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Abstract

Diffusion Magnetic Resonance Imaging (dMRI), a technique that maps the axonal mi-
crostructure of the brain, is often used nowadays to investigate white matter alterations.
Clinicians have gained useful insights from these studies for surgical planning and demon-
strating subtle abnormalities in a variety of diseases.
Our work aims to identify the effects of astrocytoma, a type of tumor that affects the

brain, on white matter (WM) tracts. For this purpose, three patients with different grades
of astrocytomas, acquired by the UK Data Archive, are used. Constrained Spherical De-
convolution (CSD)-based deterministic tractography is applied on these datasets in order to
assess the tumor-induced alterations on WM tracts. Three types of these alterations were
observed: displacement of fibers around the tumor, destruction of the intralesional fibers,
and destruction with displacement of the fibers within the tumoral region. A comparison is
also performed between the results obtained using different reconstruction methods: Diffu-
sion Tensor Imaging (DTI) and CSD. Although both methods confirm the existence of the
tumor and its associated alterations, CSD-based tractography is most appropriate to use
when dealing with tasks sensitive to intravoxel fiber connections such as the planning of a
surgical procedure. Finally, a comparison between the left and right hemispheres reveals
that the number of streamlines can be used to predict the existence of a tumor. The results
were validated by a group of doctors and researchers in the field.
The main contributions of this work reside in determining a pattern to the effects of

astrocytomas on WM tracts. While monitoring the field, we found that, among the re-
searches investigating brain pathologies, none were particularly focused on this type of
tumor. In addition, the use of CSD-based deterministic tractography while investigating
brain pathologies is new in the literature, where most published articles use DTI as the
only local reconstruction technique. Another contribution of this work is the comparison
between the left and right hemispheres of both normal and brain tumor patients.

Keywords: dMRI, WM, astrocytoma, tumor, CSD, DTI, tractography.
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General Introduction

The human brain is a remarkably complex organ mainly constituted of grey matter
areas internally connected through bundles of myelinated axons known as the white mat-
ter (WM). The integrity of WM wirings have been proved to influence vision, sensorimotor
processing, episodic memory and language. Therefore, mapping its micro-structure at fiber
resolution helps gain insight into the brain connectivity in an attempt to study its func-
tion and development. This goes unfortunately beyond conventional magnetic resonance
imaging (MRI).

Diffusion magnetic resonance imaging (dMRI) is a recently developed technique based
on MRI. Its ability to noninvasively quantify the diffusion rate of water molecules makes it
a powerful tool to accurately probe the micro-architecture of the underlying white matter
structure.

Though it is relatively new technique, dMRI field counts several models and acquisition
schemes including Diffusion Tensor Imaging (DTI) and High Angular Resolution diffusion
Imaging (HARDI) techniques. These models exploit fiber-orientation related information
to 3D-reconstruct fiber trajectories by means of deterministic or probabilistic tractography.
Thereby, tractography assists neurosurgeons for surgical planning since it allows to locate,
identify and study pathological changes in WM.

Among the numerous brain pathologies affecting WM fiber pathways, astrocytomas are
one of the most prevalent type of brain tumors. These neoplasms induce alterations in the
WM leading to behavioral and functional impairment.

This work focuses primarily on investigating the effect of astrocytoma on WM tracks by
means of implementation of DTI and Constrained Spherical Deconvolution (CSD) -based
deterministic tractography algorithms. This is achieved by making as few prior assumptions
about the influence of this type of brain tumors on the WM track as possible, conducting
therefore a data-driven approach instead. To carry out this project, the report has been
divided into three chapters, briefly described bellow :
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General Introduction

Chapter I introducing the concepts and physical principles behind diffusion MRI and
state of the art techniques used to quantify this diffusion. Generalities about astrocytomas
are also provided alongside few assumptions about how these brain tumors would modify
WM structure.

Chapter II presents an overview about different existing reconstruction methods and
tractography algorithms. Particular attention is paid to Diffusion Tensor Imaging, Sphe-
rical Deconvolution Techniques and deterministic Tractography which are at the heart of
this study. The advantages and limitations of different approaches are also addressed to
highlight where each method should be used.

The theoretical knowledge gained throughout the previously stated chapters, is applied
in Chapter III. In this latter an examination of clinical cases is conducted through the
implementation of the previously introduced methods on a platform for the analysis of
Diffusion Imaging in Python (Dipy). The study qualitatively and quantitatively assesses
the results of reconstruction and tractography to determine the effect of tumors on its
surrounding WM tracts.
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Chapter 1

Diffusion MRI

1.1 Introduction
Since the 1980s, diffusion magnetic resonance imaging (dMRI) has been used to track

the diffusion of water molecules in the human brain in vivo and non-invasively. This
technique allows one to map the microstructure and organization of brain pathways. Due
to these unique properties, dMRI has gained great significance in the clinical field, for
instance, using the measurements obtained in pre-surgical planning, the identification of
disease biomarkers, as well as the investigation of tumors effect on white matter tissue
integrity which will be the main focus of our work. In this chapter, we will introduce the
concepts related to diffusion MRI, and the state-of-the-art techniques used to measure this
diffusion. We will also take an interest to the clinical applications of this technique.

1.2 Concepts of molecular diffusion
Macroscopically, molecular diffusion is defined as the process by which molecules are

transported from a high to a low concentration region, which decreases the concentration
gradient. In 1855, Adolf Fick was the first to give a mathematical description of this
phenomenon (Fick, 1995). Fick’s first law states:

J = −D∇C (1.1)

where J is the net particle flux (unit: mol/ms), C is the particle concentration (unit:
mol/m3), and D is the diffusion coefficient (unit: m2/s).
If we consider a closed system, the number of particles is preserved. This operation is

described by the continuity equation, which states that the divergence of the flux is equal
to the negative rate of the change in concentration:
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∂C

∂t
= −∇J (1.2)

By combining equation 1.2 with Fick’s first law and considering the coefficient of diffusion,
D, as a constant, we obtain the following diffusion equation:

∂C

∂t
= D∇2C (1.3)

In the case of a boundless model with spatially uniform diffusion, the solution of the
diffusion equation is given by equation 1.4. By setting the initial condition: C(pt, 0) =
δ(pt − p0), where pt is the position of the molecule at time t, and p0 the initial position at
t = 0. We have:

C(pt, t) =
(

1√
4πDt

)3

e−
(pt−p0)2

4Dt (1.4)

This equation shows that the evolution of the concentration over time follows a Gaussian
distribution (Clarisse, 2008); and that the particle concentration at position pt at time t
depends on the diffusion coefficient D.

1.2.1 Brownian motion

Another approach is to measure the diffusion coefficient by monitoring the process of
diffusion itself. Indeed, while in equilibrium conditions the macroscopic description does
not suggest diffusion, the molecules still present a random movement caused by thermal
energy. This phenomenon, illustrated in Figure 1.1, is called Brownian motion, named after
the botanist Robert Brown, who was the first to write a report on this random movement
of particles (Brown, 1828).

Figure 1.1: Simulation of the Brownian motion of a particle in two dimensions. The
molecule is at point pt at time t and initially at point p0.

In 1905, Einstein (Einstein, 1956) used a probabilistic model to describe this movement;
he introduced the notion of “propagator”, which allowed to give the probability of a particle
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moving a certain distance during a given time interval. In a free medium, during a given
time interval, molecular displacements obey a Gaussian distribution, described as follows:

P (pt, t) =
(

1√
4πDt

)3

e−
(pt−p0)2

4Dt (1.5)

The width of this Gaussian function is determined by the diffusion coefficient (Johansen-
Berg & Behrens, 2013) as illustrated in Figure 1.2:

Figure 1.2: Gaussian distribution of molecular displacement for two different values of the
diffusion coefficient with a diffusion time of 40ms.

Larger diffusion coefficients (as illustrated in Figure 1.2 (blue)) lead to more spread out
probabilities of displacement suggesting increased diffusion.
Einstein then proved that the mean squared displacement traveled by a molecule during a
time interval, t, is proportional to the diffusion coefficient, D, of the considered medium:

〈
(pt − p0)2

〉
= 6Dt (1.6)

The diffusion coefficient is a scalar that depends solely on the size of the molecules, the
temperature and the viscosity of the medium (Le Bihan, 2003). From equation 1.6, we can
directly deduce the diffusion coefficient by measuring the displacement of the molecules.

1.2.2 Isotropic vs. Anisotropic diffusion

The distance that a molecule diffuses in one direction in space may or may not be the
same as in some other direction. Clearly, in a pure liquid where there are no hindrances
to diffusion or in a sample where the barriers are not coherently oriented, diffusion is the
same in all directions and is termed isotropic diffusion. However, if diffusion depends on
a certain direction, like in a sample with highly oriented barriers, it is termed anisotropic
diffusion. This is well illustrated in Figure 1.3.
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Figure 1.3: An illustration depicting diffusion in two different types of samples, one (a)
which has similar molecular displacements in all directions (isotropic diffusion)
and the other (b) which has greater diffusion along one direction over another
(anisotropic diffusion).

In this way, structural subtypes can be identified simply on the basis of their diffusion
characteristics and the anisotropy is directly related to the geometry of the fibers (Beaulieu,
2002).

1.2.3 Diffusion tensor model

In the case of anisotropic diffusion, the scalar diffusion coefficient is no longer sufficient
to describe the phenomenon of diffusion. Another concept must be used: the diffusion
tensor D. The exploitation of this tensor allows the determination of the principle direction
of diffusion. The diffusion tensor (Basser & Pierpaoli, 1998) is a 2nd order tensor and the
components are given by a 3 x 3 symmetric, positive definite matrix.

D =


Dxx Dxy Dxz

Dyx Dyy Dyz

Dzx Dzy Dzz

 (1.7)

with Dyx = Dxy , Dxz = Dzx , Dyz = Dzy.
We will discuss this in more detail in the next chapter.

1.3 Diffusion in the human brain
In the brain, biological tissues are very heterogeneous. The underlying cellular mi-

crostructure of these tissues influences the overall mobility of the diffusing molecules by
providing numerous barriers and by creating various individual compartments (e.g. in-
tracellular, extracellular, neurons, glial cells, axons) within the tissue. The interactions
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between water molecules and these barriers greatly reduce the diffusion distance compared
to the case of free diffusion, and in general the diffusion displacement can no longer follow
a Gaussian distribution. In this case, we speak of restricted (anisotropic) diffusion (Figure
1.4). It should be noted that only over long diffusion times will the effects of the barriers
become apparent (Beaulieu, 2002).

Figure 1.4: The mean distance traveled by water molecules in the case of "free" diffusion,
and in the case of "restricted" diffusion. Figure from (Le Bihan et al., 1991)

The brain presents three structures that modulate the diffusion: cerebrospinal fluid
(CSF), gray matter (GM) and white matter (WM) (Figure 1.5).

Figure 1.5: Human brain coronal slice showing the three major tissue types.

The diffusion of water molecules in CSF can be assimilated to the diffusion in homogeneous
medium of low viscosity. The diffusion is therefore important and identical in all directions
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of space (isotropic diffusion). GM and WM, which are more viscous, have lower diffusion
coefficients. However, the underlying structure of each of these tissues gives rise to very
different diffusion properties. The GM is the tissue containing cell bodies, which makes
the diffusion quasi-isotropic. WM, on the other hand, is organized in very large bundles of
axons. This anisotropic structure greatly affects diffusion, making it faster in the direction
of the fibers (axons) and less significant across them (Tensaouti, 2010). This is illustrated
in Figure 1.6.

Figure 1.6: An illustration showing the diffusion characteristics in the major tissue types
of the brain. (A) in CSF, (B) in GM, and (C) in WM.

In our work, we are mainly interested in diffusion at the WM level and have focused our
efforts on the study of fiber orientation, using the information provided by the diffusion
MRI. This information is then processed and interpreted using mathematical tools that we
will see later.

1.4 Diffusion Measurement: Pulsed Gradient Spin Echo
The aim of diffusion MRI is to obtain images by exploring the micro-movements of

water molecules inside voxels. This technique makes it possible to quantify the anisotropy
of diffusion, in order to reconstruct the global orientation of the nerve fibers inside WM.
Water is an abundant source of hydrogen nuclei (protons), which are detectable by an MRI
scanner. All hydrogen nuclei possess a quantum mechanical property known as spin, which
determines their intrinsic magnetic moment; each proton can be considered loosely as a
tiny bar magnet.
To measure diffusion, the Stejskal–Tanner imaging sequence is used (Stejskal & Tanner,
1965). This sequence uses two strong gradient pulses, symmetrically positioned around a
180° refocusing pulse, allowing for controlled diffusion weighting (Figure 1.7). The first
gradient pulse induces a phase shift for all spins; the second gradient pulse will invert this
phase shift, thus canceling the phase shift for static spins. Spins having completed a change
of location due to Brownian motion during the time period, 4, will experience different
phase shifts by the two gradient pulses, which means they are not completely refocused
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and consequently will result in a signal loss.

Figure 1.7: The Stejskal-Tanner imaging sequence. Figure from (Westin et al., 2002)

To eliminate the dependence of spin density, T1 and T2, we must take at least two measure-
ments of diffusion-weighted images that are differently sensitized to diffusion but remain
identical in all other aspects. By using, for instance, a measurement without diffusion
weighting and one with diffusion weighting. Diffusion can be calculated using the follow-
ing equation (Stejskal & Tanner, 1965):

S = S0e
−bD (1.8)

where b is the diffusion weighting factor, introduced and defined by (Le Bihan et al., 1986),

b = γ2δ2
(

∆− δ

3

)
|g|2 (1.9)

where G is the proton gyromagnetic ratio, |g| is the strength of the diffusion sensitizing
gradient pulses, δ is the duration of the diffusion gradient pulses, and4 is the time between
diffusion gradient RF pulses (Figure 1.7). This emphasizes the fact that the diffusion tensor
values, D, also known as ‘apparent diffusion components’ (or ADC values), generated from
this procedure depend on the experimental conditions such as the direction of the sensitizing
gradient and other sequence parameters (δ and 4).

1.5 Clinical application
Reconstructing and visualizing the microstructure of WM is one of the greatest achieve-

ments of dMRI. However, this can be more rewarding when applied on patients with brain
pathologies. In brain tumor patients, pre-operative surgical planning and assessment of
the surrounding WM tracts is a very important step to allow complete resection of tumor,
while at the same time avoiding recurrence and loss of vital brain functions. Conventional
MRI techniques can accurately identify brain tumors but do not provide exhaustive infor-
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mation about the integrity of the surrounding white matter (Essayed et al., 2017). dMRI
and specifically tractography technique is currently the only available tool which displays
the WM tracts disruption by fractional anisotropy changes in patients with brain tumors.
A number of brain pathologies affect WM fiber pathways, one example is astrocytoma.
Astrocytomas are tumors that grow from a type of cell in the brain called an astrocyte.

They are the most common type of a group of brain tumors called gliomas and account for
about one third of all brain tumors. There are various types of astrocytomas, each of which
affect both adults and children (thebraintumourcharity.org). Brain tumors are graded by
the World Health Organization (WHO) from 1 - 4, according to how they behave i.e. how
fast they grow and how likely they are to spread within the brain. Astrocytomas can be
any grade, from 1 - 4.
Depending on the grade of the tumor, the effects astrocyomas have on WM fiber path-

ways may vary. In fact, while high-grade aggressive lesions are thought to significantly
alter morphology and impair functionality of infiltrated WM, less aggressive tumors may
simply displace the surrounding brain structures. The surgical strategy, which mainly aims
at finding the best compromise between amount of tissue removed and degree of preser-
vation of brain functionality, is susceptible to the resulting metamorphosis. This study
aims to investigate the different tumor-induced alterations of WM architecture in order to
accurately localize and assess the damaged WM tracts for preoperative surgical planning
and intra-operative decision-making.

1.6 Summary
The diffusion of water is produced by the random movement of water molecules due to

thermal energy. Diffusion MRI is an imaging modality that allows to observe the diffusion
of water molecules at the microscopic level in the brain. It is a technique that found great
importance because of its ability to give information of the brain microstructure in vivo
and non-invasively. Due to these unique qualities, dMRI found great importance in the
neurosurgical field, specifically in the pre-surgical planning and the investigation of different
brain pathologies. The acquisition of the raw diffusion images is based on the principle of
nuclear magnetic resonance (NMR) combined with a diffusion gradient echo sequence. In
the next chapter, we will introduce the step that follows the acquisition of dMRI data, which
entails the estimation of the local fiber orientations and the 3 dimensional reconstruction
of fiber trajectories.
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Chapter 2

Reconstruction Methods and
Tractography

2.1 Introduction
A large amount of information can be extracted from the diffusion MRI data. This

information is processed to provide us with the fiber pathways in WM. This essential step
towards connectivity maps of the brain is called tractography. Before reconstructing the
fiber trajectories, however, the voxel-wise fiber orientations need to be estimated. Thus,
methods such as DTI and HARDI based approaches were developed. Several tractography
methods exist that reconstruct the trajectories of WM fibers from the previously estimated
orientations. These trajectories are often represented by threadlike fascicles more or less
thick. This form of representation is purely visual. The diffusion measurement only in-
directly reflects the structure of WM, there are several orders of magnitude between the
resolution of diffusion MRI acquisitions and the diameter of the axons. The reconstructed
fibers correspond rather to bundles of axons of the same order of magnitude as a voxel
that-is-to-say of more than one millimeter in diameter. Therefore, the tractography is able
to map only the large bundles of the WM.
This chapter is divided into two major sections, reconstruction methods and tractogra-

phy. The purpose of each section is to provide the reader with an overview of the different
existing reconstruction techniques and tractography algorithms, respectively.

2.2 Reconstruction Methods
Several models and techniques are used to estimate the white matter wiring, in this

chapter, we will introduce the Diffusion Tensor Imaging method along with the High An-
gular Resolution Diffusion Imaging techniques.
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2.2.1 Diffusion Tensor Imaging (DTI)

Since its introduction in early 90s, Diffusion Tensor Imaging (DTI) (Basser et al.,
1994a,b) has gained popularity among clinicians and researchers. This technique provides
insights in the axonal microstructure of the brain through estimation of diffusion anisotropy
and principal axonal direction in the white matter fibers.

2.2.1.1 Tensor Calculation

DTI exploits the assumption that the probability of diffusion in a homogeneously
aligned system follows a Gaussian diffusion resulting in an elliptical shape -also known
as- the diffusion ellipsoid (Basser et al., 1994a,b; Pierpaoli et al., 1996).
One way to reconstruct the diffusion ellipsoid is by taking measurements of the Apparent
Diffusion Coefficients (ADCs) along a small number of orientations. This process requires
the use of the previously mentioned diffusion Tensor, from where the denomination of this
technique “Diffusion Tensor Imaging” (DTI).
In order to achieve a full characterization of the diffusion ellipsoid, six parameters are

required; these parameters include the different lengths for the shortest, middle and longest
axes needed to define the shape of the ellipsoid; and three vectors to define the orientation
of the principal axes.
Since six parameters are needed to define the diffusion ellipsoid, six measurements of dif-
fusion constants along six arbitrary axis are conducted.

Figure 2.1: Visual representation of the diffusion ellipsoid.

The Diffusion tensor D used to keep record of these values, is a 3×3 symmetric matrix
related to the six parameters via Diagonilization process. Where λ1, λ2 and λ3 are the
Eigen values, and v1, v2 , v3 are the Eigen vectors.
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D =


Dxx Dxy Dxz

Dyx Dyy Dyz

Dzx Dzy Dzz

Diagonalization−−−−−−−−−−−−→λ1, λ2, λ3, v1, v2, v3 (2.1)

Whereas the gradient direction can be represented by a three element column vector g.

g =


gx

gy

gz

 (2.2)

In order to measure six diffusion constants, a minimum of seven MR images is required
(Basser & Pierpaoli, 1998) one without any diffusion sensitizing gradients applied and at
least six diffusion-weighted images with gradients applied in non-collinear directions. Math-
ematically, only six non-collinear diffusion-weighted directions are necessary to reconstruct
the diffusion tensor; however, in practice more images should be acquired to improve the
accuracy of tensor estimation (Jones, 2004).
To evaluate tensor D for a given direction, the following expression is used:

gTDg = g2
xDxx + g2

yDyy + g2
zDzz + 2gxgyDxy + 2gxgzDxz + 2gygzgyz (2.3)

where gT is the transpose of g.
The result of this expression is a scalar number representing the value of the tensor model
along a given direction. By combining this with the Stejskal-Tanner equation 1.8 we obtain
the following expression:

S = S0e
−bgTDg (2.4)

This can be rewritten as:

gTDg =
−ln( S

S0
)

b
(2.5)

Expending the left side by plugging equation 2.3 in 2.5, results into:

g2
xDxx + g2

yDyy + g2
zDzz + 2gxgyDxy + 2gxgzDxz + 2gygzgyz =

−ln( S
S0

)
b

(2.6)

In equation 2.6, S, b and g are all known. Whereas the six unknown parameters character-
izing the Diffusion Tensor Model would require at least six similar equations denoting the
measurement of diffusion along six arbitrary axes, in addition to S0 denoting the b0 value
signal used to normalize measurements. With this in hand the resulting set of equations
would be:
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gTi Dgi =
−ln( Si

S0
)

bi
, i ∈ 1, ...,M (2.7)

where M is the number of gradients applied. This leads to:

− bi


g2

1,x g2
1,y g2

1,z 2g2
1,xg

2
1,y 2g2

1,xg
2
1,z 2g2

1,yg
2
1,z

... ... ... ... ... ...

g2
M,x g2

M,y g2
M,z g2

M,xg
2
M,y g2

M,xg
2
M,z g2

M,yg
2
M,z





Dxx

Dyy

Dzz

Dxy

Dxz

Dyz


=



ln
(
S1
S0

)
.

.

.

ln(SM

S0
)


(2.8)

Determining the six unknown values relies on solving this set of equations, for this, the Lin-
ear Least Square technique is used (Cherifi et al., 2013); where the corrsponding variables
of the equation x∗ = (ATA)−1ATY are:

x∗ =



Dxx

Dyy

Dzz

Dxy

Dxz

Dyz


(2.9)

A = −bi


g2

1,x g2
1,y g2

1,z 2g2
1,xg

2
1,y 2g2

1,xg
2
1,z 2g2

1,yg
2
1,z

... ... ... ... ... ...

g2
M,x g2

M,y g2
M,z g2

M,xg
2
M,y g2

M,xg
2
M,z g2

M,yg
2
M,z

 (2.10)

Y =



ln
(
S1
S0

)
.

.

.

ln(SM

S0
)


(2.11)

2.2.1.2 Diffusion Tensor Measures

Once the Diffusion Tensor is obtained, several rotationally invariant quantities can be
extracted such as the trace of the DT, the apparent diffusion Coefficient (ADC), or the
fractional anisotropy (FA), among others (Descoteaux, 2015). These parameters deliver
important information and are in function of eigenvalues and eigenvectors of the tensor.
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By performing an eigenvalue decomposition on the diffusion tensor, one would be left with
the eigenvalues along with their corresponding eigenvectors as shown in equation 2.12:

D = EΛET =
(
e1 e2 e3

)
λ1 0 0
0 λ2 0
0 0 λ3



eT1

eT2

eT3

 (2.12)

With eigenvalues λ1, λ2 and λ3 such thatλ1 ≥ λ2 ≥ λ3, and e1, e2 and e3 as their corre-
sponding eigenvectors.
The reconstruction of white matter bundles depends on the largest eigenvalue which de-
termines the principal direction of the diffusion tensor at a given voxel.
With the eigenvalues and eigenvectors at hand, the most important parameters can be
defined as follow:

MD = λ1 + λ2 + λ3

3 (2.13)

FA =
√

3
2 .

√√√√(λ1 −MD)2 + (λ2 −MD)2 + (λ3 −MD)2

λ2
1 + λ2

2 + λ2
3

(2.14)

The mean diffusivity (MD) is simply the average of the three eigenvalues, it is a rota-
tionally invariant measure which describes the overall shape of the tensor. Whereas the
fractional anisotropy (FA) is a normalized, rotationally invariant measure of how much the
eigenvalues differ. Higher FA values denote higher anisotropy and therefore reflects regions
with densely packed white matter bundles oriented in the same direction.
These parameters are illustrated in Figure 2.2 along with the RGB map, which is a
directionally-encoded color FA map, where the red, green, and blue colors each repre-
sents the x-, y-, and z-directions of water diffusion respectively, and the brightness of the
pixels corresponds to anisotropy.

Figure 2.2: Examples of DTI scalar maps. (a) Non-diffusion weighted image b=0; (b) MD
map; (c) FA map; (d) RGB map.
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2.2.1.3 Diffusion Tensor Imaging Limitations

Though DTI is a powerful tool for modeling homogeneously aligned bundles, it fails to
give a realistic and practical description of the white matter microstructure. This is due to
the fact that specific regions of the brain containing two or even more differently oriented
fiber bundles within the same voxel (crossing, diverging, or kissing fibers) lead to incorrect
estimation of fiber directions and pathways (Soares et al., 2013). Moreover, it has been
shown that crossing fibers can be detected in over 90% of white matter voxels (Jeurissen
et al., 2010).

Figure 2.3: The figure represents various configurations of crossing fibers along with their
corresponding 2D diffusion ellipsoids. Lines represent different fiber popula-
tions and their amount.

In order to overcome the limitations of DTI, several sophisticated models and approaches
have been suggested including High Angular Resolution Diffusion Imaging which will be
introduced in the next section.

2.2.2 High Angular Resolution Diffusion Imaging Techniques

In order to address the limitations of the DTI method, more sophisticated models
based on High Angular Resolution Diffusion-Weighted Imaging (HARDI) were developed.
HARDI refers to an acquisition technique which relies on extensive sampling along a large
number of axes (i.e. High Angular Resolution) using a single b-value larger than b-values
usually used for DTI.
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The HARDI based methods offer a more reliable microscopic architecture of WM tissue
especially in regions of fiber populations with different orientations. They aim to describe
diffusion of water molecules in each voxel by estimating the probability density function
(PDF) or variants of it which is capable of inferring diffusion in any kind of fiber population.
There are two major sampling schemes used in HARDI (Paragios et al., 2010):
1. Whole q-space 3D Cartesian grid sampling.
2. Single Shell Spherical Sampling.

Figure 2.4: HARDI acquisition strategies: (Left) sampling over the Cartesian grid. (Right)
sampling on a single spherical shell.

The first sampling scheme is mainly used for Diffusion Spectrum Imaging (DSI), it
consists of estimating the diffusion PDF by sampling a large number of q-space points over
a dense 3D Cartesian lattice and taking afterwards the inverse Fourier Transform. This
method involves the use of very high magnetic gradients during a long acquisition.
The second sampling scheme is at the core of Q-ball Imaging (QBI) and Spherical Decon-
volution (SD) techniques, it consists of estimating the Orientation Distribution function or
variants of it by uniform sampling on a single spherical shell with a radius determined by
the b-value used. This method involves the use of b-values smaller compared to the ones
used for DSI with an acquisition time between 10 and 20 minutes.

2.2.2.1 Diffusion Spectrum Imaging

Diffusion spectrum imaging (DSI) (Figure 2.5) is a technique based on q-space imaging
in three dimensions (Wedeen et al., 2000). It exploits the Fourier transform relationship
(Equation 2.15) between the q-space diffusion signal that we measure and the real space
probability density function (PDF) that describes the diffusion process of water molecules,
also called the diffusion propagator p(r,t) (Descoteaux, 2015).
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E(q, t) =
w

R3

p(r, t)e−2πiqT rdr (2.15)

Firstly, raw diffusion-weighted signal is acquired by sampling q-space on a 3D Cartesian
grid through a large number of measurements. It is then normalized using the S0 signal
resulting in E(q,t), known as signal attenuation.
The probability density function PDF is then recovered by means of Inverse Fourier trans-
form through the following equation:

p(r, t) = F−1 (E (q, t)) (2.16)

With the diffusion propagator in hand, the fiber orientations are identified by means of
its 2D radial projection, known as the diffusion orientation density function Ψ, through
identification of its peaks.

Ψ(θ, φ) =
∫ ∞

0
p(r, θ, φ)r2drSt.θ ∈ [0, π] , φ ∈ [0, 2π] (2.17)

Figure 2.5: Diffusion Spectrum Imaging.

Though it is a powerful tool in resolving crossing fibers issue, DSI remains clinically
infeasible due to the use of very strong magnetic gradients (500 ≤ b ≤ 20000 s/mm2)
during long acquisition sessions (15-60 minutes).

2.2.2.2 Q-Ball Imaging

Q-ball imaging is the first method proposed to estimate the diffusion Orientation Dis-
tribution Function (dODF) (Tuch, 2004) in a significantly shorter acquisition time. It uses
the Funk-Radon transform (FRT) G , to recover a smoothed version of the diffusion ODF
(Equation 2.18) from a single-shell HARDI acquisition (Descoteaux & Poupon, 2012), and
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is proved to be efficiently and robustly implemented using spherical harmonics (Descoteaux
et al., 2007; Hess et al., 2006).

Ψ(θ, φ) =
∫ ∞

0
p(r, θ, φ)drSt.θ ∈ [0, π] , φ ∈ [0, 2π] (2.18)

The Funk-Randon Transform was first introduced by Tuch (Tuch, 2004; Tuch et al., 2002).
It computes integrals over great circles defined over the unit sphere and is given by:

G [f(w)] (u) =
∫
δ(uTw)f(w)dw (2.19)

where u and w are constrained to be unit vectors and f(w) is a function on the sphere.
Tuch proved that the dODF can be closely approximated using FRT of the diffusion signal
in the following equation:

Ψ(u) = Gq′ [S(q)] (u) = 2πq′
∫
P (r, θ, z)J0(2πq′r)rdr dθdz (2.20)

where q’ is the radius of the sampling shell; P(r,T,z) denoting the PDF in cylindrical
coordinates with the z-axis taken to be along the direction of interest u, and J0 is the
0th-order Bessel function.
The diffusion ODF recovering technique using the FRT based on the spherical harmonics

formulation can be summarized in the following figure.

Figure 2.6: Brief summary of the QBI reconstruction method.
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2.2.2.3 Spherical Deconvolution

Instead of recovering an approximation based on dODF, Spherical Deconvolution (SD
(Tournier et al., 2004)) aims to recover the fiber Orientation Density Function (fODF)
directly. The idea behind SD is to consider the measured HARDI signal S as the sum of
different fiber orientation distributions F within the same voxel, each convolved with the
response function produced by a single-fiber orientation R as presented in the following
equation:

S(θ, φ) = F (θ, φ)⊗R(θ) (2.21)

where R(θ) is an axially symmetric response function of a single coherently oriented fiber
population evaluated in spherical coordinates along θ ; F (θ, φ) is the fiber Orientation
Density Function (fODF) and S(θ, φ) is the signal measured.
Figure 2.7 demonstrates this process by showing how a diffusion signal of a crossing of two
distinct populations of fibers can be modeled.

.

Figure 2.7: Graphial representation of the application of Spherical Deconvolution on cross-
ing fibers. (a) and (b) representation of a single orientation. (c) SD on crossing
fibers.

In order to reconstruct the fiber orientations, the measured HARDI signal S is decon-
volved with the response function R. F is estimated according to Tournier et al. (Tournier
et al., 2007) by averaging the most anisotropic voxels in the brain data. This is a direct
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linear operation when all functions are represented in the SH basis (Tournier et al., 2004;
Descoteaux, 2008).
Nonetheless, deconvolution techniques are ill-conditioned operations susceptible to noise,
resulting in an fODF having negative spurious side-lobes as shown in Figure 2.8. To remove
these spurious side-lobes, Tournier at all introduced a non-negativity constraint (Tournier
et al., 2007) (hence the name: Constrained Spherical Deconvolution).

Figure 2.8: Negative spurious side-lobes are created while estimating the fODF using spher-
ical deconvolution.

2.2.2.3.1 Constrained Spherical Deconvolution

Constrained Spherical Deconvolution (CSD) is one variant of SD. It uses the Tikhnov
regularization technique (Hess et al., 2006) to reduce the negative values of fODF.

Figure 2.9: Reduction of the negative spurious side-lobes using constrained spherical de-
convolution.

The most important steps of CSD are summarized in Figure 2.10, where after the es-
timation of the fODF, a set of directions is identified where the fODF is negative. By
incorporating this information as a Tikhonov constraint, the amplitude of the fODF along
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those orientations drops to zero. By solving the Tikhonov problem, an improved version of
the fODF is obtained, providing a new set of negative amplitude directions. The process
is repeated until convergence is achieved. Figure 2.9 shows the results of CSD, where we
can see that by the ith iteration the negative side-lobes where eliminated.

Figure 2.10: Important steps of the CSD reconstruction method.

2.2.2.4 Limitations of HARDI

Although HARDI can overcome the DTI local crossing problem, by discriminating
different fiber orientations in a single voxel it still has some limitations. Apart from the
long acquisition time which is often too long for clinical application -compared to the
DTI technique-, HARDI has some limitations in crossing fiber configuration. Different
subvoxel configurations can lead to the same diffusion ODF and Fiber Orientation Density
(FOD) profiles as demonstrated in Figure 2.11. In the same imaging voxel, fibers can
curve, fan/merge, cross, kiss/bottleneck, or branch/merge, and still produce similar-looking
diffusion ODF and FOD profile (Descoteaux, 2015). To date, research groups are addressing
these problems, and what these fiber configurations produce on real data remains unknown
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and ambiguous (Savadjiev et al., 2008).

Figure 2.11: HARDI reconstruction limitations. Several ambiguous subvoxel configura-
tions can lead to the same ODF or FOD.(Demi et al., 2014).

2.3 Tractography
Tractography is a general term for methods to reconstruct fiber trajectories in the white

matter based on diffusion imaging. It offers a unique possibility to gain insight into the
structure of the human brain non-invasively and in vivo. The information won in this
manner is not only of high value for visualization of the brain structure and segmenta-
tion of the brain into different functional areas, it also provides essential information for
neurosurgical planning and investigations of various brain diseases. Since the development
of the first algorithms in the late 1990s, many other methods have been proposed in the
literature. They can be classified into two main categories: Deterministic and probabilistic
algorithms.

2.3.1 Deterministic tractography

In deterministic tractography, a single estimate of fiber orientation is used to determine
the direction of the fiber trajectory without taking into account the uncertainty of the
chosen pathway. The first fiber tracking approaches were based on DTI, which were later
adapted to work with HARDI reconstruction methods, and they all stemmed from the
following hypothesis: In each brain voxel, the dominant direction of axonal tracts can be
assumed to be parallel to the primary eigenvector of the diffusion tensor. Thus, if the
orientation of fibers at each voxel is calculated, these directions are joined to reconstruct
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entire pathways and hence brain connections. Although they reconstructed fiber pathways
differently, the majority of deterministic methods were based on streamline tractography.

2.3.1.1 Streamline tractography

A streamline through a vector field is any line whose tangent is parallel to the local
vector during its entire course. Mathematically, a line can be represented as a 3D space
curve r(s), parameterized by its arc length s. In order for a streamline to align with the
vector field, the tangent at arc length s, has to be equal to the vector at the corresponding
position:

dr(s)
ds

= v[r(s)] (2.22)

where r(s) denotes the 3D position along the streamline and v is the 3D vector field. In
the case of fiber tractography, the vector field v is chosen to reflect the local fiber orien-
tations that are calculated from the diffusion data. For DTI tractography, v is typically
the field of first eigenvectors derived from the diffusion tensor (Conturo et al., 1999; Basser
et al., 2000). For tractography methods based on multi-fiber reconstruction algorithms,
v typically consists of the dODF (Wedeen et al., 2008; Descoteaux et al., 2009) or fODF
orientations along which the probability is highest (Jeurissen et al., 2009), as these orien-
tations are most likely to coincide with the underlying WM fibers.
Note that equation 2.22 is a differential equation that can be solved by means of integration:

r(s) =
∫
s0

v[r(s)]ds (2.23)

where r(s0) = r0 represents the starting point of the streamline which is often referred to as
seed point. Formally, streamline tractography can be defined as the process of integrating
voxel-wise fiber orientations into fiber pathways. In the next subsection, we will discuss the
most common integration methods used in developing streamline tractography algorithms.

2.3.1.2 Integration

2.3.1.2.1 Euler’s method

The most intuitive way to perform the numerical integration of equation 2.23 is by
starting the procedure at seed point r0, calculating the corresponding fiber orientation
v(r0), and following that direction for a short distance 4, which is called the ‘step size’,
to obtain the next point r1 = r0 + v(r0)4 on the pathway. This method, known as Euler
integration, can reconstruct the entire streamline by iteratively performing this procedure:

ri+1 = ri + v(ri)4 (2.24)
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Note that equation 2.24 assumes that the value v(ri) is constant during the step size 4,
which will make this method susceptible to overshoot in highly curved regions, especially
for larger step sizes.

2.3.1.2.2 Runge-Kutta method

In order to take into account the variations of v between ri and ri+1, the use of higher
order numerical integration schemes has been proposed, such as the fourth-order Runge-
Kutta (RK4) scheme:

ri+1 = ri + k1

6 + k2

3 + k3

3 + k4

6 (2.25)

with
k1 = v(ri)4
k2 = v(ri + k1

2 )4
k3 = v(ri + k2

2 )4
k4 = v(ri + k3)4

Figure 2.12 shows the geometric representation of RK4 integration method. As shown in
the figure, the next point, sk+1, is a linear combination of the main direction of the current
point (denoted sk) and that of the other three surrounding points (A, B and C).

Figure 2.12: Geometric representation of the 4th-order Runge-Kutta method.

An enhanced method combining improved Euler and Runge-Kutta 4th order has been
proved to give better results than state-of-the-art tractography algorithms (Cherifi et al.,
2018).
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2.3.1.3 Interpolation

To minimize errors from integration the vector field needs to be interpolated. The
right-hand side of equation 2.22 is defined in continuous space. To progress the streamline
correctly, the exact fiber orientation is needed at each position s. The diffusion data,
however, is only available on a discrete voxel grid providing only one fiber orientation per
imaging voxel.
In the simplest tractography algorithms, streamlines are initiated from user-defined voxels
called “seed points” (Figure 2.13). The streamlines follow the primary eigenvector from
voxel to voxel in 3 dimensions. When the fiber trajectory reaches the edge of the voxel, the
direction of the trajectory is changed to match the primary eigenvector of the next voxel.
This method is introduced by Mori (Mori et al., 1999) and is called “Fiber Assignment by
Continuous Tracking” or FACT.

Figure 2.13: Schematic demonstrating the FACT algorithm. Arrows represent primary
eigenvectors in each voxel. Red lines are FACT trajectories. From (Mukherjee
et al., 2008)

However, this approach leads to a great accumulation of error, which will be then propa-
gated throughout the streamline (Figure 2.14) (Lazar & Alexander, 2003). Therefore we
need a method for interpolating the discrete measurements into continuous space. Assum-
ing that fiber orientations contain contributions from all neighboring voxels, the data can
be interpolated to gain continuous fiber orientations within a voxel (Figure 2.14). Most
algorithms use trilinear interpolation, where the quantity of interest is calculated as a
weighted sum from the 8 voxels nearest to the point of interest with the weight of each
neighboring voxel determined by their distance to the point of interest.
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Figure 2.14: Streamlines can be propagated through a voxel with interpolation (interpo-
lated) or without interpolation (FACT) (Jeurissen, 2012).

2.3.1.4 Tensorline tractography

Unlike the method described previously, the Tensor Deflection method TEND, intro-
duced by Lazar (Lazar et al., 2003) uses all of the information contained in the diffusion
tensor to determine the direction of the fibers. In this approach, the fiber path does not
automatically follow the first eigenvector of a voxel. Rather, the new propagation direction
at a given point depends both on the local diffusion tensor D and the tangent on the fiber:

−→v out = D−→v in (2.26)

where vin and vout are respectively "incoming" and "outgoing" vectors (directions) at the
current point (Figure 2.15-a). The diffusion tensor D deflects the incoming direction to-
wards the first eigenvector, while limiting the angle of deviation in order to obtain a
smoother trajectory. The incoming vector can be defined as a linear combination of the
three eigenvectors of the tensor at the current point:

−→v in = β1
−→v 1 + β2

−→v 2 + β3
−→v 3 (2.27)

where B1, B2 and B3 are the relative weights of the three eigenvectors.
Using the diagonalized form of the tensor D and substituting the expression of vin in
equation 2.26, we obtain:

−→v out = λ1

(
β1
−→v 1 + λ2

λ1
β2
−→v 2 + λ3

λ1
β3
−→v 3

)
(2.28)
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From this equation, it is possible to deduce several cases (Figure 2.15-b and 2.15-c):

• If the diffusion is anisotropic (λ1 � λ2 ∼ λ3), the outgoing vector will be diverted
according to the direction of the main eigenvector v1: −→v out w λ1β1

−→v 1

• If diffusion is mainly in a plane (λ1 = λ2 � λ3), the outgoing vector will be: −→v out w

λ1(β1
−→v 1 +β2

−→v 2). In this case, the first and the second eigenvectors both participate
in the determination of the new direction. If the Incoming vector is parallel to the
diffusion plane, it will hardly be deviated.

• In the case of an isotropic diffusion (λ1 = λ2 = λ3), the incoming vector will be
almost not modified: −→v out = λ1(β1

−→v 1 + β2
−→v 2 + β3

−→v 3).

Figure 2.15: : Illustration of the TEND method. (a) Deviation of the incoming vector
(blue) by the tensor D (represented by its ellipsoid). The outgoing vector is
shown in red. (b) Illustration of the deviation of the incoming vector as a
function of the shape of the diffusion tensor. For tensors with high anisotropy
(left), the incoming vector is diverted to the main eigenvector v1. The ampli-
tude of the deviation decreases with the anisotropy (from left to right). (c)
Illustration of 4 cases for which there will be no deviation: the incoming vector
is perpendicular (top right), parallel (top left) to the main eigenvector, when
the incoming vector is parallel to the diffusion plane (ellipsoid in the form of
slab) (bottom left) and finally in the case of a spherical ellipsoid (lower right).

The author also proposed to calculate vout as the following linear combination:
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−→v out = f−→v 1 + (1− f)((1− g)−→v in + gD−→v in) (2.29)

where f and g are user defined parameters between 0 and 1 to weight the influence of
the first eigenvector, v1, and the prior tracking direction vin, respectively. This method
reconstructs "smoother" fibers because it takes into account the current main direction v1,
but suffers from the problem of heuristically choosing values for parameters f and g.

2.3.1.5 Seed points selection

The starting points of tractography algorithms are called "seed points" which define
a specific ‘region of interest’ (ROI). The choice of seeds does not really depend on the
method of tractography used. Nevertheless, for deterministic methods, there are two main
ways of determining these seeds: The first consists of user-defined ROIs. This method
requires anatomical knowledge and is subject to inter-operator variability. In the second,
a minimum threshold of FA makes it possible to automatically select the voxels where the
diffusion is highly anisotropic. Each chosen voxel is associated with either a single seed
point, placed in the center of the voxel, or several seed points, which is accomplished by
sub-sampling the voxels by means of a grid of a dimension defined beforehand (Nimsky
et al., 2006).

2.3.1.6 Tract termination

Since the propagation of the fibers cannot continue indefinitely, one or more criteria
for stopping the tractography algorithm must be defined. Two such criteria are commonly
used: a threshold on diffusion anisotropy and a curvature threshold. For example, in DTI
tractography it is common to stop a streamline when the FA falls below a certain threshold
value (typically FA < 0.2). The rationale behind this criterion is that in regions with low
FA values the uncertainty of the fiber orientation is high. Terminating the streamline at
such a point prevents the trajectory from acquiring high directional errors. Further, low
FA values indicate that the trajectory has left white matter and entered gray matter where
no fibers exist. For tractography methods based on multi-fiber reconstruction algorithms,
tracking is usually terminated when the dODF or fODF amplitudes along the current
tracking orientation fall below a certain threshold (Descoteaux et al., 2009; Jeurissen et al.,
2011). The curvature threshold imposes a maximum local curvature of the tract: if the
angle between two successive steps is above a predefined threshold, the tract is terminated.
Since it is unusual to find bends in the white matter bundles that have radii of curvature
on the scale of an imaging voxel, any sudden change in trajectory is likely to be caused by
artifacts such as noise or due to errors made in previous steps.
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2.3.1.7 Limitations

Deterministic streamline tractography is susceptible to three main sources of errors
(Johansen-Berg & Behrens, 2013). First, Diffusion-Weighted Imaging (DWI) is suscep-
tible to imaging noise, leading to a poor estimation of the dominant diffusion directions
used in streamline tractography. Second, the microscopic anatomy of WM is bound to be
more complex than what can be represented by the fiber reconstruction model. As such,
streamline tractography is subject to modeling errors. This is especially true for trac-
tography algorithms using the diffusion tensor model, which cannot resolve multiple fiber
orientations inside one voxel. Finally, as mentioned previously, deterministic tractography
is subject to integration errors.

2.3.2 Probabilistic tractography

Deterministic tractography is highly sensitive to uncertainty in orientation, due to mea-
surement noise and physiologic motion (Anderson, 2001). A single erroneous direction can
result in a non-existing unreliable tract due to the accumulation of error and its propaga-
tion, with no possibility to derive reliability from the resulting tracts.
In order to overcome this issue, probabilistic tractography algorithms have been developed.
These algorithms provide uncertainty information when reconstructing streamlines by es-
timating probability distribution in each voxel (Behrens et al., 2007; Parker & Alexander,
2005). The width of this distribution is proportional to its uncertainty, whereas its mean
corresponds to the orientation used in deterministic tractography. Once the uncertainty
it must be propagated along the fibers. This is done at the expense of a much higher
computational time.

2.3.2.1 Characterizing Uncertainty

Designing probabilistic tractography algorithms starts by estimating the uncertainty of
fiber trajectories, also known as uncertainty ODF (uODF).
Uncertainty ODF doesn’t quantify a physical property as opposed to dODF and fODF,
it rather represents the made assumptions about the microstructure of the tissue. The
uncertainty of fibers orientation is defined as a probability of the fiber orientation to exist
within specific area of the surface of a sphere. Figure 2.16 depicts how uODF represents
uncertainty through the radius of the present cones.
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Figure 2.16: Cones of uncertainty (showing the 95% confidence angle) at the level of the
splenium of the corpus callosum. a: Fractional anisotropy. b: Cones of
uncertainty in the region indicated by the dashed lines in a. This region is
further magnified in c. The zoomed area highlights a region where fibers cross
and the uncertainty in 1 is large (Jones, 2003).

Small radii indicate regions of one fiber populations, and the bigger these radii get, the
more complex the fiber configuration gets.
To estimate the uODF, several techniques were developed, we explore the most used one
here which is the Bootstrapping technique.

2.3.2.2 Bootstrapping technique

This approach estimates the uODF by taking multiple repetitions of the original data,
reconstruct the diffusion direction by randomly using a subset of data set and treat the
repeated measurements as samples from the uODF (Jones, 2003) as illustrated by Figure
2.17. This method presents some drawbacks, regarding the large acquisition load and
underestimation of the uncertainty due to the fact that the samples are not independent.
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Figure 2.17: Illustration of the bootstrapping technique.

2.3.2.3 Uncertainty propagation

In deterministic tractography, streamlines integrate the fiber trajectory by aligning with
the maximum diffusion direction. In Probabilistic tractography this is no longer valid, since
there exists an infinite number of possible orientation with their corresponding probability.
Samples from the computed uODF are rather drawn to estimate and generate the possible
pathways.
The pathway is reconstructed by constantly advancing the trajectory starting from a seed
point along a sample direction drawn from the uODF until the stopping criterion is met.
The output of this procedure is a one possible streamline. The whole probability density
function can be reproduced by advancing the trajectory starting from the same seed point
along a different sample direction many times.
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Figure 2.18: Propagation of streamlines with low (red voxel) and high uncertainty (blue
voxel). Sample streamlines are started from the bottom of each voxel. Samples
are drawn from the uODF and the streamline is advanced one step. The
illustrated step size is one tenth of a voxel. Image adopted from (Johansen-
Berg & Behrens, 2013).

2.3.3 Tractography algorithms validation

It is important to evaluate the quality of the results of tractography, not only qualita-
tively, but also be able to quantify the accuracy, reproducibility and reliability (Leemans
et al., 2005). The absence of a "golden standard" makes it difficult to validate results of
fiber tracking. Subcortical electrical stimulation remains the only reference for validation.
However, this technique is mainly reserved for patients with tumors during tumor excision.
Nevertheless, the evaluation of the different tractography methods can be performed on
data acquired on phantoms, physical (Lin et al., 2001; Perrin et al., 2005; Pullens et al.,
2010) or simulated (Lori et al., 2002; Leemans et al., 2005), by means of the tractometer,
which is a tool used to evaluate the end effects on fiber tracts of tractography algorithms
among other things (Côté et al., 2013). Another validation approach is to compare tractog-
raphy results with another imaging modality. For example, it has been demonstrated that
functional networks can be mapped using functional MRI at resting state (Raichle et al.,
2001; Vincent et al., 2007). These functional networks must, to a certain extent, be linked
to an underlying structural connectivity. Studying the relationship between structure and
function can only help us understand the architecture of the brain, but can also prove the
relevance of tractographic reconstructions.
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2.4 Summary
The choice of both the reconstruction method and tractography algorithm depends on

several factors, such as the type of the study, the prior information we have on the true
connectivity and the type of diffusion data. Each algorithm produces a unique represen-
tation of the anatomical connectivity. These facts will be taken into consideration in the
next chapter where we will conduct our experimental study.
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Chapter 3

Experimental Part

3.1 Introduction
The main objective of this chapter is to examine some cases of patients with astro-

cytomas through the application of reconstruction and tractography methods previously
introduced, in order to investigate how these tumors affect the surrounding WM tracts. We
will also explore the differences between the results obtained using different reconstruction
techniques. Finally, a quantitative comparison between the left and right hemispheres will
be performed on normal and clinical cases.

3.2 Software environment

3.2.1 Computer

The experiment was conducted on Lenovo PC, equipped with Windows 8.1 Professional
64 bits Operating System. The memory capacity (RAM) 4.00 Go. The processor Intel(R)
Core(TM) i3 CPU @ 2.00 GHz.

3.2.2 Dipy

Diffusion Imaging in Python (Dipy) is a free and open source software project for the
analysis of data from diffusion MRI experiments. Dipy is the first collective effort to create
an open-source diffusion MRI analysis library using the Python language. It implements a
broad range of algorithms for denoising, registration, reconstruction, tracking, clustering,
visualization, and statistical analysis of MRI data.
Dipy takes full advantage of the scientific computing tools in Python, and is built on top
of high-performance Python libraries (Table 3.1).
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Dipy’s main sub-modules (see Figure 3.1) are core, reconst, tracking, viz, io, align, data,
sims and segment.

Table 3.1: Brief summary of DIPY’s dependencies.

Figure 3.1: DIPY’s sub-modules.
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3.2.3 MI-Brain

MI-Brain (Medical Imaging Brain) is a software dedicated to the visualization, process-
ing and analysis of diffusion images developed by the Canadian company Imeka (Figure
3.2) in 2015. MI-Brain allows you to visualize, edit, analyze images and perform a real-time
tractography of nerve fiber bundles from diffusion MRI images.

Figure 3.2: Imeka’s logo.

Among the most important features of MI-Brain, we have:
• The possibility to stack the images (open several images at the same time and super-

impose them).
• The treatment of a multitude of file formats: fiber bundle file, DWI, DICOM, NIfti,

PGN, TIFF, GIF, BMP, JPEG.
• The segmentation of specific nerve fiber bundles from one region of interest (ROI) to

another.
• The display of fibers having a minimum and / or a maximum of length (in mm).

3.3 Analysis steps

3.3.1 Dataset

In order to conduct this study, a dataset entitled “A neuroimaging dataset of brain
tumour patients” created by Edinburgh Experimental Cancer Medicine Centre and avail-
able at the UK Data Archive was used (Pernet et al., 2016). The dataset encloses Brain
imaging data from 22 patients with brain tumor and includes T1, T2, DTI and functional
MRI data alongside clinical information.
The data were acquired on a GE Signa HDxt 1.5 T scanner with an 8 channel phased-
array head coil at the Brain Research Imaging Center, University of Edinburgh, UK. The
parameters of interest used to acquire the data are:

• T1 ( coronal acquisition, field- of-view 256 × 26 mm, slice thickness 1.3 mm, 156
slices, acquisition matrix 256 × 265, TR = 10s, TE = 4 s, and inverstion time (T1)
500ms).
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• T2 ( spin-echo echo-planar imaging volume with a field of view 256 × 26 mm, slice
thickness 2 mm, 72 axial slices, acquisition matrix 128 × 128, TR = 16,5 s, TE = 98
ms).

• Diffusion Tensor Imaging (64 directions, b = 1000 s/mm2; plus seven T2-weighted
(b =0 s/mm2 single-shot spin-echo echo-planar imaging volumes with a field of view
256 × 26 mm, slice thickness 2 mm, 72 axial slices, acquisition matrix 128 × 128,
TR = 16,5 s, TE = 98 ms).

The 22 patients have a confirmed presence of brain tumors, though they differ in their type,
location and size, the ones used for this study all have different levels of Astrocytoma.

3.3.2 Data preprocessing

3.3.2.1 Format conversion

The raw data provided by the dataset in DICOM format had to be converted to the 4D
NIfTI1 format which is the most commonly used format in diffusion MRI. The conversion
was performed using a MATLAB code.
Once the 4D NIfTI1 file is ready, the pre-processing step is performed on Dipy.

3.3.2.2 Loading and Background removal

The loading of the 4D NIfTI1 file (“myfile.nii.gz”) is realized using the NiBabel package
by creating an object “img” holding all information contained in the used file while the
fdwi holds its path.

Other than the 4D NIfTI1 file, the bval and bvec files need to be imported. The former is
a 1× N array containing the b values used, whereas the later holds the values for diffusion-
sensitizing magnetic field gradients also known as the b-vectors. These files are used to
construct the Gradient Table (gtab) needed for the reconstruction and analysis of DTI
later.
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For better reconstruction and tractography results, the background needs to be removed
from the brain by applying a median filter followed by Otsu’s method. This is done using
the median_otsu function whose output are shown in Figure 3.3 - D.

Figure 3.3: Visualization of the extracted brain using median_otsu. (a) The noisy FA
image. (b) The filtered FA image.

3.3.3 Data processing

The preprocessed data are ready to be used for reconstruction. To better investigate
the effect of the brain tumors on the white matter micro-structure, two different modeling
techniques for reconstruction were used: DTI and CSD.

3.3.3.1 Reconstruction

• DTI reconstruction:

DTI analysis begins with the estimation of the tensor at each voxel. This is achieved
by firstly importing the diffusion tensor model class and initialize a TensorModel class
instance tensor_model by using the previously generated gtab and selecting the fitting
method (in this case) Weighted Leas Square.
The analysis is started by passing the data to the fit method of the TensorModel class.

Once the fit is achieved, we extract peaks from model in order to set the stage for the
tractography later. This is achieved by the use of the utility function peaks_from_model.
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• CSD reconstruction:

A crucial step prior to CSD analysis is the estimation of the response. This is done
by using the auto_response function which estimates the response function for voxels of
high Fractional Anisotropy (FA> 0.7) from a region of interest (Corpus Callosum) of a
predetermined radius in the center of the volume.

The quality of the estimated response function can be confirmed by visualizing it or by
displaying its value (Figure 3.4).

Figure 3.4: Visualization of the estimated response.

After estimating the response, we can use the CSD method implemented in Dipy to create
an instance of the model.

The extraction of the peaks from the resulting model is done using the same previously
introduced function peaks_from_model.

3.3.3.2 Fiber tractography

After recovering the peaks and directions from model, tracking can be achieved by
setting a stopping criteria. One stopping criterion is related to the Fractional Anisotropy,
where it’s specified that the tracking should stop for regions of low FA.
In order to generate the streamlines, the seed points should be specified beforehand. This is
done by means of random_seeds_from_mask method which places randomly distributed
seeds in voxels specified by a previously determined mask.
The streamlines are generated using EuDX implemented in the method LocalTracking.
The resulting tractography is saved in a *trk file which would be used for visualization.
To visualize the results of the tractography, several software programs can be used. In our
study we used MI-Brain.
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Figure 3.5: In order to perform a diffusion MRI study, the first step is data acquisition (A)
from a public database (B). The data should undergo quality control, prepro-
cessing, including format conversion (C), and background removal (D). Before
further analysis, tensors (E) or fODFs (F) need to be estimated. The fibers are
then reconstructed using tractography technique (G). MI-Brain software was
used to visualize and manipulate the obtained tractograms (H), in order to
illustrate the results by performing a quantitative analysis (I). Finally, results
interpretation should be made with extreme caution.
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3.4 Clinical cases study using CSD-based tractography
We used the data of three patients with differing grades of astrocytomas. The following

table shows information about the volume of the major parts of the brain along with the
tumor.

Table 3.2: Table displaying the volumes (liter).

3.4.1 Cases presentation

Case 1:

A 40-year-old female presented with right glioblastoma. The MRI examination revealed
the tumor in the right primary motor area. The FA map showed decreased intra-lesional
FA value, indicating the infiltration and destruction of WM tracts. The color coded map
(RGB map) showed complete destruction of the WM tracts of the right superior longi-
tudinal fasciculus (SLF) fibers. 3D tractography of the right corticospinal tract (CST)
reveals intact but slightly deviated fibers. The coronal slice of the RGB map shows the
disruption of the right arcuate fasciculus (AF) fibers. Intact left-sided AF fibers are shown
for comparison. 3D tractography of the corpus callosum (CC) shows the primary motor
region fibers destructed. Left intact CC is shown for comparison (Figure 3.6).
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Figure 3.6: A 40-year-old female with right glioblastoma - T2-weighted image (a)
shows the tumor in right primary motor area. Fractional anisotropy (FA) map
(b) shows an intralesional decreased FA (arrow). Color-coded map (c) shows
the intralesional white matter fibers of right superior longitudinal fasiculus
(SLF) destructed (orange arrow). The left SLF (white arrow) is intact and
shown for comparison. 3D fiber tractography (d) shows blue-colored right CST
(arrow) slightly deviated compared to the left CST (white arrow). Coronal
slice color-coded map (e) shows the disruption of right arcuate fasciculus (AF)
(arrow). The 3D fiber tractography of right AF is shown in (f) along with the
intact left AF for comparison. The 3D fiber tractography (g) of right corpus
callosum (CC) shows the destructed fibers. The left intact CC (h) is shown for
comparison. A: Anterior. P: Posterior. R: Right. L: Left.
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Case 2:

A 26-year-old female presented with anaplastic Astrocytoma (Astrocytoma grade III). MRI
showed the tumor in the right supplementary motor area. FA map shows decreased FA
value in the tumoral region. 3D whole brain tractography showed a complete destruction
of WM fibers in the anterior midBody and the rostralBody of the corpus callosum (CC)
which connects with the premotor and supplementary motor areas. Left and right sagittal
3D tractography views of CC are shown for comparison (Figure 3.7).

Figure 3.7: A 26-year-old female with Astrocytoma grade III - T2-weighted image
(a) shows the tumor in right supplementary motor area. Fractional anisotropy
(FA) map (b) shows an intralesional decreased FA value (arrow). 3D whole
brain tractography (c) shows intralesional white matter tracts destruction (ar-
row). 3D fiber tractography of CC (d) right sagittal slice shows the disruption
of both the anterior midBody and parts of the rostralBody of CC (arrow).
3D fiber tractography of CC (e) left sagittal slice shown for comparison. A:
Anterior. P: Posterior. R: Right. L: Left.
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Case 3:

This patient has Astrocytoma type II. MRI showed the tumor in Wernicke’s area. FA map
shows slightly-reduced FA in the affected region. 3D whole brain tractography shows the
tumoral region on the left posterior side of the tractogram. 3D tractography initiated in
the region of interest shows the displacement of fibers around the surface of the lesion. The
intact counterpart on the right hemisphere is shown for comparison (Figure 3.8).

Figure 3.8: Patient with Astrocytoma grade II - T2-weighted image (a) shows the
tumor in Wernicke’s area. Fractional anisotropy (FA) map (b) shows a slight
decrease in FA value (red region). The same region is shown in color-coded
map (c) (yellow circle). 3D whole brain tractography (d) shows the tumoral
region void of white matter tracts (arrow). 3D fiber tractography initiated in
ROI (d) on the left hemisphere, shows the displacement of fibers around the
tumor. The counterpart tract on the right hemisphere is shown for comparison.
A: Anterior. P: Posterior. R: Right. L: Left.
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3.4.2 Discussion

The three cases presented above exhibited various behaviors and this can be attributed
to the differences in type, location, and size of the tumors, among other factors.
The first case was a glioblastoma, one of the most aggressive grade IV tumors in the
brain. From Figure 3.6, we can see that it occupies a large area in the brain, it is also
characterized by its massive volume which amounts to 25% of total WM volume (Table
3.2). The decrease in intralesional FA value indicates the loss of directionality due to the
alteration of WM pathways. Using tractography, we were able to demonstrate that this
tumor led to the complete destruction of some major tracts located in the tumoral region,
such as the right superior longitudinal fasciculus (SFL), the right arcuate fasciculus (AF)
and the primary motor region fibers of the right side of the corpus callosum (CC). It also
caused the displacement of the right corticospinal tract (CST) which was in close relation
to lesion.

• One type of relation between tracts and tumors is destruction with displacement,
which is most likely exhibited by high-grade tumors that grow in significant brain
areas.

The second case represented an anaplastic astrocytoma, a grade III tumor. It represents
14% of the total WM volume (Table 3.2). The distortion of WM tissue integrity is il-
lustrated by the decrease in intralesional FA values. It is further proved by the resulting
tractogram which showed the WM tracts infiltrated by the tumor completely destructed.

• One type of relation between tracts and tumors is destruction, which usually leads
to the complete disruption of the fibers occupying the same space as the infiltrating
tumor.

The last case was an astrocytoma grade II. This tumor was significantly less in volume
compared to the previous cases, amounting to only 5% of the total WM volume (Table
3.2). It also showed less significant decrease in the intralesional FA values. Application
of tractography on the region of interest revealed the tracts deviated from their original
paths.

• One type of relation between tracts and tumors is displacement. This is the most
likely type to occur when tumors are small in size and occupy less populated regions.

It should be mentioned that the results found are only proved for the given patients with
the specified characteristics.
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3.5 Comparison of reconstruction methods

3.5.1 Visual assessment of the tumor using DTI-based tractography
Case 1:

Figure 3.9: A 40-year-old female with right glioblastoma - 3D DTI-tratography of
(a) whole brain top view of the tumor in the right hemisphere; (b) whole
brain top view of intact left hemisphere; (c) corpus callosum (CC) showing
the destruction of the right sensory-region fibers (arrow); (d) intact left CC
for comparison; (e) corticospinal tract (CST) showing the right CST deviated
from its path (arrow) compared to the left intact CST.
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Case 2:

Figure 3.10: A 26-year-old female with Astrocytoma grade III - 3D DTI-
tratography of (a) whole brain top view of the tumor in the right hemisphere
(arrow); (b) corpus callosum (CC) showing the destruction of the right pre-
motor and supplementary motor-region fibers (arrow); (c) right CC sagittal
view shows the destructed streamlines (d) intact left CC for comparison.
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Case 3:

Figure 3.11: Patient with Astrocytoma grade II - 3D DTI-tractography of whole brain
zoomed in (a) and (c) on the tumoral region showing the compressed and
displaced fibers in close relation to tumor (arrow); (b) and (d) on the left
intact counterpart for comparison (arrow).

Discussion:

The results found using DTI-based tractography were similar to what CSD-based trac-
tography already disclosed.
The first patient with a grade IV astrocytoma had a massive-sized tumor on the right
hemisphere. Some of the tracts located in the same area were completely destructed such
as the primary motor region fibers of the corpus callosum. It also revealed the displacement
of the right CST. The second patient with a grade III astrocytoma showed the destruction
of the fibers located in the anterior midBody and rostralBody of the corpus callosum, which
agrees with the earlier findings. Likewise, applying DTI-based tractography on the third
patient with a grade II astrocytoma revealed the same alteration which consisted of the
displacement of some fibers located within the tumoral region.
We deduce that both DTI- and CSD-based tractography can be used to confirm the

presence of tumors and infer their associated alterations.
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3.5.2 Voxel-wise assessment of DTI- and CSD-based tractography

We applied both DTI- and CSD-based tractography techniques on the same patient.
We isolated the same voxel in both cases to see the difference. We obtained the following
results:

Figure 3.12: Isolated voxel depicting the streamlines passing through it. (a) DTI-based
tractography detects only one orientation. Whereas (b) CSD-based tractog-
raphy detects multiple orientations in the same voxel. Different directions are
encoded in different colors (arrows).

Discussion:

As mentioned in the previous chapter, one of the limits of DTI is its poor estimation of
multiple orientations within the same voxel. This method can only detect up to one orien-
tation per voxel. Voxels with multiple fiber populations are either considered as isotropic
voxels or the direction of the principle eigenvector is the only estimated orientation. Among
others, CSD method have been developed in order to overcome this limitation. Figure 3.12
clearly depicts this difference. Several orientations were estimated within the same voxel
using CSD-based tractography, unlike DTI-based tractography, where only the dominant
direction was taken into consideration.
The complex connectivity exhibited by WM tracts cannot be illustrated using DTI-based

tractography, which only shows the general connections between the major tracts.
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3.5.3 Effect of reconstruction methods on the total number of
generated streamlines

We applied both DTI- and CSD-based tractography on all three cases. Then, we
tabulated the total number of streamlines generated using each method as follows:

Table 3.3: Table displaying the total number of streamlines generated using CSD- and
DTI-based tractography for all cases.

The following histogram illustrates the obtained results:

Figure 3.13: Histogram illustrating the difference between the number of generated stream-
lines using CSD- and DTI-based tractography for all cases.

Discussion:

From the histogram, we can see that the number of streamlines generated using CSD-
based tractography is always larger than when using DTI-based tractography. The per-
centage of difference between the total number of streamlines generated using the two
methods is: 21.3%, 54.5% and 44.4% in case1, case 2 and case 3, respectively.
The first case exhibited the least difference, this is mainly due to the considerable size of
the tumor and its location which, as mentioned previously, cancels the construction of both
the intralesional short fibers and fibers initiated from the tumoral region, thus reducing the
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total number of the generated streamlines. Consequently, the regions of crossing fibers are
significantly reduced, especially on the right hemisphere, which minimizes the difference
between the performance of DTI-based tractography and the CSD-based one.
The second patient had the tumor in the corpus callosum, which is the tract connecting
the left and right hemispheres. CC is characterized by its high FA value i.e. the fibers
are mostly oriented in the same direction, hence damage to this region will decrease the
anisotropy of the region. This also means that almost all of the regions comprising complex
fiber populations are still intact. As such, DTI-based tractography lost one of its best
reigons where anisotropy is highest, making the number of fibers generated using CSD-
based tractography more than twice the number of streamlines generated using DTI-based
tractography (54.5).
The last patient had a small tumor located in Wernicke’s area. Compared to the previous
case, the difference of 44.4% means that the tumoral region included some regions of
crossing fibers, but it did not amount to much due to the small size of the tumor. Thus,
the number of streamlines generated by CSD-based tractography is still very high compared
to DTI-based tractography.
CSD-based tractography extracts more information from diffusion MRI data about the

underlying microstructure of WM than DTI-based tractography does. However, this infor-
mation comes with a constraint. The time needed to both acquire the necessary diffusion-
weighted images and to perform all the analysis steps is too long to be clinically accepted.
Applying CSD-based tractography in the daily clinical routine would be rather inefficient
since the time usually spent to examine multiple patients would be barely enough for only
one of them. DTI-based tractography is preferable to use in this case where the confirma-
tion of the presence of the tumor and the overall tumor-induced alterations are possible to
obtain in a clinically accepted time. Whereas, for the planning of a surgery, it is strongly
recommended to use the results of CSD-based tractography since it offers more details on
the tumor-induced alterations.

3.6 Assessment of the tumor-induced damage

3.6.1 Visual evaluation of the tumor

Using MI-Brain tool, we created a sequence of images, each representing an axial slice of
a tractogram resulting from a CSD-based tractography. The consecutive images were con-
structed by increasing the length of the streamlines starting from 5mm until the maximum
length. This was done for all three cases discussed previously.
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Figure 3.14: The illustration of the tractograms resulting from increasing the length of the
streamlines. In all cases, the arrow shows the location of the tumor.

Discussion:

In these figures we observe that, in all cases, increasing the length of the streamlines
does not affect the tumoral region. We notice that the streamlines always stop at the
edge of the tumor, which can be attributed to either the destruction of the penetrating
streamlines or their displacement, as seen in the previous study. This behavior is not
noticeable on the adjacent hemisphere where the development of the streamlines seems
natural and comparable to the behavior observed on a normal brain. This implies the fact
that the presence of a tumor disturbs the normal behavior of the brain. We can further
deduce that defective WM tissues decrease the intralesional anisotropy since the pathways,
which define the directionality, are disconnected. It should be pointed out that these results
are not always true for all tumors. The behavior of other types of lesions may vary due to
unique characteristics exhibited by other pathologies.
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3.6.2 Quantitative comparison between left and right brain
hemispheres

In this section, we used MI-Brain tool’s segmentation functions in order to separate the
hemispheres of each patient. We then computed the following parameters: Number, mean
length (mm) and the standard deviation (SD) (mm) of the streamlines in left and right
hemispheres as well as the ones shared between the two (intersection). We then tabulated
the results as follows:

Table 3.4: Table displaying the different parameters corresponding to left and right hemi-
spheres and their intersection for the clinical cases. The results found on the
hemisphere comprising the tumor are highlighted.

The same analysis was conducted on two datasets of normal brains provided by dipy’s
official website as example datasets:

Table 3.5: Table displaying the different parameters corresponding to left and right hemi-
spheres and their intersection for the normal cases.

The following histograms were plotted after the normalization of the obtained values. We
plotted only the left and right results which fall in the scope of this section:
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Figure 3.15: Histograms demonstrating the values of the parameters number, mean length
and SD of left and right hemispheres for the clinical cases. The red box
identifies the hemisphere containing the tumor.

Figure 3.16: Histograms demonstrating the values of the parameters number, mean length
and SD of left and right hemispheres for the normal cases.

Discussion:

In all clinical cases, the number of streamlines is smaller in the hemisphere where the
tumor resides than in the adjacent hemisphere. The first patient demonstrated the highest
difference between left and right (19,37%). The two other cases, however, did not exhibit
much of a difference (2,38% and 4,36%) respectively. The two normal cases showed an
arguably negligible difference of 1,36% and 0,83% for normal case 1 and normal case 2
respectively.
As seen in the previous study, streamlines were not able to penetrate the tumoral region,
and none were initiated from it. This means that short fibers that only exist within the
tumor are not constructed, thus reducing the number of streamlines in the hemisphere
containing the tumor. This mostly depends on the size and location of the tumor. So the

55



3 Experimental Part

high difference observed in the first case is mainly due to the massive size of the tumor.
The second case had a tumor located in the right supplementary motor area, which falls in
the intersection group, and therefore, the effect the tumor had on the calculated parameters
was mostly not taken into account which explains the slight difference.
The last clinical case, likewise, exhibited a small difference but unlike the aforementioned
case, the result here is due to different reasons. The patient had astrocytoma grade II,
it was detected in Wernicke’s area which is located in the superior part of the posterior
temporal lobe in the dominant cerebral hemisphere, the left one for our patient. The tumor
had a small size, so the number of intralesional fibers not reconstructed would be small.
Moreover, as was indicated in the previous section, the streamlines were mainly displaced
from their original pathway, hence no major reduction in numbers.
The normal cases showed the least difference in numbers of streamlines between left and
right. This could be attributed to the absence of a tumor or any defective WM tissues.
Given such results, it is possible to set a threshold of approximately 2% difference, where
any percentage above could be an indicating factor of the presence of a tumor.
In the clinical cases, the mean length and standard deviation were slightly larger in the

hemisphere containing the tumor compared to the adjacent one, except for the last case
where the SD is smaller in the hemisphere comprising the tumor. In both the normal
and the clinical cases, the differences in mean length were mostly trivial and amounted
to 0.2mm, 1.7mm and 1.1mm in clinical cases 1, 2 and 3 respectively; and to 0.3mm and
2.4mm in normal cases 1 and 2 respectively. All cases displayed high standard deviation
values, all exceeding 20mm (exceeding 40mm in normal case 2). This implies that the
length of the streamlines generated has a wide range of variation.
In both normal and clinical cases, the number of streamlines shared between the hemi-

spheres is significantly smaller compared to the number of streamlines found on each side.
This is expected since only the commissural fibers connecting the two hemispheres are
counted. Compared to the results shown above, the intersection group is characterized
with a larger mean length and a similar standard deviation.
From these findings, we deduce that, aside from mean length and standard deviation

of the streamlines which proved to be unreliable parameters, we can set the difference
in number of streamlines between left and right hemispheres as an alerting factor where
an elevated percentage may suggest the presence of a tumor and may call for further
investigation.
It should be mentioned that these results are prone to several errors. First, acquisition,

reconstruction and tractography errors discussed in the previous chapters which affect the
quality of the streamlines generated. Second, the hemispheres were segmented manually
which may lead to incorrect values. Lastly, the number of clinical and normal cases studied

56



3 Experimental Part

is minimal and therefore did not cover all the possible behaviors.

It is to note that all the obtained results were verified, commented and validated by
a group of radiologists from the Hospital of CHAHIDS MAHMOUDI - Tizi Ouzou, and
researchers from INRIA in the Sophia Antipolis-Méditérannée Research Center and Sher-
brooke Connectivity Imaging Lab (SCIL), University of Sherbrooke-Canada.

3.7 Summary
Tumors affect WM tracts in different ways. The size, the location and the grade of the

tumor are some of the major factors that determine the nature of the WM tracts alteration.
Three kinds of these alterations were disclosed in this experiment: destruction, displace-
ment, or destruction with displacement of the streamlines located within and around the
tumor. It was also shown that all cases displayed a decrease in the intralesional FA value.
These findings are meant to serve as side guidelines for neurosurgeons while preparing the
surgical strategy.
A comparison between DTI- and CSD-based tractography methods revealed the following

results:

• Both methods were able to confirm the presence of the tumor in addition to the
affected major WM tracts.

• CSD-based tractography offers more information about the underlying WM mi-
crostructure, while DTI-based tractography only performs well in regions of high
anisotropy.

• It is more effective to use DTI-based tractography in the daily clinical routine, and
CSD-based tractography in highly sensitive tasks such as the planning of a surgery.

A quantitative comparison between the left and right hemispheres was conducted on
both clinical and normal cases, in order to determine some factors that may help in exposing
the existence of a tumor. After evaluating the difference between the two using various
parameters, namely: the number, the mean length and the standard deviation of the
streamlines, we concluded that the number of streamlines generated may alert to the
presence of a tumor, that is by detecting a high difference in number of streamlines between
left and right hemispheres (or by exceeding a threshold of 2% difference). Both the mean
length and the standard deviation proved to be unreliable parameters to use in the detection
of a tumor.
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In conclusion, we have disclosed in this work the different effects astrocytomas have
on WM tracts. This was accomplished thanks to diffusion MRI technique that allows the
reconstruction of the axonal microstructure of the brain. The background knowledge on
dMRI and its physical basis was given in the first chapter. In the second chapter, we tackled
the different aspects of this field, starting by introducing reconstruction methods, namely :
DTI and HARDI-based techniques Q-ball and CSD ; then concluding the theoretical part
by shedding some light on tractography, currently the only technique that can reconstruct
and visualize WM bundles in 3D. We presented the two major classes of tractography, the
deterministic and the probabilistic.
Given our objective, we started by collecting the data that met our needs. The UK

Data Archive provided the necessary datasets which were used in our study. We chose
three patients presented with different grades of astrocytomas to observe their behaviors.
This was achieved by applying diffusion analysis on their respective data. Recall that
such analysis involves several essential steps : the acquisition of data, the preprocessing
which consists of converting the data and removing the background, the processing which
entails the estimation of the local orientations and the 3D reconstruction of the fibers
using deterministic tractography, and finally the visualization of the tractograms in order
to assess the damage and identify the tumor-induced alterations.
The alteration of WM tracts by astrocytoma produced three distinct patterns : the

destruction and displacement of WM tracts observed in the patient with the grade IV
astrocytoma. The destruction of the intralesional fibers which was detected in the patient
with grade III astrocytoma. And finally the displacement of the surrounding tracts that
was revealed in the patient with the grade II astrocytoma. All analyzed cases exhibited a
decrease in the intralesional FA value. The purpose of such a study is to assist neurosurgeons
in their work. Observing the nature of the alteration caused by the tumor before performing
a surgery may help in deciding the course of action that would allow the surgeon to preserve
the functionality of the brain while excising the tumor.
Given that the previous study was conducted using the CSD-based tractography, we

decided to investigate the results of the same analysis but using DTI-based tractogrpahy in
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order to assess the difference between the two methods. We concluded that both methods
confirmed the presence of the tumor and identified the resulting alterations. Following
these findings, we further explored the difference between the two methods by means of a
quantitative comparison. We used the number of generated streamlines as a comparative
parameter. It was revealed that a considerable amount of information was lost using DTI-
based tractography. This was attributed to the fact that DTI detects only one orientation
per voxel while ignoring the other directions in case of multiple fiber populations. This
led to the conclusion that DTI-based tractography is better suited to the daily clinical
routine where the confirmation of the existence of the tumor and its induced alterations
are possible in a clinically acceptable time. Whereas, CSD-based tractography is used in
preoperative procedures, among other tasks that do not take into consideration the long
acquisition time.
Finally, we assessed the tumor-induced damage by : on one hand, visually observing

the tumoral region while increasing the length of the streamlines, this showed the tumoral
region void of any penetrating streamlines thus further confirming our earlier discoveries
of either the destruction and/or the displacement of the fibers surrounding the tumor.
On the other hand, quantitatively comparing the left and right brain hemispheres of both
normal and clinical cases. This was done in the hope of finding some parameter that would
help in determining the existence of a tumor. Three such parameters were evaluated : the
number, the mean length and the standard deviation of the streamlines residing in either
left or right hemispheres, or in the intersection region connecting the two. Both the mean
length and the standard deviation of the streamlines were proved as unreliable factors. The
number of streamlines, however, was set as an indicator to the existence of the tumor.
Overall, this project allowed us to dive into the vast field of diffusion MRI and its wide

range of application. It is a relatively recent technique that holds a very promising future.
Moreover, with the variety of brain pathologies that affect both children and adults, this
work can be further exploited to :

• Investigate the effects of other kinds of diseases.

• Identify new disease biomarkers, thus allowing the early treatment of the affected
region.

• Adapt the analysis to new developed techniques in order to achieve better results.

Finally, we hope that this modest work contributes, however slight it may be, to the
improvement of the neurosurgical filed and help students better understand this vast area
of knowledge.
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