
Registration Number:…..…../2019

People’s Democratic Republic of Algeria

Ministry of Higher Education and Scientific Research

University M’Hamed BOUGARA – Boumerdes

Institute of Electrical and Electronic Engineering

Department of Electronics

Final Year Project Report Presented in Partial Fulfilment of

the Requirements for the Degree of

MASTER

In Electronics

Option: Computer Engineering

Title

Presented by

- BOUDEBOUDA Walid

Supervisor

 Dr. BENZEKRI

Robot Based Drive-Through System

For a Super Market

I

Abstract

This report describes the design and implementation of a robot based drive-

through system for a super market. Drive-through is a type of service provided by

businesses to allow their customers to purchase products without leaving their cars.

The systems consists of three parts : an Android application that is used by the

customers to remotely select the desired products, a Java program to process the

orders, manage the products and customers database, control the robot, and

monitor the state of the orders and the robot position on the map in real time.

Finally a mobile robot controlled by an ESP32 Microcontroller used to collect the

products in the supermarket.

Orders are sent from the android application to the java program through

internet, whereas the communication between the java program and the robot is

done via wireless WIFI connection in a local area network.

The results obtained were satisfactory for both the software and hardware

parts, even though some constraints were faced on the hardware one.

II

Dedication

I would like to dedicate this work to my parents and my brother

who supported me through my entire curriculum.

III

Acknowledgements

 All praise is due to Allah the most gracious and the most merciful, whom with

his willing, gave me the opportunity to complete this Project.

I would like to express my special gratitude to my supervisor Dr.BENZEKRI

for his patience and his support on the way, and for his useful comments, remarks,

and engagement through the completion of this master thesis.

My gratitude also goes to my family and friends, and all the teachers who

encouraged and supported me during the past 5 years at the institute.

IV

Table of content

ABSTRACT ... I

DEDICATION ... II

ACKNOWLEDGEMENTS ...III

TABLE OF CONTENT.. IV

LIST OF TABLES ... VI

LIST OF FIGURES .. VII

LIST OF ABBREVIATIONS AND ACRONYMS ... IX

CHAPTER 1 INTRODUCTION ... 1

1.1. INTRODUCTION ... 1

1.2. MOTIVATION ... 1

1.3. RELATED WORKS ... 2

1.4. OVERALL SYSTEM DESCRIPTION .. 2

1.5. ORGANIZATION OF THE REPORT : .. 3

CHAPTER 2 THEORETICAL BACKGROUND ... 4

2.1. INTRODUCTION ... 4

2.2. THE ESP32 MICROCONTROLLER .. 4

2.2.1. ESP32 chip .. 4

2.2.2. ESP32 development board (DOIT DevKit v1) .. 6

2.2.3. Software development environment .. 7

2.3. ANDROID APPLICATION... 7

2.3.1. Android OS.. 7

2.3.2. Android studio .. 8

2.3.3. Activities ... 9

2.3.4. Activity lifecycle .. 9

2.3.5. UI Design .. 11

2.3.6. RecyclerViews ... 12

2.3.7. AsynchronousTasks .. 13

2.4. JAVAFX ... 14

V

CHAPTER 3 HARDWARE SYSTEM DESIGN ... 15

3.1. INTRODUCTION ... 15

3.2. ROBOT CHASSIS .. 15

3.3. ELECTRONIC CIRCUIT .. 16

3.3.1. Motors control unit .. 16

3.3.2. Feedback unit ... 17

3.3.3. Overall circuit diagram ... 19

CHAPTER 4 SOFTWARE SYSTEM DESIGN .. 20

4.1. INTRODUCTION ... 20

4.2. NETWORK CONFIGURATION... 20

4.2.1. Port forwarding .. 21

4.2.2. Dynamic Host Configuration Protocol reservation (static DHCP) 21

4.2.3. Dynamic Domain Name Server (DDNS) .. 21

4.3. ANDROID APPLICATION .. 22

4.3.1. LoginActivity ... 24

4.3.1. ProductsActivity.. 25

4.3.2. OrderActivity .. 26

4.3.3. MyOrdersActivity .. 27

4.4. THE JAVA DESKTOP PROGRAM .. 28

4.4.1. Classes organization ... 29

4.4.2. Background threads ... 32

4.4.3. Database design ... 35

4.4.4. Graphical User Interface Design ... 37

4.4.5. Map representation ... 42

4.4.6. Path planning ... 43

4.5. ROBOT SOFTWARE... 49

CHAPTER 5 CONCLUSION ... 55

REFERENCES ... 56

VI

List of tables

TABLE 3-1 ROBOT MOVE COMBINATIONS .. 17

TABLE 4-1 NEEDED ORIENTATION WITH RESPECT TO (CURRENT POSITION - NEXT POSITION) 51

TABLE 4-2 CALCULATION OF NUMBER AND DIRECTION OF ROTATION ... 51

VII

List of figures

FIGURE 1.1 OVERALL SYSTEM BLOCK DIAGRAM .. 3

FIGURE 2.1 ESP32 FUNCTIONAL BLOCK DIAGRAM [4] ... 5

FIGURE 2.2 DOIT ESP32 DEVKIT V1 ... 6

FIGURE 2.3 DOIT ESP32 DEVKIT V1 PIN MAPPING ... 7

FIGURE 2.4 A SIMPLIFIED ILLUSTRATION OF THE ACTIVITY LIFECYCLE [9]. ... 10

FIGURE 2.5 ANDROID UI LAYOUTS HIERARCHY [10] .. 11

FIGURE 2.6 ANDROID VIEW RECYCLING ... 12

FIGURE 2.7 ANDROID ASYNCTASK METHODS CALLING ORDER [11] ... 14

FIGURE 3.1 ROBOT CHASSIS ... 15

FIGURE 3.2 MOTORS CONTROL UNIT CIRCUIT DIAGRAM .. 16

FIGURE 3.3 FEEDBACK UNIT CIRCUIT DIAGRAM ... 18

FIGURE 3.4 MOTOR SPEED ENCODER ... 19

FIGURE 3.5 OVERALL CIRCUIT DIAGRAM .. 19

FIGURE 4.1 NETWORK TOPOLOGY ... 20

FIGURE 4.2 DDNS SERVICE .. 22

FIGURE 4.3 ANDROID APPLICATION FLOWCHART .. 23

FIGURE 4.4 ANDROID USE CASE DIAGRAM.. 24

FIGURE 4.5 LOGIN ACTIVITY.. 24

FIGURE 4.6 PRODUCTS ACTIVITY ... 26

FIGURE 4.7 ORDERACTIVITY ... 27

FIGURE 4.8 MYORDERSACTIVITY .. 28

FIGURE 4.9 JAVA PROGRAM USE CASE DIAGRAM ... 29

FIGURE 4.10 BACKGROUND PACKAGE UML DIAGRAM ... 30

FIGURE 4.11 ROBOT PACKAGE UML DIAGRAM .. 31

FIGURE 4.12 SHARED PACKAGE UML DIAGRAM ... 32

VIII

FIGURE 4.13 ROBOTCONTROLLER FLOWCHART .. 34

FIGURE 4.14 DATABASE UML DIAGRAM .. 37

FIGURE 4.15 ORDERS TAB .. 38

FIGURE 4.16 ORDER DETAILS WINDOW .. 39

FIGURE 4.17 PRODUCTS TAB .. 40

FIGURE 4.18 ADD NEW PRODUCT WINDOW (LEFT), SELECTION OF PRODUCT POSITION (RIGHT)................................ 40

FIGURE 4.19 CUSTOMERS TAB .. 41

FIGURE 4.20 NEW CUSTOMER WINDOW ... 42

FIGURE 4.21 MAP REPRESENTATION (D = 20) ... 42

FIGURE 4.22 A* VS DIJKSTRA'S ALGORITHM ... 44

FIGURE 4.23 ROBOT POSITION .. 50

FIGURE 4.24 ROBOT MOTORS CONTROL ALGORITHM FLOWCHART .. 53

FIGURE 4.25 PICTURE OF THE ROBOT .. 54

IX

List of abbreviations and acronyms

ADC Analog to Digital Converter

CSS Cascading Style Sheet

DAC Digital to Analog Converter

DDNS Dynamic Domain Name Server

DHCP Dynamic Host Configuration Protocol

DNS Domain Name Server

GUI Graphical user interface

IC Integrated Circuit

IP Internet Protocol

ISP Internet Service Provider

JDBC Java DataBase Connectivity

LAN Local Area Network

MAC Media Access Control

OS Operating System

PLC Programmable Logic Controller

PWM Pulse Width Modulation

SQL Structured Query Language

TCP Transmission Control Protocol

UI User Interface

UML Unified Modeling Language

USB Universal Serial Bus

XML Extensible Markup Language

Chapter 1

Introduction

Chapter 1 : Introduction Page 1

1.1. Introduction

The use of technology in human's everyday life to save time and efforts on

daily activities is becoming an important challenge. The fast evolution of technology

has changed the way that people used to do basic things, like shopping. Robots took

an important place in this area, they are taking the lead in many fields such as

manufacturing, utilities, transportation and exploration, by replacing humans in

complex and dangerous tasks, but also in time consuming jobs.

Numerous innovative applications of robots have been used during the last

years by some of the biggest tech companies in the world. As an example, the online

retail giant Amazon uses robots to manage its warehouses. Traditionally, goods in a

warehouse are moved around a distribution centre using a conveyor system or by

humanoperatedmachines.InKiva’sapproach (Amazon robotics system), items are

stored on portable storage units. When an order is entered into the

Kiva database system, the software locates the closest automated guided

vehicle (bot) to the item and directs it to retrieve it. The mobile robots navigate

around the warehouse by following a series of computerized barcode stickers on the

floor. Each drive unit has a sensor that prevents it from colliding with others. When

the drive unit reaches the target location, it slides underneath the pod and lifts it off

the ground through a corkscrew action. The robot then carries the pod to the

specified human operator to pick the items [1].

1.2. Motivation

Shopping is a daily task that consumes time and efforts for almost everyone,

especially when it comes to supermarkets where the customer has to go through

endless shelves to collect the products one by one, and then wait on a queue to pay

and finally carry the products to the car.

This task could be much simpler if technology was more involved in it. The

aim of this project is to design and implement a system to allow the customers to

order their products remotely using an Android application on their smartphones.

The orders are then received and processed by a computer, which will send

instructions wirelessly to a robot to collect the products and prepare them for the

customer. The customer can follow the state of his order in real time from his

Chapter 1 : Introduction Page 2

smartphone, so that he can pick it up when ready without even leaving the car. This

system would save valuable time and efforts for any random person.

1.3. Related works

Some similar online shopping systems have been implemented before,

different approaches and technologies have been used in these projects. As in Zhao

G. and Zhou Z.'s work, the system is based on MVC architecture and adopts

ASP.NET, Dreamweaver, SQL Server 2005, ADO.NET Entity Framework and other

related technologies. Their system includes some foreground functions such as user

registration and login, checking and buying commodities, the shopping cart, the

personal order management, the customer complaint and personal information

management, etc. The background functions include the administrator login, the

commodities category management, the commodities management, the order

management, etc [2]. However, the collection of the products is done manually

without the use of robots. Another similar work was done by "M. Z. A Rashid, T. A.

Izzuddin, N. Abas, N. Hasim, F. A. Azis and M. S. M. Aras", it concerned the

control of an automatic food drive-through system using Programmable Logic

Controller (PLC). In their approach, no human operator is needed, it is fully operated

by machine, like order and payment machine and conveyor that deliver the food,

while human are needed and involved only to prepare the food [3].

1.4. Overall system description

The whole system of this project consists of three entities which are : An

android application that is used by the user to select the products he wants to order, a

java program that receives the orders and processes them to send instructions to the

robot, but also manages the system's database and monitors orders and robot state,

and finally a mobile robot controlled by an ESP32 microcontroller that collects the

products. The block diagram of Figure 1.1 describes the system :

Chapter 1 : Introduction Page 3

Figure 1.1 Overall system block diagram

1.5. Organization of the report :

This report is organized into five chapters. In addition to this introduction,

Chapter 2 covers the theoretical background about some of the hardware and

software tools used in this project. Chapter 3 deals with the system's hardware

design. In chapter 4 the software design will be discussed. And finally Chapter 5 will

be a conclusion about this project with comments and suggestions for further

improvements.

Chapter 2

Theoretical background

Chapter 2 : Theoretical Background Page 4

2.1. Introduction

This chapter introduces the theoretical background needed to design the

hardware and software of our system, listing the main components used, their

description, and principle of operation.

2.2. The ESP32 Microcontroller

2.2.1. ESP32 chip

The ESP32 is a single 2.4 GHz Wi-Fi-and-Bluetooth combo chip designed with

the TSMC ultra-low-power 40 nm technology. It is designed to achieve the best

power and RF performance, showing robustness, versatility and reliability in a wide

variety of applications and power scenarios. Features of the ESP32 include the

following [4] :

 Processors:

 CPU: Xtensa dual-core (or single-core) 32-bit LX6 microprocessor,

operating at 160 or 240 MHz and performing at up to 600 DMIPS

 Ultra low power (ULP) co-processor

 Memory: 520 KiB SRAM

 Wireless connectivity:

 Wi-Fi: 802.11 b/g/n

 Bluetooth: v4.2 BR/EDR and BLE

 Peripheral interfaces:

 12-bit SAR ADC up to 18 channels

 2 × 8-bit DACs

 10 × touch sensors (capacitive sensing GPIOs)

 4 × SPI

 2 × I²S interfaces

 2 × I²C interfaces

 3 × UART

 SD/SDIO/CE-ATA/MMC/eMMC host controller

 SDIO/SPI slave controller

 Ethernet MAC interface with dedicated DMA and IEEE 1588 Precision

Time Protocol support

 CAN bus 2.0

 Infrared remote controller (TX/RX, up to 8 channels)

 Motor PWM

 LED PWM (up to 16 channels)

 Hall effect sensor

 Ultra low power analog pre-amplifier

 Security:

Chapter 2 : Theoretical Background Page 5

 IEEE 802.11 standard security features all supported, including WFA,

WPA/WPA2 and WAPI

 Secure boot

 Flash encryption

 1024-bit OTP, up to 768-bit for customers

 Cryptographic hardware acceleration: AES, SHA-2, RSA, elliptic curve

cryptography (ECC), random number generator (RNG)

 Power management:

 Internal low-dropout regulator

 Individual power domain for RTC

 5μAdeepsleepcurrent

 Wake up from GPIO interrupt, timer, ADC measurements, capacitive touch

sensor interrupt

Figure 2.1 shows the functional block diagram of the ESP32 :

Figure 2.1 ESP32 functional block diagram [4]

All these peripherals make this chip ideal for a variety of applications,

including internet of things, smart agriculture, digital signal processing, home

automation and others.

Chapter 2 : Theoretical Background Page 6

2.2.2. ESP32 development board (DOIT DevKit v1)

Different ESP32 development boards have been created to make the

prototyping process and interfacing easier. Some boards (ex: ESP-EYE) include a

camera that can be interfaced directly with the ESP32 chip, which makes it suitable

for image recognition, or IP camera applications. Some others like the ESP32-

LCDKit are intended for human machine interface applications, they integrate an

SD-Card, DAC-Audio and can be connected to external displays. For this

application, the board that have been used is the DOIT ESP32 DevKit v1 as shown

in figure 2.2.

Figure 2.2 DOIT Esp32 DevKit v1

The DevKit v1 comes with a serial-to-usb chip that allows programming and

opening of the UART of the ESP32. A USB Micro B connector is used to connect

the board to the computer for uploading the program and for serial communication.

The board can be powered through that port, or directly via the VIN pin. A power

regulator is integrated on the board and accepts an external power supply between 7

and 12 volts. The operating voltage of the board is 3.3 volts. It also include two

push buttons, one for reset and one for boot mode to upload the sketch. Figure 2.3

illustrates the pin mapping of the board.

Chapter 2 : Theoretical Background Page 7

Figure 2.3 DOIT ESP32 DEVKit v1 pin mapping

2.2.3. Software development environment

Several development environments, frameworks, and libraries can be used to

program the ESP32, making it accessible for a large community of developers. A

non exhaustive list includes :

 ESP-IDF (Official IOT platform by Espresssif)

 Arduino

 MicroPython

 Lua

 Free RTOS

The Arduino platform is the one that have been used for this project, since it is the

most familiar one, and it uses C/C++ as a programming language.

2.3. Android application

2.3.1. Android OS

In the last 20 years, smartphones and tablets took an important place in

human's everyday life. They are more and more used as life companions, or personal

assistants, to facilitate daily actions and save time and efforts to accomplish them.

As smartphones and tablets are advancing in technology, their operating systems are

becoming more important, they have a crucial role in taking the most out of the

Smartphone's hardware performances, as well as minimizing the battery power

consumption.

Chapter 2 : Theoretical Background Page 8

The Android mobile operating system is the most popular OS for mobiles, it is

the best selling worldwide on smartphones since 2011 and on tablets since 2013. Its

app store called Google play counts more than 2.6 millions apps [5].

Android is developed by Google. It is based on a modified version of the Linux

kernel and other open source software, and is designed primarily for touchscreen

mobile devices such as smartphones and tablets. In addition, Google has

developed Android TV for televisions, Android Auto for cars, and Wear OS for

wrist watches, each with a specialized user interface. Variants of Android are also

used on game consoles, digital cameras, PCs and other electronics.

2.3.2. Android studio

Android studio is the official integrated development environment for Android

OS, based on InteliJ IDEA [6]. It is designed specifically for android applications

development, and include a set of tools and utilities to build, test, and debug android

applications. Two language are used in the development of android applications :

java and xml. Java is used to program the logic and behavior of the application

whereas xml is used mainly for UI design and in some specific files. Since October

2017, Kotlin programming language is also supported by android studio and can be

used instead of Java.

Each project in Android Studio contains one or more modules with source code

files and resource files. A module is a collection of source files and build settings

that allow you to divide your project into discrete units of functionality. Your project

can have one or many modules and one module may use another module as a

dependency. Within each Android app module, files are shown in the following

groups [7]:

 Manifest : Contains the AndroidManifest.xml file, which is a file that every

android app must have, it describes essential information about the app to the

Android build tools, the Android operating system, and Google Play.

 java : Contains the Java source code files, separated by package names

 res : Contains all non-code resources, such as XML layouts, UI strings, and

bitmap images, divided into corresponding sub-directories.

 build.gradle : contains build configuration files.

Chapter 2 : Theoretical Background Page 9

2.3.3. Activities

The Activity class is a crucial component of an Android app, and the way

activities are launched and put together is a fundamental part of the platform's

application model. Unlike programming paradigms in which apps are launched with

a main() method, the Android system initiates code in an Activity instance by

invoking specific callback methods that correspond to specific stages of its lifecycle.

The mobile-app experience differs from its desktop counterpart in that a user's

interaction with the app doesn't always begin in the same place. Instead, the user

journey often begins non-deterministically. For instance, if you open an email app

from your home screen, you might see a list of emails. By contrast, if you are using a

social media app that then launches your email app, you might go directly to the

email app's screen for composing an email.

An activity provides the window in which the app draws its UI. This window

typically fills the screen, but may be smaller than the screen and float on top of other

windows. Generally, one activity implements one screen in an app. For instance, one

of an app’s activities may implement a Preferences screen, while another activity

implements a Select Photo screen. Most apps contain multiple screens, which means

they comprise multiple activities. Typically, one activity in an app is specified as

the main activity, which is the first screen to appear when the user launches the app.

Each activity can then start another activity in order to perform different actions [8].

2.3.4. Activity lifecycle

Over the course of its lifetime, an activity goes through a number of states, for

example, users of an app might receive a call, respond to a notification, or switch to

another task, and they should be able to continue using the app seamlessly after such

an event. The Activity class provides a number of callbacks that allow the activity to

know that a state has changed (that the system is creating, stopping, or resuming an

activity, or destroying the process in which the activity resides). For each state a call

back method exists and is called by the android system when the application enters

the corresponding state, therefore the developer should override these methods in

order to respond correctly to such events and handle transitions properly. Figure 2.4

illustrates the lifecycle of an android activity.

Chapter 2 : Theoretical Background Page 10

Figure 2.4 A simplified illustration of the activity lifecycle [9].

 onCreate() : This is the method that is fired when the system creates the

activity for the first time, all the essential components of the activity should

be initialized in this method.

 onStart() : As onCreate() exits, the activity enters the Started state, and the

activity becomes visible to the user. This callback contains what amounts to

theactivity’sfinalpreparationsforcomingto the foreground and becoming

interactive.

 onResume() : The system invokes this callback just before the activity starts

interacting with the user. At this point, the activity is at the top of the activity

stack, and captures all user input.

Chapter 2 : Theoretical Background Page 11

 onPause() : The system calls onPause() when the activity loses focus and

enters a Paused state. This state occurs when, for example, the user taps the

Back or recent button.

 onStop() : The system calls onStop() when the activity is no longer visible to

the user. This may happen because the activity is being destroyed, a new

activity is starting, or an existing activity is entering a Resumed state and is

covering the stopped activity. In all of these cases, the stopped activity is no

longer visible at all.

 onRestart() : The system invokes this callback when an activity in the

Stopped state is about to restart.

 onDestroy() : This callback is the final one that the activity

receives. onDestroy() is usually implemented to ensure that all of an

activity’sresourcesarereleased when the activity, or the process containing

it, is destroyed.

2.3.5. UI Design

The user interface for an Android app is built using a hierarchy

of layouts (ViewGroup objects) and widgets (View objects). Layouts are containers

that control how their child views are positioned on the screen. Widgets are UI

components such as buttons and text boxes. Figure 2.5 shows how ViewGroup

objects form branches in the layout and contain View objects

Figure 2.5 Android UI layouts hierarchy [10]

Android provides an XML vocabulary for ViewGroup and View classes, so

most of the UI is defined in XML files. Each layout file must contain exactly one

root element, which must be a View or ViewGroup object. Once the root element is

defined, additional layout objects or widgets can be added as child elements to

gradually build a View hierarchy that defines the layout. The most common

ViewGroup objects are :

Chapter 2 : Theoretical Background Page 12

 LinearLayout : A layout that organizes its children into a single horizontal or

vertical row. It creates a scrollbar if the length of the window exceeds the

length of the screen.

 RelativeLayout : Specifies the location of child objects relative to each other

(child A to the left of child B) or to the parent (aligned to the top of the

parent).

 ConstraintLayout : Used to create large and complex layouts with a flat view

hierarchy (no nested view groups).

2.3.6. RecyclerViews

RecyclerView objects are widgets that are used when an application needs to

display a scrolling list of elements based on large data sets (or data that frequently

changes).

When working with large datasets, it is not possible to create a view object for

each item to be displayed on the list, because view creation is an expensive task to

be performed, and memory resources are limited. In Android, the concept of View

recycling is used to overcome this problem. The idea is that,  instead of creating

views every time user scrolls, the views are created once, and recycled (reused) as

needed. Initially, a number of views needed to fit the screen size are created, at that

moment a part of the dataset is displayed only, then the user scrolls the list to see

other elements. When the scroll action is performed, the first item on the list is

hidden and the new item appears. Since the first item is no more visible to the user,

the view object used to display its data can be reused to display the next element on

the list if a scroll action is performed again. Figure 2.6 illustrates the process.

Figure 2.6 Android view recycling

Chapter 2 : Theoretical Background Page 13

An Adapter object is used as a bridge between the dataset and the recycler view

(visual representation of the data), its role is to bind each data set item to a view and

to manage the recycling operation (chose when to create a new view and when to

recycle).

2.3.7. AsynchronousTasks

When an Android app starts, it creates the main thread, which is often called

the User Interface (UI) thread. The UI thread dispatches events to the appropriate

user interface (UI) widgets. The UI thread is where the app interacts with

components from the Android UI toolkit. Android's thread model has two rules [11]:

 Do not block the UI thread

 Do UI work only on the UI thread

The UI thread needs to give its attention to drawing the UI and keeping the app

responsive to user input. If everything happened on the UI thread, long operations

such as network access or database queries could block the whole UI. From the

user's perspective, the app would appear to hang. The android framework offers an

effective solution which is the AsyncTask class, it is used for running tasks on a

background thread and publish results on the UI thread without needing to directly

manipulate threads or handlers. When AsyncTask is executed, it goes through four

steps :

 onPreExecute() : Invoked on the UI before the task is executed, often used

to show a progress bar before starting.

 doInBackground(Params ...): is invoked on the background thread

immediately after onPreExecute() finishes. This step performs a background

computation, returns a result, and passes the result to onPostExecute().

 onProgressUpdate(Progress ...) : runs on the UI thread if publishProgress() is

called in doInBackground() , can be used to update a progress bar.

 onPostExecute(Result) : runs on the UI thread after doInBackground is

finished, to update the UI with the results.

Figure 2.7 shows the calling order of these methods :

Chapter 2 : Theoretical Background Page 14

Figure 2.7 Android Asynctask methods calling order [11]

2.4. JavaFx

JavaFX is a software platform for creating and delivering desktop applications,

as well as Rich Internet Applications (RIAs) that can run across a wide variety of

devices. It enables developers to design, create, test, debug, and deploy rich client

applications that operate consistently across diverse platforms.

Written as a Java API, JavaFX application code can reference APIs from any

Java library. For example, JavaFX applications can use Java API libraries to access

native system capabilities and connect to server-based middleware applications.

The look and feel of JavaFX applications can be customized. Cascading Style

Sheets (CSS) separate appearance and style from implementation so that developers

can concentrate on coding. Graphic designers can easily customize the appearance

and style of the application through the CSS.

It is possible to separate the development of user interface (UI) and the back-

end logic, by developing the presentation aspects of the UI in the FXML scripting

language and using Java code for the application logic. JavaFX Scene Builder can

also be used to design the UI graphically and generate the FXML code automatically

without prior knowledge of the FXML language.

Chapter 3

Hardware System Design

Chapter 3 : Hardware System Design Page 15

3.1. Introduction

This chapter discusses the hardware system design. The hardware part of this

project consists of a mobile robot controlled by a microcontroller that receives

instructions from a server through a WIFI wireless network. The instructions

received are in the form of coordinates of the points where the robot has to go to

collect the products. In this project we focus only on the robot displacement, the

action of collecting the products will not be discussed due to the mechanical

complexity and lack of equipments.

3.2. Robot chassis

The robot that have been used for this project is a differential drive robot.

Differential drive robots are mobile robots whose movements are based on two

separately driven wheels, one on each side of the robot. A third free turning wheel is

usually added to balance the robot. Figure 3.1 illustrates the top and bottom view of

the robot.

Figure 3.1 Robot chassis

The advantage of using differential drive robots compared to other robots

having one motor for the forward and backward motion, and one for the direction, is

that they can rotate around the central axis of the wheels by turning the two wheels

in opposite directions, and thus allowing sharp 90° rotations, which is of course not

possible using the other category of robots. This feature is essential in this project,

this is why a differential drive robot have been chosen. In the counterpart,

Chapter 3 : Hardware System Design Page 16

controlling such a robot is more difficult, due to problems on the synchronization of

the two wheels, this problem will be discussed later on this chapter.

3.3. Electronic circuit

3.3.1. Motors control unit

The two motors of the robot are controlled by a L293D dual H-bridge

integrated circuit. The IC receives its control signals from the ESP32

microcontroller. The L293D energizes the two motors from an external power

source of 7.4 Volts, and controls their directions at the same time. Figure 3.2 shows

the circuit diagram of the motors control unit.

Figure 3.2 Motors control unit circuit diagram

The four control inputs (IN 1, IN 2, IN 3, IN 4) of the L293D chip are

connected to the digital pins (D 19, D 21, D 18, D 5) of the microcontroller to

control the direction of each motor. The Enable pins EN1 and EN2 are driven by

digital pins D23 and D22, which are used to generate a PWM signal to control the

speed of each motor individually.

As mentioned previously, the control of the direction of a differential drive

robot is done by controlling the direction of each motor individually, and each

combination results in a different move. Table 3.1 resumes the different

combinations of the left motor direction and the right motor direction, and the

resulting robot move.

Chapter 3 : Hardware System Design Page 17

Table 3-1 Robot move combinations

Comb IN1 IN2 IN3 IN4 Left Motor Right motor Robot move

1 0 0 0 0 Brake Brake Brake

2 0 0 0 1 Brake Backward Turn Right

3 0 0 1 0 Brake Forward Turn Left

4 0 0 1 1 Brake Brake Brake

5 0 1 0 0 Backward Brake Turn Left

6 0 1 0 1 Backward Backward Backward

7 0 1 1 0 Backward Forward Turn Left

8 0 1 1 1 Backward Brake Turn Left

9 1 0 0 0 Forward Brake Turn Right

10 1 0 0 1 Forward Backward Turn Right

11 1 0 1 0 Forward Forward Forward

12 1 0 1 1 Forward Brake Turn Right

13 1 1 0 0 Brake Brake Brake

14 1 1 0 1 Brake Backward Turn Right

15 1 1 1 0 Brake Forward Turn Left

16 1 1 1 1 Brake Brake Brake

As we can see, many different combinations result in the same move. In our

case, we will be using three moves which are : Forward move, turn left, and turn

right. Since we want the robot to rotate around the central axis of the wheels, we will

use combinations number 7 and 10 to turn left and right. Braking will be done using

combination 1.

3.3.2. Feedback unit

As mentioned earlier, the drawback of using differential drive robots is that it is

difficult to have both motors rotating at the exact same speed, even if the two motors

are powered using the same source, and this is due to the fact that the low cost

Chapter 3 : Hardware System Design Page 18

motors used do not guarantee to respect their technical specifications, and thus, are

not exactly identical. As a result, the robot will not be able to move in a straight line

or to rotate by an exact angle. This is why a feedback unit is needed in order to

adjust the speed of each motor in real time and to keep them synchronized. Figure

3.3 illustrates the feedback unit circuit diagram.

Figure 3.3 Feedback unit circuit diagram

The feedback unit consists of two FC-03 infrared speed sensors, one for each

motor. The sensor contains an opto-interrupter that detects when an object passes

between the IR emitter and the IR receptor, as well as an L393 comparator chip to

get a High output when no object is detected, and a Low when an object is detected.

A 100nF capacitor is added between the D0 output of each sensor and the ground to

eliminate undesirable rebounds on rising and falling edges. The sensors are used

with two speed encoder disks that are attached to each wheel of the robot, the disks

contain equally spaced holes so that when the wheel is rotating the holes cross the IR

light of the sensor and generate a pulse that interrupts the microcontroller, as shown

in Figure 3.4.

Chapter 3 : Hardware System Design Page 19

Figure 3.4 Motor speed encoder

By counting the number of times an interrupt is generated for each motor, we

can calculate the speeds and adjust the PWM waves accordingly to make the actual

speeds as close as possible to each other. In addition to that, it can be used to

calculate the exact distance traversed by the robot, the algorithms used for that will

be discussed in the next chapter.

3.3.3. Overall circuit diagram

The overall circuit diagram is the combination of both the motors control unit,

and the feedback unit. The ESP32 microcontroller board is the common element

between the two units as shown in Figure 3.5.

Figure 3.5 Overall circuit diagram

Chapter 4

Software System Design

Chapter 4 : Software System Design Page 20

4.1. Introduction

In this chapter, we are going to discuss the software design and the network

configuration for this project. The software consists of three parts which are : An

Android application used by the clients, a Java program used by the administrator,

and the robot software.

4.2. Network configuration

This section discusses the network topology and configuration for the project.

The robot and the computer running the main server are connected to a router which

is connected to internet as shown in Figure 4.1.

Figure 4.1 Network Topology

In order to receive the orders sent from any device connected to internet, the

server needs to be reachable from outside the local area network (LAN). By default

this is not possible due to the following problems : First, there is no way to send a

packet to the server from outside the LAN network directly, since the router is not

configured to forward the packets to that device. Second, the local IP addresses of

the devices inside the LAN are assigned using dynamic host configuration protocol

(DHCP), each time a new device is connected to the network the protocol picks up a

random address from a pool of available IP addresses and assigns it to the device for

a certain amount of time, and this does not ensure that the same device (Robot, PC)

always get the same IP address. And finally, the public IP address of the router may

Chapter 4 : Software System Design Page 21

change since it is dynamically provided by the Internet Service Provider (ISP), and

we have no control over it.

All these problems have been solved by setting the following configuration to

the router.

4.2.1. Port forwarding

To enable our server to receive packets from outside the LAN, the router needs

to be configured to forward the packets coming from outside the LAN to the

computer which is running the server, and this is called "port forwarding". Basically,

it means that the router will map the external ports starting from 5563 to 5566 on the

public IP address to the corresponding local ports of the computer running the

server, and hence, all the packets from internet received by the router having a

destination port between 5563 and 5566 will be sent to the host which is running the

server on the LAN (i.e. : 192.168.1.37).

4.2.2. Dynamic Host Configuration Protocol reservation (static DHCP)

For the second problem, we need to configure our router to always assign the

same IP addresses to both the robot and the computer running the server. This can be

configured in the DHCP settings of the router, where static entries can be defined.

The router has a DHCP reservation list, and each list entry consists of a tuple (IP

address, MAC address), where the user can reserve an IP address such that it can

never be assigned to a host except the one having the corresponding MAC address.

4.2.3. Dynamic Domain Name Server (DDNS)

Since the public IP address is assigned by the ISP and may change at any time,

a dynamic domain name server (DDNS) is used to overcome this problem.

The principle of working of the DDNS is almost the same as the DNS, it associates

each domain name to an IP address, such that when a client tries to access to a server

using its domain name, it sends a request to the DNS to get its IP address. This is

used because it is much easier for humans to work with domain names than with IP

addresses. The only difference with DDNS is that the associated IP address is not

fixed, which means that the server's IP address may change frequently, and hence,

Chapter 4 : Software System Design Page 22

the DDNS server needs to receive updates each time the address is changed. Figure

 4.2 illustrates the working principle of DDNS.

Figure 4.2 DDNS service

The DDNS service that have been used for this project is called NOIP. It is free

and easy to set up, first an account is created on www.noip.com, then an available

domain name is selected for the server, and then two options are possible : either

install the software client on the computer running the server and the software will

keep running on the background and send IP address updates periodically, or

configure the service on the router directly, in this case the router will be sending the

address updates to the DDNS server each time to associate them with the selected

hostname. The latter option is the one that have been used.

4.3. Android Application

In this section we will discuss the android application that have been designed

for this project. Flowchart of Figure 4.3 describes the general operation of the

application.

Chapter 4 : Software System Design Page 23

Figure 4.3 Android Application flowchart

The Android application is intended to be used by the customers of the

supermarket, Figure 4.4 shows the UML use case diagram that describes all the

possible use scenarios and their relationships :

Chapter 4 : Software System Design Page 24

Figure 4.4 Android Use Case Diagram

 The application has a total of 4 Activities that makes it simple and intuitive for

the end user, each activity is designed to accomplish a certain task and has its own

layout. The four activities are :

4.3.1. LoginActivity

This is the first activity that is launched when the application starts. The layout

of this activity contains two EditText's (text fields), one for the phone number and

the second for the password, it also contains a login button as shown in Figure 4.5.

Figure 4.5 Login activity

Chapter 4 : Software System Design Page 25

The aim of this activity is to identify the user before going to the next steps. No

registration is allowed via the application, it is done directly on the java desktop

program for a better control of the customers database. Once the user enters his

credentials, and presses the login button, an AsynchronousTask is started to perform

the network operation in the background and keep the UI thread free. The

AsynchronousTask creates a Socket object that establishes a TCP connection to the

main server, then it sends the login data through an ObjectOutputStream and waits

for an answer using an ObjectInputStream. The answer is in the form of a value of

type long, two cases are possible : if the data sent corresponds to a user in the

database, then the ID of the user is returned from the server and the ProductsActivity

is started, otherwise a negative value is returned meaning that no matching user have

been found and an error message is displayed as shown in Figure 4.5. When the user

is successfully identified, the ID of the user is saved in the application data to be

used for making orders, and so that the next time the user starts the application he

doesn't need to login again and the ProductsActivity is started directly, until he

decides to log out from his account.

4.3.1. ProductsActivity

In this activity, the layout contains a RecyclerView with the list of products,

and a "My Cart" button on the toolbar which is disabled by default. An

AsynchrounousTask is started in the onCreate method to fetch the data from the

server, it establishes a TCP (Transmission Control Protocol) connection and uses an

ObjectInputStream to get the list of products which are then stored in an

ArrayList<Product> and passed to a custom Adapter object which is responsible for

binding each object on the list with a recycler view item.

Each recycler view item has the following elements : three TextView's for

product name, description, and price, an ImageView to display a small image of the

product, and an "Add" Button used to add the product to the cart, once pressed a

dialog window pops up and prompts the user to select the desired quantity (between

0 and the Maximum available for that product). Figure 4.6 shows screenshots of the

products activity.

Chapter 4 : Software System Design Page 26

Figure 4.6 Products Activity

Once a product is added to the cart, the "My Cart" button is enabled allowing

the user to check the content of his cart in the Order Activity. The user can refresh

the list of products by swiping down the list when already at the top. A side menu is

also available to navigate to the other activities, three options are possible : My cart,

have the same effect as clicking the button on the toolbar, My orders : starts

MyOrdersActivity, and Logout to delete the registered user ID and go back to

LoginActivity.

4.3.2. OrderActivity

Once the user has selected his products and pressed the "My Cart" button, the

cart object, which is of type ArrayList<SubOrder>, is passed in an intent using the

putExtra method to the OrderActivity, and the activity is started.

The OrderActivity contains a RecyclerView that displays the list of products in

the cart, each recycler view item has the following elements : four TextView's for

product name, description, quantity, and sub-total price (which is calculated by unit

price x quantity), an ImageView for the product image, and an ImageButton with a

bin icon to remove the product form the cart. The total price, which is the sum of

sub-totals of each item is displayed in another TextView at the bottom of the screen.

Screenshots of the order activity are shown in Figure 4.7.

Chapter 4 : Software System Design Page 27

Figure 4.7 OrderActivity

To confirm his order, The user presses the "Order" button on the top, this will

show a confirmation message before sending an instance of the Order class with the

registered user ID through a TCP socket to the main server to process the order. A

boolean value is then returned from the server to indicate whether the order has been

accepted or not, this could happen in the case where many users added the same

product to their carts and the product ran out of stock before one of them confirmed

his order, in that situation an error message is displayed to the user stating that one

of the products is no more available. Otherwise, the order is accepted and user is

redirected to MyOrders Activity.

4.3.3. MyOrdersActivity

In MyOrdersActivity, a list of orders is displayed to the user in a

RecyclerView. The same process is used as in the ProductsActivity, an

AsynchronousTask is started to connect to the server through a TCP socket, then the

user ID is sent to the server that will query the database for the corresponding

orders. The server responds with the list of Order objects through an

ObjectOutputStream, the list is then passed to the Adapter to bind them with the

corresponding Views. Each list element contains two information : the order ID and

the state of the order as shown in Figure 4.8.

Chapter 4 : Software System Design Page 28

Figure 4.8 MyOrdersActivity

The orders are ordered in a way such that the ones in the "IN_PROGRESS "

state are displayed first, followed by the ones in "PENDING" state, and finally the

"READY" state. The user can refresh the list by swiping down to follow the state

updates of his orders in real time and know when they are ready for pick up.

4.4. The java desktop program

This is the central part of the project, it consists of a java program with a set of

background threads that act as a server to send/receive data from/to Android clients,

control the robots, and manages the orders. It also contains a GUI that is used to

manage the products and customers database, and also monitor the orders state and

robot position in real time.

Figure 4.9 shows the UML use case diagram that describes the possible actions

that can be done by the administrator.

Chapter 4 : Software System Design Page 29

Figure 4.9 Java Program Use Case Diagram

4.4.1. Classes organization

The classes are divided into different packages for a better organization of the

source code, the packages are organized in the following way :

 Background: contains the classes responsible of running the background

networking tasks, the UML diagram in Figure 4.10 shows the different

classes in this package and their relations :

Chapter 4 : Software System Design Page 30

Figure 4.10 background package UML diagram

 database : contains two classes, DBHandler which is a class used to

handle communication with the SQLite database, and Queries which is

an abstract class containing constants for tables and attributes names

organized into internal classes .

 GUI : contains the different classes used for the graphical user interface,

it contains also sub-packages such as : controller, which contains the

controller classes each fxml layout file, layout, contains the fxml files

generated using scene builder, and dialog containing classes for

different dialog windows used in the GUI (error dialog, info dialog..)

 Observer : contains two interfaces used to implement the observer

design pattern used to update the robot position on the map when the

robot object changes its position.

 robot : contains the Robot class used to communicate with the physical

robot and a VirtualRobot class, which is a subclass of Robot that has an

additional thread that simulates the physical robot behavior. Figure

4.11 shows the UML diagram for the two classes :

Chapter 4 : Software System Design Page 31

Figure 4.11 robot package UML diagram

 utils : contains some utility methods used in the project

 shared : contains the shared classes between the Java program and the

Android application such as the Product class, and the Order class.

Figure 4.12 shows the UML diagram for these classes :

Chapter 4 : Software System Design Page 32

Figure 4.12 shared package UML diagram

4.4.2. Background threads

ProductsServer thread

This thread is responsible of sending the list of products on the database to the

android clients. The productsServer thread starts by opening a TCP server socket

port 5563 and keeps waiting for clients by calling the accept method on the

ServerSocket object. Once a client is connected, a Socket object is returned from the

accept method, and a new thread is created to handle the client and allow the

ProductsServer thread to accept other clients while the first one is being processed.

The new thread starts by querying the products from the database using the

querryProducts method of the DBHandler object, the objects are stored in an

ArrayList. Then an ObjectOutputStream is used to send the objects one by one to the

client, finally the socket is closed and the thread is destroyed.

Chapter 4 : Software System Design Page 33

LoginServer thread

This thread is used to authenticate the user using their phone numbers and

passwords. The LoginServer thread creates a ServerSocket that is bound to port

5565, after a client is connected a new thread handles it to allow the other to accept

other connections. The handler thread creates an ObjectInputStream and an

ObjectOutputStream objects to exchange data with the connected client. First, a

string is received from the client, the string is in the form (phone::password) where

phone is the phone number of the user and password is his password. The :: is used

to separate the two parts of the string, the split method is called for that purpose. A

database query is then performed to retrieve the user ID having this phone number

and password. The queryCustomerId method of the DBHandler object is called, if an

entry on the customer table satisfies the two conditions, then the ID of the user is

returned by the method, otherwise -1 is returned. The returned valued is sent to the

client through the objectOutputStream, after that the socket is closed and the handler

thread is destroyed.

OrdersServer thread

This thread is used to receive orders from the customers. As for the previous

threads, the ordersServer thread keeps listening on port 5564, once a client is

connected it is handled by a new thread. An Order object is received through the

ObjectInputStream, a check operation is performed to ensure that the ordered

products are still available and did not get out of stock while the user was selecting

his products, if the order is not accepted a boolean value of False is returned to the

client to indicate that the order is rejected, otherwise it is inserted in the database

using the insertOrder method of the DBHandler object, then the quantity of each

ordered product is subtracted from the corresponding available quantity. The order

ID returned by the database is assigned to the order, its state is then set to

state.PENDING, and a boolean value of True is returned to the connected client to

confirm that the order is accepted. Finally the order is inserted in the orders queue to

be processed when its turn comes, the socket is closed, and the handler thread is

destroyed.

Chapter 4 : Software System Design Page 34

MyOrdersServer thread

This thread is similar to the previous threads, it is used to send the list of orders

corresponding to a certain user, such that the user can see his orders and observe

their states in real time. The thread starts a TCP serverSocket on port 5566, when a

client is connected it is handled by a new thread. First, a value of type long is

received, the value represents the user ID. The ID is used to query the list of orders

corresponding to that user, the queryOrders(long ID) method of the DBHandler

object is used for that. The elements of the returned arrayList are then sent to the

client through the ObjectOutputStream. Once finished, the socket is closed and the

thread is destroyed.

Robot Controller Thread

The robot controller thread is the thread responsible for the control of the robot.

Its main function is to assign the next order to the robot to process it when available.

The thread starts first by waiting for an order, once received it checks if the robot is

available to process it, otherwise it waits until the robot becomes available and

assigns the order to it to process it, as shown in the flowchart in Figure 4.13.

Figure 4.13 RobotController flowchart

Chapter 4 : Software System Design Page 35

This can be seen as a "producer consumer" problem, which is a well known

problem in Operating systems and multi-process synchronization. The producer

consumer problem can be seen at two levels : The first one concerns the orders,

where the OrdersServer thread produces orders and the RobotController thread

consumes them. The second one concerns the robot, it is produced by the thread that

communicates with the robot, when the robot finishes its work it sends a packet to

indicate that it is available again and is added to the queue, and then it is consumed

by the RobotController thread when an order is available to process.

In order to solve the problem, a queue is used to store the elements. The queue

has two synchronized methods : add(T item) and pop(), which means when a

thread calls one of these methods, any other thread trying to call them will block

(stop execution) until the first one is done. When the consumer thread calls the pop(

) method and there is no available element, the wait() method is called, which

causes the thread to be switched to the wait state, and wait until another thread calls

the notify method of the same object. When the add method is called by the producer

thread, the notify() method is called just after the element is added to wake up the

consumer thread (if any) that has previously called wait() on that same object.

Two queues have been used in our case, one for the orders and another one for

the robot, even though there is no real need to use a queue for the robot since we

have a single one, however this approach have been chosen so that we could support

multiple robots later on.

4.4.3. Database design

The program uses the JDBC java API to interact with an SQLite database. The

database contains 4 tables which are :

 products table : this table contains the products of the supermarket, the

database schema for this table is the following :

Chapter 4 : Software System Design Page 36

 customers table : this table contains the customers of the supermarket, the

database schema for this table is the following :

 orders table : this table contains the orders of each customer, the database

schema for this table is the following :

 subroders table : this table contains suborders, such that each order is made

of one or more suborders, the database schema for this table is the

following:

CREATE TABLE products

(

id INTEGER PRIMARY KEY AUTOINCREMENT,

product_name VARCHAR(20) NOT NULL,

description VARCHAR(40),

price FLOAT NOT NULL,

icon_loc VARCHAR(150),

location INTEGER NOT NULL UNIQUE,

available_qty INTEGER NOT NULL,

CHECK(location >= 0 AND price >= 0 AND available_qty>0)

);

CREATE TABLE customers

(

id INTEGER PRIMARY KEY AUTOINCREMENT,

first_name VARCHAR(25) NOT NULL,

last_name VARCHAR(25) NOT NULL,

phone VARCHAR(13) NOT NULL UNIQUE,

email VARCHAR(50),

birth_date VARCHAR(10),

password VARCHAR(256) NOT NULL

);

CREATE TABLE orders

(

id INTEGER PRIMARY KEY AUTOINCREMENT,

customer_id INTEGER NOT NULL,

order_state INTEGER NOT NULL,

FOREIGN KEY(customer_id) REFERENCES customers(id) ON

DELETE CASCADE

);

Chapter 4 : Software System Design Page 37

The UML diagram describing the relations between the 4 tables is shown in

Figure 4.14.

Figure 4.14 Database UML diagram

4.4.4. Graphical User Interface Design

The Graphical user interface (GUI) allows the user to manage the database

(insert, update, delete products or customers), and to monitor the current activity of

the robot (displacement and position on the map) as well as the list of orders

received in real time with their respective states.

CREATE TABLE suborders

(

order_id INTEGER NOT NULL,

product_id INTEGER NOT NULL,

quantity INTEGER NOT NULL,

CHECK(quantity > 0),

FOREIGN KEY(order_id) REFERENCES orders(id) ON

DELETE CASCADE,

FOREIGN KEY(product_id) REFERENCES products(id)

ON DELETE CASCADE

);

Chapter 4 : Software System Design Page 38

The GUI is developed using JavaFx and scene builder, it is divided into three

tabs: one for the orders and the robot map, one for the products, and one for

customers.

Orders tab

This tab contains the list of orders, the orders are added to the list as they arrive

in real time, each cell of the list contains the order ID and its current state.

To the right of the orders list, the map of the super market is displayed as a grid

of 20 x 20 numbered square cells, the robot is represented with a robot icon, and its

real time position and orientation are shown on the map as shown in Figure 4.15.

The map can be used to control the robot in manual mode, when a map cell is

clicked, a packet is sent to the robot to move from its current position to the desired

cell.

Figure 4.15 Orders tab

When an order is selected, the "order details" button is enabled and when it is

clicked, a new window shows the details of that order : the customer name, customer

ID, order ID, the total price, and a list of the ordered products with the

corresponding quantity. Figure 4.16 illustrates the order details window.

Chapter 4 : Software System Design Page 39

Figure 4.16 Order details window

Products tab

The products tab contains, on the left, the list of all the products in the

database. Each list cell contains the name, the ID, and an icon of the product. When

a product is selected (clicked), the details about that product (name, icon, ID, price,

quantity and description) are shown on the right of the screen, an "Edit" and

"Delete" buttons can be used to edit/delete the selected product.

A search bar is placed on the top of the list, it can be used to filter the list when

searching for a specific product, the search can be done using the product name or

ID, by typing a set of characters on the search bar, the list content will be reduced to

products having their name or ID starting by this set of characters. A screenshot of

the products tab is shown in Figure 4.17.

Chapter 4 : Software System Design Page 40

Figure 4.17 Products tab

An "Add new" button is on the bottom of the list, it is used to insert new

products to the database, when clicked a new window is shown to prompt the user to

enter the new product's information. In that window the user should enter the

product's name, description, price, and available quantity, the format is checked

using regular expressions, then he is asked to select the icon file by browsing the

computer's hard drive files. Finally the location of the product is set by clicking on

"search" button then clicking on the cell on the map that is displayed. The add new

product window and the product location selection window are shown in Figure

4.18.

Figure 4.18 Add new product window (left), selection of product position (right)

Chapter 4 : Software System Design Page 41

Customers tab

In the customer tab, a list containing all the customers of the database is

displayed on the left. Each list element contains the customer's full name and ID. A

search bar on the top of the list allows filtering the list elements and showing only

the ones having their first name, last name, or ID starting by the entered text. When

a customer is selected from the list, the details about him is shown on the right, the

details contain the customer full name, ID, phone number, email, and birth date, as

shown in Figure 4.19.

Figure 4.19 Customers tab

A "New customer" button on the bottom is used to add new customers to the

database. When clicked, a new window appears to enter the information about the

new customer as shown in Figure 4.20.

The input format is checked to avoid having corrupted or incorrect data on the

database, regular expressions are used to check for the first name, last name, email,

and phone number. For the birth date, a date picker is used to ensure that it is saved

in the correct date format. The password field must be entered twice to ensure that

the user does not make a mistake when typing it, if the two does not match, an error

message is displayed.

Chapter 4 : Software System Design Page 42

Figure 4.20 New customer window

4.4.5. Map representation

The map is represented as a grid of d x d square cells numbered from 0 to (d x

d - 1), each cell can be either an empty cell or an obstacle as shown in Figure 4.21.

Figure 4.21 Map representation (d = 20)

When the robot is at one of the empty cells, it can move to any of the four

adjacent cells if they are not obstacles (up, down, left, right). Diagonal moves

between cells are not allowed.

Chapter 4 : Software System Design Page 43

Any cell can be represented in two ways : Either using (x, y) coordinates such

that:0≤x,y<d,orusingasinglecellnumber,sayn,suchthat:0≤n<(dxd),

where d is the dimension of the map . The conversion can be done using the

following formulas :

 x = n % d

 y = n / d (Integer division)

 n = y x d + x

The map cells are stored in a 2D array of type Cell, which is an enumeration

that can take the values {Cell.OBSTACLE, Cell.EMPTY, Cell.DESTINATION},

the last value is used to colour the destination cell with a different colour when

drawing the map. The loadMap() method is called when a Map object is constructed

to initialize the array of cells, the values are read from a binary file called

"default.map" where the obstacle cells are represented as 1s and the empty as 0s.

4.4.6. Path planning

For the path planning algorithm, two different approaches have been compared:

Single source shortest path approach

Single source shortest path algorithms are algorithms that find the shortest path

from a single source node in a graph to all the other nodes with the sum of the edge

costs on each path being minimal. The most famous algorithm for this problem is

DIJKSTRA's algorithm.

Dijkstra's algorithm starts from the source node and then it selects the closest

adjacent node based on an adjacency matrix, and checks if the distance of the path

from the source node to any other node is greater than the path from the source node

to the selected node plus the distance from that node to the destination. If the path

through the intermediate node is faster, then the path is selected to be a shortest path

to reach that destination. After testing all the possible nodes for that selected node,

the node is said to be explored and the algorithm takes the next closest node and do

the same until all the nodes are explored. If we want to find the path to a single

Chapter 4 : Software System Design Page 44

destination node only, the algorithm can be stopped as soon as the destination node

is the next one to be explored.

Another algorithm known as A* algorithm is also used as a single source

shortest path algorithm, it is based on Dijkstra's algorithm, and adds an extension to

it to achieve better performances. The two algorithms are similar, except that, A*

uses a heuristic to guide its search.

The optimization is added when searching for the nearest unvisited node, A*

takes another value into account, which is the Euclidean distance (h) from any node

to the destination, to guide the search algorithm to go faster towards the destination

node without exploring unnecessary nodes.

Figure 4.22 shows a comparison between the two algorithms, the green cell

with the robot represents the starting point, the yellow one is the destination point,

and the red ones are the nodes that have been explored before finding the shortest

path. We can clearly see that A* (on the left) is much more efficient than Dijkstra

(on the right), and both algorithms generate the same optimal path length.

Figure 4.22 A* VS Dijkstra's algorithm

Let h[] be an array of size n such that :

 h[i] = ; 0 ≤ i < n

Chapter 4 : Software System Design Page 45

Once all the values of h are calculated, they are used in the algorithm as

follows :

1. Let c[][] be an adjacency matrix of size n x n and s our source node.

2. Create four arrays : d[] containing the distance from source node to all the

other nodes (c[s][]), v[] array of booleans to mark the visited nodes, initially

all the nodes are unvisited, p[] to store the last node to go through before

reaching the node, initially -1 (no intermediate node), and h[] for the

Euclidean distance from any node to the destination node d.

3. Pick the index i of the unvisited node having the smallest value of

(d[i]+h[i]).

4. Compare the distance from the source node s to all the other nodes, with the

distance from s to i plus from i to the other nodes (d[j] > d[i]+c[i][j] ; where

0≤j<n, n: number of nodes in the graph)

5. If the distance is smaller, update d[j] by d[i]+c[i][j] and set p[j] = i .

6. Mark i as visited (v[i] = true)

7. Repeat for 0 ≤ i < n , until all the nodes are visited.

At the end, we get d[] containing the shortest path's length from s to all the

other nodes, and p[] containing the last node to go through before reaching any

node. The following recursive function can be used to recover the shortest path from

s to a target node, say t :

All pairs shortest path approach

The second approach that have been tested is using an all pairs shortest path

algorithm, which means an algorithm that finds the shortest path between every pair

void path(int t) {

 if (p[t] == -1)

 System.out.print(" -> " + t);

 else {

 path(p[t]);

 System.out.print(" -> " + t);

 }

}

Chapter 4 : Software System Design Page 46

of nodes in the graph. One of the most used all pairs shortest path algorithms is

known as FLOYD's algorithm (or Floyd-Warshall algorithm).

Floyd's algorithm works as follow for a graph of n nodes :

1. Let s[][] a copy of our adjacency matrix of size n x n, and p[][] an array of

size n x n containing the next node to go through, initially if there is a route

from node i to j, then p[i][j] = j, otherwise p[i][j] = -1

2. Let i,j, and k, be three variables such that 0 ≤i,j,k<n, initially i=j=k = 0

3. For every pair (i,j), check if p[i][j] > p[i][k] + p[k][j], if true, update s[i][j] by

s[i][k] + s[k][j] and set p[i][j] = p[i][k], otherwise continue

4. Increment k and repeat step 3 until k = n-1

At the end of the execution of the algorithm, we get p[i][j] containing all the

next nodes to move to, to go from node i to j for any 0 ≤i,j<n

The total path from i to j can be recovered from p[][] using the following

function :

Floyd's algorithm has a

time complexity of O(N

3
), however some optimization

can be added to speed up the algorithm : Since our graph is an undirected graph, it

means that the distance from i to j is the same as the distance from j to i. this can be

used to reduce the number of iterations such that once we find a new shortest path

from i to j, we apply the same to go from j to i, and thus the algorithm can be applied

to the upper half of the matrix only and have the lower part being a copy of it. The

nested loops used by the algorithm would look like :

void getPath(int src, int des) {

 System.out.print(src + " -> ");

 while (p[src][des] != des) {

 System.out.print(p[src][des] + " -> ");

 src = p[src][des];

 }

 System.out.print(des);

}

Chapter 4 : Software System Design Page 47

The number of iterations in this case is reduced from n
3
 to :

 n x [(n-1) + (n-2) + (n-3) +.....+(1)] = n x [

 (1+n-1)] =

A ragged array could be used to represent the matrix since only one half is used

and the other half is a copy of it, this would save half of the memory space used but

would require to perform a check on i and j when accessing s[i][j] or p[i][j] such that

i should be always greater than j. But since the arrays need to be accessed

frequently, it is preferred to minimize the access time at the expense of memory, so

the ragged array won't be used in our application.

A last optimization is added to our algorithm to skip some unnecessary

iterations as follows :

 If k is a node that represents an obstacle, then it is obvious that no shortest

path would be updated if we go through that node (since there is no path to

it), skipping this step will avoid

 unnecessary iterations for each obstacle.

 If i is an obstacle node, or i is equal to k, or there is no path from i to k, then

there is no shortest path that would be updated , skipping these steps will

avoid doing n-i unnecessary iterations.

 The final code for our Floyd algorithm path finding function is the following :

for (int k = 0; k < n; k++) {

 for (int i = 0; i < n; i++) {

 for (int j = i + 1; j < n; j++) {

 if (s[i][j] > s[i][k] + s[k][j]) {

 s[i][j] = (s[i][k] + s[k][j]);

 p[i][j] = p[i][k];

 s[j][i] = (s[j][k] + s[k][i]);

 p[j][i] = p[j][k];

 }

 }

 }

}

Chapter 4 : Software System Design Page 48

Comparison between the two approaches

Both approaches can be used in our application. For the first one, once an order

is received and the products positions read from the database, the A* algorithm will

be executed to calculate the path from the current position to the next product. Once

the robot reaches the product, the path from that product to the next one is calculated

again, and so on until the robot collects all the products and gets back to the starting

position. For the second approach, Floyd's algorithm will be executed only once,

after the generation of the map, then the results will be stored in the p[][] array, and

each time a path between two nodes is needed it can be retrieved directly from p[][]

Since in our application the robot will be frequently moving, the first approach

would require to do the same calculations several times because the paths will not be

stored, this would add more computational charge to the server (or the robot) and

more time delay for the orders processing. Although the second algorithm takes

much more time to execute compared to the first one, it has the advantage of being

executed only once, at the starting of the program. Since in our application we are

considering that the map is fixed and all the obstacles are static, Floyd's algorithm is

the one that best suits our application.

for (int k = 0; k < n; k++) {

if (getCell(k) == Cell.OBSTACLE)

 continue;

for (int i = 0; i < n; i++) {

 if(getCell(i)==Cell.OBSTACLE||s[i][k]==Short.MAX_VALUE||i==k)

 continue;

 for (int j = i + 1; j < n; j++) {

 if (s[i][j] > s[i][k] + s[k][j]) {

 s[i][j] = (s[i][k] + s[k][j]);

 p[i][j] = p[i][k];

 s[j][i] = (s[j][k] + s[k][i]);

 p[j][i] = p[j][k];

 }

 }

}

}

Chapter 4 : Software System Design Page 49

Order of collection

For improving the robot displacement, the products are ordered in a way such

that the closest one from the starting position is the first one to be collected, then the

one which is the closest to that product is the second, and so on until all the products

are collected. This is done in the following way :

1. Let L[] be a list containing the n products that need to be collected, set two

variables: src initially equal to the starting node, and i initially 0.

2. calculate the path lengths from src toL[j](s.t:i≤j<n)

3. swap the position of the product with the smallest path length with the one at

position i

4. set src = L[i] then increment i

5. repeat from step 2 until i is equal to n.

4.5. Robot software

The robot software is the program that is run by the ESP32 microcontroller to

control the robot displacement and communicate with the server. Initially, the robot's

position and orientation are saved in two variables : the robot orientation is

represented by a byte that can take 4 different values : 1 for North, 2 for East, 3 for

South, and 4 for West. The robot position is saved in a variable of type short, it

represents the cell number where the robot is at the current moment.

 As shown previously, the robot communicates with the server through a wireless

WIFI connection inside a local area network using TCP protocol, which is a reliable

protocol that guarantees the transmission of data with no errors. When starting, the

ESP32 connects to the WIFI network and gets an IP address, then it creates a TCP

server and keeps waiting for connections on port 1234. When a client is connected,

the client sends a packet that is read and stored in a byte array buffer, the

processPacket(byte packet[]) method is then called to process the received data.

The packet contains the list of coordinates of the points where the robot has to

go in order to reach the next destination. The first two bytes of the array are reserved

: packet[0] contains the length of the received data array, packet[1] determines if the

destination point is a product cell (should mark a pause to collect it), or a normal

destination point (ex : come back to the starting point).

Chapter 4 : Software System Design Page 50

The rest of the array contains the successive cell numbers that the robot should

go through to reach the destination, each cell number is represented by two bytes

since a single byte would restrict the cell numbers to be between 0 and 255, which is

not sufficient for our 20x20 map. Bitwise operators are used to recover the cell

numbers as follows :

Once next, which is the next point to move to, is determined, the

checkOrientation(short next) function is called. This function determines in which

orientation the robot should be to move from its current position to next, in the

following way :

Suppose that the robot is currently at some position p on the map as shown in

Figure 4.23.

Figure 4.23 Robot position

for (int i = 2 ; i < packet[0]; i += 2) {

 short next = (packet[i] << 8) | (packet[i + 1]);

 //...Move to next ...

 }

Chapter 4 : Software System Design Page 51

Since the robot can only rotate left or right by 90 degrees or go straight, then

the robot can move to one of 4 adjacent cells, as shown in grey in the figure. The

coordinates of the cells where the robot can move are : {P-20, P-1, P+1, P+20}, a

simple calculation can be done, as shown in Table 4-1, to determine the orientation

in which the robot must be, so that when it goes straight by one cell it moves from P

to next :

Table 4-1 Needed orientation with respect to (current position - next position)

(P - next) Orientation

-1 2 (E)

1 4 (W)

20 1 (N)

-20 3 (S)

Once the orientation is determined, the setOrientation(byte o) is called to set

the robot on that orientation before going straight by one cell. First, the

setOrtientation(byte o) method checks if the robot is already on the right orientation

(ie : current orientation = o), then if true the method returns directly without doing

anything since we don't need to rotate the robot. Otherwise, the function calculates

in which direction and how many times the robot needs to rotate by 90 degrees.

Table 4-2 shows how the calculation is done :

Table 4-2 Calculation of number and direction of rotation

(Current orientation - o) Rotation

-1 Rotate right x1

1 Rotate left x1

-2 Rotate right x2

2 Rotate left x2

-3 Rotate left x1

3 Rotate right x1

Chapter 4 : Software System Design Page 52

Once the direction and the number of times are determined, the corresponding

function is called to activate the motors and perform the action.

Two functions are implemented to perform the rotation actions: turnRight(int

n) and turnLeft(int n), where n is the number of 90 degrees rotations that should be

done. Another function stepForward(int d) is used to go straight by d centimetres.

The three functions use an algorithm to synchronize the speed of the two motors,

this is performed using the encoders discussed previously. The encoders are also

useful to determine the distance travelled by the robot, it can be used to make the

robot travel for an exact distance in centimetres by calculating the number of ticks

corresponding to that distance. Given that the number of holes on the encoder wheel

is 20, and the radius of the robot wheel is 3.5 cm :

circumferenceofthewheel=2xπx3.5≈21.99cm

tickspercentimetre=20/21.99≈0.91ticks/cm

Using this value, we can calculate the needed number of ticks to travel an exact

distance. The flowchart of Figure 4.24 describes the algorithm used to turn the

motors for a precise distance and keep the speeds synchronized.

The first step is to enable the sensors interrupts, meaning that each time the

encoder rotates by one position, an interrupt will be triggered and the ISR for that

sensor will be called. Each ISR contains a single instruction, which is to increment a

counter, L_count is used for the sensor on the left wheel and R_count is used for the

sensor on the right one. Then according to the direction (left, right, or forward), the

direction control pins are activated (IN1, IN2, IN3, IN4 of the H-Bridge) to set the

direction of rotation of the wheels. After that, an initial speed is set to both motors

by setting the PWM duty cycle of the pins connected to EN1 and EN2 of the H-

Bridge, the duty cycle for each motor are stored in L_PWM and R_PWM.

Then, as long as the tick counts of one of the motors is smaller than the desired one

t_count, the speeds of the two motors are compared by counting the actual tick

count minus the previous one for each motor.

Chapter 4 : Software System Design Page 53

Figure 4.24 Robot motors control algorithm flowchart

Chapter 4 : Software System Design Page 54

If one is greater than the other, the speed of the slower one is incremented and

the speed of the other is decremented (using L_PWM and R_PWM). After t_count

is reached, a brake function is called to prevent the motors form rotating freely, the

brake function inverses the direction of rotation of the motors for a brief delay, then

stops the two motors. Finally, the PWM duty cycles, L_count, and R_count are reset

to 0.

After each move (turn left, turn right, or step forward), the ESP32 sends a

packet to the connected client as an array of bytes in order to keep the server updated

of the current position and orientation of the robot and display it in real time on the

GUI. Three types of update packets are used : when data[0]=1, the packet is a

position update, the new position of the robot is sent in the two following bytes

data[1] and data[2], when data[0]=2 the packet represents an orientation update, the

new orientation of the packet is sent in data[1], when data[0]=0 the packet indicates

that the robot reached its destination and is ready to receive a new one.

Figure 4.25 shows a picture of the final prototype of the robot with all the parts

assembled.

Figure 4.25 Picture of The Robot

Chapter 5

Conclusion

Chapter 5 : Conclusion Page 55

The design and implementation of a robot based drive through system for a

super market, consisting of an Android application, a java program, and a mobile

robot controlled by an ESP32 microcontroller is described in this report.

The software and hardware parts worked as expected and met successfully all

the objectives set at the beginning of the project mainly : products selection and

ordering process, the reception and processing of the orders, the products and

customers database administration, the orders state and robot position monitoring in

real time, and finally the robot displacement and path planning.

 Some constraints were encountered during the hardware design. Having the

speed of both wheels of the differential drive robot synchronized was the most

challenging part, due to the quality of the low cost motors and sensors used, and to

some mechanical constraints. Finding batteries that had enough power for the

microcontroller and the motors and being light enough to be put on the robot was

also a difficult task. For the software part, testing and debugging a code of such a big

size was a new experience that required a lot of organization especially for the java

program. It was also interesting to explore the networking part and find the different

protocols that allowed the three parts of the project to communicate through the

network.

This work covered different topics in the field of computer engineering such as:

software design, GUI design, databases, multithreading, path planning, network

communication, embedded systems, interfacing, as well as some control techniques.

It was a good opportunity to put into practice the different skills learned during the

past 5 years to build a concrete project with its different parts.

 Nevertheless, a technical project is never complete. The action of collecting

the products was not covered due to the mechanical complexity and lack of

equipments. Further improvements of the project may include :

 The use of a multi-agent path planning and collision avoidance

algorithm to support multiple robots.

 The use of image processing or sensors to detect dynamic obstacles.

 Include a robotic arm or some other mechanism to perform the

products collection action.

References Page 56

References

[1] Wired, "Amazon robotics - Wikipedia," june 2019. [Online]. Available:

https://www.youtube.com/watch?v=8gy5tYVR-28. [Accessed 06 15 2019].

[2] Z. Z. Zhao G., "Design and Implementation of the Online Shopping," WISM

2012. Lecture Notes in Computer Science, vol. 7529, 2012.

[3] M. Z. A. Rashid, T. Izzuddin, N. Abas, N. Hasim, F. Azis and M. Aras,

"Control of Automatic Food Drive-Through System using," International

Journal of u- and e- Service, Science and Technology, vol. 6, no. 4, p. 10,

2013.

[4] Espressif Systems, "ESP32 Series datasheet," Espressif Systems, 2019.

[5] Statista, " Statista," 2019. [Online]. Available:

https://www.statista.com/statistics/266210/number-of-available-applications-

in-the-google-play-store/. [Accessed 1 June 2019].

[6] Android, "Meet Android Studio," [Online]. Available:

https://developer.android.com/studio/intro. [Accessed 03 Juin 2019].

[7] Android, "Projects overview | Android studio," [Online]. Available:

https://developer.android.com/studio/projects/index.html. [Accessed 03 June

2019].

[8] Android , "Introduction to Activities | Android developers," [Online].

Available: https://developer.android.com/guide/components/activities/intro-

activities. [Accessed 10 06 2019].

[9] Android, "Understand the activity lifecycle | Android developers," [Online].

Available: https://developer.android.com/guide/components/activities/activity-

lifecycle. [Accessed 10 06 2019].

[10] Android, "Layouts | Android developers," [Online]. Available:

https://developer.android.com/guide/topics/ui/declaring-layout.html.

[Accessed 12 06 2019].

[11] Google developer training, "7.1: AsyncTask and AsyncTaskLoader ·

GitBook," [Online]. Available: https://google-developer-

training.github.io/android-developer-fundamentals-course-concepts-v2/unit-3-

working-in-the-background/lesson-7-background-tasks/7-1-c-asynctask-and-

asynctaskloader/7-1-c-asynctask-and-asynctaskloader.html. [Accessed 13 06

2019].

