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Abstract

Infinitely negative potentials have finite ground state energy if use is made of complex
wave function. We study a few analytical examples and give numerical solutions for some
−|x|n potentials.

PACS : 03.65.Ge ; 03.65-w ; 03.65.Fd .
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1 Introduction

The present work has been suggested by the results obtained more than 20 years ago by Bender
and Boettcher [1]. In the context of PT-symmetric Non-Hermitian Hamiltonians they solved the
Schrödinger equation for the −(ix)n potentials (n > 0). Our attention has been retained by the
case n = 4. In ordinary quantum mechanics, V (x) = −x4 has no bound state of finite energy.
Integrating the Schrödinger equation along complex paths, Bender and Boettcher found regions
of finite energy spectra. These result have incited us to study potentials infinitely attractive at
large distances, among which

V (x) = −|x|n , n > 0 (1)

is a typical example.

Note that the case n < 0 has been discussed in a paper by Yekken et al [2], in the context of
energy dependent potentials. In the D=1 dimensional space, these potentials have an infinite
ground state energy. However, if the coupling constant depends on energy, the ground state
energy is finite.

The present approach is, in some sense, the extension of quantum mechanics to the complex
plane, which could be useful for pathological potentials. It follows numerous works developed
for complex potentials having real eigenvalues (see review articles on this topics, [3, 4, 5]).

To build a coherent quantum mechanics requires to define properly the scalar product and
observables [6, 7, ?]. In the present paper we concentrate on the ground state energy and the
normalisation of the ground state wave function. Note that it involves the extension of the
probability in the complex plane [6, 8].

In a first step, we shall present a few analytical or semi analytical examples. The case −|x|n
shall be treated numerically.

2 Coupled equations in the complex plane

Considering the D = 1 dimensional space with h̄ = 2m = 1, we start with the Schrödinger
equation

[− d2

dx2
+ V (x)]Ψj(x) = EjΨj(x) ; V (x) ≤ 0 (2)

Note that we restrict our study to symmetric potentials with respect to parity. Let us consider
solutions of the form

Ψj(x) = Rj(x)exp[iΦj(x)] , Rj(x) ≥ 0 (3)

It leads to

−R′′j (x)− iΦ′′j (x)Rj(x)− 2iR′j(x)Φ′j(x) + (Φ′j(x))2Rj(x) + V (x)Rj(x) = EjRj(x) (4)
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This is a complex differential equation leading in general to complex eigenvalues. However, real
eigenvalues can been obtained by requiring

2Φ′j(x)R′j(x) + Φ′′j (x)Rj(x) = 0 (5)

Obviously, the (Φ′j(x))2 contribution in Eq. (4) is repulsive, and may compensate the long
distance attraction of V (x). A point to be proved, or at least shown by illustrative examples.
Eq. (5) is a linear differential equation for the derivative of the phase. Let us write

gj(x) = Φ′j(x) (6)

The above condition yields

gj(x) =
cj

R2
j (x)

(7)

At this stage, the integration constant cj is undetermined, but setting cj = 1 seems a natural
choice. We are left with a highly non linear differential equation for the modulus :

−R′′j (x) + V (x)Rj(x) +
c2j

R4
j (x)

Rj(x) = ERj(x) (8)

The modulus function Rj(x) has to be a real positive function not necessarily of finite norm. In
this matter, following Bender and Boettcher [1], the scalar product and the norm are defined
by ∫ ∞

−∞
Ψ2
j(x)dx =

∫ ∞
−∞

R2
j (x)exp[2iΦj(x)]dx (9)

Note that in this case a finite norm can be ensured by rapid oscillations of the phase function
at large distances. Consequently, polynomial Rj(x) are acceptable, for instance.

3 Analytic and semi analytic cases

Actually, though Eq. (8) is highly non-linear, it is not difficult to build analytical cases. Let
us consider the almost trivial exponential case :

V (x) = −e|x| (10)

Dealing only with the ground state, the index j has been dropped from expressions of energy,
wave function and phase function. The problme being symmetric we shall consider only the
positive x axis. Setting

R(x) = e−αx/4 (11)

in Eq. (8), the resulting equation

−α
2

16
− ex + eαx = E (12)
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is solved for α = 1. The ground state energy is negative but finite. Furthermore, the phase
function Φ(x) admits an analytical form :

Φ(x) =
∫ x

0
g(t)dt =

∫ x

0
et/2dt = 2[ex/2 − 1] (13)

The norm is given by

N = 2
∫ ∞
0

e−x/2 cos [4(ex/2 − 1)]dx = 16
∫ ∞
0

cos(y)

(y + 4)2
dy (14)

where we have set
4(ex/2 − 1) = y (15)

This integral admits a analytical expression in terms of Si(4 + y) and Ci(4 + y), the sine- and
cosine-integrals.

Another example is provided us by

V (x) = − cosh (x)− 5

16

1

cosh2 (x)
(16)

In this case, the solution is given by

R(x) = cosh−1/4 (x) with E = − 1

16
(17)

3.1 A polynomial form.

To get closer to the −|x|n potentials, let us consider

V (x) =
n

4
x2

[
(3 + n/4 + x2)

(1 + x2)2

]
− (1 + x2)n/2 (18)

This potential tends asymptotically to −|x|n. The function

R(x) =
1

(1 + x2)n/8
(19)

solves Eq (8) with an eigenvalue of E = n
4
.

The phase function takes the form

Φ(x) =
∫ x

0
(1 + t2)n/4dt (20)

It corresponds to a compact expression in few cases like

n = 2 : Φ(x) =
x

2

√
(1 + x2) (21)
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n = 4 : Φ(x) = x+
x3

3
(22)

The general expression is an hyper-geometric function :

Φ(n)(x) = x 2F1(1/2,−n/4; 3/2;−x2) (23)

At this point, we recall the importance of the phase function to ensure the normalisation of the
wave function. As R(x) is decreasing with 1/xn asymptotically, its norm or higher moments
are not necessarily finite a priori. However, because the phase is varying very rapidly as x
increases, the integrand is averaged to zero beyond a certain value of x. Thus, the norm and
the moments get stabilised.

3.2 Numerical examples.

We end up this section by presenting numerical results for two polynomial potential of the
above form with n = 2 and n = 4.

The Eq. (8) with V (x) given by Eq. (18) is solved by fixing the energy E and the boundary
conditions R(0) = 1 and R′(0) = 0, by using the Runge-Kutta method. A priori, all solutions
with R(x) definite positive and with no singular behaviour are acceptable. We do not get a
single energy but an area of energies. Thus, a criterion has to be found to single out the solution
corresponding to the analytical energy.

In terms of self-consistency, Eq. (8) admits a unique solution for R(x). Instead, the Runge-
Kutta method provides us with an ensemble of R(x,ERK), from which effective potentials can
be calculated and introduced in the Schrödinger equation.

If theR(x,ERK) calculated from Runge-Kutta is the correct one, it must solve the corresponding
Schrödinger equation with the same energy, which we quote ES. Consequently, ERK = ES
should be the criterion to select the correct energy. For all other ERK energies, the effective
V (x) potential is different from the original one, resulting in ERK 6= ES. A sample of results
are displayed in table 1 for the cases n= 2 and 4. They show the necessary precision of the
numerical codes to select the solution on the energy basis.

A second criterion is provided us by the behaviour of the wave functions. It appears that the
R(x) corresponding to the analytic energy is the one extending over the longest distance and
showing the less oscillations. The situation is even clearer with S(x). Not only the analytic
energy yields the wave function extending over the larger distance but for other energies the
corresponding S(x) diverge rapidly. These results are illustrated in figs 1 and 2.

We end up this section with the question of the norm. As stated above, the normalisation of
R(x) depends essentially on the phase function Φ(x). Typically, we get for n = 2∫ ∞

0
R2(2, x)dx =

∫ ∞
0

1√
(1 + x2)

dx = log(x+
√

(1 + x2)|∞0 (24)
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Table 1: Results for the n = 2 and 4 cases of the potential (18). The eigenvalue range of
acceptable solutions of the Runge-Kutta method is given. Selected eigenvalues around the
analytical value are compared for the Runge-Kutta method and the Schrödinger equation.

n Eigenvalue range Runge-Kutta Schrödinger xmax for S(x)

2 E = 0.42 - 0.59 0.45 0.4506 67.1
xmax = 290 for R(x) 0.50 0.5000 290

0.55 0.5506 67.8
4 E = 0.54 - 1.59 0.60 0.6116 8.9

0.70 0.7097 9.5
0.80 0.8075 10.4
0.90 0.9049 12.0

xmax = 91 for R(x) 1.00 1.0000 35.5
1.10 1.1049 12.1
1.20 1.2076 10.6
1.30 1.3098 9.8
1.40 1.4118 9.3
1.50 1.5135 8.9

Figure 1: Runge-Kutta wave functions in the case n = 2 and 4.

which is logarithmically diverging.
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Figure 2: Schrödinger wave functions in the cse n = 2 and 4.

For n = 2 and 4, we have integrated Eq. (9) between 0 and a variable limiting xL. The
results are displayed in fig 3. They show the asymptotic result of the norm to be rather rapidly
obtained.

4 The −|x|n potentials.

The same strategy is applied to the −|x|n potentials. Solving Eq. (8), the solutions yielding
positive definite R(x) are retained. This procedure determines areas of acceptable energies.
Inserting 1/R(x)4 as an effective potential in the Schrödinger equation, we select the energy in
closest agreement with the one obtained with the Runge-Kutta method. It also corresponds to
the largest extension of the wave function.

The results are displayed in table 2 for 2 ≤ n ≤ 5. As a function of n, the energies are well
fitted by

0.928 + 0.247n− 0.018n2 (25)

It suggests the arising of a maximum at or beyond n = 7. This conjecture is supported by the
fact that for V (x) = −ex, considered as the limit of −x∞, the energy is slightly negative.

As far as the wave functions are concerned, examples of R(x) and S(x) are showed in fig 4 and

7



Figure 3: Norm of the ground state wave function in the case n = 2 and 4 as function of xL,
the upper limit of the integral.

5.

Figure 4: Runge-Kutta wave functions of −|x|n, for n = 2,3,4 and 5.
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Table 2: The eigenvalue ranges and selected eigenvalues solutions of the Runge-Kutta and
Schrödinger equations for the −|x|n potentials with 2 ≤ n ≤ 5

n Energy range Runge-Kutta Schrödinger xmax
2 1.27 - 1.43 1.345 1.3471 39.7

2.5 1.32 - 1.57 1.44 1.4426 27.1
3 1.27 - 1.80 1.51 1.5124 21.8

3.5 1.24 - 1.99 1.57 1.5705 30.5
4 1.23 - 2.14 1.63 1.6341 12.3

4.5 1.25 - 2.24 1.67 1.6777 8.8
5 1.28 - 2.29 1.72 1.7314 7.0

Figure 5: Schrödinger wave functions of −|x|n, for n = 2,3,4 and 5.

5 Conclusions.

This paper is dealing with aspects of the quantum mechanics in the complex plane, i.e. when
the wave function is a complex function. This extension has no impact in the case of ordinary
potentials. Here, it allows to find finite energy solutions for potentials infinitely negative at
large distances.

The problem is well defined mathematically. Physically it still requires further studies. The
first question concerns the definition of observables, which will be the subject of future work.
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Secondly we may search for the domain of application of the present method. A point we also
keep for further investigations.
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