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Abstract
The design of any system contemplates the elaboration of a prototype of the entire system or some parts, before the manufac-
turing phase. Nowadays, rapid prototyping (RP) is widely used by the designers. Achieving goodmanufacturing performances
needs to handle various process parameters. Most works deal with single objective process parameters. The reality is quite
different and the processes involve conflicting objectives. This paper addresses the multi-objective factors optimization of the
fused deposition modelling (FDM) technology. The problem is converted into a single one using the weighted-sum method
and then solved by resorting to two nature-inspired computing techniques, namely particle swarm optimization (PSO) and
differential evolution (DE). The results obtained are compared.

Keywords Rapid prototyping · Fused deposition modelling · Multi-objective optimization · Weighted-sum method · Particle
swarm optimization · Differential evolution

1 Introduction

For many years, the industry has been continuously evolv-
ing due to the increasingly great demand from consumers,
and machining processes are widely used, including con-
ventional and nonconventional processes [1–5]. One of the
most important things in the industry is the prototype,
which is a miniature or a scaled model of a product to
be created. In previous years, the prototype was manually
made by molding and it took a long time to manufac-
ture; then with the rapid development of technology, rapid
prototyping (RP) can make complex 3D shapes that are
made using a Computer Aided Design (CAD) with differ-
ent processes, to reduce time, minimize cost and achieve
complex shapes that cannot be manufactured by machin-
ing. Nowadays, various techniques are used, such as 3D
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printing, or virtual and augmented reality [6, 7]. To obtain
a high quality object, it is necessary to optimize the pro-
cesses. The prototyping processes can be found in sev-
eral fields, such as medicine, aerospace/aeronautics, and
robotics.

Nowadays, the optimization of the prototyping processes
remains a challenge for the researchers. Most of the opti-
mization approaches used to solve engineering problems are
nature-inspired due to their effectiveness [8]. This paper pro-
vides a nonexecutive review of the literature. Comprehensive
reviews can found in Refs. [9–17]. Jandyal et al. [18] also
provided a review published in 2022. Lee et al. [19] used
the Taguchi method to optimize the fused deposition mod-
eling (FDM) to produce the acrylonitrile butadiene styrene.
The FDM has many parameters to be handled [20]. These
parameters have an impact on the physical and mechanical
properties of the designed products [21]. Naveed [22] stated
that the raster angle is one of the most important parame-
ters of the FDM. Udroiu and Nedelcu [23] investigated the
inkjet printing and polymer jetting using CATIA software,
but the results were not compared to those achieved by alter-
nate methods. Wang et al. [24] used the Taguchi method
with the Gray relational analysis to optimize the FDM. The
results were compared to the prediction. Sood et al. [25]
proposed empirical models for the FDM to improve the ten-
sile, flexural and impact strength responses by considering
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five process parameters: layer thickness, orientation, raster
angle, raster width, and air gap. Variance analysis was used to
test the model. Rao and Rai [16] used the teaching–learning-
based optimization (TLBO) and the non-dominated sorting
TLBO algorithm to solve single and multi-objective proto-
typing processes, including the model developed by Sood
et al. [25]. The Pareto was generated to find the set of opti-
mal solutions. However, selecting one single solution from
the Pareto set led to conflicting conclusions. Shirmoham-
madi et al. [26] implemented the artificial neural network
(ANN) with the particle swarm optimization (PSO) to min-
imize the surface roughness of a 3D printing process. They
concluded that the proposed hybrid approach reduced the
error. Addressing multi-objective process parameters is a
key element to achieve good performances and remains
a challenge. Only a few works have investigated the lat-
ter.

In this paper, the multi-objective FDM process is
addressed and optimized with the weighted-sum method
and the optimal parameters are provided using the PSO
and the differential evolution (DE). The remainder of the
paper is organized as follows: Sect. 2 describes the problem.
Sections 3 and 4 give the description of the implemented
PSO and DE, respectively. Section 5 provides the results
with a discussion. Finally, the last section concludes the
paper with remarks and suggested directions for future
work.

2 Multi-objective FDM process

The FDM is a RP process that uses a moving noz-
zle to extrude a polymeric material fiber [25, 27–30].
Based on empirical models, the multi-objective optimiza-
tion problem of the FDM is given as follows [16,
25]:

Maximize T s [MPa]

� 13.5625 + 0.7156A − 1.3123B + 0.9760C + 0.5183E

+ 1.1671A2 − 1.3014B2 − 0.4363(A × C) + 0.4364(A × D)

− 0.4364(A × E) + 0.4364(B × C) + 0.4898(B × E)

− 0.5389(C × D) + 0.5389(C × E) − 0.5389(D × E) (1)

Maximize Fs [MPa]

� 29.9178 + 0.8719A − 4.8741B + 2.4251C − 0.9096D

+ 1.6626E − 1.7199(A × C) + 1.7412(A × D) − 1.1275(A × E)

+ 1.0621(B × E) + 1.0621(C × E) − 1.0408(D × E) (2)

Maximize I s [MJ/m2]

� 0.401992 + 0.034198A + 0.008356B + 0.013673C

+ 0.02138A2 + 0.008077(B × D) (3)

Subject to the following design variables:

0.127 mm ≤ A ≤ 0.254 mm (4)

0◦ ≤ B ≤ 30◦ (5)

0◦ ≤ C ≤ 60◦ (6)

0.4064 mm ≤ D ≤ 0.5064 mm (7)

0 mm ≤ E ≤ 0.008 mm (8)

where Ts [MPa] is the tensile strength, Fs [MPa] is the flex-
ural strength, Is [MJ/m2] is the impact strength, A [mm] is
the layer thickness, B [degree] is the orientation, C [degree]
is the raster angle, D [mm] is the raster width, and E [mm]
is the air gap.

In this paper, the multi-objective problem described in
Eqs. (1)-(3) is converted into a single objective problemusing
the weighted-sum method [31–34] as follows:

Maximize Z � w1T s + w2Fs + w3 I s (9)

where Z is the one-scaled objective function and wi (i � 1, 2,
3;w1 +w2 +w3 � 1) are the weight factors for each objective
function.

3 Particle swarm optimization

The particle swarm optimization (PSO) is a nature-inspired
optimization algorithm inspired by the moving mechanism
of swarms, such as flocks of birds and schools of fishes. It was
initially developed by Kennedy and Eberhart [35]. It is based
on the position and the velocity of the particles of the swarm.
PSO is one of the strongest optimization algorithms which
has proven its effectiveness to tackle various engineering
problems, such as the design of system availability and cost
[33, 36], trajectory planning of robots [37], the combined
heat and power economic emission dispatch problem [38],
and system reliability [34]. Details on the PSO can be found
in Refs. [35, 39, 40]. The pseudo-code of the implemented
PSO to solve the above problem is given in Algorithm 1.
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4 Differential evolution

The differential evolution (DE) is a nature-inspired opti-
mization algorithm inspired by the population evolution
mechanisms. It was developed by Storn and Price [41] and
is based on the genetic algorithms [42] but is characterized
by more perturbations during iterations. Many works used
the DE due to its robustness, such as PID controller [43],
maintenance planning [44], state of charge estimation of bat-
teries [45], and system availability [46]. More details on the
DE can be found in Refs. [41, 46–48]. The pseudo-code of
the implemented DE to solve the above problem is given in
Algorithm 2.

5 Results and discussion

The problem descried has been solved using the above two
algorithms and implemented using MATLAB 2017 and run
on a PC with the following characteristics: i5 of 2.50 GHz
with 4GB. Each algorithm has been run over ten independent
runs. The population size is 20 and the maximum number of
iterations is 100. These parameters have been fixed by trial-
and-error and based on experience. The weight factors are
considered equal, i.e. (w1 � w2 � w3 � 0.3333).

Tables 1 and 2 report the results obtained by the PSO
and the DE over the ten runs, respectively. The values of the
one-scaled objective (Z), the three process performances (Ts,
Fs and Is), design variables, number of function evaluations
(NFE), CPU time, and standard deviation (σ ) are included.

123



International Journal on Interactive Design and Manufacturing (IJIDeM)

Table 1 Results obtained by the PSO

Run
#

Ts [MPa] Fs [MPa] Is [MJ/m2] Z A [mm] B [°] C [°] D [mm] E [mm] NFE CPU
[s]

σ

1 170.2548 125.3745 1.3162 98.8849 0.1270 7.6880 60 0.4064 0.008 1660 17.28 2.8E−04

2 170.4601 125.1358 1.3167 98.8849 0.1270 7.7105 59.9944 0.4064 0.008 1960 20.23

3 170.5864 125.0318 1.3170 98.8845 0.127 7.7331 60 0.4064 0.007 1980 12.18

4 170.3061 124.9912 1.3161 98.8849 0.127 7.7191 59.9466 0.4064 0.008 1840 11.90

5 170.2408 125.3889 1.3162 98.8849 0.1270 7.6609 60 0.4064 0.008 1220 12.23

6 170.2634 125.3570 1.3162 98.884 0.1270 7.6671 59.9989 0.4065 0.008 2000 12.38

7 170.3064 125.3283 1.3163 98.8848 0.127 7.6741 60 0.4064 0.008 1720 11.57

8 170.3662 125.1776 13,165 98.8849 0.1274 7.6934 59.9956 0.4065 0.008 2000 11.81

9 170.4134 125.2184 1.3166 98.8849 0.127 7.6967 60 0.4064 0.008 1980 11.74

10 170.3698 125.2216 1.3165 98.8849 0.127 7.6931 59.9936 0.4065 0.008 1680 11.95

Bold values represent the best results

Table 2 Results obtained by the DE

Run # Ts [MPa] Fs [MPa] Is [MJ/m2] Z A [mm] B [°] C [°] D [mm] E [mm] NFE CPU[s] σ

1 170.3954 125.2397 1.3166 98.8849 0.1270 7.6923 60 0.4064 0.008 600 15.37 0

2 170.3954 125.2397 1.3166 98.8849 0.1270 7.6923 60 0.4064 0.008 500 9.90

3 170.3954 125.2397 1.3166 98.8849 0.1270 7.6923 60 0.4064 0.008 620 9.78

4 170.3954 125.2397 1.3166 98.8849 0.1270 7.6923 60 0.4064 0.008 640 9.38

5 170.3954 125.2397 1.3166 98.8849 0.1270 7.6923 60 0.4064 0.008 500 9.52

6 170.3954 125.2397 1.3166 98.8849 0.1270 7.6923 60 0.4064 0.008 620 9.43

7 170.3954 125.2398 1.3166 98.8849 0.1270 7.6923 60 0.4064 0.008 660 9.83

8 170.3954 125.2397 1.3166 98.8849 0.1270 7.6923 60 0.4064 0.008 560 9.18

9 170.3954 125.2397 1.3166 98.8849 0.1270 7.6923 60 0.4064 0.008 440 9.89

10 170.3954 125.2398 1.3166 98.8849 0.1270 7.6923 60 0.4064 0.008 660 9.58

Bold values represent the best results

Table 3 Comparison of PSO vs
DE Z NFE CPU[s] σ

PSO 98.8849 1980 12.23 2.8E−04

DE 98.8849 440 9.89 0

Bold values represent the best results

From Table 1, it can be observed that the best value of Z
obtained by the PSO is 98.8849 for all runs, except #3, #6 and
#7. The fewer NFE corresponds to #5 (1,220) with 12.23 s of
CPU time. The optimal values are TS � 170.2408 MPa, Fs
� 125.3889 MPa, Is � 1.3162 MJ/m2, whereas the decision
variables are A � 0.1270 mm, B � 7.6880°, C � 60°, D �
0.4064 mm, and E � 0.008 mm. The standard deviation of
the ten runs is 2.8E−04.

From Table 2, it can be observed that the best value of
Z obtained by the DE is 98.8849 for all runs. The lower
NFE corresponds to #9 (440) with 9.89 s of CPU time. The
optimal values are TS� 170.3954MPa,Fs� 125.2397MPa,

Is � 1.3166 MJ/m2, whereas the decision variables are A �
0.1270 mm, B � 7.6923°, C � 60°, D � 0.4064 mm, and E
� 0.008 mm. The standard deviation of the ten runs is 0.

Table 3 summarizes the best results obtained by the PSO
and the DE. It can be observed that both algorithms obtained
the same value of the one-scale objective (Z � 98.8849).
However, the performances of the DE have outperformed
those of the PSO in terms of number of function evaluations,
CPU time, and standard deviation.
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6 Conclusions

The goal of this paper was to investigate the multi-objective
fused deposition modelling (FDM) optimization problem
which is a rapid prototyping process (RP). The considered
objectives were the tensile strength, the flexural strength, and
the impact strength. The multi-objective problem was con-
verted to a single one using the weighted-sum method in
order to avoid the disadvantages of the Pareto set. The par-
ticle swarm optimization (PSO) and differential evolution
(DE) were implemented with constraint handling to solve
the problem. It was shown that both algorithms provides the
same value of the one-scaled objective, but the performances
of the DE were better. The latter means that the DE required
fewer function evaluations, required less CPU time, and has
a lower standard deviation. Therefore, the present work con-
tributes to themachinability of theFDMprocess by providing
the optimal process parameterswhen considering both objec-
tives, i.e., the tensile strength, the flexural strength, and the
impact strength. Future work will be devoted to the develop-
ment of a hybrid approach to improve the results and solve
other rapid prototyping processes.
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