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Abstract. Nowadays, robotic systems are being in increasingly 

demanding in many industrial activities. In order to achieve the maximal 

performance, complex nonlinear dynamic robotic systems were developed. 

However, as a consequence, the rate of component malfunctions augments 

with the complexity of systems. These malfunctions are called faults, 

which may appear in different parts of the system and can induce changes 

in the dynamic behaviour. This paper deals with fault diagnosis of a 

particular kind of industrial robots called selective compliance assembly 

robot arm (SCARA), where both parameter and measurement  

uncertainties are taken into account. Residuals and thresholds are generated 

using the quantitative model-based method. The inverse geometric model 

is used to find analytical solutions for joints angles and distances given the 

trajectory of the end effector. The presented geometric model is then used 

to derive the kinematic model. Using this kinematic model, the robot 

controller computes the necessary torque applied to each DC servomotor in 

order to move the robot from the current position to the next desired 

position. The proposed robust fault diagnosis scheme is then implemented 

for a SCARA manipulator and simulation results are presented in both 

normal and faulty situations.  
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1 Introduction  

The Fault diagnosis of industrial robots is a subject that has been widely investigated in 

the last years and different methods have been developed. It is well-known that the 

adoption of successful strategies that are able to diagnose faults in a robot manipulator is 

widely desired in industrial environments as it might be used to avoid critical situations that 

may due to the propagation of the faults which affect the actuators, the sensors, or the 

system parameters of robots. For this reason, this subject motivates many researchers to 

develop new approaches in order to achieve optimal activities.  

In the last years, several approaches have been developed for the so-called qualitative 

and quantitative methods of fault diagnosis [1, 2]. The qualitative methods are mainly based 

on artificial intelligence. For example, Jaber et al. [3] proposed the use of discrete wavelet 

transform in order to decompose signals captured from the manipulator robot into 
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multiband frequency levels and for each of these levels the standard deviation feature is 

computed and used to design, and test the neural network for the diagnosis purposes. In [4], 

the problem of fault diagnosis is solved by forming a stable ARX-Laguerre fuzzy PID 

system for fault diagnosis of actuator and sensor faults in multi degrees of freedom robot. 

Another approach based on Neuro-Fuzzy scheme for online FD is developed in [5]. The 

qualitative model-based FD methods do not require the use of a physical robot model. 

Nevertheless, most of the aforementioned works are only used for the diagnosis of sensors 

and actuators faults. The physical parameter faults, such as electrical resistance, or friction 

coefficient, which can induce changes in the dynamic behaviour of the robotic system, 

cannot be diagnosed using these approaches. The quantitative approach depends mainly on 

the accuracy and the quality of the system model, which can be performed by mathematical 

techniques [6-8]. The latter rely on the analytical redundancy relations (ARRs) generation.   

Basically, an ARR is a redundant equation that verifies the coherence between the real 

system behaviour and a reference behaviour describing the normal operation. These 

equations can be obtained if the system is observable [9]. Moreover, the ARRs represent 

the energy conservation equations of the system, and they are systematically obtained by 

exploitation of the system model. Theoretically, the residuals (r), which are the numerical 

evaluation of ARRs, are expected to be zero in fault-free case, and different from zero in 

faulty situations. Nevertheless, due to the imperfect knowledge of the real value of the 

system parameters and their random variation, a false alarms, non-detections and delays on 

fault detection may be presented, can cause a degradation of FD performances. 

   In this paper, a quantitative model-based method is proposed for physical modelling, 

robust fault diagnosis, residuals and adaptive thresholds generations of particular kind of 

industrial robots called the selective compliance assembly robot arm (SCARA), where both 

parameter and measurement uncertainties are taken into account. The SCARA robot is 

constructed to achieve drilling operations using SolidWorks software, then the obtained 

model is exported to Matlab/Simulink for position control. Also, the mathematical model of 

DC servomotors for each joint is included in the control methodology to design PI 

controllers. The robot malfunctions are detected by comparing residuals to adaptive 

thresholds. Thus, the proposed method can be used to diagnose the variation of residual 

signals in each SCARA robot joint arm. 

The paper is divided into 5 Sections, after the introduction section, SCARA modelling 

and control are presented in Section 2. In Section 3 the generation steps of ARRs in the 

presence of uncertainties using the quantitative model-based method are presented. Section 

4 presents the applicability of the proposed method by resorting to a SCARA industrial 

robot manipulator. Finally, we conclude this work with some suggestions for future works.  

2 SCARA robot modelling and control  

A horizontal revolute configuration robot, SCARA has four degrees of freedom for 

drilling task, and it is actuated by four DC servomotors to one vertical (translation of the 

end effector) and three horizontal (rotation) motions. The difference of study from literature 

works [10, 11], is differential equations of robot system are not used in the present work 

and all system dynamics are obtained using the ability of SolidWorks and Matlab/Simulink 

programs.  

In this paper, a four-axis SCARA robot system is designed using SolidWorks software 

as shown in Fig. 1. The robot is equipped with DC servomotors in each joint, it can 

generate huge torques but still indicate to system inertia. To remedy this issue, joints are 

coupled by gears in order to increase torque in the drive shaft. The measurement 

architecture is composed of a current sensor to measure the current flowing into the DC 



motor winding. Information about the current position of the robot joint is obtained by an 

angular position sensor (Incremental encoder). 

 

Fig. 1. SCARA industrial robot manipulator design. 

2.1 Kinematics and Inverse Kinematics model 

In order to obtain the kinematics model, we have considered the Denavit-Hartenberg 

approach (D-H) [12], whose parameters specified in Fig. 2 are defined in Table 1. We use 

the standard D-H method to link the coordinate system established at each joint of the 

transformation matrix that represents its relationship with the previous link coordinate 

system. Where 
1,2,3  and 

4d are the joint variables. 

 

Fig. 2. Denavit-Hartenberg parameters for four joints SCARA robot. 

By using (D-H) convention, the transformation matrix representing the position and 

orientation of frame i  relative to 1i   is given: 
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Then, applying the homogeneous transformations given by Eq. (1), we obtain the matrix 

(2): 
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After multiplication and use of addition matrices, one gets the total transformation 

matrix: 
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Table 1. Denavit-Hartenberg parameter assignment. 

Link i    i  
ir  i  

id  

1  1   0  0  1d  

2  2   1r  0   0   

3  3  2r  0  0  

4  0  0  0  4d  

 

From the elements of the matrix in Eq. (3), position equations (geometric model) are 

obtained as follows: 

                                                           
1 1 1 2cos( ) cos( )xp r                                              (4) 

                                                     
1 1 2 1 2sin( ) sin( )yp r r                                            (5) 

                                                     
1 4zp d d                                                                      (6) 

From Eqs. (4), (5) and (6), we get: 
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In order to control the motion of the SCARA robot at the joint rate level, we need the 

Jacobian matrix, the Jacobian matrix of this case is given by: 
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Where, 1 1q   ,  2 2q   , and  4 3d q . 

Using this kinematics model, the PI controller computes the necessary torque applied to 

each DC servomotor in order to move the SCARA robot from the current position to the 

next target position. In order to obtain the inverse kinematics model in the SCARA robot, 

we must consider different methods, selecting the most adequate one in accordance with 

model considerations. In this work, we consider the analytical inverse kinematics model, to 

transform the output position into a joint coordinate. By solving Eqs. (12), (13) and (14) 

using Kramer’s rule [13]: 

   

   
1 2 2 2 21

1

1 2 2 2 2

cos( ) sin( )
tan

cos( ) sin( )

y x

x y

p r r p r

p r r p r

 


 


 


 

                                  (12) 

                          
   2 2 2 2

1 21

2

1 2

cos
2

y xp p r r

r r
 

  
                                                  (13) 

                         4 1 zd d p                                                                                                 (14) 

In order to compute the inverse kinematics model, we use the inverse Jacobian matrix: 
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Then, by using Eqs. (11), (12), (13), (14), and (15), we would obtain Eqs. (16) or (17), 

where 

.

2
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Or, 
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From this subsection, it is obviously seen that the trajectory coordinate can be 

investigated for known angles of the joints (Kinematics model). Also, investigating can be 

done for joint angels (inverse Kinematics model). Thus, the position of each joint can be 

controlled individually, the SCARA robot can possess continuous motions in all directions. 

By using the inverse kinematics, the speed of each joint can be calculated, and its derivative 

with respect to time can be obtained.        

2.2 SCARA robot control strategy  

The general schematic of the control strategy used in this paper is shown in Fig. 3 in 

block diagram form. The actuators considered in this study are four identical DC 

servomotors (DC motor 1, 2, 3, 4) having the same parameter values coupled with a 

SCARA robot, which are composed by gears (gear 1, 2, 3…) for reducing spin speed and 

increasing torque in the drive shift. The input of each DC motor 
1,2,3...v is computed from 

each PI controller in the function of joint position errors (
,...iq ). In our case of study, DC 

motors are used for both vertical (
4d ) and horizontal (

1,2,3 ) motions. Feedback position 

circuits are designed in order to compute the actual position of each controlled joint 

obtained from encoders with the desired positions calculated from the inverse kinematics 

model for known end effector’s position ( , , )X y zP P P P .     

 

Fig. 3. SCARA robot modelling with feedback position control. 

Such a control strategy leads to good trajectory tracking accuracy even in the presence 

of unknown disturbances. In this case of study, SCARA robot is constructed to achieve 

drilling operation of three mechanical objects in three different positions ( , , )
i i ii X y zP P P P . 

Nevertheless, faults can be caused by the robot manipulator itself and by particular 

environmental conditions. They can occur in a particular component of the system. The 

latter cause critical situations to the system operators and to the system itself. Consequently, 



it is fundamental to include in the controller block (see Fig. 3) a block dedicated to detect 

and isolate the faults in the SCARA robot system. This block should have the capability to 

make a prompt diagnosis of the fault events. The next section describes the proposed fault 

diagnosis strategy.  

3 Robust diagnosis to parameter and measurement uncertainties  

Using the quantitative model-based method, the first step generates a set of residuals 

which is the results of ARRs. These fault indicators express the difference between the 

information provided by the actual system and that delivered by its reference operation 

model describing the normal operation [14]. The residuals characterize the system 

operating modes that are equal to zero in the fault-free case and different from zero in the 

faulty situation. Nevertheless, in presence of uncertainties that it can be due to a bad 

estimation of dynamics in a system, a variation of their values because of time or working 

conditions, or non-precise identification of the numerical values, these residuals are not 

exactly zero, this may cause false alarms on fault detection, so, these residuals should 

remain bounded between thresholds in normal operation, and these thresholds must be 

crossed in faulty situation. Noting that the difference between the parameter faults and the 

parameter uncertainties is that the parameter fault is considered as a parameter variation 

that exit the accepted range. In the other hand, the parameter uncertainty is considered as an 

accepted variation of the parameter in an accepted range. More details about the 

uncertainties modelling and generation using quantitative model-based method can be 

found in [15-17]. 

In the present work, we propose an algorithm of fault diagnosis of SCARA robot by 

considering the presence of both parameter and measurement uncertainties in order to 

improve the performance in terms of the robustness and fault diagnosis capabilities, and 

consequently, to ensure the safety able to detect and isolate faults. In general, an ARR is 

represented as a constraint that depends on the parameters of the system, the measurements, 

and the known inputs. These ARRs consist of two perfectly separate parts, a nominal part 

called residual (r) that describe the system operating, and an uncertain part, which is used 

for thresholds generation. The nominal part: 

( , , , , , , , )n nARR f SSf SSe MSf MSe Sf Se u           

The uncertain part    

( , , )n na f SSe SSf        

Where
n is the nominal part of the parameter, and 

  is the parameter uncertainty, SSf  

and SSe  are the flow and the effort inputs respectively. Sf and Se  are the flow and the effort 

sensors respectively.  

   In determinist case, ARRs generation algorithm of robotic systems is based on the 

generation of the residuals. This approach is extended in this work to uncertain models, 

ARRs is deduced by expressing the power conservation as mathematical expression, as 

follows: 

   When the elements have the same flow:  
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   When the elements have the same effort:  
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The calculated ARRs from this step consists of two separate parts in Eqs. (20) and (21) 

respectively, the nominal part called ir  and the uncertain part which includes both 

parameters and measurement uncertainties called ia .  
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Since the parameter uncertainties values cannot be quantified perfectly, they are 

estimated using the available information, such as parameter maximum value or standard 

deviation, in order to obtain the inequality. The measurement errors are considered as 

bounded random variables. 

                                                          i i ia r a                                                              (22) 

3.1 Residuals and thresholds generation for SACARA robot 

In this subsection, we validate the proposed method of robust fault diagnosis in the 

presence of uncertainties on four degrees of freedom SCARA robot.     

Table 2. Nominal and uncertainties values considered for the SCARA robot. 

Parameter Physical name  Nominal value  
Multiplicative 

uncertainties  

Uncertainties 

value 

K  Torque constant 0.043 . /N m A  
K  0.004 . /N m A  

aR  Motor resistance  8.13  
aR  0.5  

aL  Motor inductance 0.085  
aL  0.005  

mJ  Motor rotor inertia  20.03 . /Kg m rad  
mJ  20.03 . /Kg m rad  

mf  
Motor friction 

coefficient  
0.4 . . /N ms rad  

mf
  0.04 . . /N ms rad  

N  Gear constant 30      

Where 4 ARRs can be generated for the electrical parts, and 4 ARRs for the mechanical 

parts including the dynamics of the robot in each actuated joint. Table 2 provides the details 

of various system parameters and parameter uncertainties. 
im  represents the robot arm 

masses where 1,..., 4i  . 
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Where, 1,.., 4n  and n  is the number of the actuated joints. 
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Where, 4 4( , )L l , and 2 2( , )L l are the width and the length of the end effector and 

Arm2, respectively. R is the section radius of Arm3. n  and ni are the angular velocity and 

the current of each  DC Motor in each controlled joint.    
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   Where
1 2 3
, ,Z Z ZJ J J , and

4ZJ are the inertia of Arm1, Arm2, Arm3, and the end 

effector, respectively. 



In this application, we considered only one actuated joint system because all of them 

have the same structural model. Then, according to the ARRs generation presented 

previously in this section, we obtain the following ARRs: 
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Where, 1a and 7a represent the uncertain part of 2ARR  and 7ARR , respectively: 
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Where
aRW ,

aLW , 
kW , 

mf
W and 

mJW represent the fictitious inputs of parameter uncertainties. 

2|aR iW ,
2|aL iW , 

2|mf
W  and 

2|mJW  represent the measurement uncertainties.
2i

 and 
2

 are 

the errors in the current and motor velocity sensors respectively.  

4 Simulation results   

After representing the SCARA manipulator model including the DC motor actuator 

dynamics in each joint, establishing the controller to be used, and the proposed algorithm of 

fault diagnosis in presence of both parameter and measurement uncertainties, a test 

trajectory was determined in the space to subject SCARA robot to path tracking (drilling 

operation of three mechanical objects in three different positions). This trajectory is shown 

in Fig. 4. The end effector trajectory according to time is shown in Fig. 5. Fig. 6 shows the 

angular position of each controlled joint. 

   The residuals 1r and 2r which is the numerical evaluation of 2ARR and 7ARR  are 

bounded by (
2a and

7a ) and (
2a and

7a ) respectively. These residuals with 

adaptive thresholds are represented as expected in Fig. 7. The two residuals are close to 

zero and do not exceed the adaptive thresholds. This means that the system is healthy. 

However, since we do not the same measurement system the obtained thresholds are not the 

same, which implies different sensitivities, and consequently different thresholds. 
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Fig. 4. SCARA robot end effector Cartesian trajectory when subjected to healthy conditions. 
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  Fig. 5. End effector trajectory positions according to time. 
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Fig. 6. Angular positions of the controlled joints.  
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Fig. 7. 1r and 2r in nominal conditions . 

An additive fault is then introduced in the current sensor equivalent to 0.6A at time 

t=6s. In this case, the response of the residuals 1r and 2r are given in Fig. 8. We remark that 

this fault is clearly detected by these residuals because they exceed the adaptive thresholds. 

Moreover, this fault is estimated using the algorithm developed in [18], by two ways in Fig. 

9.   
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Fig. 8. 1r and 2r in case of current sesnor fault. 
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Fig. 9. Estimated current sensor fault magnitude. 



   Another scenario consists of testing the developed method in the presence of a 

parameter fault. Hence, a fault in the electrical resistance parameter (2Ω), is also introduced 

at 6s. From Fig. 10, it can be seen that the SCARA robot end-effector trajectory with an 

electrical resistance fault (blue dashed line) deviates from that in the fault-free case (red 

solid line), and does not complete either a trajectory in the suited time or all drilling 

operations, because the power generated by this fault change the dynamics of the physical 

system. Nevertheless, in the presence of current sensor fault, the trajectory does not deviate 

from the desired trajectory, because a fault in a diagnosis sensor does not change the power 

in the physical system, it modifies only the information used to calculate the residuals. The 

electrical resistance parameter fault is detected by the residual 1r , while the residual 2r  

does not detect this fault because it is not sensible to it (Fig. 11). The estimation of this fault 

is given by Fig. 12.   
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Fig.10. SCARA robot end effector Cartesian trajectory when operating under normal and faulty 

conditions . 
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Fig.11. 1r and 2r in case of aR parameter fault. 
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 Fig. 12. Estimated parameter fault magnitude. 

5 Conclusion and future works   

The goal of this paper was to present a robust fault diagnosis approach on a SCARA 

robot in the presence of both parameter and measurement uncertainties. This approach is 

based on the use of the quantitative model-based method to generate residuals and adaptive 

thresholds. The proposed robot is created using SolidWorks program and Matlab/Simulink 

software to obtain the system dynamic behaviour. Analytical forward and inverse 

kinematics solutions were derived by using the Denavit-Hartenberg approach. DC 

servomotors driving each of the robot arm joints is modelled and considered in the closed-

loop control. Then, the PI controllers have been used to control the angular position of these 

robot joints, so that flow the desired trajectory. Simulation results were presented for a 

SCARA robot and demonstrated the ability of the proposed method to detect the faults in 

the presence of uncertainties and determine the nature, and the magnitude of the fault. 

The physical phenomena like a motor friction coefficient that deviate from the natural 

variations based upon different operational conditions, its unidirectional variations are not 

taken into consideration, this must be solved in the future work by using the so-called 

interval-valued uncertainties generation.       
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