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bUniversity of Niš, Faculty of Sciences and Mathematics, 18000 Niš, Serbia
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Abstract. In this paper we introduce and study some new types of star-selection principles ((i, j)-NSM,
(i, j)-NSR and (i, j)-NSH) in bitopologivcal spaces. Various properties of these selection properties are
established and their relations with known selection principles are discussed. Several examples are given.

1. Introduction

Selection principles theory is one of most active research areas of topology in the last two-three decades.
Classical concepts and results in this theory appeared in 1920s and 1930s years in works by Menger,
Hurewicz and Rothberger. A systematic study in this field began in 1996 by Scheepers [24]. In 1999,
Kočinac [14] introduced star selection principles, and (under different name) neighbourhood star selection
principles [15] which have been studied in details in [2]. In this paper we extend this investigation and
introduce and study neighbourhood star selection (covering) properties in bitopological spaces and so
complement research in bitopological context. Let us mention that bitopological selection principles have
been discussed in a number of papers [16, 17, 20–22].

The paper is organized in the following way. After this short introduction, in Section 2 we give necessary
information about selection principles and bitopological spaces. In Section 3 we consider neighbourhood
star-Lindelöf bitopological spaces, and in Section 4 we introduce neighbourhood star selection properties,
which are the main subject of our article, and study neighbourhood star-Menger, star-Hurewicz and star-
Rorhberger properties in bitopological context. Their behavior under known topological operations and
constructions are discussed. In Section 5 we investigate weaker forms of neighbourhood star selection
properties. In particular, we discuss preservation of these properties under certain kinds of mappings.

2. Preliminaries

Throughout the paper N and R denote the set of positive integers and the set of real numbers. Let
X be a topological space, U a collection of subsets of X, A ⊂ X. Then

⋃
U =

⋃
{U : U ∈ U}. The set

St(A,U) :=
⋃
{U ∈ U : U ∩ A , ∅} is called the star of A with respect to U. If x ∈ X, we write St(x,U)
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instead of St({x},U). IfA and B are collections of subsets of a space X, then the symbol B < A denotes the
fact that for each B ∈ B there is A ∈ Awith B ⊂ A.

Our notation and terminology follow [6] (for topological spaces), [5] (for bitopological spaces), [4] (for
star covering properties).

A. Selection principles. Let A and B be collections of sets (in this paper they will be mainly collections
of covers of a (bi)topological space X). Then the symbol S1(A,B) denotes the selection hypothesis that for
each sequence (An : n ∈ N) of elements ofA there exists a sequence (an : n ∈ N) such that for each n ∈ N,
an ∈ An and {an : n ∈N} is an element of B. The symbol Sfin(A,B) denotes the selection hypothesis that for
each sequence (An : n ∈ N) of elements ofA there exists a sequence (Bn : n ∈ N) such that for each n ∈ N,
Bn is a finite subset of An and

⋃
n∈N Bn is an element of B ([24]).

In [14] (see also [15]), Kočinac introduced star selection hypothesis similar to the previous ones. LetA
and B be collections of covers of a space X. Then:

(1) The symbol Sfin
∗(A,B) denotes the selection hypothesis: for each sequence (Un : n ∈N) of elements

of A there exists a sequence (Vn : n ∈ N) such that for each n ∈ N, Vn is a finite subset of Un and⋃
n∈N{St(V,Un) : V ∈ Vn)} is an element of B.

(2) The symbol SS∗fin(A,B) denotes the selection hypothesis: for each sequence (Un : n ∈N) of elements
ofA there exists a sequence (Fn : n ∈N) of finite) subsets of X such that {St(Fn,Un) : n ∈N} ∈ B.

(3) The symbol S1
∗(A,B) denotes the selection hypothesis: for each sequence (Un : n ∈ N) of elements

of A there exists a sequence (Un : n ∈ N) such that for each n ∈ N, Un ∈ Un and
⋃

n∈N St(Un,Un) is an
element of B.

(4) The symbol SS∗1(A,B) denotes the selection hypothesis: for each sequence (Un : n ∈N) of elements
ofA there exists a sequence (xn : n ∈N) of elements of X such that {St(xn,Un) : n ∈N} ∈ B.

Let O denote the collection of all open covers of a space X.

Definition 2.1. ([14]) A space X is said to be star-Menger [resp., star-Rothberger] if it satisfies the selection
hypothesis Sfin

∗(O,O) [resp., S1
∗(O,O)]. X is strongly star-Menger (resp., strongly star-Rothberger) if it satisfies

SS∗fin(O,O) (resp., SS∗1(O,O)).

Definition 2.2. ([14], [1]) A space X is said to be star-Hurewicz (resp., strongly star-Hurewicz) if for every
sequence (Un : n ∈N) of open covers of X there is for each n a finite setVn ⊂ Un (resp., a finite Fn ⊂ X) so
that each x ∈ X belongs to St(

⋃
Vn,Un) (resp., St(Fn,Un)) for all but finitely many n.

The following three generalizations of star selection properties have been introduced (in a general form
and under different names) in [15] and studied in details in [2].

Definition 2.3. ([2]) A space X is said to be neighbourhood star-Menger (NSM) if for every sequence (Un : n ∈
N) of open covers of X, one can choose finite sets Fn ⊂ X, n ∈N, so that for every open set On ⊃ Fn, n ∈N,
we have

⋃
n{St(On,Un) : n ∈N} = X.

Definition 2.4. ([2]) A space X is said to be neighbourhood star-Rothberger(NSR) if for every sequence (Un :
n ∈ N) of open covers of X, one can choose a sequence (xn ∈ X : n ∈ N) so that for every open On 3 xn,
n ∈N, we have

⋃
n∈N St(On,Un) = X.

Definition 2.5. ([2]) A space X is said to be neighbourhood star-Hurewicz (NSH) if for every sequence (Un :
n ∈N) of open covers of X, one can choose finite Fn ⊂ X, n ∈N, so that for every open On ⊃ Fn, n ∈N, each
x ∈ X belongs to St(On,Un) for all but finitely many n.

For investigation of star selection principles related to this paper see also [25–27].
In this article we define and study neighbourhood star selection properties in bitopological spaces.

B. Bitopological spaces. A set X endowed with two, in general unrelated, topologies τ1 and τ2 is called a
bitopological space (or shortly, bispace) and is denoted by (X, τ1, τ2) (and sometimes simply by X).

For a subset A of X, Clτi (A) and Intτi (A) will denote the closure of A and the interior of A in (X, τi),
i = 1, 2, respectively. If f : (X, τ1, τ2) → (Y, σ1, σ2) is a mapping between bispaces, then fi denotes the
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mapping f : (X, τi) → (Y, σi). If P is a topological property, then a bispace (X, τ1, τ2) is double P (or shortly
d-P) if both (X, τ1) and (X, τ2) have the property P. For example, in [3], d-separability has been defined in
this way.

Definition 2.6. ([23]) Let (X, τ1, τ2) be a bispace. A subset A of X is said to be:

1. open in X if it is both τ1-open and τ2-open;
2. closed in X if it is τ1-closed and τ2-closed;
3. (i, j)-clopen if A is τi-closed and τ j-open; F is clopen if it is both (i, j)-clopen and ( j, i)-clopen in X.

Selective properties in bitopological spaces have been studied in [17, 20, 21], and for weak covering
properties in the bitopological context the study began with the paper [22] on the almost Menger property
and continued in [7, 8].

3. About (i, j)-NSL bispaces

In this section we consider the class of neighbourhood star-Lindelöf bispaces which is strongly related
to the main topic of this article.

Definition 3.1. A bitopological space (X, τ1, τ2) is said to be:
(1) (i, j)-neighbourhood star-Lindelöf (shortly, (i, j)-NSL), i, j = 1, 2, if for every τi-open cover U of X one

can choose a countable set F ⊂ X so that for every τ j-open set O ⊃ F, we have St(O,U) = X;
(2) (i, j)-weakly neighbourhood star-Lindelöf (shortly, (i, j)-wNSL), i, j = 1, 2, if for every τi-open coverU of

X one can choose a countable set F ⊂ X so that for every τ j-open set O ⊃ F, we have Clτ j (St(O,U)) = X.

The proof of the following theorem is omitted because it is similar to the proof of Theorem 4.7 below.

Theorem 3.2. A bispace X is (i, j)-NSL, i, j = 1, 2, if and only if for every τi-open coverU of X there is a countable
F ⊂ X such that for every x ∈ X we have Clτ j (St({x},U))

⋂
F , ∅.

Example 3.3. Endow the real line R by the two topologies: τ1 is the usual topology on R, and τ2 is the
Sorgenfrey topology [6]. Then the bispace (R, τ1, τ2) is (1, 2)-NSL. Indeed, letU be an open cover of (R, τ1).
ThenU is also an open cover of (R, τ2). Since (R, τ2) is separable, for any countable set A dense in (R, τ2)
we have R = St(A,U). Then, clearly, for any τ2-neighbourhood O of A it holds St(O,U) = R which means
that (R, τ1, τ2) is (1, 2)-NSL.

Remark 3.4. The bispace in the previous example is also (2,1)-NSL. LetV be a τ2-open cover of R. Take a
dense countable subset C of (R, τ2). Then St(C,V) = R. Clearly, for any τ1-open set O containing C, it holds
R = St(O,V), which means that (R, τ1, τ2) is (2,1)-NSL.

We prove now a few properties of (i, j)-NSL bispaces.

Theorem 3.5. Every clopen subspace (Y, τ1|Y, τ2|Y) of an (i, j)-NSL bispace (X, τ1, τ2) is also (i, j)-NSL.

Proof. LetU be a τi|Y-open cover of Y. As Y is τi-closed,V =U∪ (X\Y) is a τi-open cover of X, and since X
is (i, j)-NSL, there is a countable set A ⊂ X such that for every τ j-open neighbourhood O of A, St(O,V) = X.
The set B = Y ∩ A is a countable subset of Y. Take any τ j|Y-open set G with G ⊃ B. As Y is clopen, the set
H = G ∪ (X \ Y) is a τ j-open set containing A so that St(H,V) = X. Since G ∩ (X \ Y) = ∅ one concludes that
St(G,U) = Y, i.e. (Y, τ1|Y, τ2|Y) is (i, j)-NSL.

Definition 3.6. Let Y be a subspace of a bispace (X, τ1, τ2). Then Y is relatively (i, j)-NSL in X if for each
τi-open coverU of X, there is a countable set F ⊂ X, such that for every τ j-open O ⊃ F we have Y ⊂ St(O,U).

Proposition 3.7. If X =
⋃
{Yk : k ∈N} and every Yk is relatively (i, j)-NSL in X, then X is (i, j)-NSL.
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Proof. LetU be a τi-open cover of X. Then for each k ∈N,U covers Yk, and since Yk is relatively (i, j)-NSL,
there is a countable set Fk ⊂ X, such that for each τ j-open set O ⊃ Fk we have St(O,U) ⊃ Yk. Put F =

⋃
k∈N Fk.

Then F is a countable subset of X. Let O be any τ j-open set containing F. Using the fact that O contains all
Fk, k ∈N, we conclude that St(O,U) ⊃

⋃
k∈N Yk = X, which means that X is (i, j)-NSL.

In the literature there is the following wrong definition of (i, j)-Lindelöf bispaces: a bispace (X, τ1, τ2) is
(i, j)-Lindelöf if for each τi-open coverU of X there is a countable τ j-subcover. We give another definition.

Definition 3.8. A bitopological space (X, τ1, τ2) is called (i, j)-Lindelöf if for every τi-open cover of X there
is a countable τ j-open refinement.

Definition 3.9. A bispace (X, τ1, τ2) is said to be:
(1) (i, j)-para-Lindelöf if each τi-open cover of X has a τi-open refinement which is τ j-locally countable

[5];
(2) (i, j)-weakly Lindelöf if each τi-open cover U of X has a τi-open countable collection V such that

V <U and Clτ j (∪V) = X.

Theorem 3.10. If (X, τ1, τ2) is an (i, j)-para-Lindelöf (i, j)-NSL bispace, then (X, τi) is Lindelöf.

Proof. Let U be a τi-open cover of X. As X is (i, j)-para-Lindelöf, there is a τi-open refinement V of U so
thatV is τ j-locally countable. Since X is (i, j)-NSL, there is a countable set A ⊂ X such that for each τ j-open
set G ⊃ A we have St(G,V) = X. For each a ∈ A choose a τ j-open set Wa intersecting the most countably
many elements inV. Then G(A) = ∪{Wa : a ∈ A} is a τ j-open neighbourhood of A and thus St(G(A),V) = X.
The setV′ = {V ∈ V : V ∩ G(A) , ∅} is a countable subset ofV and satisfies ∪{V : V ∈ V′} = X. For each
V ∈ V′ pick a set U(V) ∈ U containing V. Then the subsetU′ = {U(V) : V ∈ V′}witnesses forU that (X, τi)
is Lindelöf.

Theorem 3.11. Every (i, j)-para-Lindelöf, (i, j)-wNSL bispace is (i, j)-weakly Lindelöf.

Proof. Let U be a τi-open cover of X. There exists a τ j-locally countable τi-open refinement V of U. For
each x ∈ X, there exists a τ j-open neighbourhood Wx of x such that {V ∈ V : Wx ∩ V , ∅} is countable.

Since X is (i, j)-wNSL, there exists a countable subset A of X such that for every τ j-open set O ⊃ A,
X = Clτ j (St(O,V)). Especially, it is true for τ j-open set OA =

⋃
{Wx : x ∈ A} ⊃ A, i.e. Clτ j (St(OA,V)) = X.

Set Ṽ = {V ∈ V : V ∩OA , ∅}. Then Ṽ is a countable subset ofV, and clearly we have Clτ j (
⋃
Ṽ) = X.

For each V ∈ Ṽ, choose UV ∈ U with V ⊆ UV. Then {UV : V ∈ Ṽ} is a countable subcover of U, and
X = Clτ j (

⋃
V∈ṼUV) which shows that X is (i, j)-weakly Lindelöf.

Definition 3.12. ([5]) A mapping f : (X, τ1, τ2)→ (Y, σ1, σ2) between bispaces is said to be double continuous
(shortly d-continuous) if the induced mappings fi : (X, τi)→ (Y, σi) are continuous for i = 1, 2.

Theorem 3.13. Let (X, τ1, τ2) be an (i, j)-NSL bispace and let (Y, σ1, σ2) be a bispace. If f : X→ Y is a d-continuous
surjection, then Y is an (i, j)-NSL bispace.

Proof. LetV be a σi-open cover of Y. ThenU = f←(V) = { f←(V) : V ∈ V} is a τi-open cover of X. Since X
is (i, j)-NSL, there is a countable F ⊂ X such that for each τ j-open O containing F we have X = St(O,U). Let
K = f (F) and let G be a σ j-open neighbourhood of K. Then f←(G) is a τ j-open neighbourhood of F so that
X = St( f←(G),U). We prove Y = St(G,V).

Let y ∈ Y and let x ∈ X be such that y = f (x). Then x ∈ St( f←(G),U). It follows

y = f (x) ∈ f (St( f←(G),U)) ⊂ St(G,V).

Therefore, K and G witness forV that Y is (i, j)-NSL.

Proposition 3.14. If (X, τ1, τ2) is a bispace such that X =
⋃

n∈N Clτ j (Yk) and each Yk is relatively (i, j)-NSL in X,
then X is (i, j)-wNSL.
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Proof. LetU be a τi-open cover of X. Each Yk is covered byU. As Yk is relatively (i, j)-NSL in X, there is for
each k ∈ N a countable Fk ⊂ X such that for each τ j-open O containing Fk, Yk ⊂ St(O,U). Let F =

⋃
k∈N Fk

and let G be a τ j-open set containing F. Then

X =
⋃
k∈N

Clτ j (Yk) ⊂ Clτ j (St(G,U))

i.e. X is (i, j)-wNSL.

Theorem 3.15. Let a bispace (X, τ1, τ2) be (i, j)-wNSL and let (Y, σ1, σ2) be a bispace. If f : X→ Y is a d-continuous
surjection, then Y is also (i, j)-wNSL.

Proof. LetV be a σi-open cover of Y. ThenU = f←(V) = { f←(V) : V ∈ V} is a τi-open cover of X. Since X is
(i, j)-wNSL, there is a countable F ⊂ X such that for each τ j-open O containing F we have X = Clτ j (St(O,U)).
Let K = f (F) and let G be a σ j-open neighbourhood of K. Then f←(G) is a τ j-open neighbourhood of F so
that X = Clτ j (St( f←(G),U)). We prove Y = Clτ j (St(G,V)).

Let y ∈ Y and let x ∈ X be such that y = f (x). Then x ∈ Clτ j (St( f←(G),U)). It follows,

y = f (x) ∈ Clτ j ( f (St( f←(G),U))) ⊂ Clτ j (St(G,V)).

Therefore, K and G witness forV that Y is (i, j)-wNSL.

4. Neighbourhood star selection principles in bispaces

In this section we introduce and study (i, j)-NSM, (i, j)-NSR and (i, j)-NSH bitopological spaces.

Definition 4.1. A bitopological space (X, τ1, τ2) is said to be:
(1) (i, j)-neighbourhood star-Menger (shortly, (i, j)-NSM), i, j = 1, 2, if for every sequence (Un : n ∈ N) of

τi-open covers of X one can choose finite sets Fn ⊂ X, n ∈ N, so that for every τ j-open set On ⊃ Fn, n ∈ N,
we have

⋃
n∈N{St(On,Un)} = X;

(2) (i, j)-neighbourhood star-Rothberger (shortly, (i, j)-NSR), i, j = 1, 2, if for every sequence (Un : n ∈N) of
τi-open covers of X, one can choose xn ∈ X, n ∈ N, so that for every τ j-open set On ⊃ xn, n ∈ N, we have⋃

n∈N{St(On,Un)} = X;
(3) (i, j)-neighbourhood star-Hurewicz (shortly, (i, j)-NSH), i, j = 1, 2, if for every sequence (Un : n ∈ N) of

τi-open covers of X one can choose finite Fn ⊂ X, n ∈ N, so that for every τ j-open set On ⊃ Fn, n ∈ N, each
x ∈ X belongs to St(On,Un) for all but finitely many n.

Remark 4.2. Of course, every (i, j)-NSR and every (i, j)-NSH bispace is (i, j)-NSM, and every (i, j)-NSM
bispace is (i, j)-NSL.

The following proposition is evident (from the definitions), but useful for the following examples.

Proposition 4.3. If (X, τ1, τ2) is a bispace such that τ1 ≤ τ2, then:

(1) If (X, τ2) is NSM (resp., NSH, NSR), then (X, τ1, τ2) is (1, 2)-NSM (resp., (1, 2)-NSH, (1, 2)-NSR).

(2) If (X, τ1, τ2) is (1, 2)-NSM (resp., (1, 2)-NSH, (1, 2)-NSR), then (X, τ1) is NSM (resp., NSH, NSR).

Example 4.4. Let τ1 be the cofinite topology onR and τ2 the usual metric topology onR. Then τ1 ≤ τ2 and
(R, τ2) is an NSH bispace. Therefore, by Proposition 4.3, (R, τ1, τ2) is (1, 2)-NSH and thus (1, 2)-NSM.

Recall that d, b and cov(M) denote the following small combinatorial cardinals: the dominating number,
the unbounded number, and the minimal cardinality of a cover of the real line by meager sets.

We have the following consistent examples.
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Example 4.5. Endow the real line R with the usual metric topology. Let Y be the subspace of R such that
|Y ∩U| = ω1 for each open set U in R, and let [0, ω] be the ordinal space. Consider the space X = Y × [0, ω]
with the following two topologies:

(i) τ1 is the product topology.
(ii) τ2 is the topology in which a basic neighbourhood of a point < x,n >, x ∈ Y, n < ω, is of the form

((Y ∩U) \ C) × {n}, where U is a neighbourhood of x in Y, and C is a countable set with x < C, while a basic
neighbouhood of a point < x, ω >, is of the form ((Y ∩U) \ C) × (n, ω) ∪ {< x, ω >}. Notice that τ1 ≤ τ2.

1. It is proved in [2] that under assumption ω1 < d, the space (X, τ2) is NSM. By Proposition 4.3, the
bispace (X, τ1, τ2) is (1, 2)-NSM.

2. Under assumption ω1 < b, the bispace (X, τ1, τ2) is (1, 2)-NSH. It follows from [2] and Proposition 4.3.
3. Under ω1 < cov(M), (X, τ1 < τ2) is (1, 2)-NSR (see again Proposition 4.3 and [2]).

Example 4.6. Let αD(κ) be the Alexandroff one-point compactification of the discrete space of uncountable
cardinality κ. Consider the set X = αD(κ)× [0, κ+)∪D(κ)×{k+

} equipped with the following two topologies:
τ1 is the subspace topology of the space αD(κ) × [0, κ+] with the product topology, and τ2 is the discrete
topology on X. Then (X, τ1, τ2) is not (1, 2)-NSM. Otherwise, by Proposition 4.3(2), (X, τ1) must be NSM.
However, it is not the case because (X, τ1) is not an NSL (see [2, Example 3.7]) and thus cannot be NSM

Theorem 4.7. A bispace (X, τ1, τ2) is (i, j)-NSM, i, j = 1, 2, if and only if for every sequence (Un : n ∈N) of τi-open
covers of X there is a sequence (An : n ∈ N) of finite subsets of X such that for every x ∈ X there is n ∈ N such that
each τ j-neighbourhood of An meets St(x,Un).

Proof. Let a bispace X be (i, j)-NSM, i, j = 1, 2, and (Un : n ∈ N) be a sequence of τi-open covers of X.
For each n ∈ N there exists a finite set An ⊂ X such that for every τ j-open set On ⊃ An, n ∈ N, we have⋃

n∈N{St(On,Un)} = X. Let x ∈ X. Then there exists k ∈N fulfilling x ∈ St(Ok,Uk). In other words, x belongs
to some U ∈ Uk which intersects Ok. This means Ok ∩ St(x,Uk) , ∅.

Conversely, let (Un : n ∈ N) be a sequence of τi-open covers of X. By assumption there exists a
sequence (An : n ∈ N) of finite subsets of X fulfilling that for every x ∈ X there exists n ∈ N such that each
τ j-neighbourhood On of An intersects St(x,Un). Therefore, for some U ∈ Un containing x we have On∩U , ∅
which implies x ∈ St(On,Un). This implies that for every τ j-open On ⊃ An we have: (St({x},Un))

⋂
On , ∅.

Because On was an arbitrary τ j-neighbourhood of An one concludes that (X, τ1, τ2) is (i, j)-NSM.

In a similar way one can prove the following two theorems.

Theorem 4.8. A bispace X is (i, j)-NSR, i, j = 1, 2, if and only if for every sequence (Un : n ∈N) of τi-open covers
of X there is a sequence (xn : n ∈ N) of points of X such that for every x ∈ X there is n ∈ N for which we have
xn ∈ Clτ j (St(x,Un)).

Theorem 4.9. A bispace X is (i, j)-NSH, i, j = 1, 2, if and only if for every sequence (Un : n ∈N) of τi-open covers of
X, there is a sequence (Fn : n ∈N) of finite subsets of X such that for every x ∈ X we have that every τ j-neighbourhood
of Fn meets St(x,Un) for all but finitely many n.

Definition 4.10. Let Y be a subspace of a bispace X. Then:
1) Y is relatively (i, j)-NSM (resp., relatively (i, j)-NSH) in X if for every sequence (Un : n ∈ N) of τi-open

covers of X, one can choose finite Fn ⊂ X, n ∈ N, so that for every τ j-open On ⊃ Fn, n ∈ N, we have
Y ⊂

⋃
n∈N{St(On,Un)} (resp., for each y ∈ Y, y ∈ St(On,Un) for all but finitely many n);

2) Y is relatively (i, j)-NSR in X if for every sequence (Un : n ∈N) of τi-open covers of X, one can choose
xn ∈ X, n ∈N, so that for every τ j-open On 3 xn, n ∈N, we have Y ⊂

⋃
n∈N{St(On,Un)}.

Proposition 4.11. If X =
⋃
{Yk : k ∈ N} and Yk is relatively (i, j)-NSM(resp., relatively (i, j)-NSH, relatively

(i, j)-NSR) in X, then X is (i, j)-NSM(resp., (i, j)-NSH, (i, j)-NSR)
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Proof. We prove the NSM case; the other two cases can be proved similarly. Let (Un : n ∈N) be a sequence
of τi-open covers of X. Then for each k,n ∈ N,Un covers Yk and since Yk is relatively (i, j)-NSM, there are
finite Fk,n ⊂ X , such that for each τ j-open Ok,n ⊃ Fk,n, n ∈ N we have Yk ⊂

⋃
n∈N{St(Ok,n,Un)} Consider the

sequence (Fk,n : k,n ∈N) and τ j-open (Gk,n : k,n ∈N) of neighbourhoods of Fk,n. It is easy to conclude that⋃
k∈N

St(Gk,n,Un) ⊃
⋃
k∈N

Yk = X

which means that X is (i, j)-NSM.

Theorem 4.12. Let a bispace (X, τ1, τ2) be (i, j)-NSM (resp. (i, j)-NSH, (i, j)-NSR), and let (Y, σ1, σ2) be a bispace.
If f : X→ Y is a d-continuous surjection, then Y is also an (i, j)-NSM (resp., (i, j)-NSH, (i, j)-NSR) bispace.

Proof. We prove only the (i, j)-NSM case. Let (Vn : n ∈ N) be a sequence of σi-open covers of Y. For each
n ∈ N, the set Un := { f←(V) : V ∈ Vn} is a τi-open cover of X. Since X is (i, j)-NSM, there are finite sets
Fn ⊂ X, n ∈N, so that for every τ j-open On ⊃ Fn, n ∈N, {St(On,Un) : n ∈N} is a cover of X. The sets f (Fn),
n ∈N, are finite in Y. For each n, let Gn be a σ j-open neighbourhood of f (Fn). Then f←(Gn) = Hn is a τ j-open
subset of X for each n ∈N and Hn ⊃ Fn. Thus X =

⋃
n∈N St(Hn,Un). We prove that Y =

⋃
n∈N St(Gn,Vn).

Let y ∈ Y and let x ∈ X such that y = f (x). Then there is k ∈ N such that x ∈ St(Hk,Uk). Then
y = f (x) ∈ f (St(Hk,Uk)). Because f (St(Hk,Uk)) ⊂ f (St( f←(Gk),Uk)) ⊂ St(Gk,Vk) we have y ∈ St(Gk,Vk).
Therefore Y =

⋃
k∈N St(Gk,Vk), i.e. Y is (i, j)-NSM.

Theorem 4.13. Let f : (X, τ1, τ2) → (Y, σ1, σ2) be an open and closed, finite-to-one continuous mapping from a
bispace X onto an (1, 2)-NSH bispace Y. Then X is (1, 2)-NSH.

Proof. Let (Un : n ∈ N) be a sequence of open covers of (X, τ1) and let y ∈ Y. Since f←(y) is finite, for each
n ∈N there exists a finiteUn(y) ⊂ Un such that

f←(y) ⊂ ∪Un(y) and U ∩ f←(y) , ∅ for each U ∈ Un(y).

Since f : (X, τ1) → (Y, σ1) is closed, there exists a σ1-open neighbourhood Vn(y) of y such that f←(Vn(y)) ⊂
∪Un(y). Because f : (X, τ1) → (Y, σ1) is open, one can assume that Vn(y) ⊂ f (U) for each U ∈ Un(y). For
each n ∈ N set Vn = {Vn(y) : y ∈ Y}. In this way we have a sequence (Vn : n ∈ N) of open covers of
(Y, σ1). As (Y, σ1, σ2) is (1, 2)-NSH, there is a sequence (Bn : n ∈ N) of finite subsets of Y such that for all
σ2-open On ⊃ Bn, n ∈ N, for each y ∈ Y, y ∈ St(On,Vn) for all but finitely many n. Since f is finite-to-one,
(An = f←(Bn) : n ∈N) is a sequence of finite subsets of X.

We prove that the sequence (An : n ∈ N) witnesses for (Un : n ∈ N) that X is (1, 2)-NSH. Let for each
n ∈ N, Gn be a τ2-neighbourhood of An, x ∈ X and y = f (x). Since f : (X, τ2) → (Y, σ2) is closed there
exists a σ2-open set On containing Bn such that f←(On) ⊂ Gn for each n ∈ N. There is ny ∈ N such that
y ∈ St(On,Vn) for all n ≥ ny. Also, for all n ≥ ny, there exists Vn(y) ∈ Vn such that y = f (x) ∈ Vn(y) and
Vn(y) ∩On , ∅. As x ∈ f←(Vn(y)) ⊂ ∪Un(y), we can choose U ∈ Un(y) with x ∈ U. Then Vn(y) ⊂ f (U), and
thus U ∩ f←(On) , ∅, hence U ∩ Gn , ∅. Thus x ∈ St(Gn,Un), and as x was arbitrary we conclude that X is
(1, 2)-NSH.

5. Weaker versions of neighbourhood star selection properties

In this section we introduce and investigate weaker versions of (i, j)-NSM, (i, j)-NSR and (i, j)-NSH
bispaces. We provide a few examples related to the Menger-type properties.

Definition 5.1. A bitopological space (X, τ1, τ2) id said to be:
(1) (i, j)-almost neighbourhood star-Menger (shortly, (i, j)-aNSM) (resp., (i, j)-weakly neighbourhood star-

Menger (shortly, (i, j)-wNSM), (i, j)-faintly neighbourhood star-Menger (shortly, (i, j)-fNSM)), i, j = 1, 2, if for
every sequence (Un : n ∈ N) of τi-open covers of X one can choose finite Fn ⊂ X, n ∈ N, so that for
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every τ j-open On ⊃ Fn, n ∈ N, we have
⋃

n∈N Clτ j (St(On,Un)) = X (resp., Clτ j (
⋃

n∈N St(On,Un)) = X,⋃
n∈N St(Clτ j (On),Un) = X);

(2) (i, j)-almost neighbourhood star-Rothberger (shortly, (i, j)-aNSR) (resp., (i, j)-weakly neighbourhood star-
Rothberger (shortly, (i, j)-wNSR), (i, j)-faintly neighbourhood star-Rothberger (shortly, (i, j)-fNSR)), i, j = 1, 2,
if for every sequence (Un : n ∈ N) of τi-open covers of X one can choose xn ∈ X, n ∈ N, so that for
every τ j-open On ⊃ xn, n ∈ N we have

⋃
n∈N Clτ j (St(On,Un)) = X, (resp., Clτ j (

⋃
n∈N St(On,Un)) = X,⋃

n∈N St(Clτ j (On),Un) = X)
(3) (i, j)-almost neighbourhood star-Hurewicz (shortly, (i, j)-aNSH), (resp., (i, j)-faintly neighbourhood star-

Hurewicz (shortly, (i, j)-fNSH)), i, j = 1, 2, if for every sequence (Un : n ∈ N) of τi-open covers of X one can
choose a finite Fn ⊂ X, n ∈N, so that for every τ j-open On ⊃ Fn, n ∈N, each x ∈ X belongs to Clτ j (St(On,Un))
(resp., to St(Clτ j (On),Un)) for all but finitely many n.

Remark 5.2. Every (i, j)-NSM bispace is (i, j)-aNSM, and every (i, j)-aNSM bispace is (i, j)-wNSM. Similarly,
for Rothberger-type and Hurewicz-type properties.

In fact, we have the following relations among classes of bispaces defined above

(i, j)-NSR =⇒ (i, j)-aNSR =⇒ (i, j)-wNSR
⇓ ⇓ ⇓

(i, j)-NSM =⇒ (i, j)-aNSM =⇒ (i, j)-wNSM =⇒ (i, j)-wNSL
⇑ ⇑

(i, j)-NSH =⇒ (i, j)-aNSH

Diagram 1

Recall that a bispace (X, τ1, τ2) is (i, j)-Menger if for any sequence (Un : n ∈N) of τi-open covers there is
a sequence (Vn : n ∈N) of finite collections of τ j-open sets such thatVn <Un, n ∈N, and

⋃
n∈N

⋃
Vn = X

(see [17, Definition 29], where the authors used the name δ2-Menger).

Example 5.3. There is an (1, 2)-aNSM bispace which is not (1, 2)-Menger.
Let X be the Euclidean plane with the following two topologies: τ1 is the deleted radius topology (see

[28, Example 77]), and τ2 is the usual metric topology.
(1) (X, τ1, τ2) is (1, 2)-aNSM
Let (Un : n ∈ N) be a sequence of τ1-open covers of X. Since (X, τ1) is an almost Menger space (see

[12]) there are finite collections V1 ⊂ U1, V2 ⊂ U2, . . ., such that X =
⋃

n∈N Clτ1 (
⋃
Vn). For each n ∈ N

and each V ∈ Vn pick a point xV,n ∈ V and set Fn = {xV,n : V ∈ Vn}. Then each Fn is a finite subset of X
and X =

⋃
n∈N Clτ1 (St(Fn,Un)). As τ1 ≥ τ2, this implies that for any τ2-open set On ⊃ Fn, n ∈ N, we have

X =
⋃

n∈N Clτ2 (St(On,Un). Therefore, X is an (1, 2)-aNSM bispace.
(2) (X, τ1, τ2) is not (1, 2)-Menger.
Suppose, to the contrary, that (X, τ1, τ2) is (1, 2)-Menger. We claim that then (X, τ1) is a Menger space.

Indeed, let (Un : n ∈ N) be a sequence of τ1-open covers of X. As we supposed that (X, τ1, τ2) is (1,2)-
Menger, there are finiteV1,V2, . . . such that for each n,Vn <Un and X =

⋃
n∈N

⋃
Vn. For each n and each

V ∈ Vn take UV ∈ Un with V ⊂ UV and putWn = {UV; V ∈ Vn}. Then finite subsetsWn of Un, n ∈ N,
witness for (Un : n ∈ N) that (X, τ1) is a Menger space. However, the space (X, τ1) is not Lindelöf [28] and
thus it cannot be Menger. This contradiction shows that (X, τ1, τ2) is not (1, 2)-Menger.

Example 5.4. There is a (1, 2)-wNSM bispace which is not (1, 2)-Menger.
Let X be the real line endowed with the two topologies: τ1 is the rational sequence topology (see [28,

Example 65], and τ2 is the usual metric topology.
(1) (X, τ1, τ2) is (1, 2)-wNSM
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Let (Un : n ∈ N) be a sequence of τ1-open covers of X. In [13] it was shown that (X, τ1) is a weakly
Menger space. Therefore, there is a sequence (Vn : n ∈ N) such that Vn is a finite subset of Un for each
n ∈ N and X = Clτ1 (

⋃
n∈N

⋃
Vn). Take for each n ∈ N and each V ∈ Vn a point xV,n ∈ V. Then finite sets

Fn = {xV,n : V ∈ Vn}, n ∈ N, satisfy X = Clτ1 (
⋃

n∈N St(Fn,Un)). The fact τ1 ≥ τ2 implies that for any τ2-open
neighbourhood On of Fn, n ∈ N,it holds X = Clτ2 (

⋃
n∈N St(On,Un). This means that X is an (1, 2)-wNSM

bispace.
(2) (X, τ1, τ2) is not (1, 2)-Menger.
Assume, that (X, τ1, τ2) is (1, 2)-Menger. By the argumentation similar to the proof of (2) in the previous

example we prove that in that case (X, τ1) is a Menger space which is a contradiction, because (X, τ1) is not
Lindelöf, hence not Menger. Therefore, one concludes that (X, τ1, τ2) is not (1, 2)-Menger.

Example 5.5. There is a (1, 2)-fNSM bispace.
Let X = R equipped with the following two topologies: τ1 is the Euclidean topology, and τ2 is the

collection of sets of the form O \ C, where O ∈ τ1 and C is a countable subset of X.
Let (Un : n ∈N) be a sequence of τ1-open covers of X. Since (X, τ1) is a strongly star Menger space there

are finite sets F1,F2, . . . in X such that X =
⋃

n∈N St(Fn,Un). Let for each n, Gn = On\Cn be a τ2-neighbourhood
of Fn. Since Clτ2 (Gn) = Clτ1 (On) we get X =

⋃
n∈N St(Clτ2 (Gn),Un), i.e. (X, τ1, τ2) is (1, 2)-fNSM.

Observe that the last example is (1, 2)-Menger.

5.1. (i, j)-almost and weakly neighbourhood star properties
We are going now to give a characterization of (i, j)-wNSM bispaces in terms of (i, j)-regular open sets.

Definition 5.6. ([5, 10]) Let (X, τ1, τ2) be a bitopological space. A set A ∈ X is called (i, j)-regular open (resp.,
(i, j)-regular closed) if A = Intτi (Clτ j (A)) (resp., A = Clτi (Intτ j (A)). A is said to be pairwise regular open (resp.,
pairwise regular closed) if it is both (i, j)-regular open and ( j, i)-regular open (resp., (i, j)-regular closed and
( j, i)-regular closed).

Clearly, every (i, j)-regular open set in (X, τ1, τ2) is τi-open.

Theorem 5.7. A bispace (X, τ1, τ2) is (i, j)-wNSM if and only if for each sequence (Un : n ∈ N) of covers of X by
(i, j)-regular open sets there exist finite sets Fn ⊂ X, n ∈ N, so that for every τ j-open On ⊃ Fn, n ∈ N, it holds
Clτ j (

⋃
n∈N St(On,Un)) = X.

Proof. (⇒): It is obvious because every (i, j)-regular open set in (X, τ1, τ2) is τi-open.
(⇐): Let (Un : n ∈N) be a sequence of τi-open covers of X. PuttingVn =: {Intτi Clτ j (U) : U ∈ Un}, n ∈N,

we obtain a sequence (Vn : n ∈ N) of covers of X by (i, j)-regular open sets. Then, by assumption, there
exist finite Fn ⊂ X, n ∈ N, so that for every τ j-open set On ⊃ Fn, n ∈ N, we have Clτ j (

⋃
n∈N St(On,Vn)) = X.

For every n ∈ N and every V ∈ Vn there exists a UV ∈ Un such that V = Intτi (Clτ j (UV)). Consider the
sequence (Wn : n ∈N), whereWn = {UV : V ∈ Vn}. We claim that Clτ j (

⋃
n∈N St(On,Un)) = X.

Let x ∈ X and let G be a neighbourhood of x. There exist k ∈ N and V ∈ Vk such that G ∩ V , ∅ and
V ∩ Ok , ∅, i.e. there is U = UV ∈ Uk such that G ∩ Intτi (Clτ j (U)) , ∅ and Ok ∩ Intτi (Clτ j (U)) , ∅. Then
G ∩U , ∅ and Ok ∩U , ∅. Therefore, x ∈ Clτ j (

⋃
n∈N St(On,Un)), that is X is (i, j)-wNSM.

Theorem 5.8. Every clopen subset of an (i, j)-aNSM bispace is also (i, j)-aNSM.

Proof. Let (Y, τ1|Y, τ2|Y) be a clopen subset of an (i, j)-aNSM bispace (X, τi, τ j) and let (Un : n ∈ N) be a
sequence of τi|Y-open covers of Y. As Y is clopen,Vn =Un∪ (X \Y) is a τi-open cover of X for every n ∈N.
Since X is (i, j)-aNSM, one can choose finite sets Fn ⊂ X, n ∈ N, so that for every τ j-open On ⊃ Fn, n ∈ N,
we have

⋃
n∈N Clτ j (St(On,Vn)) = X.

Define now Hn = Y ∩ Fn if Y ∩ Fn , ∅, and Hn = any finite subset of Y, otherwise. We claim that
(Hn : n ∈N) witnesses for (Un : n ∈N) that Y is (i, j)-aNSM.

Let Gn be a τ j|Y-open set in Y containing Hn, n ∈N. Then Wn = Gn∪(X\Y) is a τ j-open set in X containing
Fn, n ∈N, and thus

⋃
n∈N Clτ j (St(Wn,Vn)) = X. Because Y is closed in X, Hn ∩ (X \ Y) = ∅ and Clτ j (Gn) ⊂ Y.

We conclude that
⋃

n∈N Clτ j |Y(St(Gn,Un)) = Y, which means that (Y, τ1|Y, τ2|Y) is (i, j)-aNSM.
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Proposition 5.9. Let (X, τ1, τ2) be a bispace. Then:
(1) If X =

⋃
{Clτ j (Yk) : k ∈ N}, and each Yk is relatively (i, j)-NSM (resp., relatively (i, j)-NSR in X), then X is

(i, j)-wNSM (resp., (i, j)-wNSR);
(2) If X =

⋃
{Yk : k ∈ N} and each Yk is (i, j)-wNSM (resp., (i, j)-wNSR) in X, then X is (i, j)-aNSM (resp.,

(i, j)-aNSR)

Proof. We shall prove the (i, j)-NSM case.
(1) Let (Un : n ∈ N) be a sequence of τi-open covers of X. Each Yk is covered byUn. As Yk is relatively

(i, j)-NSM in X, there is for each k ∈N a sequence (Fk,n : n ∈N) of finite subsets of X such that for all τ j-open
Ok,n ⊃ Fk,n we have: Yk ⊂

⋃
n∈N St(Ok,n,Un). Then X =

⋃
Clτ j (Yk) ⊂ Clτ j (St(Ok,n,Un)), i.e. X is (i, j)-wNSM.

(2) Let (Un : n ∈N) be a sequence of τi-open covers of X. Rearrange this sequence to (Uk,m : k,m ∈N).
For each k ∈ N, (Uk,m : m ∈ N) is a sequence of covers of Yk by τi-open sets in X. For each k, Yk is (i, j)-
wNSM, and thus there are finite sets Fk,m ⊂ X, m ∈N, so that for every τ j-open Ok,m ⊃ Fk,m, m ∈N, we have
Clτ j (

⋃
n∈N St(Ok,m,Uk,m)) ⊃ Yk. By the assumption X =

⋃
n∈N Yk. It follows X =

⋃
k∈N Clτ j (

⋃
m∈N St(Ok,m,

Uk,m)),i.e. X is (i, j)-aNSM.

When an (i, j)-wNSM bispace is (i, j)-aNSM?

Definition 5.10. A topological space (X, τ) is a P-space if the intersection of any countable family of open
sets is again an open set.

In [11], a bitopological space (X, τ1, τ2) is defined to be (i, j)-weakly P-bispace if for every countable family
{Un : n ∈N} of τi-open subsets of X, Clτ j (

⋃
n∈NUn) =

⋃
n∈N Clτ j (Un).

Theorem 5.11. Let (X, τ1, τ2) be a bispace such that (X, τ j) is a P-space. Then the following statements are equivalent:

(1) X is an (i, j)-aNSM bispace;

(2) X is an (i, j)-wNSM bispace.

Proof. (1)⇒ (2) is always true.
(2)⇒ (1): Let X be an (i, j)-wNSM bispace and let (Un : n ∈N) be a sequence of τi-open covers of X. As

X is (i, j)-wNSM there is a sequence (Fn : n ∈N) of finite subsets of X such that for any τ j-open set On ⊃ Fn,
n ∈N, it holds X = Clτ j

(⋃
n∈N St(On,Un)

)
. The set on the right side of the previous equality is the smallest

τ j-closed set containing
⋃

n∈N St(On,Un). Because (X, τ j) is a P-space, the set
⋃

n∈N Cl(St(On,Un) is τ j-closed
and thus it contains Clτ j

(⋃
n∈N St(On,Un)

)
. It follows X =

⋃
n∈N Clτ j (St(On,Un)), i.e. X is (i, j)-aNSM.

We can prove the following theorem.

Theorem 5.12. In (i, j)-weakly P-bispaces (i, j)-wNSM and (i, j)-aNSM are equivalent. Similarly for the Rothberger
case.

Proof. Let (X, τ1, τ2) be an (i, j)-wNSM bispace and let (Un : n ∈ N) be a sequence of τi-open covers of X.
There is a sequence (Fn : n ∈ N) of finite subsets of X such that for any τ j-open set On ⊃ Fn, n ∈ N, it
holds X = Clτ j (

⋃
n∈N St(On,Un)). As {St(On,Un) : n ∈ N} is a countable family of τi-open sets and X is

(i, j)-weakly P-bispace, we have Clτ j (
⋃

n∈N St(On,Un)) =
⋃

n∈N Clτ j (St(On,Un)). This means that X is an
(i, j)-aNSM bispace.

Definition 5.13. ([11]) A bitopological space X is said to be (i, j)-nearly paracompact if every family U of
τi-open sets admits a τ j-locally finite τ j-open refinement.

Theorem 5.14. If an (i, j)-nearly paracompact bispace X is (i, j)-wNSM, then X is (i, j)-aNSM.
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Proof. Let (Un : n ∈ N) be a sequence of open covers of X. Since X is (i, j)-wNSM one can choose finite
Fn ⊂ X, so that for every τ j-open On ⊃ Fn, n ∈ N, we have Clτ j (

⋃
n∈N St(On,Un)) = X. By the assumption,

{St(On,Un) : n ∈ N} has a τ j-locally finite τ j-open refinement W. Then
⋃
W = (

⋃
n∈N St(On,Un)) and

therefore Clτ j (
⋃

n∈N St(On,Un)) = Clτ j (
⋃
W), i.e.

⋃
W is τ j-dense in X. AsW is a τ j-locally finite family,

we have that Clτ j (
⋃
W) =

⋃
W∈W Clτ j (W).

Since for every W ∈ W there is k = k(W) ∈N such that W ⊂ St(Ok,Uk), it follows X =
⋃

n∈N Clτ j (St(On,Un)),
i.e. X is (i, j)-aNSM.

Theorem 5.15. Let a bispace (X, τ1, τ2) be (i, j)-aNSM and let (Y, σ1, σ2) be a bispace. If f : X→ Y is a d-continuous
surjection, then Y is also (i, j)-aNSM.

Proof. Let (Vn : n ∈N) be a sequence of σi-open covers of Y. For each n ∈N, the setUn := { f←(V) : V ∈ Vn}

is a τi-open cover of X. Since X is (i, j)-aNSM, there are finite sets Fn ⊂ X, n ∈ N, so that for every τ j-open
On ⊃ Fn, n ∈ N, {Clτ j (St(On,Un)) : n ∈ N} is a cover of X. The sets f (Fn), n ∈ N, are finite in Y. For each n,
let Gn be a σ j-open neighbourhood of f (Fn). Then f←(Gn) = Hn is a τ j-open subset of X for each n ∈N and
Hn ⊃ Fn. Thus X =

⋃
n∈N Clτ j (St(Hn,Un)). We prove that Y =

⋃
n∈N Clσ j (St(Gn,Vn)).

Let y ∈ Y and let x ∈ X be such that y = f (x). Then there is k ∈ N such that x ∈ Clτ j (St(Hk,Uk)).
Then y = f (x) ∈ Clσ j ( f (St(Hk,Uk)). Because f (St(Hk,Uk)) ⊂ f (St( f←(Gk),Uk)) ⊂ St(Gk,Vk), we have
y ∈ Clσ j (St(Gk,Vk)). Therefore Y =

⋃
n∈N Clσ j (St(Gn,Vn)), i.e. Y is (i, j)-aNSM.

Theorem 5.16. Let (X, τ1, τ2) be an (i, j)-aNSR bispace and let (Y, σ1, σ2) be a bispace. If f : X→ Y is a d-continuous
surjection, then Y is also (i, j)-aNSR.

Theorem 5.17. Let (X, τ1, τ2) be an (i, j)-aNSH bispace and let (Y, σ1, σ2) be a bispace. If f : X→ Y is a d-continuous
surjection, then Y is also (i, j)-aNSH.

5.2. (i, j)-faintly neighbourhood star properties
In this subsection we consider faintly versions of weaker forms of neighbourhood star properties in

bispaces. In particular, we investigate preservation of the properties that we consider in this article under
some kinds of mappings.

First, recall some definitions for topological spaces.

Definition 5.18. A mapping f from a topological space X into a topological space Y is called weakly continu-
ous [18] (resp., θ-continuous [9], strongly θ-continuous [19]) if for each x ∈ X and each open neighbourhood V
of f (x) there is an open neighbourhood U of x such that f (U) ⊂ Cl(V) (resp., f (Cl(U)) ⊂ Cl(V), f (Cl(U)) ⊂ V).

Theorem 5.19. Let (X, τ1, τ2) and (Y, σ1, σ2) be bispaces such that X is (i, j)-fNSR. If f : X → Y is a surjective
mapping such that fi is weakly continuous and f j is θ-continuous, then Y is also (i, j)-fNSR.

Proof. Let (Vn : n ∈ N) be a sequence of σi-open covers of Y. Fix x ∈ X. For each n ∈ N, there is a set
Vx

n ∈ Vn such that f (x) ∈ Vx
n. As fi is weakly continuous there is an open set Ux

n ⊂ X containing x and
satisfying f (Ux

n) ⊂ Clσi (Vx
n). The set Un := {Ux

n : x ∈ X} is a τi-open cover of X for each n ∈ N. Since X is
(i, j)-fNSR there is a sequence (an : n ∈ N) of points in X such that for any sequence (Sn : n ∈ N) of τ j-open
neighbouhoods of an,

⋃
n∈N{St(Clτ j (Sn),Un) = X.

Consider the sequence (bn = f (an) : n ∈ N) of points in Y and a sequence (Tn : n ∈ N) of σ j-open
neighbourhoods of bn, n ∈ N. As f2 is θ-continuous, for each n there exists a τ j-open set On 3 an so that
f (Clτ j (On)) ⊂ Clσ j (Tn). Then X =

⋃
n∈N St(Clτ j (On),Un) implies Y =

⋃
n∈N St(Clσ j (Tn),Vn). It follows that Y

is an (i, j)-fNSR bispace.

Similarly, we can prove the following.

Theorem 5.20. If f : (X, τ1, τ2)→ (Y, σ1, σ2) is a mapping from an (i, j)-fNSM (resp., (i, j)-fNSH) bispace X onto Y
such that fi is weakly continuous and f j is θ-continuous, then Y is also (i, j)-fNSM (resp., (i, j)-fNSH).
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The following results show relationships between (i, j)-NSM (resp., (i, j)-NSH, (i, j)-NSR) bispaces and
(i, j)-fNSM (resp., (i, j)-fNSH, (i, j)fNSR) bispaces.

Theorem 5.21. If a bispace (Y, σ1, σ2) is the image of an (i, j)-NSM bispace (X, τ1, τ2) under a d-weakly continuous
mapping f , then Y is (i, j)-fNSM.

Proof. Let (Vn : n ∈ N) be a sequence of σi-open covers of Y. Working as in the first part of the proof of
Theorem 5.19 one constructs a sequence (Un : n ∈ N) of τi-open covers of X, where Un = {Ux

n : x ∈ X}.
Apply the fact that X is an (i, j)-NSM bispace to the sequence (Un : n ∈N) and find a sequence (An : n ∈N)
of finite subsets of X such that for any τ j-open sets Gn ⊃ An, n ∈ N, X =

⋃
n∈N St(Gn,Un). Put Bn = f (An),

n ∈ N. We have the sequence (Bn : n ∈ N) of finite subsets of Y. We prove that this sequence witnesses for
(Vn : n ∈N) that Y is (i, j)-fNSM.

For each n ∈ N take an arbitrary σ j-neighbourhood Hn of Bn. Since An ⊂ X is finite and f2 is weakly
continuous, there is a τ j-neighbourhood On of An such that f (On) ⊂ Clσ j (Hn). It is easy now to prove that
from construction of the sequencesUn and X =

⋃
n∈N St(On,Un), it follows that Y =

⋃
n∈N St(Clσ j (Hn),Vn).

This shows that Y is an (i, j)-fNSM bispace.

Quite similarly one proves the following.

Theorem 5.22. If Y = f (X) is the image of an (i, j)-NSH (resp., (i, j)-NSR) bispace (X, τ1, τ2) under d-weakly
continuous mapping f , then (Y.σ1, σ2) is (i, j)-fNSH (resp., (i, j)-fNSR).

Theorem 5.23. If a bispace (Y, σ1, σ2) is the image of an (i, j)-fNSM (resp., (i, j)-fNSH, (i, j)-fNSR) bispace (X, τ1, τ2),
such that fi is weakly continuous and f j is strongly θ-continuous, then Y is (i, j)-NSM (resp., (i, j)-NSH, (i, j)-NSR).

Proof. We prove the Rothberger case; the other two cases are proved similarly. Let (Vn : n ∈ N) be a
sequence of σi-open covers of Y. As in the proofs of Theorem 5.19 and Theorem 5.21 we obtain τi-open
covers Un = {Ux

n : x ∈ X}, n ∈ N. Then there are points p1, p2, . . . in X so that for arbitrary τ j-open sets
G1 3 p1,G2 3 p2, . . ., X =

⋃
n∈N St(Clτ j (Gn),Un).

Set qn = f (pn), n ∈ N, and take for each n a σ j-open set Hn 3 qn. Next, for each n pick a τ j-open set
On 3 pn such that f (Cl(On)) ⊂ Hn. Then X =

⋃
n∈N St(Clτ j (On),Un) implies Y =

⋃
n∈N St(Hn,Vn), i.e. Y is an

(i, j)-NSR bispace.

6. Conclusion

We study here classes of bitopological spaces (((i, j)-neighbourhood star-Menger, (i, j)-neighbourhood
star-Rothberger and (i, j)-neighbourhood star-Hurewicz and their weaker versions) defined in the standard
selection principles manner by using the star operator. We established a number of properties of those
classes, and proved that they are different from the classes of known bitopological spaces. This study
complements and continues earlier investigations of selective properties in bitopological spaces. We believe
that it would be interesting to study k-neighbourhod star selection properties, k ≥ 2, in bitopological spaces
defined in a similar way, but by the iteration of the star operator: for a family F of subsets of a set X and a
subset A of X one defines St0(A,F ) = A, and for k ≥ 1, Stk(A,F ) = St(Stk−1(A,F ),F ). Also, relations of all
these selective properties with game theory may be investigated.
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