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Abstract

Diffusion magnetic resonance imaging (DMRI) is a technique that allows to probe the

microstructure of materials. In our case we use it for the White Matter (WM) while

tractography is a computational reconstruction method based on diffusion-weighted mag-

netic resonance imaging (DWI)that attempts to reveal the trajectories of white matter

pathways in vivo and to infer the underlying structural connectome of the human brain.

The aim of our study is to reach the best reconstruction of the WM in the presence of

abnormal tissues such as Astrocytoma type II and III, Glioblastoma Multiform, Menin-

gioma and Oligodendrocytoma type II. For that purpose, nine data about the mentioned

diseases aquired from the the UK data archive are utilised, the procedure is to apply both

deterministic and probabilistic methods with two stopping criteria for each to the dataset.

The analysis of the four outputs is conducted for each patient to assess the results in the

region of interest (ROI).

Besides the comparison between the tracts generated with the probabilistic and the deter-

ministic algorithms, another comparison is performed for FA=0.2 and FA=0.4 as stopping

criteria and their effect on the generated fibers.

The main contribution of this work is the implementation of the probabilistic tracking

algorithm. While searching for information concerning tractography .It is found that de-

terministic tractography is widely used because of its ease and simplicity. In this repport

advantages of using the probabilistic method for better results demonstrated therefore

both methods were applied on the same dataset in addition to analising the effect of

stopping criterion on the results in the ROI and the whole brain.
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General Introduction

Imaging of the brain has been a challenge for all imaging modalities from the beginning of

radiology. Its bony box makes it completely unapproachable to physical exam. Currently

the most utilized modalities in neuroimaging are computer tomograpgy (CT), MRI and

angiography .

Traditional MRI images present white matter as a homogeneous structure. In reality,

fiber tracts originate from various sources, radiate in different orientations, and travel to

distinct regions of the brain. Diffusion MRI provides investigators with the opportunity

to visualize these different white matter pathways and study the complexities of axonal

architecture in vivo and a non-invasive way.

Diffusion magnetic resonance imaging (MRI) records the motion of water molecules in

the brain and based on this information, the microstructure of the brain tissue through

which the water is moving is inferred.

The main clinical application of the diffusion MRI is the study of the neurogical disor-

ders, especially for the management of patients with acute stroke, because it can reveal

abnormalities in white matter fiber structure and provide models of brain connectivity.

The remainder of the present is organised along the lines of the following structure.

The first chapter is about diffusion MRI’s general aspects; concepts and mechanism. the

second chapter demonstrates the available reconstruction techniques thier mathematical

representations and limitations. The third chapter is about deterministic and probabilistic

tractography. the rest is the experimental part the results and conclusions.



Chapter 1

Diffusion MRI



Chapter 1 Diffusion MRI

1.1 Introduction

Neuroimaging, also known as brain imaging, is the use of various techniques to directly

or indirectly image the structure, function or pharmacology of the nervous system. It is

a relatively new discipline within medicine, neuroscience, and psychology.

Diffusion MRI is a magnetic resonance imaging method which came into existence in the

mid-1980s , it allows the mapping of the diffusion process of molecules, mainly water, in

biological tissue, in vivo and non-invasively. Molecular diffusion in tissue is not free, but

reflects interactions with many obstacles , such as macromolecules, fibers, mambrance.

Water molecules diffusion patterns can therefore reveal microscopic details about the

tissue architecture.

1.2 Brain anatomy

The microscopic level of the brain at consists of three types of tissues grey matter, white

matter and verticle shown in figure 1.1:

• Grey matter: Grey matter has a pinkish-greyish coulor in the living brain, contains

the cell bodies, the dendrites and the neuron axon terminals of neurons as shown in

figure 1.2.

• White matter: is made of axons connecting different parts of grey matter to each

other.

• Ventricle: is a communicating network of cavities filled with cerebrospinal fluid

(CSF) and located within the brain parenchyma.

Figure 1.1: Coronal section of the brain

1
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Figure 1.2: Structure of a neuron

1.3 MRI mechanism

The magnetic resonance (MR) process can simply be regarded to be to be a simple

reemission phenomenon. Energy is applied to a patient to be reemitted, detected, and

processed.

The MR process is based on the interaction between a strong, external magnetic field (B0)

and the magnetic spin of nuclei of the tissue of interest inside the gantry. The tissue nuclei

themselves act as tiny magnets. When the tissue of interest is placed in the strong external

magnetic field, the nuclei of the tissue are aligned along this very powerful magnetic field,

producing an equilibrium magnetization of the tissue. Such tissue magnetization is then

disrupted by properly tuned radio frequency (RF) pulses. When the RF pulse is turned

off, the nuclei recover (”relax”) to equilibrium in the main magnetic field, producing in

the process RF signals.

The RF signals produced by tissue relaxation are proportional to the magnitude of the

initial alignment, to the tissue proton density , and to the different rates at which nuclei

of a distinct chemistry and chemical surrounding relax. The differences in the RF signals

measured can be used to calculate a grey scale for image presentation (”tissue contrast”).

In order to obtain a significant difference in tissue contrast, the signals are measured,

or read out, after a user-defined time has elapsed from the initial RF excitation. This

time span is called the relaxation time (TR) and is - like all time measurements in MRI

sequences - measured in milliseconds. The image is mathematically constructed from the

signal using Fourier transformation.

2
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Figure 1.3: Magnetic resonance cycle

1.4 Diffusion

Diffusion refers to the random, microscopic movement of water and other small molecules

due to thermal collisions. Diffusion, also known as Brownian motion, is named in honor

of the scottish botanist Robert Brown who first observed spontaneous vibration of pollen

particles under the microscope in 1827 [2]. Diffusion was described later by the Fick’s

first law [11].

J = −D∇C (1.1)

Where:

J is the net particle flux (unit:mol/m2s), C is the particle concentration (unit:mol/m3),

and D is the diffusion coefficent (unit:m2/s).

Figure 1.4: Simulation of Brownian motion of a particle at starting point t0 and ending

point t1 .

The concentration changes as a function of time as shown in figure 1.5.

3
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Figure 1.5: Characteristic bell-shaped curves of the diffusion of Brownian particles

The problem with Fick’s first law (1.1) is that when the concentration gradient van-

ishes, no flux should result. This leads one to conclude that the diffusion stopped. However

the thermal collisions and diffusion still continue, simply they cancelling each other.

Einstein combined his theory of ”random walk” with principle of fluidic friction developed

in the 19th century by George Stokes resulting in Stokes-Einstein equation.

D =
KT

6πrη
(1.2)

where:

D is the diffusion coefficient (unit:m2/s), T is the absolute temperature (unit:k), KBoltzmann’s

constant (unit:J/k), r is the radius of the particle, η is the dynamic viscosity.

In 1905 Albert Einstein incorporated Fick’s first law and developed a comprehensive equa-

tion in answer to the question ”how far a Brownian particle moves in a given period of

time ?” He introduced the equation for the diffusion probability density function which

is able to predict the displacement given a period of time [5].

p(r, t) =
1

√
4πtD

3 e
− ‖r2‖

4tD (1.3)

where:

D is the diffusion coefficient (unit:m2/s), r is the displacement vector (unit:m), t is the

time (unit:s).

From equation (1.3), Einstein’s equation can derive the relation between the mean root

square and the diffusion coefficient.

‖r2‖ = 6Dt (1.4)
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Diffusion is called isotropic when particals are free to move in all directions and this motion

can be characterized by a single diffusion coefficient(D), and it is called anisotropic when

the diffusion varies with the direction this motion can be characterized by a 3× 3 matrix.

Figure 1.6: Diffusion;(a) isotropic diffusion and (b) anisotropic diffusion.

1.5 Diffusion Weighted Imaging

Diffusion Weighted Imaging (DWI) is a crutial part of modern MRI imaging and is really

an integral part of imaging almost all the brain pathologies. It seeks to measure the

ease with which water molecules are able to diffuse in any particular voxel therefore, it

provides us an insight into, essentially, the histology of that tissue, how cellular it is,

what the extracellular space is, what the intercellular space is. This can be very usuful

in distinguishing, for example, various entities as well as tumour grading.

The most commonly used terminology is whether or not a brain mass or a region demon-

strates restricted diffusion, which indicates the location of abnormally decreased diffusivity

compared to what that tissue should exhibit .

1.5.1 Pulse Gradient Spin Echo

In an environment where diffusion of water molecules is hindered by the biological struc-

ture of the tissue, we can only infer the mean displacement. Therefore, we measure the

Apparent Diffusion Coefficient (ADC) which determines the percentage of isotropy from

which conclusions about the micro-architecture can be made.
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To calculate the ADC parameter, it is required to sensitize water molecules in the brain.

From the direction of the applied gradients, we can then detect different values along

different directions [20].

The excitation pulse used in DWI is based on measurements which are influenced by spin

motion. We apply an initial gradient of determined intensity (G) and duration (δ) that

offsets the phase of all the spins in a voxel; time TE/2 corresponds to the application of

a 180o RF pulse that inverts the phase of the population of spins. After a certain time

lapse (∆) from the first gradient, another one, of inverse polarity, is applied causing the

spins to rephase. However, spins move from original position retaining a residual phase

offset that allows diffusion quantification [23].

Figure 1.7: Pulse Gradient Spin Echo

1.5.2 Diffusion weighted imaging and b-values relationship

The b-value is a factor that reflects the strength and timing of the gradients used to

generate diffusion-weighted iamges [17]. The higher the b-value the stronger the diffusion

effects.

The term ”b-value” is derived from Stejskal and Tanner 1965 landmark paper in

which they discribed their pulsed gradient diffusion method .

This technique still forms the basis for most modern DWI pulse sequences and consists

6
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Figure 1.8: Brain DWI with different b-values (0,100,200,500,1000 and 2000 s/mm2)

of two gradient pulses of magnitude (G) and duration (δ) separated by time interval (∆).

b = γ2G2δ2(∆− δ

3
) (1.5)

Where:

γ is the proton gyromagnetic ratio .

The question of what b-value is optimal is still unresolved, the problem is that this value

depends on many factors such as the target of reconstruction .

It has shown that a value satisfying (b× ADC) ≈ 1 is generally close to optimal for the

tensor-based measures such as anisotropy and mean diffusivity. However in crossing fibre

context, higher b-values in range of 2500− 3000s/mm2have been shown to provide better

angular resolution, Those b-values are acheivable on modern clinical systems, their use

reduces the overall signal to noise ratio(SNR) of the images compared to lower b-values,

this reduction is partly a consequence of the longer echo time required to accommodate

inevitably longer DW gradients leading to signal loss through T2 decay [7].

Specifically, if s0 is the MR signal at baseline and D is the diffusion coefficient, the signal

s after the diffusion gradients have been applied is given by :

s = s0e
−bD (1.6)

Figure 1.9: The relation of the weighted image with the b-value
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1.6 Summary

In this chapter we introduced a brief history of neuroimaging from the ordinary MRI.

Then we presented the diffusion MRI technique; its mechanism and the idea of following

the water molecules to probe the brain tissue and some physics of pulse gragient spin

echo and we defined also some related scalars input such as b-value and output such as

fractional anisotropy and what they reffer to.
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2.1 Introduction

The data extracted from the diffusion MRI provides essential information like the frac-

tional anisotropy and the main diffusion direction, such information enables the estimation

of the fiber orientation of the the WM. However those data can’t be directly used by clin-

icians, therefore, they should be preceded by some reconstruction techniques represent

these data in the image space.

In this chapter, we will introduce Diffusion tensor imaging (DTI) and High angular resolu-

tion imaging (HARDI) techniques and discuss their respective advantages and limitations.

2.2 Diffusion Tensor Imaging and tensor model

”Diffusion Tensor Imaging is a cutting edge imaging technique that provides quantitive

information with which we visualize and study connectivity and continuity of neural

pathways in the central and peripheral nervous system in vivo [1].

For routine DWI, the complexity of diffusion in biological tissues is often reduced to a

single average value. A superior method to model diffusion is to use the diffusion tensor,

a [3× 3] reflecting diffusion in different directions [19].

D =


Dxx Dxy Dxz

Dyx Dyy Dyz

Dzx Dzy Dzz

 (2.1)

The three elements on the diagonal (Dxx, Dyy, Dzz) represent diffusion measured along

each of the principal axes (x, y, z) .

The six remaining elements are symmetric and reflect the correlation of the random motion

between each pair of principal directions .

For perfect isotropic diffusion

Disotropic =


Dxx 0 0

0 Dyy 0

0 0 Dzz

 (2.2)

Where Dxx = Dyy = Dzz. For anisotropic diffusion, diagoanl elements are unequal and

the off-diagonal elements have non-vanishing values.
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Fortunately, there exists optimal cordinate system based on the diffusion ellipsoid, whose

main axis is parallel to the principal diffusion direction within a voxel with axes parallel

and tangent to the principal directions of diffusion.

Figure 2.1: Ellipsoid model using eigenvalues (λ1, λ2, λ3) and eigenvectors (ε1, ε2, ε3)

The eigenvectors ε give the directions in which the ellipsoid has major axes, and the

corresponding eigenvalues λ give the magnitude of the peak in that direction .

2.2.1 Tensor estimation

DTI technique relies on the mathematics and physical representations of geometric quan-

tities known as tensors which can be calculated from DWI data collected with diffusion

sensitizing gradients in at least six different directions. though in practical cases more

directions are needed to improve accuracy.

Figure 2.2: From diffusion image to tensor

The diffusion tensor is represented in 3 × 3 symmetric matrix as shown in fig 2.3,

where DXY = DY X ,DXZ = DZX and DY Z = DZY . This means that the diffusion tensor

matrix is symmetric with only 6 unique elements. To estimate all of them, a minimum of

7 measurements are needed: one baseline (b0) and 6 source data sets.

The diffusion tensor is usually calculated from diffusion weighted images (DWI) by solving
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the Stejskal-Tanner equation

Sk = S0e
−bgTk Dgk (2.3)

where g is the gradient direction is written as :

g =


gx

gy

gz

 (2.4)

gT is the transpose of g and D is the diffusion tensor.

The solution for the estimated tensor is shown in appendix A.

2.3 Diffusion Tensor Imaging measurements

After the estimation of the diffusion tensor useful quantities can be extracted from the

eigenvalues and the eigenvectors such as the apparent diffusion coefficient (ADC) and the

fractional anisotropy (FA) these are used to create images reflecting the various diffusion

properties of a tissue.

For a more insighted understanding of the relation of the eigenvalues and the eigenvectors

with the diffusion tensor, the diffusion matrix is decomposed as shown in equation 2.5.

D = V ΛV T =
(
e1 e2 e3

)
λ1 0 0

0 λ2 0

0 0 λ3



e1

e2

e3

 (2.5)

where:

V =
(
e1 e2 e3

)

Λ =


λ1 0 0

0 λ2 0

0 0 λ3


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2.3.1 Fractional anisotropy

There is no one-to-one relationship between a given anatomical feature and a particular

MR measure. However, fractional anisotropy (FA) is usually sensitive to several tissue

characteristics, like myelination, axon diameter, fiber density and fiber organization, which

have to be interpreted carefully.

FA is calculated from the eigenvalues (λ1, λ2, λ3) of the diffusion tensor using the following

equation:

FA =

√
3

2

√
(λ1 −MD)2 + (λ2 −MD)2 + (λ3 −MD)2

λ21 + λ22 + λ23
(2.6)

where MD is the mean diffusivity and calculated as follow:

MD =
λ1 + λ2 + λ3

3
(2.7)

The value of FA lies between zero and one, a value of zero means that the diffusion is

isotropic (λ1 = λ2 = λ3), while a value of one means that the diffusion occurs along one

axis and is totally rectricted in other directions.

Figure 2.3: Eigenvalues in isotropic and anisotropic diffusion

2.4 Diffusion Tensor scalars and brain structure

It is important, while working with DTI, to understand what is being measured and how

it is related to the biological microstructure of the brain.
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Figure 2.4: Utilization of Fractional Anisotropy technique in determining pathologies

Some DTI scalars are listedtogether with the information they provide:

• Fractional Anisotropy (FA) is a summary measure of microstructural integrity.

While FA is highly sensitive to microstructural changes, it is less depending on

the type of change.

• Mean Diffusivity (MA) is an inverse measure of the membrane density. It is very

similar for both GM and WM and higher for CSF. MD is sensitive to cellularity,

edema, and necrosis.

• Axial Diffusivity (AD) tends to be variable in WM changes and pathology. AD

decreases in axonal injury. The ADs of WM tracts have been reported to increase

with brain maturation.

• Radial Diffusivity (RD) increases in WM with de- or dys-myelination. RD may also

be influencedby changes in the axonal diameters in the axonal diameters or density

may also influence RD. The relation between DTI scalars and neural microstructure

is summarized in (table 2.1).
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Table 2.1: relaion between DTI scalars and neural microstructure.

FA MD AD RD

Gray Matter ↓ - ↓ ↑

White Matter ↑ - ↑ ↓

CSF ↓ ↑ ↑ ↑

High Myelination ↑ ↓ - ↓

Dense axonal packing ↑ ↓ - ↓

WM Maturation ↑ ↓ ↑ ↓

Axonal degeneration ↓ ↑ ↓ ↑

Demyelination ↓ ↑ - ↑

2.5 Diffusion Tensor Imaging limitations

DTI technique, proposed in 1992 and 1993 andnbased on the fundamental discovery of

Douek et al, Basser et al is widely used to reconstruct the micro-architecture of brain

tissue because it requires a short aquisition time (approximately 5 min) and it is available

on most clinical systems. Yet, it suffers serious limitations in regions of crossing fibers (fig

2.5); it cannot represent multiple, independent intra-voxel orientations. Therefore esti-

mated directions may be ambiguous and misleading in voxels with complex fiber structure

especially that the crossing fibers affects as much as 90% of all voxels in the brain [14].

Figure 2.5: Limitations of DTI a) kissing fibers, b) crossing fibers, c)branching fibers.
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2.6 High Angular Resolution Diffusion Techniques

HARDI technique was originally developed to overcome the DTI limitation and make the

tractography more robust thanks to its capability of resolving crossing, kissing and branch-

ing fibers as shown in (fig 2.6). This feature is crucial for studies of brain connectivity[22].

It requires the aquisition of over 50 gradients and high b-value while DTI only requires 6

gradients and thus a minimum of six diffusion-weighted images is required in addition to

a baseline S0 image using low b-values. Since more measurements are required, a better

reconstruction would result. This is achieved at the price of more time being required for

the measurement acquisition.

Figure 2.6: Difference between the a) DTI and b) HARDI.

HARDI methods fall into two broad approaches

• Model-free approaches relie on extracting orientation density function directly from

the collected data

• Model-based approaches consist of applying a model to the data before extracting

the fiber orientation distribution

2.6.1 Q-space

For all the model-based approaches, the number of diffusion measurements needed equals,

in theory, the number of parameters for the model. For example three tensors (three el-

lipsoids) require 18 independent measurement (six to each tensor) but when no model is

used, the estimation of fibers orientation requires the characterization of a 3D measure-
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ment of the diffusion process. For that 3D measurements for water molecules displacement

are needed in each voxel, as shown in (fig 15). The signal generated from the latter mea-

surements is called the q-space signal(Callaghan 1991) [8] .

2.6.2 Acquisition strategies

The acquisition strategy for HARDI is typicaly asociated with spherical sampling schemes,

though there exist other sampling schemes like Cartesian, radial, and other sampling

schemes in general 3D diffusion imaging shown in figure 16.

The two major sampling strategies shown in 17 are:

• Sampling the q-space on a dense 3D cartesian grid. This technique is generally

associated with Diffusion Spectrum Imaging (DSI) .

• Single shell spherical sampling for a single b-value in q-space. If multiple b-values

are used, it is called multishell HARDI, and it is used specially for Q-ball imaging

technique.

The first technique is based on estimating the PDF after sampling a large number of

q-space points then taking the inverse of Fourier transform. This method requires the use

of very high magnetic gradients and is mainly used in Diffusion Spectrum Imaging (DSI).

The second technique consists of estimating the Orientation Distribution Function (ODF)

by sampling on a spherical shell of radius determined by the used b-value and is the core

of q-ball imaging.

2.6.3 Diffusion Signal and Diffusion Propagation

It was shown that the relation 2.8 is true only if the diffusion gradient is infinitely small,

or is called the narrow pulse approximation.

E(q, t) =

∫
R3

p(r, t)e−2πiq
T rdr (2.8)

17



Chapter 2 Reconstruction Methods

Theoritically, the relation 2.8 is Fourier Transform and it imposes to sample the full

q-space which is not possible practically. In our context and for the purpose of diffusion

imaging and HARDI, the most important thing to know is that there is a Fourier transform

relationship between the q-space and the diffusion signal that we measure. The real space

probability distribution function that describes the diffusion process of water molecules,

also called the diffusion propagator.

2.6.4 Diffusion Spectrum Imaging (DSI)

Diffusion spectrum imaging (DSI) is a technique that is capable of mapping fibre architec-

tures by imaging the 3D spectra of water molecules’ displacement. First, it is known that

the signal obtained for each voxel is proportional to the average displacement of spins.

By assuming that the duration of the gradient is negligible compared to the mixing time

(time between the 2 gradient), then the relation 2.8 is true; which leads to:

p(r, t) = F−1(E(q, t)) (2.9)

ψ(θ, φ) =

∫ ∞
0

p(r, θ, φ)r2dr ST : θ ∈ [0, π], φ ∈ [0, 2π] (2.10)

Figure 2.7: Reconstruction of the diffusion ODF from DSI A) Tissue under study –

crossing fibres. B) Voxel expectation of the signal – diffusion spectrum. C) Fourier

Transform application to diffusion spectrum– diffusion spectra. D) Angular structure of

diffusion.
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This method requires fairly a strong imaging gradients (500 ≤ b ≤ 20,000 s/mm2)

in addition to a long acquisition time to measure hundreds of diffusion directions and “b-

values” (in the range of 150–515 measurements) that cover the 3D Cartesian grid which

make it clinically infeasible. But there are active developments of new pulse sequences

and new undersampling schemes to make DSI possible in less than 20 min.

2.6.4.1 Orientation Diffusion Function (ODF)

The diffusion orientation distribution function is the most famous feature of the diffusion

propagator, ψ, capturing the angular content of the diffusion propagator. Knowing that

the propagator computed from equation 2.9 does not correspond to the true propagator,

but to an ensemble average propagator (EAP). Fortunately, it has been demonstrated

that this diffusion propagator share the same angular profile as the true propagator, thus

enabling the use of the former Fourier relationship shown in 18 to establish models of the

local orientation distribution functions of tissues. The ODF is thus defined as the radial

integral of the diffusion propagator in spherical coordinates, This function measures the

amount of diffusion in the direction of the unit vector and provides a diffusion ”intensity”

in every direction.

For visualisationn, ODFs can be simple as they can be complex spherical functions that

cannot be visualized as ellipsoids like the diffusion tensors. The ODF is a discrete function

on a sphere that can be viewed as discrete values that live on the sphere or as a more

visually appealing option the radius of each vertex of the sphere can be scaled according

to its corresponding value. This creates what is called glyphs that can have any shape

desired as shown in fig 2.8. Hence, these glyphs are used to visualize the diffusion signal,

the apparent diffusion coefficient, and the ODF, among other functions, on the sphere

[21].
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Figure 2.8: ODF visualisation by sphere and by glyph.

2.6.5 Q-ball Imaging

To reduce the time spent by DSI while probing the structure of the tissue without any

modeling, a single shell HARDI technique, called q-ball was introduced [22]. Instead of

sampling the whole 3D grid, suffices for q-ball technique to traverse the q-space on sphere

[10] by choosing a sufficiently large diameter (b-value) so that the movement of water

molecules can be captured with high precision. The number of q-values is still large but

much less than DSI. this will lead a reduction of the scan time while the capability of

resolving complex tissue structure is kept intact [10].

Mathematically, it has been proven that an approximation of the ODF through q-ball

imaging, can be obtained simply by taking the Funk-Radon transfrom (FRT) of the

spheriacally sampled q-space. If the sampled points are distributed on the surface of

the sphere, then the result of FRT, the approximate value of ODF along direction that

connects the south and the north poles, is the sum of all measured q-space signals on the

equator [24]. Tuch showed that Funk-Radon transform reconstructs a smoothed version

of the true diffusion from the single shell HARDI acquisition [23] .

2.6.5.1 Funk-Radon Transform and the Q-ball

The Funk-Radon transform assigns to a function on the two-sphere its mean values along

all great circles. Hence, the Funk-Radon transform value at a particular point is the great

circle integral of the signal on the sphere defined by the plane that passes through the

origin and is perpendicular to the point of evaluation [18].

In general, to compute the approximate value of ODF in any direction, is to just sum all
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q-space signal on the ”new equator” perpendicular to the direction under consideration

using the following equation :

G[F (w)](u) =

∫
δ(uTw)f(w)dw (2.11)

where:

u,w are unit vectors , f(w) is a function on a sphere [8].

Figure 2.9: Illustration of Funk-Radon transform in the q-ball technique. Great circle

integrals are computed from the measured signal to obtain the ODF.

The ODF is intuitive because it has its maximum(a) aligned with the underlying

population of fiber(s). Hence, it is a more interesting function for tractography than the

ADC. The original QBI has a numerical solution [22] and more recent methods [13] have

introduced an analytical spherical harmonic reconstruction solution that is faster and

more robust to noise.

2.6.5.2 Spherical Harmonics

Analytically, the Q-ball ODF can be obtained from the spherical harmonics (SH) which are

the best mathematical tool to represent the spherical functions arising from the discrete

samples on the sphere from HARDI acquisition.

Spherical harmonics transform on the shpere is equivalent to Fourier transform on the
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plane [13]. Spherical harmonic of order l and phase m is denoted as yml (θ, φ) and can be

computed as follow.

yml (θ, φ) =

√
(2l + 1)(l −m)!

4π(l +m)!
pml cos(θ)e

imφ (2.12)

2.6.5.3 Modified Spherical Harmonics

As we are dealing with DMRI measaurements that represent the average attenuation of

the diffusion of water molecules, the HARDI signal is assumed to be real and symmetric.

Therefore, the modified SH are introduced .

In order to impose the symmetry, only the SH with even orders are considered and for

the real-valued constraint, the real and imaginary parts of SH are approriatly chosen and

index j is defined in terms of the order l and the degree m as shown in the equation 2.13

[9].

j(l,m) =
l2 + l + 2

2
+m (2.13)

2.6.6 Constrained Spherical Deconvolution

The idea of the spherical deconvolution emerged after noticing that any fibre population

can be expressed as a linear sum of the signals of all the fibres present in a given voxel

as shown in figure 2.10. This can be represented in a more general distribution of fiber

orientations, and the mixture of signals becomes a spherical convulotion.

S(θ, φ) = F (θ, φ) ~R(θ) (2.14)

Where S is the measured signal, F is the fODF an R is the fiber response. Hence,

the problem of estimating the fibre orientations themselves is solved by inverting the

convolution to infer the FODF from the measured signal.
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Figure 2.10: Spherical convolution approach; multiple fibre populations within a voxel

contribute with additive signals (S1,S2) to get the total DW signal (Stot) which is equiv-

alent to the convolution of fODF with a chosen fiber response function .

The problem with the spherical deconvolution is that the resulting fODF contains

negative side-lobes as shown in figure 2.11.

Figure 2.11: Spherical deconvolution with a maximum SH order of eight used to estimate

the fiber orientation distribution function (fODF) from diffusion weighted (DW) data.

The blue lines in (fig 2.11 correspond to the actual fiber orientations,The green color

corresponds to positive and red to negative values in the fODF. Because the fODF repre-

sents the distribution of fibers oriented along each direction, the negative values are not

physically possible. For that reasons the constraint spherical deconvolution [21] was in-

troduced. In the CSD approach the fODF is represented in the spherical harmonic basis,

a non-negativity constraint is applied as a soft regularizer(Tikhonov algorithm).

The CSD technique procedure is summarized in the following steps :

1. Obtain the sampled data in the cartesian coordinates.
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2. Transform the data into spherical coordinates.

3. Construct the matrix of SH basis.

4. Compute the coefficients of the SH for fixed order lmax using least square method.

5. Estimate the response function.

6. Construst the matrix of rotational harmonics.

7. Perform the deconvolution using the least squares method.

8. Find the fODFs at each voxel.

9. Eliminate negative regions using Tikhonov regularization.

2.7 Comparison of reconstruction techniques

The advantages and the disadvantages of some reconstruction techniques are summerized

in Table 2.2.
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Table 2.2: Advantages and disadvantages of some reconstruction techniques [23]

Technique Voxel Infor-

mation

Advantages Disadvantages

Diffusion

Tensor

Imaging

(DTI)

3D diffusion

tensor • Short acquisition time.

• Provides information

about diffusion orienta-

tion and anisotropy.

• Not hardware demand-

ing.

• DTI metrics based on

FA are validated and

accepted.

• Reproducibility studies

are widely available.

• Hypothesis-based.

• Does not provide ac-

curate information of

complex fiber architec-

ture.

• Tractography results

are vulnerable to severe

artifacts.
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Diffusion

Spectrum

Imag-

ing(DSI)

3D diffu-

sion dis-

placement

distribution

• Hypothesis-free.

• Provides accurate depic-

tion of complex fiber ar-

chitectures.

• Maps the entire field of

diffusion with possibility

of many different charac-

terizations of the imaged

structures.

• Relatively long acquisi-

tion time. Recent im-

provements in hardware

and imaging techniques

have made acquisition

time shorter.

• Demanding hardware

requirements.

• Lacking consensus on

proper quantitative

metric.

• Limited number of re-

producibility studies.

Q-ball

Imaging

(QBI)

3D fiber

orientation

distribution

• Tolerable acquisition

time.

• Provides information

about diffusion orien-

tation and anisotropy,

depiction of fiber cross-

ings.

• Demanding hardware

requirements.

• Although results seem

correct in important

brain areas, accuracy is

not guaranteed in all

brain regions. Further

validation of the tech-

nique required.

• Lacking consensus on

proper quantitative

metric.

• Limited number of re-

producibility studies.

26



Chapter 2 Reconstruction Methods

Table 2.3: Diffusion MRI acquisition techniques. Assuming 30 axial slice with thickness

of approximately 3 mm each.

dMRI gradient strength (sec/mm2) nbr of measurements time (min)

modality weak medium straong N fast slow

DWI
√

N=1
√

≤1000 1-3

Trace & ADC
√

2 ≤ N ≤ 4
√

≤ 1000 2-4

DTI
√

N=7
√

≤ 1000 3-6

Single shell HARDI
√ √

N≥60
√ √

b≥ 1000 (b≥ 3000 desirable) 10-20

DSI
√

N≥200
√

b>8000 (the more the better) 15-60

2.8 Diffusion ODF vs fiber ODF

The point of divergence between the latest reconstruction techniques is wether they at-

tempt to estimate the diffusion ODF (dODF) or instead they seek to recover the fiber

ODF. Proponents of the dODF argue that it remains the most unbiased, model-free char-

acterization of the physical process of diffusion itself. Any attempt at extracting more

specific information (in particular the fODF) relies on assumptions about how the tissue

microstructure influences the MRI signal. On the other hand, proponents of the fiber

ODF (fODF) argue that the dODF is only providing an indirect and blurred represen-

tation of the underlying fibre orientation. Even in the presence of a single coherently

oriented fibre population, dODF will provide a smooth profile, suggesting not a single

sharp fibre population but rather a broad range of possible orientations centred about the

main orientation.

Since the diffusion propagator is a smooth function, the computation of the dODF is

inevitably penalized by an intrinsic angular blurring that limits the angular resolution or

the ability to resolve two distinct fibre populations. In contrast, fODF can return a more

accurate description for single or multiple fibre populations by directly deconvolving the
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angular blurring introduced by the diffusion process and recovering more precisely the in-

formation of fibre orientation. For a single coherently oriented fibre population, fODF can

be represented by a delta function oriented along the direction of the fibre population. In

practice, however, due to regularization procedures and to account for noise instabilities

and numerical errors, a smoother fODF is however always preferred[7]. Nevertheless , the

recent literature shows that fODF methods consistently produce sharper functions com-

pared to methods based on dODF [7]. Besides, the fODF has a better angular resolution

than the dODF with smaller b-values.

Figure 2.12: Visualisation of a 60 ◦fibre crossing configuration using dODF and fODF

profiles. On the left, dODF is obtained from DSI, with a maximum b-value of 6000 s/

mm2. On the right, fODF is obtained using spherical deconvolution with b = 3000 s/

mm2.

2.9 Summary

One of the most challenging aspects of designing tracts is the choice of the underlying

model that transform raw dMRI images to the local fibre orientations .

In this chapter, we presented several reconstruction techniques from data aquisition to

the estimation of the fiber orientations Starting with DTI and its serious limitations,

HARDI techniques are introduced and which are able to recover the 3D diffusion PDF

and diffusion ODF of water molecules in biological tissues and recover complex multiple

fiber dstribution and overcome the crossing fibres limitation .
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3.1 Introduction

After the reconstruction procedure and the deduction of the fiber orientations in each

voxel, we get local information. Therefore we need to integrate those local orientations to

get more global information about the white matter. This is achieved by piecing all the lo-

cal fiber orientatoins together to infer the long-range pathways connecting distant regions

of the brain. This process is often referred to as fiber tracking or tractograpgy,. Such

technique can be performed on various fibrous tissues such as cardiac muscle and skeletal

muscle but its primary application has been on the central nervous system particularly

the brain’s white matter.

3.2 Fiber tractography

Basically, fiber tractography assumes that there exists in each imaging voxel a dominant

fiber direction and connects those local orientations to infer global fiber trajectories .

Mathematically, a set of local fiber orientations can be considered as 3D vector field

and global fiber trajectories as its streamlines. A streamline is any curve, that along its

trajectory, is tangent to the vector field. It is parameterized by its arc length [14]. Thus

for the streamline to align with vector field, its tangent at arc length has to be equal to

the vector at the corresponding position :

dr(s)

ds
= v[r(s)] (3.1)

where :

r(s) is the 3D position along the streamline, v is the 3D vector field.

Equation 3.1 can be solved by integrating both sides as follows :

r(s) =

∫
s0

v[r(s)]ds (3.2)

where r(s0)=r0 represents the starting point of the streamline which is considered as a

seed point. The process of integrating stepwise orientations into streamlines is generally

referred to as streamline tracking or tractography.
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Figure 3.1: Vector field of local predominant fiber orientations and two of its streamlines

depicted on a coronal view of the human brain. The blue streamline is part of the

corticospinal tract, whereas the red one is part of the corpus callosum. Notice that each

streamline’s tangent is parallel to the local vector field [14].

3.3 Deterministic tractography

The directional anisotropic information of the diffusion tensor provides a unique appor-

tunity for estimating and modeling the trajectories of white matter tracts in the human

brain noninvasively.

Deterministic tractography methods are primarely based upon the streamline algorithms

where the local tract direction is defined by the major eigenvector of the diffusion tensor.

These approaches have been used to map out white matter anatomical connections in the

human brain. The accuracy and and variance of the tract reconstruction depend of the

algorithm, the signal-to-noise ratio, the diffusion tensor eigenvalues, and the tract length.

3.3.1 FACT and TEND algorithms

The Fiber Assignment by Continuous Tracking (FACT) algorithm is an extension to the

streamline approach. It adjusts the step size depending upon the continuity of the local

fibre-orientation estimates. Where adjacent fibres are well-aligned, a large step is taken;

when there is no continuity between adjacent fibre-orientation estimates, a small step is

taken. Such variable step size attempts to prevent the streamline from deviating from the

true trajectory of the white-matter; for example, at points of high curvature or when the
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streamline is close to a boundary.

More recently, Weinstein has introduced the Tensor Deflection (TEND) tractography

algorithm. This algorithm uses the entire diffusion tensor to calculate the appropriate

deflection, as opposed to just the principal eigenvector. Therefore, this method uses the

diffusion tensor as the true PDF of the underlying fibre distributions. In voxels where the

anisotropy is high, the streamline follows the principal eigenvector of the diffusion tensor.

However, as the diffusion tensor becomes more isotropic, the path of the streamline is

deflected less [19].

Figure 3.2: Fiber assignment by continuous tracking algorithm starting from the bleu

point(seed point).

The FACT algorithm is summarized in the flowchart below.

Figure 3.3: Fiber assignment by continuous tracking algorithm .
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3.3.2 Streamlines integration

MR diffusion tractography is a method to identify white matter pathways in the living

human brain. These pathways form the substrate for information transfer between remote

brain regions and are therefore central to our understanding of function in both normal

and diseaded brain.

A stramline through a vector field is any line whose tangent is always parallel to the

vector field. Such streamlines are the intuitive method for performing tractography as

they can be reconstructed by simply starting at a seed point and following the local vector

information on a step-by-step basis, effectively ”joining the arrows” [16].

Mathematically, a streamline can be represented by equation 3.1 and to perform that

integration numerous numerical methods can be used. The most commonly used methods

are the Euler method and the Runge-Kutta method. Those are briefly explained in the

subsequent sections.

3.3.2.1 Euler method

The idea behind Euler’s integration is that ”very” locally, the solution is ”approximately”

linear, it follows the current flow vector v(r) from the current streamline point ri for a

very small time (dt) and therefore distance [15].

si+1 = si + v(ri)dt (3.3)

Euler’s algorithm is presented in the following pseudocode.
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Table 3.1: Error table of the above Euler’s integration example with different step sizes.

dt nbr of steps error

1/2 19 ∼ 200%

1/4 36 ∼ 75%

1/10 89 ∼ 25%

1/100 889 ∼ 2%

1/1000 8889 ∼ 0.2%

The Euler’s method is generally used beacause it is simple and direct. However,

it is less accurate and numerically unstable. In addition, the approximation error is

proportional to the step size h, hence a good approximation is obtained with a very small

h. This requires a denser of discretization leading to a longer computation time [12].

3.3.2.2 Runge Kutta

In order to take into consideration the variations of v between ri and ri+1 so that the

errors will be reduced, Runge-Kutta method is used. The idea behind it, is to cut short

the curve arc .

RK2(second order Runge Kutta)algorithm consists of the following steps [3]:

1. Do half a Euler step .

2. Evalute flow vector there.

3. Use it in the origin.

A still better method is the fourth order Runge-Kutta which gives better precision

but with more computations.
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It is true that Runge-Kutta has a good precision and it is easy to implement ease of

implementation but it requires relatively large computer time and the erroris not easy to

be estimated.

Figure 3.4: FACT algorithm using Euler’s method (red) Runge-Kutta method(green).

3.4 Interpolation

The integration process requires that the local fiber orientations be available at arbitrary

positions in space, which do not necessary align with the regular grid of acquired voxel po-

sitions. Therefore, a method for interpolating the discrete measurements into continuous

space is needed. The simplest method to obtain an estimate of the local fiber orientation

at any local fiber is to use the nearest-neighbor interpolation. This method approximates

the desired fiber orientation by that of the nearest voxel. However, this approach leads

to considerably greater interpolation errors than approaches that perform a smooth in-

terpolation between grid points.

Smooth interpolation methods assume that the fiber orientations between grid points

contain contributions from each neighboring point. Most algorithms use trilinear inter-

polation, where the local fiber orientations are calculated as a weighted sum from the

eight voxels nearest to the point of interest, with the weight of each neighboring voxel

determined by its distance from the point of interest.

Some implementations perform trilinear interpolation on the raw-diffusion weighted data

and recompute the local fiber orientations based on the interpolated data. Another ap-
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proach is to directly interpolate the local fiber orientation information.

Figure 3.5: Nearest-neighbor versus smooth (linear) interpolation. The seed point is

indicated as a white dot. Note that, as we move away from the seed point, the errors

made by the nearest-neighbor interpolation accumulate [14].

3.5 Seed point selection

The idea about the seed point selection is that the streamlines should not get too near

to each other, the approach is to choose a seed point with distance dsep from an existing

streamline then backward and forward-integration until distance dtest is reached (fig 23.

dsep is the separating distance given by the user and represents the minimal distance

between seed points and streamlines and dtest is a percentage of dsep (see fig 24 the effect

of changing the percentage) and corresponds to the minimal distance under which the

integration of the streamline will be stopped in the current direction [6].

The seed point selection is made according the following pseudocode:
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3.6 Track termination

White matter pathways terminate in the grey matter where the orientations uncertainty

is very high. Stopping criteria usually ensure that the streamline does not leave the brain

or turn back in itself. Also entering the grey matter may be a reason to stop tracking

which can be detected when the fractional anisotropy falls below a threshold value .

Another stopping criterion is the curvature threshold that imposes maximum local cur-

vature of the tracks. As it is unusual to find bends in white matter bundles, then if the

angle between two succesive steps is above the threshold, the track is terminated .

Besides the termination criteria, fiber tracking algorithms also uses acceptance /re-

jection criteria. The widely used criterion is that of minimal track length, rejecting short,

often spurious, tracks. More advanced stopping criteria are based on anatomical priors,

and reject tracks that terminate in cerebrospinal fluid or within white matter and only

accept tracks that connect different gray matter regions. Some of the condition that can

cause the track to stop are listed below.

• distance to neighboring streamline ≤ dtest .

• Streamline leaves flow domain.

• Streamline runs into fixed point (v = 0).
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• streamline gets too near to itself.

• After a certain amount of maximal steps.

3.7 Probabilistic tractography

Figure 3.6: Fiber distribution A)ideal B)real .

The main problem with the deterministic tractography methods, as the one shown in

figure 3.6, is the lack of information they provide regarding the error in the tracking

procedure in any given experiment. Without such knowledge, it is not possible to know

how much confidence we should have in the observed results. Probabilistic tractography

methods attempt to overcome this limitation by explicit characterization of the confidence

with which connections may be established through the diffusion MRI data set [4] .

While deterministic tractography algorithms assume a unique fiber orientation esti-

mate in each voxel, such that a single pathway emanates from each seed point, probabilistic

tractography methods generate a large collection or distribution of possible trajectories

from each seed point (see figure 20, Then, the paths with higher densities of the resulting

trajectories are deemed to be the right ones and then be connected to the corresponding

points.

To extend probabilistic tractography algorithms to exploit multiple fiber directions

requires one additional piece of information which is a model of the uncertainty of each

fiber-orientation estimate.
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Parke, Alexander and Cook, generalize calibrated probabilistic index of connectivity

(PICo) to use multiple tensor and improve tracking through fiber crossing. As with the

original implementation, the FA of each tensor predicts the uncertainty ODF as shown in

figure 3.7.

Figure 3.7: Visualisation of uODF A)zoomed in voxel B) An example of the double-cone

map showing the fiber direction and its uncertainty simultaneously.

Errors in the estimation of fiber orientation can be graphically depicted on a voxel-by-

voxel basis by using, for example, the double-cone diagram figure3.7, in which the principal

eigenvector of a diffusion tensor ellipsoid in an image voxel replaced by a double-cone,

whose angular width represents the data-fitting uncertainty.

Figure 3.8: Tracking using the probabilistic algorithm.

Probabilistic method consists of steps summarized in the following flowchart.
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Figure 3.9: Flowchart of the probabilistic method.

The results from the flowchart (figure 3.9) are shown in (figure 3.10) .

Figure 3.10: All possible paths using the probabilistic tractography.
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3.7.1 Bootstrap

The bootstrap technique creates a large number of samples from a smaller dataset to

improve the estimates of statistics. The standard method requires multiple acquisitions of

the signal for each measurement. To create a new sample, one of each of the measurements

is drawn at random from the set of repeats to provide a new combination[19] .

Figure 3.11: Bootstrap technique illustration.

3.8 Probabilistic vs deterministic

After studing both deterministic and probabilistic tractography methods. We can state

some differences conserning the two techniques. Their advantages and disadvantages are

shown in table 3.2.

Table 3.2: Advantages and disadvantages of probabilistic and deterministic tractography.

deterministic probabilistic

Advantages
Fast Deal with crossing fibers

simple Robust to noise

Reliable

Disadvantages Crossing fibers Burden computation → time consuming

sensitive to noise
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3.9 Summary

In this chapter we viewed tractography with its two sorts probabilistic and deterministic,

their algorithm such as (FACT and Tend) and how the probabilistic defines the right

path from tens of resulting paths, we also talked about the advantaged and disadvantages

of each method and some numerical techniques for integration of small orientations to

generate the trajectories and interpolation between two voxels.
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4.1 Introduction

The objective of this chapter is to obtain the best reconstruction of abnormal tissues in

the brain (WM) to assist surgeons for a better intervention. For that, we will use both the

probabilistic and deterministic algorithms and varying the stopping criteria then analyze

the results from the medical point of view.

4.2 Software environment

4.2.1 Dipy

Diffusion Imaging in Python (Dipy) is a free and open source software project for the

analysis of data from diffusion magnetic resonance imaging(dMRI) experiments. dMRI

is an application of MRI that can be used to measure structural features of brain white

matter. Many methods have been developed to use dMRI data to model the local config-

uration of white matter nerve fiber bundles and infer the trajectory of bundles connecting

different parts of the brain. Dipy gathers implementations of many different methods

in dMRI, including:diffusion signal pre-processing; reconstruction of diffusion distribu-

tions in individual voxels; fiber tractography and fiber track post-processing, analysis and

visualization.

Figure 4.1: Major dipy sub-modules and its relation to Nipy, Numpy, Scipy and Cython

community.
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4.2.2 Mango

Multi-image Analysis GUI (Mango) is a viewer for medical search images. It provides

analysis tools and a user interface to navigate image volumes.

Figure 4.2: Toolbox buttons of Mango.

4.2.3 MRi-brain

MI-Brain is built on top of the MITK library, which is also based on the VTK and ITK

libraries. This enables the software to support various types of neuroimaging datasets

and support a wide range of file formats. 2D, 3D and 4D images, regions of interest

(ROIs), tractograms and surfaces are loaded and saved from the application. One major

difference with other visualization tools, such as TrackVis, BrainVisa, ExploreDTI or

FiberNavigator, is that all data types can be loaded simultaneously in a common space

using the 3D transformation information contained in the header of each loaded file, even

if they don’t have the same dimensions, voxel size .
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Figure 4.3: A standard view of MI-Brain.

Many pluging setups are available or can be moved and resized. a) the DataManager

plugin displays all loaded datasets. b) the FiberAnalysis plugin displays streamlines’

statistics and buttons for various dissection and coloring options. c) the ImageNavigator

plugin navigates through 3D slices or the 4th dimension (DWI for example). d) 3 planar

slices with intersecting streamlines. e) 3D view showing loaded datasets. f) popup for

segmentation criteria to select options for streamlines’ selection using ROIs.

4.2.4 Dcm2nii(MRIcron)

Dcm2nii is a popular tool for converting images from the complicated formats used by

scanner manufacturers (DICOM, PAR/REC) to the simple NIfTI format used by many

scientific tools. Dcm2nii works for all image modalities (CT, MRI, PET, SPECT) and

sequence types and it has traditionally been included with MRIcron downloads.
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Figure 4.4: Dcm2nii tool box.

4.3 Dataset

For this study we downloaded data from the UK data service (http://ukdataservice.ac.uk/)

under collection name: ‘A neuroimaging dataset of brain tumour patients’ which were ac-

quired on a GE Signal HDxt 1.5 Tesla scanner with an 8 channel phased-array head coil

at the Brain Research Imaging Centre, University of Edinburgh, UK.

The data MRI’s parameters are summarized in table 4.1.
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Table 4.1: Summary of Data’s MRI parameters.

Sequence T1 T2 DWI

Pulse type
3D IRP (inversion recovery prepared) FAST spinecho single-shot spin-echo EPI

In plane

FOV

256 × 256mm

In plane

matrix

256 × 256 128 × 128

Slice thick-

ness

1.3mm 2mm

Number of

slices

156 72

Acquisition

order

front to back top to bottom

TR 10 s 2.5 s 16.5 s

TE 4 s 102 ms 98 ms

Nb of vol-

umes in the

time series

1 1 71 (7 × b=0

and 64 × b=1,000 s / mm2)

4.3.1 Data pre-processing

Clinical imaging data are typically stored and transferred in the Digital Imaging and

Communications in Medicine (DICOM) format, whereas the Neuroimaging Informatics

Technology Initiative (NIfTI) format has been widely adopted by scientists in the neu-

roimaging community. Therefore, a vital initial step in processing the data is to convert

images from the complicated DICOM format to the much simpler NIfTI format.

In our case, we used the dcm2nii application provided in the MRIcron software, then

we used Matlab to compress the files to a 4D file with .nii.gz extension which will be

processed latter by Dipy.
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4.3.2 Data loading

The experiment is started by loading the data and providing their paths.

The data to load consists of the following:

• 4D Nifti file.

• b-value file.

• b-vector file.

This is done using the following instructions:

from os.path import expanduser, join

home = expanduser(’~’)

dname = join(home, ’.dipy’) # Path to the data being processed

fdwi = join(dname, ’myfile21.nii.gz’)

fbval = join(dname, ’bl.bval’)

fbvec = join(dname, ’bv.bvec’)

import nibabel as nib

img = nib.load(fdwi)

affine = img.affine

data = img.get_data()

print(’data shape’, data.shape)

print(img.header.get_zooms()[:3])

from dipy.io import read_bvals_bvecs

bvl, bvc = read_bvals_bvecs(fbval, fbvec)

from dipy.core.gradients import gradient_table

gtab = gradient_table(bvl, bvc)

After loading the data it is denoised by removing the background and extract the

brain only using the median-otsu mask as follow.
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4.3.3 Data processing

After loading the data and removing the background, the reconstruction step is under-

taken. In our experiment we use the constrained spherical deconvolution (CSD) is used

to overcome the crossing fiber limitation.

This method is mainly useful with datasets with gradient directions acquired on a spher-

ical grid.

The basic idea with this method is that if we could estimate the response function

of a single fiber then we could deconvolve the measured signal and obtain the underlying

fiber distribution.

In CSD there is an important pre-processing step: the estimation of the fiber response

function. In order to do this we look for regions of the brain where it is known that there

are single coherent fiber populations. For example if we use an ROI at the center of the

brain, we will find single fibers from the corpus callosum. The auto-response function

will calculate FA for an ROI of radius equal to roi-radius in the center of the volume and

return the response function estimated in that region for the voxels with FA higher than

0.7.

We use fractional anisotropy (FA) as a stopping criteria and the easiest way to generate

the FA for each voxel in the brain we can use the DTI-reconstruction as follow.

tensor_model = TensorModel(gtab, fit_method=’WLS’)

tensor_fit = tensor_model.fit(data, mask)

fa = tensor_fit.fa

Then we compute the response using the following instructions.

response, ratio = auto_response(gtab, data, roi_radius=10, fa_thr=0.7)

After getting the response, we are ready to start the deconvolution process and get

the model.

csd_model = ConstrainedSphericalDeconvModel(gtab, response)

The next step is to extract the peaks(maxima of the ODFs) to deduce the fiber directions

sor that we use peaks from model.
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csd_peaks = peaks_from_model(model=csd_model,

data=data,

sphere=sphere,

mask=mask,

relative_peak_threshold=.5,

min_separation_angle=25,

parallel=False)

After collecting the peaks we choose either the probabilistic and the deterministic and we

set the stopping criteria.

Figure 4.5: The required steps to perform the tractography study. 1)Data acquistion and

conversion. 2)data reconstruction. 3)tractography. 4)visualisation and statistics.

4.4 Comparison of tractography algorithms

For our study, we used nine patients from the UK dataset archive, their clinical informa-

tion are summarized in the table 4.2.
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Table 4.2: Summary of the clinical data used in the study.

The flowchart below describes the followed steps to obtain the results we will analyze

latter.

Figure 4.6: Flowchart resuming the needed files for the study.
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To better locate the region affected by the tumor, we use mango (Nifti viewer). The

results are in the figure 4.7.

Figure 4.7: some results for visualising nifti with mango.

4.5 Analysis and discussion

After the .trk files are collected, MI-brain for 3D view is used (figure 4.8).

Figure 4.8: Resulting tract using different parameters. A) deterministic algorithm

with FA=0.4, B) deterministic algorithm with FA=0.2, C) probabilistic algorithm with

FA=0.4, D) probabilistic algorithm with FA=0.2.
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All four cases in figure 4.8 show a difference between A,B and C,D tracts. All of

them ensure the existence of abnormalities in the tissue but C and D give a more complex

and realistic reconstruction that help surgeons to intervene in the most efficient way.

The total number of streamlines generated by the deterministic and probabilistic methods

are shown in table 4.3.

Table 4.3: Total number of streamlines generated from deterministic and probabilistic

methods.

Deterministic Probabilistic

FA=0.4 FA=0.2 FA=0.4 FA=0.2

Case1 52926 179678 31014 91777

Case2 45107 151905 24948 51359

Case3 66357 219447 37702 108197

Case4 36408 146796 23564 82337

Discussion

From table 4.3, we notice that the number of streamlines generated using FA=0.2 is

greater than using FA=0.4 this is because more seeds were placed for tractography using

FA=0.2 then FA=0.4. Tracking with FA=0.4 is to track in a very restricted WM mask,

also probably removing part of crossing area where the FA is low due to the crossing.

Generally, FA will be set to lower value (e.g. 0.1) in the presence of tumor to allow

tracking through the edema area, where the FA is typically lower than healthy WM. The

comparison between deterministic and probabilistic is interesting, especially at FA=0.2.

Another remark is that when using the same FA, the deterministic algorithm generates

more streamlines. This due to the fact that the probabilistic method connects more

voxels which results in less but longer streamlines. This hypothesis is proved by using an

option in MI-brain where we could compute the longest streamline generated then filter

the streamlines according to their lengths. The results are summarized in tables 4.5 and

4.5.
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Table 4.4: the maximum length generated from each method (the colored cells corresponds

to the largest length for the same patients).

Table 4.5: Number of streamlines after setting the min length to 90 mm except for case

9.

The two exceptions in table 4.5 case 4 and 5 can be explained by zooming in the

generated tracts. The difference is shown in the figure 4.9.
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Figure 4.9: Voxel-wise assessment of deterministic and probabilistic tractography. Iso-

lated voxel depicting the streamlines passing through it. A) the fibers generated with

deterministic tractography shows acute bends. B) fibers generated with probabilistic

tractography shows smoothness

From figure 4.9, we notice in (A) acute bends that do not exist in the brain, unlike (B)

where the streamlines are smooth because of the conditions that must be fullfilled before

doing any connection between two voxels including setting the min angle to avoid such

acute angles something that makes the reconstruction, using the probabilistic method

closer to the real architecture of the WM. Therefore we can state that the fibers gener-

ated from deterministic method in cases 4 and 5 are not necessarily existing fibers.

Comparing right and left hemispheres

The tables 4.6, 4.7, 4.5 and 4.5 show for the four first cases, the number of streamline in

the left and the right hemispheres. The colored cells correspond to the damaged one.

Table 4.6: Number of streamlines in the right and the left hemispheres case1.
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Table 4.7: Number of streamlines in the right and the left hemispheres case2.

Table 4.8: Number of streamlines in the right and the left hemispheres case3.

Table 4.9: Number of streamlines in the right and the left hemispheres case4.

From tables 4.6 and 4.5, we notice that the number of streamlines in the damaged

hemisphere is less than the non-damaged one and this is due to the tumor’s effect in

damaging fibers so the diffusivity reduces. Therefore less fibers are detected while in

table 4.7 and 4.5; using FA=0.2, there are more streamlines in the damaged hemisphere.

The possible reason for this is that the tumor destructs the fibers, so that the number of

the affected fibers will double as they are cut.

Comparing the performance of the same algorithms in ROI

After visualizing and analysing the performance of the algorithms in the whole brain, the

ROI is extractes to be studied it separately using the segmentation tool. The results of

the four cases are shown in figures 4.10, 4.11, 4.12 and 4.13.
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Figure 4.10: Tracts behavior inside the tumor region(ROI) case1. A) tract using DFA=0.4,

B) tract using DFA=0.2, C) tract using PFA=0.4, D) tract using PFA=0.2.

Figure 4.11: Tracts behavior inside the tumor region(ROI) case2. A)tract using DFA=0.4,

B)tract using DFA=0.2, C)tract using PFA=0.4, D)tract using PFA=0.2.
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Figure 4.12: Tracts behavior inside the tumor region(ROI) case3. A) tract using DFA=0.4,

B) tract using DFA=0.2, C) tract using PFA=0.4, D) tract using PFA=0.2.

Figure 4.13: Tracts behavior inside the tumor region(ROI) case4. A) tract using DFA=0.4,

B) tract using DFA=0.2, C) tract using PFA=0.4, D) tract using PFA=0.2.

The number of fibers in the ROI from the four tracts are represented by the histogram

in figure 4.14.
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Figure 4.14: Number of fibers in ROI for the four cases; DFA=0.2 and DFA=0.4 are

for tracts using deterministic algorithm with stopping criterion FA=0.2 and FA=0.4,

respectively. PFA=0.2 and PFA=0.4 are for tracts using probabilistic algorithm with

stopping criterian FA=0.2 and FA=0.4, respectively.

From figures 4.10, 4.11, 4.12, 4.13 and histograms shown in figure 4.14, we notice

that the probabilistic method gives better results than the deterministic method; specially

when using FA=0.2 which allows the detection of more fibers. In figure 4.10, we notice

that the tract enters inside the ROI and this explains the existence of an edema while in

other cases the tracts enter slightly to the tumor and that is because the tumor destructs

the fibers in the ROI.

From those results we conclude that the tumor affects the brain in different ways.

The results of the remaining cases ensure our conclusions and shown in the tables

below:
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Table 4.10: The total number of the streamlines generating from deterministic and prob-

abilistic for cases 5, 6, 7, 8, 9.

Table 4.11: The number of the streamlines of the right and the left hemispheres using

deterministic method for cases 5, 6, 7, 8, 9.

Table 4.12: The number of the streamlines of the right and the left hemispheres using

deterministic method for cases 5, 6, 7, 8, 9.



Conclusion

The presented study was conducted with the aim of obtaining a better reconstruction

of the damaged region in the brain. For that purpose, we used the data obtained from

the diffusion MRI technique and transformed then into the format accepted by the Dipy

community.

In the performed experiment we used the Constrained Spherical Deconvolution (CSD)

reconstruction technique to overcome the crossing fibers limitation and obtain a more

realistic view of the brain’s fibers architecture. Subsequently we used both probabilistic

and the deterministic tractography algorithms with two values of fractional anisotropy

namely FA=0.2 and FA=0.4 as stopping criteria for each algorithm.

To decide the better algorithm to utilize, we first analysed the streamlines of the whole

brain in the files obtained from the four programs.

The first remark was that the number of streamlines using FA=0.2 as stopping criterion

is greater than the number of streamlines using FA=0.4 which was expected before the

test and this is because when we increase the fractional anisotropy we recover only the

fibers with high diffusivity as fibers in ”corpus collosum”.

The second remark is that the number of streamlines using the same FA is greater while

using the deterministic algorithm , which is explained as follow:

”The probabilisitc algorithm connects more voxels and that generates less streamlines but

with higher lengths” that was confirmed using an option in the MI-brain platform that

can filter the streamlines according to their lengths, and that was done by increasing the

min length of the fibers and we noticed the opposite (number of streamlines generated by

the probabilistic becomes larger) we can conclude that the probabilistic algorithm gives

more realistic view of the brain.

The second step was analysing the right and the left hemispheres and we found that
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using FA=0.4 the number of streamlines is less in the damaged hemisphere than in the

non-damaged hemisphere but using FA=0.2 the number of streamlines of the damaged

hemisphere is greater and this can be explained as follow :

The fibers in the surrounding region of the tumor are cut and of low diffusivity and this

was concluded from analysing the ROI using MI-brain.

For more information we used segmentation to extract the tumor and study the perfor-

mance of the four used algorithms in the ROI. We noticed that the probabilistic method

gives more information concerning the ROI we noticed also that in some cases the tract

enters inside the tumor but in other cases it stops before entering and this is related to

the type of the disease.

From all results we can confirm that the probabilistic method provides more information

about the damaged region.



Bibliography

[1] Peter J Basser and Carlo Pierpaoli. A simplified method to measure the diffusion

tensor from seven mr images. Magnetic resonance in medicine, 39(6):928–934, 1998.

[2] Robert Brown. Xxvii. a brief account of microscopical observations made in the

months of june, july and august 1827, on the particles contained in the pollen of

plants; and on the general existence of active molecules in organic and inorganic

bodies. The Philosophical Magazine, 4(21):161–173, 1828.

[3] Dalila Cherifi, Messaoud Boudjada, Abdelatif Morsli, Gabriel Girard, and Rachid

Deriche. Combining improved euler and runge-kutta 4th order for tractography in

diffusion-weighted mri. Biomedical Signal Processing and Control, 41:90–99, 2018.

[4] H-W Chung, M-C Chou, and C-Y Chen. Principles and limitations of computa-

tional algorithms in clinical diffusion tensor mr tractography. American Journal of

Neuroradiology, 32(1):3–13, 2011.
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[6] Jonathan D Clayden, S Muñoz Maniega, Amos J Storkey, Martin D King, Mark E

Bastin, Chris A Clark, et al. Tractor: magnetic resonance imaging and tractography

with r. Journal of Statistical Software, 44(8):1–18, 2011.

[7] Flavio Dell’Acqua and J-Donald Tournier. Modelling white matter with spherical

deconvolution: How and why? NMR in Biomedicine, 32(4):e3945, 2019.

64



[8] Maxime Descoteaux. High angular resolution diffusion imaging (hardi). Wiley En-

cyclopedia of Electrical and Electronics Engineering, pages 1–25, 1999.

[9] Maxime Descoteaux. High angular resolution diffusion MRI: from local estimation to

segmentation and tractography. PhD thesis, Université Nice Sophia Antipolis, 2008.
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Appendices

A Tensor estimation

From equation 2.3, we get :

gTDg = −
ln
(
S
S0

)
b

(.1)

By replacing g and D in .1 we get:

(
gx gy gz

)
Dxx Dxy Dxz

Dyx Dyy Dyz

Dzx Dzy Dzz



gx

gy

gz

 = −
ln
(
S
S0

)
b

(.2)

The right side of equation .1 can be expanded as follow :

gTDg = g2xDxx + g2yDyy + g2zDzz + 2gxgyDxy + 2gxgzDxz + 2gygzDyz (.3)

Now replacing equation .3 in (.2), we get:

g2xDxx + g2yDyy + g2zDzz + 2gxgyDxy + 2gxgzDxz + 2gygzDyz = −
ln
(
Sk

S0

)
b

(.4)

Sk, S0, gk are all known, and since we have six unknown parameters of diffusion tensor,

we need M applied gradient where M > 6 .

Finally we get :

gTi Dgi = −
ln
(
Si

S0

)
b

, i ∈ 1, ...,M (.5)


g21,x g21,y g21,z 2g1,xg1,y 2g1,xg1,z 2g1,yg1,z

.. .. .. .. .. ..

g2M,x g2M,y g2M,z 2gM,xgM,y 2gM,xgM,z 2gM,ygM,z





Dxx

Dyy

Dzz

Dxy

Dxz

Dyz


=
−1

bi



ln
(
S1

S0

)
.

.

.

ln
(
SM

S0

)


(.6)



To solve for diffusion tensor parameters we apply the Linear Least Square method equation

.7 to equation .6

x∗ =
(
ATA

)−1
ATY (.7)

where:

x∗ =



Dxx

Dyy

Dzz

Dxy

Dxz

Dyz



A =


g21,x g21,y g21,z 2g1,xg1,y 2g1,xg1,z 2g1,yg1,z

.. .. .. .. .. ..

g2M,x g2M,y g2M,z 2gM,xgM,y 2gM,xgM,z 2gM,ygM,z



Y =
−1

bi



ln
(
S1

S0

)
.

.

.

ln
(
SM

S0

)





B Acquistion and reconstruction techniques figures

Figure 15: 3D Cartesian sampling scheme of diffusion spectrum imaging for a single voxel.

The red dots indicate the q-values used in the acquisition.

Figure 16: Sampling schemes in q-space. (a) Cartesian sampling dedicated to diffusion

spectrum imaging (DSI). (b) Single-shell spherical sampling dedicated to HARDI. (c)

Multiple shell spherical sampling and (d) Radial sampling schemes dedicated to advanced

diffusion propagator imaging and compartment modeling.

Figure 17: Sampling strategies for DSI and q-ball .



Figure 18: 2D illustration for estimating PDF p(r, t) for a single voxel; white dots on

E ′q, t) show the q-space location at which a measurement is obtained and the red dots

grid on p(r, t) are obtained by the Fourier transform of the white dots.

Figure 19: Spherical harmonics basis.



C Tractography figures

Figure 20: Probabilistic streamlines emanating from a single seed point (white sphere).

The trajectories are colored according to the local density of the trajectories [14].

Figure 21: Example of Euler integration method with different step sizes .



Figure 22: Runge Kutta 2 with 9 steps better than Euler with 72 step .

Figure 23: Distance between streamlines.

Figure 24: dtest vs dsep.


