Uy). Put B, = f(Ay),
n € IN. We have the sequence (B, : n € IN) of finite subsets of Y. We prove that this sequence witnesses for
(Vy, : n € IN) that Yis (i, j)-TNSM.

For each n € N take an arbitrary ¢;-neighbourhood H,, of B,. Since A, C X is finite and f, is weakly
continuous, there is a 7;-neighbourhood O, of A, such that f(O,) c Cl,;;(Hy). It is easy now to prove that
from construction of the sequences U, and X = J,en St(O,, Uy), it follows that Y = ,.en St(Clg/. (Hyp), Vy).
This shows that Y is an (i, j)-fNSM bispace. [

Quite similarly one proves the following.

Theorem 5.22. If Y = f(X) is the image of an (i, j)-NSH (resp., (i, j)-NSR) bispace (X, t1, 72) under d-weakly
continuous mapping f, then (Y.o1,02) is (i, j)-fNSH (resp., (i, j)-INSR).

Theorem 5.23. Ifa bispace (Y, 01,02) is the image of an (i, j)-INSM (resp., (i, j)-INSH, (i, /)-fNSR) bispace (X, t1, 72),
such that f; is weakly continuous and f; is strongly O-continuous, then Y is (i, j)-NSM (resp., (i, j)-NSH, (i, j)-NSR).

Proof. We prove the Rothberger case; the other two cases are proved similarly. Let (V, : n € IN) be a
sequence of o;-open covers of Y. As in the proofs of Theorem 5.19 and Theorem 5.21 we obtain 7;-open
covers U, = {Uy : x € X}, n € IN. Then there are points py,pz,... in X so that for arbitrary 7;-open sets
G1 B p1, G2 3 P2, X = UnE]N St(ClTj(Gn), (L(n)

Set g, = f(pn), n € N, and take for each n a oj-open set H, > g,. Next, for each n pick a 7;-open set
Oy 3 pn such that f(CI(Oy)) € Hy. Then X = J,en St(Cl;(On), U,,) implies Y = U, St(Hy, Vi), ie. Yis an
(i, ))-NSR bispace. [

6. Conclusion

We study here classes of bitopological spaces (((i, j)-neighbourhood star-Menger, (i, j)-neighbourhood
star-Rothberger and (i, j)-neighbourhood star-Hurewicz and their weaker versions) defined in the standard
selection principles manner by using the star operator. We established a number of properties of those
classes, and proved that they are different from the classes of known bitopological spaces. This study
complements and continues earlier investigations of selective properties in bitopological spaces. We believe
that it would be interesting to study k-neighbourhod star selection properties, k > 2, in bitopological spaces
defined in a similar way, but by the iteration of the star operator: for a family F of subsets of a set X and a
subset A of X one defines St°(A, F) = A, and for k > 1, St*(A, F) = St(S"1(A, F), F). Also, relations of all
these selective properties with game theory may be investigated.
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