
Registration Number:…..…../2018

Institute of Electrical and Electronic Engineering

Department of Power and Control

Final Year Project Report Presented in Partial Fulfilment of

The Requirements for the Degree of

MASTER
In Control

Option: Control

Title:

Presented by:

- Dahmane Roumaissa
- Rabia Zohra

Supervisor:

Dr.Ouadi

Design and Implementation of PLC using

Arduino Due

People’s Democratic Republic of Algeria

Ministry of Higher Education and Scientific Research

M’Hamed BOUGARA University – Boumerdes

II

Abstract

 In this project we will present an Arduino based PLC, the PLC uses Arduino Due

board as communication path between the input and output interfaces. A new extension

of the Arduino framework was used; it introduces multitasking support and allows

running multiple concurrent tasks in addition to the single execution cycle provided by

the standard Arduino framework.

 To design Programmable Logic Controller using Arduino there exist two

approaches. The first one is to write the program in ladder logic then use compilers

directly and compile it to Arduino board. The second approach is to create a plc library

inside the Arduino libraries folder, the library that we implemented in this project take

advantage of the digital I/O of the Arduino Due. The plc library was coded using c

language; it comprises the Basic functions of the PLC respecting the CEI 61131-3

standards.

 The development of PLC hardware has been designed and improved. This

Arduino based PLC is embedded with I/O module such as normally open push buttons,

24VDC power supply and output interface of 5V Relays with LEDs as indicators. I/O

field devices are connected using optocouplers installed in order to protect the PLC

from any electrical damages in addition to the Darlington Sink Driver (ULN2803) as

current amplifier since the current generated by the Arduino pins is so small to drive a

relay.

 Finally to test the functionality of our plc two applications were implemented, the

first one is the single task operating conveyor and the second is dual-task Motor.

III

Acknowledgement

 In the name of Allah, the Most Gracious and the Most Merciful Alhamdulillah, all

praises to Allah for the strengths and His blessings in completing this dissertation.

 We are grateful to the God for the good health and wellbeing that were

necessary to complete this work.

 We wish to express our sincere thanks and gratitude to our supervisor Dr.Ouadi,

for providing us with all the necessary facilities.

 We would like to express our deepest gratitude to him, for his excellent

guidance, without his assistance and dedicated involvement in every step throughout

the process; this Thesis would have never been accomplished

 We would also like to thank all those people who have been associated with this

work for their passionate participation and help because without it this project could

not have been successfully conducted.

IV

 Dedication

This thesis is dedicated to:

The sake of Allah, my Creator and my Master,

My great teacher and messenger, Mohammed (May Allah bless and grant him), who

taught us the purpose of life.

My beloved father who leads me through the valley of darkness with light of hope

and support, who has been a source of encouragement and inspiration to me

throughout

my life, a very special thank you for working hard for me and for my brothers throw all

the passing years, you have actively supported me in my determination to find and

realize my dream.

My dearest mother, the source of unconditional love in my life. Who was my sister, my

friend and my all. Today I can proudly say thank you mom for being there for me

whenever I needed support, for listening to me whenever life became unbearable and so

hard, thank you for showing me that a dream can be reachable with hard work and

strong faith.

My aunt Mofida, my second mother. This great woman who cares for me and loves me

as a daughter of hers and who taught me to be patient and strong;

My beloved brothers: kheireddine and Mustapha Amine, whom I can't force myself to

stop loving. These two are the spices of my life and without then it would be

meaningless. I wish them luck and success in their exams.

To all my family, the symbol of love and giving, particularly my three angles: Fatima,

Abderrahmane and the new coming baby;

My friends who encourage and support me,

All the people in my life who touch my heart, I dedicate this work.

Dahmane Roumaissa

V

Dedication

This thesis is dedicated to:

The sake of Allah, my Creator and my Master,

first and foremost, I have to thank my mother for her love and support throughout my

life I would like to thank her for giving me strength to reach for the stars, chase my

dreams and own the best education so far.

 This thesis is dedicated also to the best people I have in my life who always loved me

unconditionally, Moez,Radja, Ikram;

 Who have always been constant sources of support and encouragement during the

challenges of my whole college life and my final year project, Also to my sister who was

ready all time to give me help when I need it.

It is dedicated also to those who are good examples who have taught me to work hard

for the things that I aspire to achieve

 Zohra Rabia

VI

Table of content

Abstract ... II

Acknowledgement ..IIII

Dedication ..IV

Dedication ... V

Table of content ……………………………………………………………………....VI

List of Tables ..IX

List of Figures ... X

General Introduction ... XIII

Chapter one: PLC Overview.. ..1

1.1Introduction .. 1

1.2. Definition ... 1

1.3. Historical Background ... 2

1.4. Hardware Components .. 3

1.4.1 CPU (Central Processing Unit) .. 3

1.4.2. Memory ... 3

1.4.3. Input and Output Modules (I/O) ... 4

1.4.4. Power Supply .. 4

1.4.5. Programming Devices ... 4

1.4.6. System Busses ... 5

1.4.7. The Scan Cycle ... 5

1.5. Basic Operation.. 6

1.6. PLC standard EN 61131 (IEC 61131) ... 6

1.7. PLC Programming Languages ... 7

1.7.1. Ladder Diagram (LD) ... 7

1.7.2 Function Block Diagram (FBD).. 8

1.7.3. Structured Text (ST) ... 8

1.7.4. Instruction List (IL) ... 9

1.7.5. Sequential Function Chart (SFC) .. 9

1.8. PLC Configurations ... 10

1.8.1. An Integrated or Compact PLC... 10

VII

1.8.2. A Modular PLC ... 10

1.10. PLC Applications ... 11

1.11. Plc Advantages .. 12

1.12. Plc Manufactures ... 13

Chapter 2: Real Time Operating System .. 14

2.1. Introduction to Operating System .. 14

2.2. Types of Operating System ... 15

2.2.1 Batch Operating System ... 15

2.2.2 Time-sharing Operating Systems ... 15

2.2.3 Distributed Operating System .. 15

2.2.4. Network Operating System ... 15

2.2.5. Real-Time Operating System .. 16

2.3. Types of RTOS (real time operation system) .. 16

2.3.1. Hard real-time ... 16

2.3.2. Firm real-time .. 16

2.3.3. Soft real-time ... 16

2.4. Tasks & Functions ... 17

2.4.1. What is a Task? ... 17

2.4.2. Typical RTOS Task Model ... 17

2.4.3. Task Classification .. 18

2.5. What is an Interrupt?.. 18

2.6. Features of RTOS .. 18

2.7. RTOS architecture ... 19

2.7.1. Kernel .. 19

2.7.2. Task management .. 20

2.7.3 Scheduler .. 21

2.7.4. Synchronization and communication .. 21

2.7.5. Timer Management ... 21

2.7.6. Device I/O Management ... 21

Chapter3: System Description ... 22

3.1. Introduction .. 22

3.2. Arduino .. 22

3.3. Arduino Features.. 22

VIII

3.4. Arduino IDE .. 23

3.5. Libraries ... 23

3.6. Arduino Due .. 24

3.7. Real time Multitask Arduino ... 25

3.7.1 What is ARTe? ... 26

3.7.2. Erika Enterprise ... 26

3.7.3. ARTE Design Goals .. 26

3.7.4. The ARTe Architecture ... 27

3.7.5. The ARTe Programming Model ... 28

3.7.6. ARTe Builds Process .. 29

Chapter 4:PLC Implementation .. 32

4.1. Introduction .. 32

4.2. Introduction to The plcLib Library .. 32

4.3. The Default Hardware Configuration .. 33

4.4. Command References .. 34

4.4.1. General Configuration ... 34

4.4.2. Single Bit Digital Input/output .. 34

4.4.3. Combinational Logic ... 35

4.4.4. Setting and Resetting... 35

4.4.5. Timers ... 36

4.4.6. Counters .. 36

4.5. Building a Simple PLC Hardware ... 36

4.5.1. Hardware Required to Build a Simple Arduino-based PLC 37

4.5.2. Building 24V DC Input Modules .. 38

4.5.3.Building the Relay Output Modules .. 39

4.6. Writing PLC-Style Applications with plcLib .. 39

4.6.1. Single Task Application: Conveyor Driver ... 39

4.6.2. Multi-Task Application: Dual-Task Motors Driving 42

4.7. Results and Discusion .. 44

Conclusion ... 45

Bibliography

Appendix

IX

List of Tables

Table4.1: plcLib Input/Output Mapping with Arduino Due. .. 33

Table4.2: plcLib General Configuration. .. 34

Table4.3: plcLib Digital I/O comands. .. 34

Table 4.4: plclib Basic Logical Commands .. 35

Table4.5: plcLib Setting and Resetting Commands ... 35

Table4.6: plcLib different timers .. 36

Table4.7: plcLib Counter function…………..…...……………………………………36

X

List of Figures

Figure 1.1: Typical PLCs. ... 1

Figure1.2: PLC System. .. 3

Figure 1.3: PLC Scan cycle 5

Figure 1.4: Example of ladder logic programming .. 7

Figure 1.5: FBD program ... 8

Figure 1.6: PLC structure text example .. 8

Figure 1.7: Instruction list example ... 9

Figure 1.8: SFC example .. 9

Figure 2.1: Layered view of computer system….…………………………………….14

Figure 2.2: Task …………………………………………………………………….17

Figure2.3: Task Typical model………………………………………………………..17

Figure 2.4: Kernel process…………………………………………………………….20

Figure 2.5: States of the task ………………………………………………………….21

Figure3.1: Arduino IDE…………………………………………………………….....23

Figure3.2: Arduino Due…………………………………………………………….....24

Figure3.3: Arduino Due technical information……………………….……………….25

Figure3.4: ARTe Architecture…………………………………………...……………27

 Figure3.5: Arduino Programming Model………………………………………….....28

Figure3.6: ARTe Build Process……………………………………………………….29

Figure 4.1: From Electrical Circuit to Ladder Diagram then to Simple Program…….33

Figure 4.2: CQY80 Optocoupler……………………………………………………..37

Figure 4.3: 8 Pins 5V DC Relay……………………………………………………....37

Figure 4.4: The ULN2803 Pin Connection …………………………………………..38

Figure 4.5: Input Module of an Arduino-Based PLC…………………………………38

Figure 4.6: Output Module for an Arduino-Based PLC………………………………39

XI

Figure 4.7: Operating the Conveyor according to the Sensors Data………………….40

Figure 4.8: Arduino code of a Conveyor Operation…………………………………..41

Figure 4.9: Driving 3 Motors Sequentially……………………………………………42

 Figure 4.10: Driving 2 Motors Simultaneously …………...42

Figure 4.11: Arduino code of dual-task Motor………………………………………..43

XII

 General Introduction

A programmable logic controller (PLC), or programmable controller is an

industrial digital computer, the main difference from most other computing devices is

that PLCs are intended-for and therefore tolerant-of more severe conditions (such as

dust, moisture, heat, cold), while offering extensive input/output (I/O) to connect the

PLC to sensors and actuators.

 The automotive industry in the USA made the PLC born regarding to the need of

its use. Early PLCs were designed to replace relay logic systems. Before the PLC,

control, sequencing, and safety interlock logic for manufacturing automobiles was

mainly composed of relays, cam timers, drum sequencers, and dedicated closed-loop

controllers. The process for updating PLC facilities was time consuming and expensive,

as electricians needed to individually rewire the relays to change their operational

characteristics.

 The PLC (Programmable Logic Controller) has been and still the basic component

of the industrial automation world. The Industrial application made the PLC systems

very expensive, both to buy and repair, and also because of the highly specific skills

requested to software designers to extract the maximum potentials from. To bridge the

disadvantages above, many industries start using Arduino as a kind of universal

programmable controller for small applications as it is cheaper, it has a simple and open

source software wich makes it possible for update, also because it needs a little of

extern hardware to make it more practical than others software.

In this project we will explain how to convert an Arduino board into a PLC-like

controller using the Arduino real time extension framework (ARTe) and the appropriate

interfaces for I/O.

https://en.wikipedia.org/wiki/Digital_computer
https://en.wikipedia.org/wiki/Input/output
https://en.wikipedia.org/wiki/Sensor
https://en.wikipedia.org/wiki/Actuator
https://en.wikipedia.org/wiki/Relay
https://en.wikipedia.org/wiki/Cam_timer
https://en.wikipedia.org/wiki/Drum_sequencer_(controller)
https://en.wikipedia.org/wiki/Electrician

Chapter 1: PLC overview

1

1.1. Introduction

In this chapter a brief overview of plc will be introduced; to know the basic information

needed about programmable logic controllers starting from its history to know about its

architecture, hardware components, basic operation, programming languages and its

advantages.

1.2. Definition

 A Programmable Logic Controller, or PLC, is more or less a small digital computer

with a built-in operating system (OS). This OS is highly specialized and optimized to

handle incoming events in real time, i.e., at the time of their occurrence [1].

PLC is used for the automation of various electro-mechanical processes in

industries. It is specially designed to survive in harsh situations and shielded from heat,

cold, dust, and moisture etc. PLC consists of a microprocessor which is programmed

using the computer language .The program is written on a computer and is downloaded

to the PLC via cable [2].

PLC was first developed in the automobile industry to provide flexible,

ruggedized and easily programmable controllers to replace hard-wired relays, timers

and sequencers. Since then it has been widely adopted as high-reliability automation

controllers suitable for harsh environments [3].

 Figure 1.1: Typical PLCs.

Chapter 1: PLC overview

2

1.3. Historical Background

 In older days the control panels of machines were generally made with relays,

contactors, cam timers, drum sequencers, and dedicated closed-loop controllers, for the

automation purpose and to increase the productivity of the machine which had reduced

the human interference or human dependency for the machine handling process. Relays

which were used are in numbers in the hundreds or even thousands, the process for

updating such relay based control panel for change-over was very time consuming and

expensive, as electricians needed to individually rewire the relays to change their

operational characteristics. As days passed there is a lots of changes started involving in

technology in all ways including automation. In recent years people started using PLC

for the automation purpose instead of Relays and contactors as PLC has many

advantages over Relay based control panel [4].

 In 1968 GM Hydramatic (the automatic transmission division of General Motors)

issued a request for proposal for an electronic replacement for hard-wired relay

systems. The winning proposal came from Bedford Associates of Bedford,

Massachusetts. The first PLC, designated the 084 because it was Bedford Associates'

eighty-fourth project, was the result, Dick Morley worked on this project and is being

considered as the Father of PLC [5]. It was not a simple straightforward process to

convince people that a small box of software can replace thousands of relays, cam

timers, drum sequencers and many closed loop controllers, and even do the exact same

job of them [6] .The wiring required for PLC based system is very less almost 80%

reduction in wiring of control panel as that of relay based control panel. The system is

very flexible in terms of introducing any new changes.

Chapter 1: PLC overview

3

1.4. Hardware Components

 PLC is designed with some basic hardware components, that each adds its own

function to the PLC. Below is a diagram of the system overview of PLC.

 Figure 1.2: PLC Systems [7]

1.4.1. CPU (Central Processing Unit)

The Central Processing Unit provides all the logic functions as well as directing

communication flow with other components; both internal and external. It is the “brain”

of the PLC. Internally, the CPU provides data space to store the program instructions. It

also performs math, counting and timing functions based on the program logic.

Externally, the CPU updates the input file status from field devices and executes the

appropriate output function [7].

1.4.2. Memory

 The PLC has memory like the computer, where it saves all the information: System

(ROM) to give permanent storage for the operating system and the fixed data used by

the CPU. RAM for data; this is where information is stored on the status of input and

output devices and the values of timers and counters and other internal device. PROM

is for ROM’s that can be programmed and then the program made permanent [7].

Chapter 1: PLC overview

4

1.4.3. Input and Output Modules (I/O)

 Inputs and Outputs ports are based on Reduced Instruction Set Computer (RISC), it

can be digital or analog, depending on the field device needed. I/O field devices are

connected to an I/O card which has opto-isolators installed in order to protect the PLC

from any electrical damages [7]. An input is an uncontrolled field device of the PLC; it

only reads the status of the process running and reports the data back to the PLC. An

input field device could be a pushbutton switch, pressure sensor, or photo sensor to

name a few [7].

An output is a command supplied by the CPU Logic to control an output field

device. These field devices may include: relays, timers, motor starters, lights, counters

or displays. The output command is driven by the updated input tables, the CPU logic,

and a signal sent to the output field device to be controlled [7].

1.4.4. Power Supply

 The Power Supply provides different voltage sources that are required for the different

field devices, CPU, and internal memory operations [7]. Most PLC controllers work

either at 24 VDC or 220 VAC.

1.4.5. Programming Devices

 Programming devices are a way for the programmer to write and load the program.

Programming Devices may also be used to monitor the I/O and the process in real time

and for troubleshooting when the process doesn’t function correctly. There are different

types of Programming devices [7], whereas the PC or laptop is the most widely used

programming device. Multiple lines of code may be viewed on one screen. Human

Machine Interface’s (HMI’s) are becoming very popular for process monitoring and

troubleshooting on the shop floor.

Chapter 1: PLC overview

5

1.4.6. System Busses

Buses are the paths through which the digital signal flows internally of the PLC. The

four system buses are [2]:

 Data bus is used by the CPU to transfer data among different elements.

 Control bus transfers signals related to the action that are controlled

internally.

 Address bus sends the location’s addresses to access the data.

 System bus helps the I/O port and I/O unit to communicate with each

other.

1.4.7. The Scan Cycle

A PLC executes an initialization step when placed in run mode, and then repeatedly

executes a scan cycle sequence. The basic PLC scan cycle consists of three steps

 An input scan

 A user program scan

 An output scan

The total time for one complete program scan is a function of processor speed, I/O

modules used, and length of user program typically, hundreds of complete scans can

take place in 1 second [8] .

 Figure1.3: PLC scans cycle.

Chapter 1: PLC overview

6

1.4.7.1. Input Scan

During the input scan, data is taken from all input modules in the system and placed

into an area of PLC memory referred to as the input image area [8].

1.4.7.2. User program scan

During the program scan, data in the input image area is applied to the user program,

the user program is executed and the output image area is updated [8].

1.4.7.3. Output Scan

 During the output scan, data is taken from the output image area and sent to all output

modules in the system [8].

1.5. Basic Operation

The operation of the PLC system is simple and straightforward. The input/output (I/O)

system is physically connected to the field devices that are encountered in the machine

or that are used in the control of a process [9].

1.6. PLC standard EN 61131 (IEC 61131)

 Previously, no equivalent, standardized language elements existed for the PLC

developments and system expansions made in the eighties, such as processing of

analogue signals, interconnection of intelligent modules, networked PLC systems etc.

Consequently, PLC systems by different manufacturers required entirely different

programming. Since 1992, an international standard now exists for programmable logic

controllers and associated peripheral devices (programming and diagnostic tools,

testing equipment, man-to-machine interfaces etc.). In this context, a device configured

by the user and consisting of the above components is known as a PLC system [10].

The new EN 61131 (IEC 61131) standard consists of five parts:

 Part 1: General information

 Part 2: Equipment requirements and tests

 Part 3: Programming languages

 Part 4: User guidelines (in preparation with IEC)

 Part 5: Messaging service specification (in preparation with IEC)

Chapter 1: PLC overview

7

The new standard takes into account as many aspects as possible regarding the design,

application and use of PLC systems. The extensive specifications serve to define open,

standardized PLC systems [10].

1.7. PLC Programming Languages

As PLCs have developed and expanded, programming languages have developed with

them. Programming languages allow the user to enter a control program into a PLC

using an established syntax. Today’s advanced languages have new, more versatile

instructions, which initiate control program actions. These new instructions provide

more computing power for single operations performed by the instruction itself. For

instance, PLCs can now transfer blocks of data from one memory location to another

while, at the same time, performing a logic or arithmetic operation on another block. As

a result of these new, expanded instructions, control programs can now handle data

more easily [2].

Five PLC languages are available according to the IEC 11313 standard, each of is best

suited to certain types of applications. The following is a list of programming languages

specified by this standard:

1.7.1. Ladder Diagram (LD)

Ladder diagram is a graphical programming language; it is programmed with a contact

that simulates the opening and closing of relays. Ladder logic includes many basic

functions and it is used in industry for facility of its graphical use.

 Figure 1.4: Example of a Ladder Logic Program.

Chapter 1: PLC overview

8

1.7.2. Function Block Diagram (FBD)

 It is another graphical language for depicting signal and data flows through re-usable

function blocks. FBD is very useful for expressing the interconnection of control

system algorithms and logic.

 Figure 1.5: FBD Program.

 1.7.3. Structured Text (ST)

Structured Text is PLC programming language defined by PLC openin IEC 61131-3 .

The programming language is text-based, compared to the graphics-based ladder

diagram. At first, it may seem better to use a graphical programming language for PLC

programming. But that is only true for smaller PLC programs. By using a text-based

PLC programming language, the program will take up much smaller space, and the

flow/logic will be easier to read and understand. Another advantage is that you can

combine the different programming languages, You can even have function blocks

containing functions written in Structured Text [11].

 Figure 1.6: PLC Structure Text program example [5].

Chapter 1: PLC overview

9

1.7.4. Instruction List (IL)

 An Instruction list (IL) is composed of a series of instructions. Each instruction begins

on a new line and consists of:

 An Operator

 One or more Operands.

 Each instruction uses or alters the current content of the accumulator (a form of

internal cache). IEC 61131 refers to this accumulator as the "result". For this reason, an

instruction list should always begin with the LD operand ("Load in accumulator

command") [12]

Figure 1.7: Instruction List Example.

1.7.5. Sequential Function Chart (SFC)

Sequential function chart (SFC) is a graphical language, which makes it possible to

depict sequential behavior. One of the most important aspects of SFC is that it shows

the main states of a system, all the possible changes of state and the reasons why those

changes would occur. It can be used at the top level to show the main phases of a

process, but it can also be used at any other lower level [13].

 Figure 1.8: SFC example.

Chapter 1: PLC overview

10

1.8. PLC Configurations

 There are two basic configurations for Programmable Logic Controllers (PLCs) first

category is the integrated PLC where the second type is the single or modular units.

1.8.1. An Integrated or Compact PLC

It is built by several modules within a single case. Therefore, the I/O capabilities are

decided by the manufacturer, but not by the user. Some of the integrated PLCs allow to

connect additional I/Os to make them somewhat modular [14].

 1.8.2. A Modular PLC

 It is built with several components that are plugged into a common rack or bus with

extendable I/O capabilities. It contains power supply module, CPU and other I/O

modules that are plugged together in the same rack, which are from same

manufacturers or from other manufacturers. These modular PLCs come in different

sizes with variable power supply, computing capabilities, I/O connectivity, etc [14].The

modular PLC is divided according to its size:

1.8.2.1. Small PLC

Is a mini-sized PLC that is designed as compact and robust unit mounted or placed

beside the equipment to be controlled, it has less than 500 analog and digital I/Os. This

type of PLC is used for replacing hard-wired relay logics, counters, timers, etc [14]

1.8.2.2. Medium-sized PLC

It is mostly used PLC in industries which allows many plug-in modules that are

mounted on backplane of the system [14], some hundreds of input/ output points are

provided by adding additional I/O cards [14].

 1.8.2.3. Large PLCs

These systems are used wherein complex process control functions are required.

Mostly, these PLCs are used in supervisory control and data acquisition (SCADA)

systems, larger plants, distributed control systems, etc [14].

https://www.elprocus.com/understanding-a-programming-logic-controller/
https://www.elprocus.com/8051-microcontroller-8-16-bit-timers-and-counters/
https://www.elprocus.com/understanding-a-programming-logic-controller/
https://www.elprocus.com/scada-systems-work/
https://www.elprocus.com/scada-systems-work/
https://www.elprocus.com/distributed-control-system-features-and-elements/

Chapter 1: PLC overview

11

 1.10. PLC Applications

 The original task of a PLC involved the interconnection of input signals according to a

specified program and, if "true", to switch the corresponding output. Boolean algebra

forms the mathematical basis for this operation, which recognizes precisely two defined

statuses of one variable: "0" and "1”Accordingly. However, the tasks of a PLC have

rapidly multiplied: Timer and counter functions, memory setting and resetting,

mathematical computing operations all represent functions, which can be executed by

practically any of today’s PLCs [15].

The demands to be met by PLC have continued to grow in line with their rapidly

spreading usage and the development in automation technology, Visualization, the

representation of machine statuses such as the control program being executed, via

display or monitor. Hence a master computer facilitates the means to issue higher-level

commands for program processing to several PLC systems the networking of several

PLCs as well as that of a PLC and master computer is affected via special

communication interfaces. At the end of the seventies, binary inputs and outputs were

finally expanded with the addition of analogue inputs and outputs, since many of

today’s technical applications require analogue processing. At the same time, the

acquisition or output of analogue signals permits an actual/set point value comparison

and as a result the realization of automatic control engineering functions, a task, which

widely exceeds the scope suggested by the name (programmable logic controller).Yet

further PLCs are able to process several programs simultaneously – (multitasking) [15].

As PLCs became more advanced, methods were developed to change the

sequence of ladder execution, and subroutines were implemented. This simplified

programming and could also be used to save scan time for high-speed processes; parts

of the program used, for example, only for setting up the machine could be segregated

from those parts required to operate at higher speed.

Finally, PLCs are coupled with other automation components, thus creating

considerably wider areas of application.

Chapter 1: PLC overview

12

1.11. Plc Advantages

PLCs are evolving and continue to be the best option for a variety of industrial

automation applications because of the great features it offers:

 Good Flexibility, it is possible to use just one model of a PLC to run multiple

machines [8].

 Large Quantities of Contacts, The PLC has a large number of contacts for each

coil available in its programming [8].

 Lower Cost, Increased technology makes it possible to condense more functions

into smaller and less expensive packages [8].

 Visual Observation, A PLC circuit's operation can be seen during operation

directly on a CRT screen [8].

 Ladder or Boolean Programming Method, The PLC programming can be

accomplished in the ladder mode by an engineer, electrician or possibly a

technician. Alternatively, a PLC programmer who works in digital or Boolean

control systems can also easily perform PLC programming [8].

 High Reliability and Maintainability, Solid-state devices are more reliable, in

general, than mechanical systems or relays and timers [8].

 Quality and Strong Easy Operation: it is very easy to edit or modify the program

in plc by a computer offline. As it is effortless to know where the fault is located

by only the graphical user interface where it can be shown and diagnoses, which

make the maintenance easier.

Chapter 1: PLC overview

13

1.12. Plc Manufactures

 The need of the plc in multiple area of the industry made it a very competitive for

some companies to produce and manufacture them. We can find different automation

manufactures now days that offer the latest best PLC’s for different usage and area of

industry.

 A post was written in 2012 on the top 50 automation companies which used data

from controlglobal.com’s 2011 list. This placed Siemens at the top spot worldwide with

other major PLC manufacturers as follows:

1.Siemens

2. ABB

4. Schneider (Modicon)

5. Rockwell (Allen-Bradley)

7. Mitsubishi

8. GE

http://www.controlglobal.com/articles/2012/boyes-clayton-serene-economic-recovery/?start=1

Chapter 2: Real Time Operating System

14

2.1. Introduction to Operating System

An Operating System (OS) is an interface between computer user and computer

hardware. It is software which performs all the basic tasks like file management,

memory management, process management, handling input and output, and controlling

peripheral devices such as disk drives and printers. Some popular Operating Systems

include Linux Operating System, Windows Operating System, VMS, OS/400, AIX,

z/OS, etc. While each OS is different, most provide a graphical user interface, or GUI,

that includes a desktop and the ability to manage files and folders. They also allow user

to install and run programs written for the operating system [16].Following are some of

important functions of an operating System.

 Memory Management

 Processor Management

 Device Management

 File Management

 Security

 Control over system performance

 Job accounting

 Error detecting aids

 Coordination between other software and users

 Figure 2.1: Layered view of computer system [16].

Chapter 2: Real Time Operating System

15

2.2. Types of Operating System

The followings are the important types of operating systems which are most commonly

used.

2.2.1 Batch Operating System

Batch Operating System the users of a batch operating system do not interact with the

computer directly. Each user prepares his job on an off-line device like punch cards and

submits it to the computer operator. To speed up processing, jobs with similar needs are

batched together and run as a group. The programmers leave their programs with the

operator and the operator then sorts the programs with similar requirements into

batches [16].

2.2.2 Time-sharing Operating Systems

Time-sharing is a technique which enables many people, located at various terminals,

to use a particular computer system at the same time. Time-sharing or multitasking is a

logical extension of multiprogramming. Processor's time which is shared among

multiple users simultaneously is termed as time-sharing [16].

2.2.3 Distributed Operating System

Distributed systems use multiple central processors to serve multiple real-time

applications and multiple users. Data processing jobs are distributed among the

processors accordingly. The processors communicate with one another through various

communication lines (such as high-speed buses or telephone lines) [16].

2.2.4. Network Operating System

A Network Operating System runs on a server and provides the server the capability to

manage data, users, groups, security, applications, and other networking functions. The

primary purpose of the network operating system is to allow shared file and printer

access among multiple computers in a network, typically a local area network (LAN), a

private network or to other networks. Examples of network operating systems include

Microsoft Windows Server 2003, Microsoft Windows Server 2008, UNIX, Linux, Mac

OS X, Novell NetWare, and BSD [16].

Chapter 2: Real Time Operating System

16

2.2.5. Real-Time Operating System

A real-time system is defined as a data processing system in which the time interval

required to process and respond to inputs is so small that it controls the environment.

The time taken by the system to respond to an input and display of required updated

information is termed as the response time. So in this method, the response time is very

less as compared to online processing.

 Real-time systems are used when there are rigid time requirements on the operation

of a processor or the flow of data and real-time systems can be used as a control device

in a dedicated application. A real-time operating system must have well-defined, fixed

time constraints, otherwise the system will fail. For example, scientific experiments,

medical image systems, industrial control systems, weapon systems, robots, air traffic

control systems, etc [16].

2.3. Types of RTOS (Real Time Operation System)

 RTOS specifies a known maximum time for each of the operations that it performs.

Based upon the degree of tolerance in meeting deadlines, RTOS are classified into

following categories:

 2.3.1. Hard real-time

A hard RTOS is distinguished by its strict adherence to the deadline or limits of the task

stipulated. A missed deadline can result in catastrophic failure of the system.

 2.3.2. Firm real-time

Missing a deadly might result in an unacceptable quality reduction but may not lead to

failure of the complete system.

 2.3.3. Soft real-time

 Deadlines may be missed occasionally, but system doesn’t fail and also, system quality

is acceptable.

Chapter 2: Real Time Operating System

17

2.4. Tasks & Functions

2.4.1. What is a Task?

 A task is a process that repeats itself in Loop it is an Essential building block of real

time software systems. A function is a procedure that is called. It runs, then exits and

may return a value. For example, process_data(); int add_two_numbers(int x, int y)

[17].

 Figure 2.2: Task.

2.4.2. Typical RTOS Task Model

 Each task a triple: (execution time, period, deadline)

 Execution time also called computation time, is the time necessary for

execution without interruption, [18]

 Usually, deadline = period, it is the time before which task has to complete its

execution [18]

 Can be initiated any time during the period [18]

 Figure2.3: Task Typical model

Chapter 2: Real Time Operating System

18

2.4.3. Task Classification

1. Periodic Tasks: also called Time-driven tasks, their activation is generated by

timers. At a fixed frequency, these tasks can be characterized by 3 parameters:

computations time, deadline, and period. Generally the deadline is equal to the

period but it can be more or less [19].

2. Non-Periodic or Aperiodic Tasks: also called event-driven tasks, their

activation may be generated by external interrupts [19].

3. Sporadic Tasks: aperiodic tasks with minimum interval time Tmin (often with

hard deadline) [19].

2.5. What is an Interrupt?

 A hardware signal that initiates an event Upon receipt of an interrupt, the processor:

completes the instruction being executed save the program counter (so as to return to

the same execution point) loads the program counter with the location of the interrupt

handler code executes the interrupt handler In practice, real time systems can handle

several interrupts in priority fashion Interrupts can be enabled/disabled Highest priority

interrupts serviced first [17].

2.6. Features of RTOS

 A basic RTO S will be equipped with the following features [20]

1. Multitasking and Perceptibility: An RTOS must be multi-tasked and perceptible

to support multiple tasks in real-time applications. The scheduler should be able

to preempt any task in the system and allocate the resource to the task that needs

it most even at peak load.

2. Task Priority Preemption: defines the capability to identify the task that needs a

resource the most and allocates it the control to obtain the resource. In RTOS,

such capability is achieved by assigning individual task with the appropriate

priority level. Thus, it is important for RTOS to be equipped with this feature.

3. Reliable and Sufficient Inter Task Communication Mechanism: For multiple

tasks to communicate in a timely manner and to ensure data integrity among

Chapter 2: Real Time Operating System

19

each other, reliable and sufficient inter-task communication and synchronization

mechanisms are required.

4. Priority Inheritance to allow applications with stringent priority requirements

to be implemented, RTOS must have a sufficient number of priority levels when

using priority scheduling.

2.7. RTOS architecture

 For simpler applications, RTOS is usually a kernel but as complexity increases, various

modules like networking protocol stacks debugging facilities, device I/Os are includes

in addition to the kernel [20].

2.7.1. Kernel

 Kernel of operating system generally consists of two parts: kernel space (kernel mode)

and user space (user mode). Kernel is the smallest and central component of an

operating system. Its services include managing memory and devices and also to

provide an interface for software applications to use the resources. Additional services

such as managing protection of programs and multitasking may be included depending

on architecture of operating system. There are three broad categories of kernel models

available, namely [20]:

 Monolithic kernel It runs all basic system services (i.e. process and memory

management, interrupt handling and I/O communication, file system, etc) in

kernel space. As such, monolithic kernels provide rich and powerful

abstractions of the underlying hardware.

 Microkernel it runs only basic process communication (messaging) and I/O

control. The other system services (file system. networking, etc) reside in user

space in the form of daemons/servers. Thus, micro kernels provide a smaller set

of simple hardware abstractions.

 Exokernel The concept is orthogonal to that of micro- vs. monolithic kernels by

giving an application efficient control over hardware. It runs only services

protecting the resources (i.e. tracking the ownership, guarding the usage,

revoking access to resources, etc) by providing low-level interface for library

operating systems (libOSes) and leaving the management to the application.

Chapter 2: Real Time Operating System

20

 Figure 2.4: Kernel process [20].

2.7.2. Task management

 A task also called a thread is a simple program that thinks it has the CPU all to itself.

The design process for a real time application involves splitting the work to be done in

different tasks.

 Each task is assigned a priority, its own set of CPU registers and its own stack area.

Each task is typically in an infinite loop that can be in any of the five states: Dormant,

Ready, Running, Waiting and Interrupted. The first step in designing of the RTOS is to

decide on the number of tasks that the CPU of the embedded application can handle

[20].

Each task may exist in following states:

 Dormant: Task doesn’t require computer time

 Ready: Task is ready to go active state, waiting processor time

 Active: Task is running

 Suspended: Task put on hold temporarily

 Pending: Task waiting for resource.

Chapter 2: Real Time Operating System

21

2.7.3 Scheduler

 The scheduler keeps record of the state of each task and selects from among them that

are ready to execute and allocates the CPU to one of them. Various scheduling

algorithms are used in RTOS [20].

2.7.4. Synchronization and communication

 Task Synchronization & inter-task communication serves to pass information amongst

tasks [21].

2.7.5. Timer Management

Tasks need to be performed after scheduled durations. To keep track of the delays,

timers- relative and absolute- are provided in RTOS [20].

2.7.6. Device I/O Management

RTOS generally provides large number of APIs (application programming interface) to

support diverse hardware device drivers [20].

 Figure 2.5: States of the task

Chapter 3: System Description

22

3.1. Introduction

In this chapter we will list the software and hardware system used to build our plc, first

the Arduino due will be introduced further more we will use the concept explained in

the previous chapter RTOS to present an extension to the Arduino framework that

introduces multitasking support and allows running multiple concurrent tasks in

addition to the single execution cycle provided by the standard Arduino framework.

3.2. Arduino

Arduino is an open source computer hardware and software company, project, and user

community that designs and manufactures single microcontrollers and microcontroller

kits for building digital devices and interactive objects that can sense and control

objects in the physical and digital world [21] and its platform is based on a simple

input/output (I/O) board and a development environment that implements the

Processing language.

3.3. Arduino Features

Arduino is different from other platforms on the market because of many features such

as [22]:

 It is a multiplatform environment; it can run on Windows, Macintosh, and

Linux.

 It is based on the Processing programming IDE, an easy-to-use development

environment used by artists and designers.

 You program it via a USB cable, not a serial port. This feature is useful,

because many modern computers don’t have serial ports.

 It is open source hardware and software.

 The hardware is cheap.

 There is an active community of users.

 The Arduino Project was developed in an educational environment.

https://en.wikipedia.org/wiki/Single-board_microcontroller
https://en.wikipedia.org/wiki/Microcontroller

Chapter 3: System Description

23

3.4. Arduino IDE

 The Arduino integrated development environment (IDE) is a cross-platform

application (for Windows, macOS, Linux) that is written in the programming

language Java. It originated from the IDE for the languages Processing and Wiring. It

includes a code editor with features such as text cutting and pasting, searching and

replacing text, automatic indenting, brace matching, and syntax highlighting, and

provides simple one-click mechanisms to compile and upload programs to an Arduino

board. It also contains a message area, a text console, a toolbar with buttons for

common functions and a hierarchy of operation menus [21].

 Figure3.1: Arduino IDE

3.5. Libraries

The Arduino IDE comes with a set of standard libraries for commonly used

functionality. These libraries support all the examples included with the IDE. Standard

library functionality includes basic communication functions and support for some of

the most common types of hardware [23].

 Arduino libraries can be created for different purposes, in this project we

created a new library to serve the need of plc instructions. A library needs two files to

be valid: a header file and a source file. The header file consists of a descriptive

https://en.wikipedia.org/wiki/Integrated_development_environment
https://en.wikipedia.org/wiki/Cross-platform
https://en.wikipedia.org/wiki/Windows
https://en.wikipedia.org/wiki/MacOS
https://en.wikipedia.org/wiki/Linux
https://en.wikipedia.org/wiki/Java_(programming_language)
https://en.wikipedia.org/wiki/Processing_(programming_language)
https://en.wikipedia.org/wiki/Wiring_(development_platform)
https://en.wikipedia.org/wiki/Brace_matching
https://en.wikipedia.org/wiki/Syntax_highlighting

Chapter 3: System Description

24

comment, constructs and a class that contains the functions and variables to be used in

the library.To use the library, (plcLib.h and plcLib.cpp) must be inside a folder that

should be inside the Arduino libraries folder.

3.6. Arduino Due

We used in this project an Arduino Due, The Arduino Due is a microcontroller board

based on the Atmel SAM3X8E ARM Cortex-M3 CPU. It is the first Arduino board

based on a 32-bit ARM core microcontroller. It has 54 digital input/output pins (of

which 12 can be used as PWM outputs), 12 analog inputs, 4 UARTs (hardware serial

ports), a 84 MHz clock, an USB OTG capable connection, 2 DAC (digital to analog), 2

TWI, a power jack, an SPI header, a JTAG header, a reset button and an erase button

[21].

 Figure3.2: Arduino Due [21]

 The SAM3X has 512 KB (2 blocks of 256 KB) of flash memory for storing

code. The bootloader is preburned in factory from Atmel and is stored in a dedicated

ROM memory. The available SRAM is 96 KB in two contiguous banks of 64 KB and

32 KB. All the available memory (Flash, RAM and ROM) can be accessed directly as a

flat addressing space. It is possible to erase the Flash memory of the SAM3X with the

onboard erase button. This will remove the currently loaded sketch from the MCU[24].

Chapter 3: System Description

25

 Figure3.3: Arduino Due technical information.

3.7. Real time Multitask Arduino

Arduino is used since many years taking advantage of its simplicity; it consists of a

physical programmable embedded board and an integrated development environment

(IDE) that runs on a personal computer as it is mentioned in the previous sections.

 In spite of its simplicity and effectiveness, Arduino framework has many

limitations [28], it does not support concurrency and a program execution is limited to a

single block of instructions cyclically repeated, no period can be expressed. Such a

limitation prevents a full exploitation of the computing platform and in several

situations forces the user to adopt tricky coding solutions to manage activities with

deferent timing requirements within a single execution cycle [25].

 To overcome the previous mentioned issue multiple solutions were found such

as adding the scheduler library that contain a Support for multiple “concurrent” loops;

Cooperative Scheduler each task is responsible to “pass the baton” this solution

contains many drawback as it does not provide periodic activities, the library is just an

Experimental Library till now. Neither real time nor preemption is available by this

library. A very efficient solution that was recently found is the Arduino Real-Time

extension or ARTe, the new Arduino framework will be more detailed in the coming

sections.

Chapter 3: System Description

26

 3.7.1. What is ARTe?

 Erika enterprise offered a new solution to overcome the one task loop problem in

Arduino framework. ARTe (Arduino Real-Time extension) is an extension to the

Arduino framework that supports multitasking and real-time preemptive scheduling.

 Thanks to ARTe, the users can easily specify and run multiple concurrent loops

each one scheduled with a Real-Time OS.

 ARTe is supported for real-time multitasking and periodic activities; it

maintains a very simple programming interface compliant with the Arduino philosophy

with Minimum amount of differences with respect to the original Arduino

programming model.

3.7.2. Erika Enterprise

ERIKA Enterprise (ERIKA for short) is an open-source real-time kernel that allows

achieving high predictable timing behavior with a very small run-time overhead and

memory footprint (in the order of one kilobyte). ERIKA is an OSEK/VDX certified

RTOS that uses innovative programming features to support time sensitive applications

on a wide range of microcontrollers and multi-core platforms, in addition to the

OSEK/VDX standard [25].

3.7.3. ARTE Design Goals

ARTE has been conceived according to the following design objectives:

• Simplicity: although deferent works have been proposed to integrate a multitasking

support in Arduino, thus making all the new programming features provided by ARTE

ease of use. This has been achieved by designing the ARTE programming model as

similar as possible to the original Arduino programming model, hence limiting the

additional effort required to the user to implement concurrent applications [25].

Chapter 3: System Description

27

• Real-Time Multitasking support: Arduino is generally used to build embedded

systems that interact with the environment through sensors, actuators and

communication devices. For this reason, any delay introduced in the computational

activities may affect the overall system performance. Bounding the execution delays in

all the concurrent activities programmed by the user is therefore crucial for ensuring a

desired system performance [25].

• Integration with standard Arduino Libraries: The huge number of libraries

provided with Arduino is one of the key strength points that determined its widespread

use. To this purpose, ARTE has been conceived to enable the use of all existing

Arduino libraries inside a multi programmed application [25].

• Efficiency: To preserve the performance of the Arduino computing platforms, ARTe

has been designed to have a minimal impact on resource usage, in terms of both

footprint and run-time overhead [25].

3.7.4. The ARTe Architecture

 In addition to the single loop present in the standard Arduino approach, the user

can easily specify a number of concurrent loops to be executed at specific rates.

Concurrency and real-time scheduling is provided by the ERIKA Enterprise open-

source real-time kernel

 Figure3.4: ARTe Architecture

http://erika.tuxfamily.org/

Chapter 3: System Description

28

3.7.5. The ARTe Programming Model

As explained before, the ARTE programming model has been designed to result as

similar as possible to the original Arduino programming model. Each periodic loop

defined by the user is specified as follows:

 Figure3.5: Arduino Programming Model

 Where i = 1,2,3,... and period represents the time interval (in milliseconds) with

which the loop is executed. As in the original Arduino programming model, the setup ()

function is also available under ARTE with the same syntax and semantics. Similarly,

the original loop () function can also be used under ARTE [25].

Chapter 3: System Description

29

3.7.6. ARTe Builds Process

The whole ARTE build process flow is shown in Figure3.7. The original Arduino

framework includes a sketch processing phase, denoted as Arduino processing, which is

implemented inside the Arduino IDE. The main part of the ARTE build process

consists in extending the Arduino IDE with two additional processing phases (shown

inside the dashed box) [25]:

(i) ARTE pre-processing

(ii) ARTE post-processing

 Figure3.6: ARTe Build Process [25]

Chapter 3: System Description

30

3.7.6.1.ARTe Pre-Processing

During this phase, the sketch is processed to extract the structure of the application, that

is, the identification of the loops with their periods, in order to automatically generate

the ERIKA configuration supporting the execution of the user application.

For each identified loop, an ERIKA task configuration is generated in an OIL file and

then associated to the code inside the loop. In addition, the period of the loop is

extracted and used to configure an OSEK alarm, which is the OSEK standard

mechanism conceived to trigger periodic activities. The remaining part of the ERIKA

configuration consists in an OIL section that specifies the underlying hardware

platform; this section is selected from a set of predefined OIL templates [25].

3.7.6.2.Arduino processing

This phase consists in the default Arduino transformation needed to produce a

compiler-compatible code. In particular, the original sketch (in .pde or .ino formats) is

converted to a standard .cpp file (i.e., C++ code); any additional files beside the main

one are appended to it [25].

3.7.6.3.ARTe post processing

This phase is responsible for transforming the sketch into an ERIKA application and

modifies the .cpp file produced in the previous step to make it compiler-compatible.

Specifically, each ARTE loop declaration is transformed into an OSEK compliant task

declaration, in the form TASK (loop i).Also, since Arduino sketches are written in

C++, while Erika is written in C, the ERIKA code has to be wrapped into an extern "C"

declaration to avoid errors when the code is linked together. At this point, the sketch is

ready to be compiled, but it still requires additions to make it fully functional. In

particular, all the ERIKA initialization functions are added in the setup () function (i.e.,

before any user-defined code is executed), and each OSEK alarm automatically

generated in the ARTE pre-processing phase is activated. In this way, task activations

will be completely transparent to the user [25].

Chapter 3: System Description

31

3.7.6.4.Linking

As shown in Figure 8, the ARTE pre-processing phase produces as output the ERIKA

configuration consisting in an OIL file. This file is given as input to the RT-DRUID

tool, which generates the specific files of ERIKA describing its configuration. At this

time, the ERIKA build process is executed to obtain the RTOS binary. Note that this

binary file is an RTOS image specifically configured for the user application needs that

are automatically derived from the ARTE sketch. On the other side, the user code is

built by means of the standard Arduino build process, enhanced to have the visibility of

ERIKA C headers, so obtaining the object files of the user application. Finally, the

LINK phase puts together the ERIKA binary with the object files resulted from the

Arduino build process, generating the final ELF binary file ready to be loaded into the

microcontroller [25].

Chapter 04: PLC Implementation

32

4.1. Introduction

In the previous chapter we had a look at the Arduino and we learnt more about the real

time extension and the concept of RTOS, in this chapter we will gather all these

information to build our PLC based Arduino, and we are going to test the PLC using

small applications.

One approach to turn Arduino into a Programmable Logic Controller is to use an

Arduino library called plcLib as we mentioned before, it provides a host of functions

that can do a similar job as PLC functions. It allows us to write its code with a language

similar to instruction list (instructions: LD, AND, OR …) having the control on timers,

counters and other functions.

4.2. Introduction to The plcLib Library

plcLib is a simple C/C++ code Arduino library that can be used to write control-

oriented PLC software applications for Arduino boards. The library provides a host of

functions to write applications for control devices in industrial environments.

The software is supplied as an installable Arduino library, which is included in

the normal way at the start of the program. A range of text-based PLC-style commands

then become available for use in the programs. Also, unlike a modern commercial PLC,

the software does not currently support graphical program entry, simulation, or runtime

monitoring. Programs must be entered using the standard Arduino IDE.

Chapter 04: PLC Implementation

33

Figure 4.1: From Electrical Circuit to Ladder Diagram then to Simple Program.

4.3. The Default Hardware Configuration

The plcLib library provides software defined inputs and outputs. We select this default

configuration by firstly include the plclib file (#include <plcLib.h>) and then by calling

the setupPLC() function from within the setup() section of the Arduino sketch.

 Table 4.1: plcLib Input/Output Mapping with Arduino Due

plcLib Inputs Arduino due Input

pins

plcLib Outputs Arduino due Output

pins

X0 2 Y0 8

X1 3 Y1 9

X2 4 Y2 10

X3 5 Y3 11

X4 6 Y4 12

X5 7 Y5 13

Chapter 04: PLC Implementation

34

The main features of this hardware layout are explained below:

 Inputs are capable of reading digital values.

 Outputs can produce digital values.

 Arduino pins with duplicate functions have been avoided wherever possible, to

minimize hardware conflicts.

 Data directions of inputs and outputs are automatically configured and outputs

are initially disabled (based on the assumption that 0='OFF' and 1 = 'ON')

 The default inputs and outputs mapping can be used with a different Arduino

board with equal or less number of pins.

4.4. Command References

 This section lists all commands supported by the plcLib software.

4.4.1. General Configuration

 Table 4.1: plcLib General Configuration

Command Description

setupPLC() A command which configures data directions for the default set

of inputs and outputs, together with initial output values as

discussed in the Configuring the Hardware section.

4.4.2. Single Bit Digital Input/output

 Table 4.2: plcLib Digital I/O Commands

PLC Arduino

Symbol Instruction Command Description Example

LD load (input) Reads a digital

input

load(X0);

LDI loadInv (input) Reads an inverted

digital pin

loadInv(X0);

Chapter 04: PLC Implementation

35

OUT out (output) Outputs to the

digital output

out(Y0);

4.4.3. Combinational Logic

 Table 4.3: plcLib Basic Logical Commands

PLC Arduino

Symbol Instruction Command Description Example

AND andLogic (input) Logical AND with

a digital input

load(X0);

andLogic(X1);

out(Y0);

ANI andInv (input) Logical AND with

an inverted digital

pin

load(X0);

andInv(X1);

out(Y0);

OR orLogic (input) Logical OR with a

digital input

load(X0);

orLogic(X1);

out(Y0);

ORI orInv (input) Logical OR with

an inverted digital

input

load(X0);

orInv(X1);

out(Y0);

4.4.4. Setting and Resetting

 Table 4.4: plcLib Setting and Resetting Commands

PLC Arduino

Symbol Instruction Command Description Example

SET set (output) Set the digital

output

HIGH

load(X0);

set(Y0);

RST reset (output) Clear the digital

output

load(X1);

reset(Y0);

Chapter 04: PLC Implementation

36

4.4.5. Timers

 Table 4.5: plcLib different timers

Command Description Example

timerOn (timer_variable ,

timer_period)

Set output HIGH for certain duration

of time in milliseconds after the output

is LOW.

load(X0);

timerOn(T0, 3000);

out(Y0);

timerDelay(timer_variable

, timer_period)

Delays activate the output until the

input has been continuously active for

the specific period of time in

milliseconds.

load(X0);

timerDelay (T0, 2000);

out(Y0);

m8013 (timer_variable1,

timer_variable2)

Creates a repeating 1second pulse

waveform when the input is HIGH.

m8013 (T0, T1);

out(Y0);

 4.4.6. Counters

 Table 4.6: plcLib Counter functions

Command Description Example

counter (counter_variable,

current_State,

previous_State, maxtimes)

Counts up, if counter_variable

is less then maxtimes

load(X0);

counter(C0,Curr , Prev,10);

out(Y0);

counterState(counter_variabl

e, current_State,

previous_State, maxtimes)

Set the state of the counter

HIGH when counting is

finished

counterState(C0,Curr,Prev,10);

andLogic(X1);

out(Y1);

Note: counterState () function is used to activate next stage of the task required in some

applications.

4.5. Building a Simple PLC Hardware

As previously mentioned in chapter 1, section 3, the main hardware components of any

PLC are the power supply, the input and outputs modules and the CPU. In this section

we try to build all these components.

Chapter 04: PLC Implementation

37

4.5.1. Hardware Required to Build a Simple Arduino-based PLC

1. Optocoupler CQY80: A phototransistor Optocoupler device used to provide

electrical isolation between an input source and an output load using light. It consists of

an LED that produces infra-red light and a semiconductor photo-sensitive transistor that

is used to detect the emitted infra-red beam. One application of Optocouplers is to

switch a range of other large electronic devices such as transistors providing the

required electrical isolation between a lower voltage control signals, in our case, one

signal is from the Arduino and the other is from a much higher voltage (24V DC) or

higher current output signal (relays).

Figure 4.2 : CQY80 Optocoupler

2. Power Supply 24V DC and 5VDC.

3. Push Buttons are used as input modules.

4. LEDs to display the output.

5. 5V DC Relay: an ideal solution to drive AC or DC loads which are rated with high

voltage and high power (12V DC, 24V DC, 120V AC or 240V AC).

Figure 4.3: 8 Pins 5V DC Relay

Chapter 04: PLC Implementation

38

6. ULN2803: is a High voltage, high current Transistor Array IC used especially with

Microcontrollers where we need to drive high power loads. This IC consists of 8 NPN

Darlington connected transistors with common Clamp diodes for switching the loads

connected to the output. This IC is widely used to drive high loads such Lamps, relays,

motors etc.

Figure 4.4 :The ULN2803 Pin Connection

7. Arduino Due: we have already introduced the Arduino due in chapter 3, section 6, in

this implementation it represents the CPU of our PLC that will provide all logic

functions. It is the space where the program instructions will be stored.

4.5.2. Building 24V DC Input Modules

To build the PLC input modules an optocoupler was required to provide the required

isolation between the 24V DC power supply and the 3.3V DC supplied by the Arduino

Due pins.

 Figure 4.5: Input Module of an Arduino-Based PLC

Chapter 04: PLC Implementation

39

4.5.3. Building the Relay Output Modules

The lowest voltage relay i.e 5V relay needs about 200mA current at 5V. So it is quite

easy to know that the digital pins cannot drive the relay directly. Therefore a very

practical solution to get a little more power out of the outputs is to use a Darlington

ULN2803 since it can source up to 500mA of current out of each pin. Also the CQY 80

optoisolator is used to provide the required isolation.

 Figure 4.6: Output Module for an Arduino-Based PLC

4.6. Writing PLC-Style Applications with plcLib

To test the functionality of our Arduino-based PLC we have tried to implement two

different PLC applications one with single task and the other with multi-task by

enabling the ARTE.

4.6.1. Single Task Application: Conveyor Driver

Product packaging is one of the most frequent cases for automation in industry. It can

be encountered with small machines (ex. packaging grain like food products) and large

systems such as machines for packaging medications. The Example we are showing in

(Fig.4.7) solves the classic packaging problem with few elements of automation. Small

number of needed inputs and outputs provides for the use of ladder PLC controller

which represents simple and economical solution.

Chapter 04: PLC Implementation

40

By pushing START key (X0) motor of a conveyor for boxes is activated (Y0).

The conveyor takes a box up to the limit switch, using the optical sensor X1, and then

the motor stops. Condition for starting a conveyor with apples is actually a limit switch

for a box. When a box is detected, a conveyor with apples (Y1) starts moving. Presence

of the box allows counter to count 10 apples through a sensor used for apples (X2).The

counting process is displayed by the red light on the wall (Y2).Once the box is full the

blue light on the wall (Y3) pulses 5 times (1 sec ON, 1 sec OFF) indicating that the box

is full. Also, the motor of the conveyor for apples stops and the one of the boxes moves

again. Operations repeat until STOP key (X3) is pressed.

 Figure 4.7: Operating the Conveyor according to the Sensors Data.

Chapter 04: PLC Implementation

41

The associated sketch is giving bellow:

 Figure 4.8: Arduino code of a Conveyor Operation

Chapter 04: PLC Implementation

42

4.6.2. Multi-Task Application: Dual-Task Motors Driving

In an Oil manufacture, there are many tasks running at the same time. In this example

we choose two samples about Oil Pump Motors Driving.

The 1st task: Starting 3 Motors Sequentially with delay i.e. starting the oil pump motor

(Y0) immediately when START PB is pressed (X0). The main motor (Y2) will be

started after a 10 sec delay and then the auxiliary motor (Y1) after a 5 sec delay, in

addition stopping all motors immediately when STOP PB (X1) is pressed.

 Figure 4.9: Driving 3 Motors Sequentially

The 2nd task: Starting 2 Motors Simultaneously each for a specific period of time

i.e. starting When START PB is pressed (X2) the oil pump motor (Y3) is activated for

3 sec. Instantly, The main motor (Y4) will be activated for 8 sec.

 Figure 4.10: Driving 2 Motors Simultaneously

Chapter 04: PLC Implementation

43

The associated sketch is giving bellow:

 Figure 4.11: Arduino code of dual-task Motor

Chapter 04: PLC Implementation

44

4.7. Results and Discussion

After implementing the Arduino-based PLC and testing it we were able to implement

simple applications within the limitation of our functions, and we came up with these

results:

 We were able to implement the basic logic operations such as AND, OR, NOT

and the basic timer and counter functions.

 The Arduino Due was a good choice for such operation since it offers a large

number of I/O and thanks to its fast clock the communication between hardware

and software was done with less interrupts and delays; however the other

Arduino boards can be used with no problems such as Arduino mega which is

less sensitive than the due .

 The use of ARTe was very efficient and improves the performance of our

Arduino-based PLC and makes it more like a real PLC since it offers the multi-

tasking feature.

 The Arduino-based PLC is a good choice to implement a PLC with a minimal

budget.

 Since the software was written in c language it can be improved in order to

cover larger number of instructions like implementing registers and special

relays or logic blocks.

 We can make use of the Arduino features like reading analogue values or using

PWM signal or serial monitor.

 To make the Arduino-based PLC more like a PLC it is good to create a Ladder

graphical interface compatible with the Arduino board being used and the

plcLib implemented.

45

Conclusion

This project aim was to implement an Arduino-based PLC controller, a new way used

in industry for controlling products based on Open Source technology. This new

technology offers smart and flexible installations, in addition to the low coast

comparing to a real programmable logic controller (PLC).

The Arduino-based PLC controller system is divided into two main sections: The

software is supplied as an installable Arduino library, plcLib, a simple C/C++ code

Arduino library that was used to write control-oriented PLC software applications for

Arduino boards. The library provides a host of functions to write applications for

control devices in industrial environments. Also ARTe (Arduino Real-Time extension)

made our system more realizable and efficient as it offers the multitasking and real-time

preemptive scheduling. Thanks to ARTe, we were able to easily specify and run

multiple concurrent loops at different rates, in addition to the single execution cycle

provided by the standard Arduino framework. The second part was the hardware design

that we made according to the industrial PLC hardware specifications, where a 24V DC

power supply was used with Arduino Due board as a CPU (brain) of our PLC, in

addition to 5V Relays with LEDs as indicators. Also, Optocouplers (CQY80) and

Darlington Sink Driver (ULN2803) were used to insure the I/O isolation and the

voltage and current range switching.

For future work, it would be useful to develop more control functions, such as

block Logic operations, relays, registers and comparators, this make the library able to

implement SFC (Sequential Function Charts) for parallel applications. Another

recommendation is to make use of the Arduino functions like using Analogue pins,

PWM signal and serial monitor for display. The last improvement that may be done to

make this project very similar to a real PLC is to create a Ladder graphical interface

that can be compiled to the Arduino to be used as monitoring tool.

The interface must contain the same functions declared in the plcLib to make sure

that it will be read by the Arduino after uploading the program.

Bibliography

[1] Mrs. Pooja.S.Puri, "Advancement in Home Appliance Automation Using PLC," D.

K. T. E. Society’s Textile & Engineering Institute, India, June-2016.

[2] Manisha Hooda Niharika Thakur, "A Review Paper on PLC & Its Applications in

Robotics and Automation," Dept. of ECE, Manav Rachna University, India, 4,

August 2016.

[3] "Plant, Automains Failure System Control for Power," International Journal of

Advanced Research in, vol. Volume 7, no. Issue 2, February 2017.

[4] Toni M. & Kinner, Russell H. P.E Harms, "Enhancing PLC Performance with

Vision Systems," in 18th Annual ESD/HMI International Programmable

Controllers Conference Proceedings, 1989, pp. 387-399.

[5] D. J. Warne (ed) M. A. Laughton, Electrical Engineer's Reference book, 16th ed.,

2003.

[6] M. M. I. Norashikin M. Thamrin, "Development of Virtual Machine for

Programmable Logic Controller (PLC) by Using STEPS Programming Method,"

Malaysia, 2011.

[7] Electrical A2Z. [Online]. http://electricala2z.com/motors-control/plc-

programmable-logic-controller-hardware-components-plc-hardware-

basics/(Accessed 20 April 2018).

[8] Dr. D. J. Jackson, Programmable Logic Controllers, plc Basics.

[9] S. F. B. a. D. J. Packs, Microcontrollers Fundamentals For Engineers and

Scientist, Morgan & Claypool, Ed., 2006.

[10] F.Ebel, C.Löffler, B. Plagemann, H.Regber, E.v.Terzi, A. Winter R. Bliesener,

"Programmable Logic Controllers Basic Level- Textbook TP 301," Germany,

2002.

http://electricala2z.com/motors-control/plc-programmable-logic-controller-hardware-components-plc-hardware-basics/
http://electricala2z.com/motors-control/plc-programmable-logic-controller-hardware-components-plc-hardware-basics/
http://electricala2z.com/motors-control/plc-programmable-logic-controller-hardware-components-plc-hardware-basics/

[11] Peter. Structured Text (ST) PLC Programming with IEC-61131-3.

[12] Paulo Jorge Oliveira. (2011-2013) Programming Languages PLC Programming

Languages Instruction List.

[13] Martin Bruggink. (1999, January) Programming PLCs using Sequential Function

Chart.

[14] Tarun Agarwal. Applications, What is a PLC System – Different Types of PLCs

with. [Online]. https://www.elprocus.com/programmable-logic-controllers-and-

types-of-plcs/(Accessed 1 March 2018).

[15] Sadegh vosough and Amir vosough, "International journal of multidisciplinary

science and engineering," PLC and its Applications, vol. 02, no. 08, p. 42, 2011.

[16] (2016) operating system fundamental os concepts. Tutorials Point.

[17] Real Time Operating Systems Lecture. MIT 16.07.

[18] G.Buttazzo, Hard Real-Time Computing Systems ,Predictable Scheduling

Algorithms and Applications, Kluwer Academic Publishers, Ed.

[19] Edinburgh The school of Informatics at the University, RTOS course. UK.

[20] Mr. Mahesh P.Gaikwad, "The Design of Real Time Operating Systems for

Embedded Systems," International Journal of Advanced Research in Computer

Science and Electronics Engineering (IJARCSEE), vol. 02, no. 02, February 2013.

[21] arduio official website. [Online]. https://www.arduino.cc(Accessed 10 April2018).

[22] Massimo Banzi, Getting Started with Arduino, 2nd ed. USA, 2011.

[23] Adafruit Industries William Earl, All About Arduino Libraries., 2017.

[24] Arduino due Datasheet by the manufacturer.

https://www.elprocus.com/programmable-logic-controllers-and-types-of-plcs/
https://www.elprocus.com/programmable-logic-controllers-and-types-of-plcs/
https://www.arduino.cc/

[25] Alessandro Biondi, Marco Pagani, Mauro Marinoni, Giorgio Buttazzo Pasquale

Buonocunto, "ARTE: Arduino Real-Time Extension for Programming

Multitasking Applications," in SAC , Italy, 2016.

[26] Alessandro Biondi, Pietro Lorefice Pasquale Buonocunto, Real-Time Multitasking

in Arduino, information and perception technologies of communication, Ed. Italy.

Appendix

Arduino I/O pin configuration

#include "Arduino.h"

#include "plcLib.h"

extern int scanValue = 0; //variable to store inputs and outputs state

// Define default pin directions and initial output levels.

void setupPLC() {

 // Basic digital input pins

 pinMode(X0, INPUT);

 pinMode(X1, INPUT);

 pinMode(X2, INPUT);

 pinMode(X3, INPUT);

 pinMode(X4, INPUT);

 pinMode(X5, INPUT);

 // Basic digital output pins

 pinMode(Y0, OUTPUT);

 pinMode(Y1, OUTPUT);

 pinMode(Y2, OUTPUT);

 pinMode(Y3, OUTPUT);

 pinMode(Y4, OUTPUT);

 pinMode(Y5, OUTPUT);

 // Default output port values

 digitalWrite(Y0, LOW);

 digitalWrite(Y1, LOW);

 digitalWrite(Y2, LOW);

 digitalWrite(Y3, LOW);

 digitalWrite(Y4, LOW);

 digitalWrite(Y5, LOW);

}

PLC code:

// Read an input pin (pin number supplied as integer)

unsigned int load (int input) {

 scanValue = digitalRead (input); // read input pin (HIGH=1, LOW=0)

 return (scanValue); //return input state (1 or 0)

}

// Read an inverted input (pin number supplied as integer)

unsigned int loadInv (int input) {

 if (digitalRead (input) == 1) { // if input is HIGH

 scanValue = 0; } // set output LOW

 else { //if input is LOW

 scanValue = 1; } // set output HIGH

 return (scanValue); // return result state (HIGH=1 or LOW=0)

}

// Output to a digital output pin

unsigned int out (int output) {

 if (scanValue == 1) { // if input is HIGH

 digitalWrite(output, HIGH);} //set output HIGH

 else { //if input is LOW

 digitalWrite(output, LOW);} //set output LOW

 return(scanValue); //return result state

}

// AND scanValue with input (pin number supplied as integer)

unsigned int andLogic (int input) {

 scanValue = scanValue & digitalRead(input);

 return (scanValue);

}

// AND scanValue with inverted input (pin number supplied as integer)

unsigned int andInv (int input) {

 scanValue = scanValue & ~digitalRead(input);

 return(scanValue); }

// OR scanValue with input (pin number supplied as integer)

unsigned int orLogic (int input) {

 scanValue = scanValue | digitalRead(input);

 return(scanValue);

}

// OR scanValue with inverted input (pin number supplied as integer)

unsigned int orInv (int input) {

 if (scanValue == 1) { // if previous input is HIGH do nothing

 }

 else { //if previous input is LOW

 if (digitalRead(input) == 0) { // if 2nd input is LOW

 scanValue = 1;} // set output HIGH

 else { // if 2nd input is HIGH

 scanValue = 0;} // set output LOW

 }

 return(scanValue); //return result

}

// Set the output HIGH (output pin number supplied as integer)

unsigned int set (int output) {

scanValue = scanValue | digitalRead(output); // Self latch by ORing with Output pin

 if (scanValue == 1) { //if input is HIGH

 digitalWrite(output, HIGH);} // set output HIGH directly

 return(scanValue); //return result

}

// reset (or clear) the output (output pin number supplied as integer)

unsigned int reset (int output) {

 if (scanValue == 1) { //if unput is HIGH

 digitalWrite(output, LOW); } // set output LOW

 return(scanValue); //retutn result

}

// Set output ON for certain duration (timerPeriod)

unsigned int timerOn (unsigned long & timerState, unsigned long timerPeriod) {

 if (scanValue == 0) { // Timer input is off (scanValue = 0)

 if (timerState == 0) { // Timer is not started so do nothing

 }

 else { // Timer is active and counting

 if (millis() > (timerState + timerPeriod)) { // Timer has finished

 scanValue = 0; } // Result = 'turn-off output ‘(0)

 else { // Timer has not finished

 scanValue = 1; } } } // Result = 'turn-On output' (1)

 else { // Timer input is high (scanValue = 1)

 timerState = millis();} // Set timerState to current time in milliseconds

 return (scanValue); // Return result

}

// time delay befor LED is ON

unsigned int timerDelay (unsigned long & timerState, unsigned long timerPeriod) {

 if (scanValue == 0) { // timer is disabled

 timerState = 0; } // Clear timerState (0 = 'not started')

 else { // Timer is enabled

 if (timerState == 0) { // Timer hasn't started counting yet

 timerState = millis(); // Set timerState to current time in ms

 scanValue = 0; } // Result = 'output OFF' (0)

 else { // Timer is active and counting

 if (millis() <= (timerState + timerPeriod)) { // Timer has not

 //finished

 scanValue = 0; } // Result = 'output OFF' (0)

 else { // Timer has finished

 scanValue = 1; }}} // Result = 'output ON' (1)

 return (scanValue); // Return result

}

// creates a repeating 1second pulse waveform when enabled

// (timer1State,timer2State are unsigned long values - 32 bit)

unsigned int m8013 (unsigned long &timer1State, unsigned long &timer2State) {

 if (scanValue == 0) { // Enable input is off (scanValue = 0)

 timer2State = 0; // Ready to start HIGH pulse period when enabled

 timer1State = 1; }

 else{

 if (timer2State == 0) { // HIGH pulse Active

 if (timer1State == 1) { // HIGH pulse period starting

 timer1State = millis();} // Set timerState to current time

 //in milliseconds

 else if (millis() - timer1State >= 1000) { // HIGH pulse period

 // has finished

 timer1State = 0;

 timer2State = 1; } // Ready to start LOW pulse period

 scanValue = 1; } // Result = 'Pulse HIGH' (1)

 if (timer1State == 0) { // LOW pulse Active

 if (timer2State == 1) { // LOW pulse period starting

 timer2State = millis();} //Set timerState to current time in

 //milliseconds

 else if (millis() - timer2State >= 1000) { // LOW pulse has

 //finished

 timer2State = 0;

 timer1State = 1; } // Ready to start HIGH pulse period

 scanValue = 0; }} // Result = 'Pulse LOW' (1)

return(scanValue); //return result

}

//Counts number of pulses received on its input

unsigned int counter (int & count, int & currentState, int & previousState, int

maxtimes){

 if (scanValue == 1 && count<maxtimes) { // check if the input is HIGH and counter

 //didn't reach maximum

 scanValue=1; // turn output HIGH

 currentState = 1; } // Set output state to HIGH

 else {

 scanValue=0; // turn output LOW

 currentState = 0; } // set output state LOW

 if (currentState != previousState && count<maxtimes){ // Start loop of counting

 if(currentState == 1){

 count = count + 1; //increment counter

 Serial.print("counter:"); Serial.println(count); }} // print counter

 previousState = currentState; //save OUTPUT state

 delay(50); //used for serial monitor

 return (scanValue); // return output state (ON/OFF)

}

// Set the state of the counter HIGH when counting is finished

unsigned int counterState (int & count,int & currentState, int & previousState, int

maxtimes) {

if (scanValue == 1 && count<maxtimes) { // check if the input is HIGH and counter

 //didn't reach maximum

 currentState = 1; // Set output state to HIGH

 scanValue=0; } // don’t display output

 else {

 currentState = 0; } // set output state LOW

 if (currentState != previousState && count<maxtimes){ // Start loop of counting

 if(currentState == 1){

 count = count + 1; }} //increment counter

 previousState = currentState; //save OUTPUT state

 if(count = = maxtimes){ // if counter reaches is finished

 scanValue=1; } //set output HIGH

 return (scanValue); // return output state (ON/OFF)

}

