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Abstract 

 

One of the most important factors in the field of flying is the maintenance of the aircraft engine, 

that is because of the accidents that happened more than once. This requires a knowledge not only 

in the system of the aircraft engines, but also how they work and how their performance degrades 

over time. This drives us to the prediction field where machine learning plays an important role in 

analyzing and the data measurements from the equipment and attempt to predict any failure that 

could happen. 

In this thesis a study of prediction of the remaining useful life (RUL) of aircraft’s turbo fan engine 

has been investigated by bringing a dataset from turbo fan engine from the Prognostics Data 

Repository of NASA and using Principal Component Analysis (PCA) and Independent 

Component Analysis (ICA) techniques for data analytics and preprocessing, then selecting two 

machine learning algorithms Random Forest and Gradient Boosted Machine (GBM) so that a 

model can be trained. 

The idea is to develop a model to estimate the remaining useful life of the functionality of the 

turbofan engine and predict failure before it actually happens. 

 

Key words: Principal Component Analysis (PCA), Independent Component Analysis (ICA), 

Random Forest, Gradient Boosted Machine (GBM). 
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 General Introduction 

 

Whenever we hear about an accident that happens in space or crashing in the sea, it comes to our 

minds what is the cause behind that? Even the modern airplanes with turbofan engines has been 

crashed in the space. Here we found ourselves asking more questions if it is safe to travel by plane, 

engineers must reconsider the functionality and the performance of the airplane systems, including 

the past and present status of its turbofan engines. This leads us to think about the prognostic field 

where we can predict the time of failure in our systems and hence the time left of the functionality 

of turbofan engines often referred to as the remaining useful life (RUL). 

Most modern airliners use turbofan engines to generate the required thrust in order to move through 

the air. Hence prediction of the remaining useful life (RUL) is critical for scheduling aircraft 

maintenance and stop the failure [1] [2] [3] [4]. Additionally, predictive maintenance can save lot 

of time and cost as well as energy by reducing the unnecessary maintenances that can be done in 

the urgent cases [1][5].  

Nowadays predictive maintenance has been very popular in modern industrial processes in which 

we can do it in two ways. The first one is the classification approach where it can predict a failure 

in next n-steps. Or it can be regression approach where it predicts the time left before the next 

failure, called Remaining Useful Life (RUL) [6][8]. 

The RUL estimation is now a standard problem for any system and is the main focus of several 

organizations, including the National Aeronautics and Space Administration (NASA) and the 

Prognostics & Health Management (PHM) Society who have promoted the field by publishing 

several datasets open to the public, providing the free, unrestricted access to PHM knowledge, and 

promoting collaboration [7]. 

This thesis is organized as follows: Chapter 1 discusses the principal of airplane turbofan engine 

operation and malfunctions, as well as the cause of the malfunctions, and we also discussed the C-

MAPSS tool which stands for Commercial Modular Aero-Propulsion System Simulation which is 

used as a tool for simulation due to the rare failures of the turbofan engines. In chapter 2, we 

introduced two machine learning techniques, Principal Component Analysis (PCA) and 

Independent Component Analysis (ICA) and the use of them as tools to extract the main features 

and reducing the dimension of the data. Chapter 3 discusses ensemble machine learning as a 

concept of solving supervised learning problems by training multiple models using the same 
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algorithm, in this case we discussed the two machine learning algorithms Random Forest (RF) and 

Gradient Boosted Machine (GBM) and the difference between them in the bagging and boosting 

methods for building a model. 
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1 Chapter 1 

 

Airplane Turbofan Engine Operation and Malfunctions 

1.1 General Principals 

1.1.1 Introduction 

Today's modern airplanes are powered by turbofan engines. These engines are quite reliable, 

providing years of trouble- free service. Because of the rarity of turbofan engine malfunctions 

and the limitations of simulating these malfunctions, many flight crews have felt unprepared to 

diagnose actual engine malfunctions that have occurred. The purpose of this chapter is to provide 

basics of airplane engine operational theory.  

This chapter will also provide pertinent information about malfunctions and failures that may be 

encountered during the operation of turbofan powered airplanes that cannot be simulated well and 

may cause the flight crew to be startled or confused as to what the actual malfunction is. While 

simulators have greatly improved pilot training, many may not have been programmed to simulate 

the actual noise, vibration and aerodynamic forces that certain malfunctions cause. In addition, it 

appears that the greater the sensations, the greater the startle factor, along with greater likelihood 

the flight crew will try to diagnose the problem immediately instead of flying the airplane. 

1.1.2 Propulsion  
Propulsion is the net force that results from unequal pressures. Gas (air) under pressure in a sealed 

container exerts equal pressure on all surfaces of the container; therefore, all the forces are 

balanced and there are no forces to make the container move. 

 

 

 

 

 

 

 

  
Figure 1-1 Showing balloon with no escape path 
for the air inside. All forced are balanced 
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If there is a hole in the container, gas (air) cannot push against that hole and thus the gas escapes. 

While the air is escaping and there is still pressure inside the container, the side of the container 

opposite the hole has pressure against it. Therefore, the net pressures are not balanced and there is 

a net force available to move the container. This force is called thrust. 

 

 

 

 

 

 

 

1.1.3 The Simplest Propulsion Engine 
The simplest propulsion engine would be a container of air (gas) under pressure that is open at one 

end. A diving SCUBA tank would be such an engine if it fell and the valve was knocked off the 

top. The practical problem with such an engine is that, as the air escapes out the open end, the 

pressure inside the container would rapidly drop. This engine would deliver propulsion for only a 

limited time. 

1.1.4 The Turbine Engine 

A turbine engine is a container with a hole in the back end (tailpipe or nozzle) to let air inside the 

container escape, and thus provide propulsion. Inside the container is turbomachinery to keep the 

container full of air under constant pressure. 

 

 

 

 

 

 

 

 

 

 

 

Figure 1-3 showing our balloon with machinery 
in front to keep it full as air escapes out the 
back of continuous thrust. 

Figure 1-2 Showing balloon with released stem. 



Chapter 1   Airplane Turbofan Engine Operation and Malfunctions 

5 

 

 

 

 

 

 

 

 

 

 

 

1.1.5 Components of a Turbine Engine 

The turbomachinery in the engine uses energy stored chemically as fuel. The basic principle of the 

airplane turbine engine is identical to any and all engines that extract energy from chemical fuel. 

The basic 4 steps for any internal combustion engine are: 

1) Intake of air (and possibly fuel) 

2) Compression of the air (and possibly fuel) 

3) Combustion, where fuel is injected (if it was not drawn in with the intake air) and burned   

to convert the stored energy. 

4) Expansion and exhaust, where the converted energy is put to use. 

These principles are exactly the same ones that make lawn mower or automobile engine go. In the 

case of a piston engine such as the engine in cars or lawn mower, the intake, compression, 

combustion, and exhaust steps occur in the same place (cylinder head) at different times as the 

piston goes up and down. 

In the turbine engine, however, these same four steps occur at the same time but in different places. 

As a result of this fundamental difference, the turbine has engine sections called: 

1) The inlet section 

2) The compressor section 

3) The combustion section 

4) The exhaust section. 

Figure 1-4 showing turbine engine as a cylinder of 
turbomachinery with unbalanced forces pushing 
forward. 



Chapter 1   Airplane Turbofan Engine Operation and Malfunctions 

6 

 

1.1.6 The Practical Axial Flow Turbine Engine 

The turbine engine in an airplane has the various sections stacked in a line from front to back. As 

a result, the engine body presents less drag to the airplane as it is flying. The air enters the front of 

the engine and passes essentially straight through from front to back. On its way to the back, the 

air is compressed by the compressor section. Fuel is added and burned in the combustion section, 

then the air is exhausted through the exit nozzle.  

The laws of nature will not let us get something for nothing. The compressor needs to be driven 

by something in order to work. Just after the burner and before the exhaust nozzle, there is a turbine 

that uses some of the energy in the discharging air to drive the compressor. There is a long shaft 

connecting the turbine to the compressor ahead of it. 

 

 

 

 

 

 

 

 

 

1.1.7 Machinery Details 

From an outsider's view, the flight crew and passengers rarely see the actual engine. What is seen 

is a large elliptically-shaped pod hanging from the wing or attached to the airplane fuselage toward 

the back of the airplane. This pod structure is called the nacelle or cowling. The engine is inside 

this nacelle. 

The first nacelle component that incoming air encounters on its way through an airplane turbine 

engine is the inlet cowl. The purpose of the inlet cowl is to direct the incoming air evenly across 

the inlet stages of the engine. The shape of the interior of the inlet cowl is very carefully designed 

to guide this air. 

Figure 1-5 showing turbine engine as a cylinder of 
turbomachinery with unbalanced forces pushing 
forward. 
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The compressor of an airplane turbine engine has quite a job to do. The compressor has to take in 

an enormous volume of air and compress it to 1/10th or 1/15th of the volume it had outside the 

engine. This volume of air must be supplied continuously, not in pulses or periodic bursts. 

The compression of this volume of air is accomplished by a rotating disk containing many airfoils, 

called blades, set at an angle to the disk rim. Each blade is close to the shape of a miniature 

propeller blade, and the angle at which it is set on the disk rim is called the angle of attack. This 

angle of attack is similar to the pitch of a propeller blade or an airplane wing in flight. As the disk 

with blades is forced to rotate by the turbine, each blade accelerates the air, thus pumping the air 

behind it. The effect is similar to a household window fan. 

After the air passes through the blades on a disk, the air will be accelerated rearward and also 

forced circumferentially around in the direction of the rotating disk. 

 

 

 

 

 

 

 

 

 

 

 

Any tendency for the air to go around in circles is counterproductive, so this tendency is corrected 

by putting another row of airfoils behind the rotating disk. This row is stationary and the airfoils 

are at an opposing angle. 

What has just been described is a single stage of compression. Each stage consists of a rotating 

disk with many blades on the rim, called a rotor stage, and, behind it, another row of airfoils that 

is not rotating, called a stator. Air on the backside of this rotor/stator pair is accelerated rearward, 

and any tendency for the air to go around circumferentially is corrected. 

Figure 1-6 showing compressor rotor 
disk. 
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Figure 1-7 showing 9 stages of a compressor rotor 

A single stage of compression can achieve perhaps 1.5:1 or 2.5:1 decrease in the air's volume. In 

order to achieve the 10:1 to 15:1 total compression needed for the engine to develop adequate 

power, the engine is built with many stages of compressors stacked in a line. Depending upon the 

engine design, there may be 10 to 15 stages in the total compressor. 

As the air is compressed through the compressor, the air increases in velocity, temperature, and 

pressure. Air does not behave the same at elevated temperatures, pressures, and velocities as it 

does toward the front of the engine before it is compressed. In particular, this means that the speed 

that the compressor rotors must have at the back of the compressor is different than at the front of 

the compressor. If we had only a few stages, this difference could be ignored; but, for 10 to 15 

stages of compressor, it would not be efficient to have all the stages go at the same rotating speed. 

The most common solution to this problem is to break the compressor in two. This way, the front 

4 or 5 stages can rotate at one speed, while the rear 6 or 7 stages can rotate at a different, higher, 

speed. To accomplish this, we also need two separate turbines and two separate shafts. 

 

 

Figure 1-8 showing layout of a dual rotor airplane 
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Most of today's turbine engines are dual-rotor engines, meaning there are two distinct sets of 

rotating components. The rear compressor, or high-pressure compressor, is connected by a hollow 

shaft to a high-pressure turbine. This is the high rotor. In some literature, the rotors are called 

spools, such as the "high spool." In this text, we will use the term rotor. The high rotor is often 

referred to as N2 for short. 

The front compressor, or low-pressure compressor, is in front of the high-pressure compressor. 

The turbine that drives the low-pressure compressor is behind the turbine that drives the high-

pressure compressor. The low-pressure compressor is connected to the low-pressure turbine by a 

shaft that goes through the hollow shaft of the high rotor. The low-pressure rotor is called N1 for 

short. 

The N1 and N2 rotors are not connected mechanically in any way. There is no gearing between 

them. As the air flows through the engine, each rotor is free to operate at its own efficient speed. 

These speeds are all quite precise and are carefully calculated by the engineers who designed the 

engine. The speed in RPM of each rotor is often displayed on the engine flight deck and identified 

by gages or readouts labeled N1 RPM and N2 RPM. Both rotors have their own redline limits. 

1.1.8 The Turbofan Engine 

In some engine designs, the N1 and N2 rotors may rotate in opposite directions, or there may be 

three rotors instead of two. Whether or not these conditions exist in any particular engine are 

engineering decisions and are of no consequence to the pilot. 

 

 

Figure 1-9 showing schematic of fan jet engine. In this sketch, the fan is the low-pressure compressor.  
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A turbofan engine is simply a turbine engine where the first stage compressor rotor is larger in 

diameter than the rest of the engine. This larger stage is called the fan. The air that passes through 

the fan near its inner diameter also passes through the remaining compressor stages in the core of 

the engine and is further compressed and processed through the engine cycle. The air that passes 

through the outer diameter of the fan rotor does not pass through the core of the engine, but instead 

passes along the outside of the engine. This air is called bypass air, and the ratio of bypass air to 

core air is called the bypass ratio. 

The air accelerated by the fan in a turbofan engine contributes significantly to the thrust produced 

by the engine, particularly at low forward speeds and low altitudes. In large engines such as the 

engines that power the B747, B757, B767, A300, A310, etc., as much as three quarters of the thrust 

delivered by the engine is developed by the fan. 

 

 

Figure 1-10 showing schematic of a turboprop. 

The fan is not like a propeller. On a propeller, each blade acts like an airplane wing, developing 

lift as it rotates. The "lift" on a propeller blade pulls the engine and airplane forward through the 

air. 

In a turbofan engine, thrust is developed by the fan rotor system, which includes the static structure 

(fan exit guide vanes) around it. The fan system acts like the open balloon in our example at the 

start of this discussion, and thus pushes the engine, and the airplane along with it, through the air 

from the unbalanced forces. 
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1.2 Engine Malfunctions 

To provide effective understanding of and preparation for the correct responses to engine in-flight 

malfunctions, this chapter will describe turbofan engine malfunctions and their consequences in a 

manner that is applicable to almost all modern airplane turbofan-powered aircraft.  

1.2.1 Compressor Surge 

It is most important to provide an understanding of compressor surge. In modern turbofan engines, 

compressor surge is a rare event. If a compressor surge (sometimes called a compressor stall) 

occurs during high power at takeoff, the flight crew will hear a very loud bang, accompanied by 

yaw and vibration. The bang will likely be far beyond any engine noise, or other sound, the crew 

may have previously experienced in service.  

A surge from a turbofan engine is the result of instability of the engine's operating cycle. 

Compressor surge may be caused by engine deterioration, it may be the result of ingestion of birds 

or ice, or it may be the final sound from a “severe engine damage” type of failure. The operating 

cycle of the turbine engine consists of intake, compression, ignition, and exhaust, which occur 

simultaneously in different places in the engine. The part of the cycle susceptible to instability is 

the compression phase. 

In a turbine engine, compression is accomplished aerodynamically as the air passes through the 

stages of the compressor, rather than by confinement, as is the case in a piston engine. The air 

flowing over the compressor airfoils can stall just as the air over the wing of an airplane can. When 

this airfoil stall occurs, the passage of air through the compressor becomes unstable and the 

compressor can no longer compress the incoming air. The high-pressure air behind the stall further 

back in the engine escapes forward through the compressor and out the inlet. 

This escape is sudden, rapid and often quite audible as a loud bang similar to an explosion. Engine 

surge can be accompanied by visible flames forward out the inlet and rearward out the tailpipe. 

Instruments may show high EGT and EPR or rotor speed changes, but, in many stalls, the event is 

over so quickly that the instruments do not have time to respond. 

Once the air from within the engine escapes, the reason (reasons) for the instability may selfcorrect 

and the compression process may reestablish itself. A single surge and recovery will occur quite 

rapidly, usually within fractions of a second. Depending on the reason for the cause of the 

compressor instability, an engine might experience: 
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-1) A single self-recovering surge 

-2) Multiple surges prior to self-recovery 

-3) Multiple surges requiring pilot action in order to recover 

-4) A non-recoverable surge. 

The actual cause for the compressor surge is often complex and may or may not result from severe 

engine damage. Rarely does a single compressor surge cause severe engine damage, but sustained 

surging will eventually over-heat the turbine, as too much fuel is being provided for the volume of 

air that is reaching the combustor. Compressor blades may also be damaged and fail as a result of 

repeated violent surges; this will rapidly result in an engine which cannot run at any power setting. 

Additional information is provided below regarding single recoverable surge, self-recoverable 

after multiple surges, surge requiring flight crew action, and non- recoverable surge. In severe 

cases, the noise, vibration and aerodynamic forces can be very distracting. It may be difficult for 

the flight crew to remember that their most important task is to fly the airplane. 

1.2.1.1 Single Self-Recoverable Surge 

The flight crew hears a very loud bang or double bang. The instruments will fluctuate quickly, but, 

unless someone was looking at the engine gage at the time of the surge, the fluctuation might not 

be noticed. For example: During the surge event, Engine Pressure Ratio (EPR) can drop from 

takeoff (T/O) to 1.05 in 0.2 seconds. EPR can then vary from 1.1 to 1.05 at 0.2-second intervals 

two or three times. The low rotor speed (N1) can drop 16% in the first 0.2 seconds, then another 

15% in the next 0.3 seconds. After recovery, EPR and N1 should return to pre-surge values along 

the normal acceleration schedule for the engine. 

1.2.1.2 Multiple Surge Followed by Self-Recovery 

 Depending on the cause and conditions, the engine may surge multiple times, with each bang 

being separated by a couple of seconds. Since each bang usually represents a surge event as 

described above, the flight crew may detect the "single surge" described above for two seconds, 

then the engine will return to 98% of the pre-surge power for a few seconds. This cycle may repeat 

two or three times. During the surge and recovery process, there will likely be some rise in EGT. 

For example: EPR may fluctuate between 1.6 and 1.3, Exhaust Gas Temperature (EGT) may rise 

5 degrees C/second, N1 may fluctuate between 103% and 95%, and fuel flow may drop 2% with 
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no change in thrust lever position. After 10 seconds, the engine gages should return to pre-surge 

values. 

 

1.2.1.3 Surge Recoverable After Flight Crew Action  

When surges occur as described in the last paragraph, but do not stop, flight crew action is required 

to stabilize the engine. The flight crew will notice the fluctuations described in “recoverable after 

two or three bangs,” but the fluctuations and bangs will continue until the flight crew retards the 

thrust lever to idle. After the flight crew retards the thrust lever to idle, the engine parameters 

should decay to match thrust lever position. After the engine reaches idle, it may be re-accelerated 

back to power. If, upon re-advancing to high power, the engine surges again, the engine may be 

left at idle, or left at some intermediate power, or shutdown, according to the checklists applicable 

for the airplane. If the flight crew takes no action to stabilize the engine under these circumstances, 

the engine will continue to surge and may experience progressive secondary damage to the point 

where it fails completely. 

 

1.2.1.4 Non-Recoverable Surge  

When a compressor surge is not recoverable, there will be a single bang and the engine will 

decelerate to zero power as if the fuel had been chopped. This type of compressor surge can 

accompany a severe engine damage malfunction. It can also occur without any engine damage at 

all.  

EPR can drop at a rate of .34/sec and EGT rise at a rate of 15 degrees C/sec, continuing for 8 

seconds (peaking) after the thrust lever is pulled back to idle. N1 and N2 should decay at a rate 

consistent with shutting off the fuel, with fuel flow dropping to 25% of its pre-surge value in 2 

seconds, tapering to 10% over the next 6 seconds 

 

1.2.2 Flame Out 

A flameout is a condition where the combustion process within the burner has stopped. A flameout 

will be accompanied by a drop in EGT, in engine core speed and in engine pressure ratio. Once 

the engine speed drops below idle, there may be other symptoms such as low oil pressure warnings 

and electrical generators dropping off line – in fact, many flameouts from low initial power settings 
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are first noticed when the generators drop off line and may be initially mistaken for electrical 

problems. The flameout may result from the engine running out of fuel, severe inclement weather, 

a volcanic ash encounter, a control system malfunction or unstable engine operation (such as a 

compressor stall). Multiple engine flameouts may result in a wide variety of flight deck symptoms 

as engine inputs are lost from electrical, pneumatic and hydraulic systems. These situations have 

resulted in pilots troubleshooting the airplane systems without recognizing and fixing the root 

cause – no engine power. Some airplanes have dedicated EICAS/ECAM messages to alert the 

flight crew to an engine rolling back below idle speed in flight; generally, an ENG FAIL or ENG 

THRUST message. 

A flameout at take-off power is unusual – only about 10% of flameouts are at takeoff power. 

Flameouts occur most frequently from intermediate or low power settings such as cruise and 

descent. During these flight regimes, it is likely that the autopilot is in use. The autopilot will 

compensate for the asymmetrical thrust up to its limits and may then disconnect. Autopilot 

disconnect must then be accompanied by prompt, appropriate control inputs from the flight crew 

if the airplane is to maintain a normal attitude. If no external visual references are available, such 

as when flying over the ocean at night or in IMC, the likelihood of an upset increases. This 

condition of low-power engine loss with the autopilot on has caused several aircraft upsets, some 

of which were not recoverable. Flight control displacement may be the only obvious indication. 

Vigilance is required to detect these stealthy engine failures and to maintain a safe flight attitude 

while the situation is still recoverable. Once the fuel supply has been restored to the engine, the 

engine may be restarted in the manner prescribed by the applicable Airplane Flight or Operating 

Manual. Satisfactory engine restart should be confirmed by reference to all primary parameters – 

using only N1, for instance, has led to confusion during some inflight restarts. At some flight 

conditions, N1 may be very similar for a wind milling engine and an engine running at flight idle. 

1.2.3 Fire 

Engine fire almost always refers to a fire outside the engine but within the nacelle. A fire in the 

vicinity of the engine should be annunciated to the flight crew by a fire warning in the flight 

deck. It is unlikely that the flight crew will see, hear, or immediately smell an engine fire. 

Sometimes flight crews are advised of a fire by communication with the control tower.  

It is important to know that, given a fire in the nacelle, there is adequate time to make the first 

priority "fly the airplane" before attending to the fire. It has been shown that, even in incidents of 
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fire indication immediately after takeoff, there is adequate time to continue climb to a safe altitude 

before attending to the engine. There may be economic damage to the nacelle, but the first priority 

of the flight crew should be to ensure the airplane continues in safe flight. 

Flight crews should regard any fire warning as a fire, even if the indication goes away when the 

thrust lever is retarded to idle. The indication might be the result of pneumatic leaks of hot air into 

the nacelle. The fire indication could also be from a fire that is small or sheltered from the detector 

so that the fire is not apparent at low power. Fire indications may also result from faulty detection 

systems. Some fire detectors allow identification of a false indication (testing the fire loops), which 

may avoid the need for an IFSD. There have been times when the control tower has mistakenly 

reported the flames associated with a compressor surge as an engine "fire." 

In the event of a fire warning annunciation, the flight crew must refer to the checklists and 

procedures specific to the airplane being flown. In general, once the decision is made that a fire 

exists and the aircraft is stabilized, engine shutdown should be immediately accomplished by 

shutting off fuel to the engine, both at the engine fuel control shutoff and the wing/pylon spar 

valve. All bleed air, electrical, and hydraulics from the affected engine will be disconnected or 

isolated from the airplane systems to prevent any fire from spreading to or contaminating 

associated airplane systems. This is accomplished by one common engine "fire handle." This 

controls the fire by greatly reducing the fuel available for combustion, by reducing the availability 

of pressurized air to any sump fire, by temporarily denying air to the fire through the discharge of 

fire extinguishant and by removing sources of re-ignition such as live electrical wiring and hot 

casings. It should be noted that some of these control measures may be less effective if the fire is 

the result of severe damage – the fire may take slightly longer to be extinguished in these 

circumstances. In the event of a shut down after an in-flight engine fire, there should be no attempt 

to restart the engine unless it is critical for continued safe flight – as the fire is likely to re-ignite 

once the engine is restarted. 

1.2.4 Tailpipe Fires 

One of the most alarming events for passengers, flight attendants, ground personnel and even air 

traffic control (ATC) to witness is a tailpipe fire. Fuel may puddle in the turbine casings and 

exhaust during start-up or shutdown, and then ignite. This can result in a highly-visible jet of flame 

out of the back of the engine, which may be tens of feet long. Passengers have initiated emergency 

evacuations in these instances, leading to serious injuries. 
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There may be no indication of an anomaly to the flight crew until the cabin crew or control tower 

draws attention to the problem. They are likely to describe it as an “Engine Fire,” but a tailpipe 

fire will NOT result in a fire warning on the flight deck. 

If notified of an engine fire without any indications in the cockpit, the flight crew should 

accomplish the tailpipe fire procedure. It will include motoring the engine to help extinguish the 

flames, while most other engine abnormal procedures will not. 

Since the fire is burning within the turbine casing and exhaust nozzle, pulling the fire handle to 

discharge extinguishant to the space between casings and cowls will be ineffective. Pulling the fire 

handle may also make it impossible to dry motor the engine, which is the quickest way of 

extinguishing most tailpipe fires. 

1.2.5 Hot Starts  

During engine start, the compressor is very inefficient, as already discussed. If the engine 

experiences more than the usual difficulty accelerating (due to such problems as early starter cut-

out, fuel mis-scheduling, or strong tailwinds), the engine may spend a considerable time at very 

low RPM (sub-idle). Normal engine cooling flows will not be effective during subidle operation, 

and turbine temperatures may appear relatively high. This is known as a hot start (or, if the engine 

completely stops accelerating toward idle, a hung start). The AFM indicates acceptable 

time/temperature limits for EGT during a hot start. More recent, FADEC-controlled engines may 

incorporate auto-start logic to detect and manage a hot start. 

1.2.6 No Thrust Lever Response 

A “no Thrust Lever Response” type of malfunction is more subtle than the other malfunctions 

previously discussed, so subtle that it can be completely overlooked, with potentially serious 

consequences to the airplane. 

If an engine slowly loses power – or if, when the thrust lever is moved, the engine does not respond 

– the airplane will experience asymmetric thrust. This may be partly concealed by the autopilot’s 

efforts to maintain the required flight condition. 

If no external visual references are available, such as when flying over the ocean at night or in 

IMC, asymmetric thrust may persist for some time without the flight crew recognizing or 

correcting it. In several cases, this has led to airplane upset, which was not always recoverable. 

Vigilance is required to detect these stealthy engine failures and to maintain a safe flight attitude 

while the situation is still recoverable. As stated, this condition is subtle and not easy to detect. 
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Symptoms may include: 

- Multiple system problems such as generators dropping off-line or low engine oil pressure 

- Unexplained airplane attitude changes 

- Large unexplained flight control surface deflections (autopilot on) or the need for large 

flight control inputs without apparent cause (autopilot off) 

- Significant differences between primary parameters from one engine to the next. 

 If asymmetric thrust is suspected, the first response must be to make the appropriate trim or rudder 

input. Disconnecting the autopilot without first performing the appropriate control input or trim 

may result in a rapid roll maneuver. 

1.3  Turbofan Simulation Using C-MAPSS Tool 

Duo to the rare failures of the turbofan engines, C-MAPSS tool will be used to model operation 

and failures of the engine. C-MAPSS stands for ‘Commercial Modular Aero-Propulsion System 

Simulation’ and it is a tool for the simulation of a realistic large commercial turbofan engine. The 

code is a combination of Matlab (The MathWorks, Inc.) and Simulink (The MathWorks, Inc.) with 

a number of graphical user interface (GUI) screens that allow point-and-click operation and with 

editable fields that allow the user to enter specific values of his/her own choice. In addition to the 

engine model (called the 90K because it is produces about 90,000 lb of thrust), the package 

includes an atmospheric model capable of operation at:  

(i) altitudes from sea level to 40,000 ft. 

(ii) mach numbers from 0 to 0.90. 

(iii) sea-level temperatures from –60 to 103 °F.  

The package also includes a power-management system that allows the engine to be operated over 

a wide range of thrust levels throughout the full range of flight conditions. 

A comprehensive control system is included that consists of: 

(i) A fan-speed controller for which the user specifies the throttle-resolver angle 

(TRA). 

(ii) Three high-limit regulators that prevent the engine from exceeding its design 

limits for core speed, engine-pressure ratio, and HPT exit temperature. 

(iii) A fourth limit regulator that prevents the static pressure at the HPC exit from 

going too low. 
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(iv) Acceleration and deceleration limiters for the core speed. 

(v) A comprehensive logic structure that integrates these control-system components 

in a manner similar to that used in real engine controllers such that integrator-

windup problems are avoided.  

Furthermore, all of the gains for the fan-speed controller and the four limit regulators are scheduled 

such that the controller and regulators perform as intended over the full range of flight conditions 

and power levels. The engine diagram in Figure 11 shows the main elements of the engine model 

and the flow chart in Figure 12 shows how the various subroutines are assembled in the simulation.  

        

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

Figure 1-11 Simplified diagram of the 90K engine. 

Figure 1-12 Subroutines of the 90K engine simulation with ducts and bleed omitted. 
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A number of GUI screens have been developed that make it easy for the user to work with either 

the open-loop engine (without any controller) or with the engine and its control system (closed 

loop). For the open-loop engine, transient simulations to doublet inputs can be run and linear 

engine models (LEMs) can be developed that have 14 inputs (Table 1) and 27 outputs (Table 2). 

C-MAPSS variables that are currently available internally but are not among the output variables 

are listed in Table 1.3. The inputs are fuel flow and a set of 13 health-parameter inputs that allow 

the user to simulate the effects of faults and deterioration in any of the engine’s five rotating 

components (fan, LPC, HPC, HPT, and LPT). Using the GUIs provided for open-loop analysis, it 

is a simple matter for the user to save the LEM for later use and to compare its response with that 

of the nonlinear engine. 

 

 

 

 

Index Name Symbol 

1 Fuel flow Wf (pps) 

2 Fan efficiency modifier fan_eff_mod 

3 Fan flow modifier Fan_flow_mod 

4 Fan pressure-ratio modifier Fan_PR_mod 

5 LPC efficiency modifier LPC_eff_mod 

6 LPC flow modifier LPC_flow_mod 

7 LPC pressure-ratio modifier LPC_PR_mod 

8 HPC efficiency modifier HPC_eff_mod 

9 HPC flow modifier HPC_flow_mod 

10 HPC pressure-ratio modifier HPC_PR_mod 

11 HPT efficiency modifier HPT_eff_mod 

12 HPT flow modifier HPT_flow_mod 

13 LPT efficiency modifier LPT_eff_mod 

14 HPT flow modifier HPT_flow_mod 

 

Table 1-1 Index, name, and symbol of 14 inputs to the 90K  engine 
model 
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Index Symbol Description Units 

1 Nf Physical fan speed rpm 

2 Ne Physical core speed rpm 

3 epr Engine pressure ratio (P50/P2) .. 

4 P21 Total pressure at fan outlet psia 

5 T21 Total temperature at fan outlet 𝑅.
0  

6 P24 Total pressure at LPC outlet psia 

7 T24 Total temperature at LPC outlet 𝑅.
0  

8 P30 Total pressure at HPC outlet psia 

9 T30 Total temperature at HPC outlet 𝑅.
0  

10 P40 Total temperature at burner outlet psia 

11 T40 Total temperature at burner outlet 𝑅.
0  

12 P45 Total temperature at HPT outlet psia 

13 T48 Total temperature at HPT outlet 𝑅.
0  

14 P50 Total temperature at LPT outlet psia 

15 T50 Total temperature at LPT outlet 𝑅.
0  

16 W21 Fan flow pps 

17 Fn Net thrust lpf 

18 Fg Gross thrust lpf 

19 SmFan Fan stall  margin .. 

20 SmLPC LPC stall  margin .. 

21 SmHPC HPC stall  margin .. 

22 NRf Corrected fan speed rpm 

23 NRe Corrected core speed rpm 

24 P15 Total pressure in bypass-duct psia 

25 PCNfR Percent corrected fan speed pct 

26 Ps30 Static pressure at HPC outlet psia 

27 phi Ratio of fuel flow to Ps30 pps/psi 

Table 1-2 List of 27 output variables, with their indices in the output 
vector y and their units. 
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A controller-design GUI guides the user in the design of fan-speed controllers and limit regulators, 

using a LEM to represent the engine. The design GUI implements the model-matching algorithm 

of John Edmunds (ref. 1). However, it can be adapted for use with other design methods, should 

the user wish to do so. In order to avoid model complexity that is not required unless controllers 

are being designed that are capable of running a real engine, and to be able to attain fast execution 

speeds, the sensors and actuators are assumed to be ideal.  
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2 Chapter 2 

 

Dimensionality Reduction Techniques 

 

 

2.1 Principal Component Analysis 

2.1.1 Introduction to PCA 

Principal component analysis (PCA) is a statistical procedure that uses an orthogonal 

transformation to convert a set of observations of possibly correlated variables into a set of values 

of linearly uncorrelated variables called principal components (or sometimes, principal modes of 

variation). This transformation is defined in such a way that the first principal component has the 

largest possible variance (that is, accounts for as much of the variability in the data as possible), 

and each succeeding component in turn has the highest variance possible under the constraint that 

it is orthogonal to the preceding components. The resulting vectors are an uncorrelated orthogonal 

basis set. PCA is sensitive to the relative scaling of the original variables. 

PCA was invented in 1901 by Karl Pearson [11] as an analogue of the principal axis theorem in 

mechanics; it was later independently developed and named by Harold Hotelling in the 1930s [12]. 

Depending on the field of application, it is also named the discrete Karhunen–Loève transform 

(KLT) in signal processing, the Hotelling transform in multivariate quality control, proper 

orthogonal decomposition(POD) in mechanical engineering, singular value decomposition (SVD) 

of X (Golub and Van Loan, 1983), eigenvalue decomposition (EVD) of 𝑿𝑻𝑿 in linear algebra, 

factor analysis (for a discussion of the differences between PCA and factor analysis see Ch. 7 of 

[13]), Eckart–Young theorem (Harman, 1960), or Schmidt–Mirsky theorem in psychometrics, 

empirical orthogonal functions (EOF) in meteorological science, empirical eigenfunction 

decomposition (Sirovich, 1987), empirical component analysis (Lorenz, 1956), quasiharmonic 

modes (Brooks et al., 1988),spectral decomposition in noise and vibration, and empirical modal 

analysis in structural dynamics. 

PCA is mostly used as a tool in exploratory data analysis and for making predictive models. It's 

often used to visualize genetic distance and relatedness between populations. PCA can be done by 
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eigenvalue decomposition of a data covariance matrix or singular value decomposition of a data 

matrix, usually after mean centering (and normalizing or using Z-scores) the data matrix for each 

attribute [14]. The results of a PCA are usually discussed in terms of component scores, sometimes 

called factor scores (the transformed variable values corresponding to a particular data point), and 

loadings (the weight by which each standardized original variable should be multiplied to get the 

component score) [15]. 

PCA is the simplest of the true eigenvector-based multivariate analyses. Often, its operation can 

be thought of as revealing the internal structure of the data in a way that best explains the variance 

in the data. If a multivariate dataset is visualized as a set of coordinates in a high-dimensional data 

space (1 axis per variable), PCA can supply the user with a lower-dimensional picture, a projection 

of this object when viewed from its most informative viewpoint. This is done by using only the 

first few principal components so that the dimensionality of the transformed data is reduced. 

PCA is closely related to factor analysis. Factor analysis typically incorporates more domain 

specific assumptions about the underlying structure and solves eigenvectors of a slightly different 

matrix. PCA is also related to canonical correlation analysis (CCA). CCA defines coordinate 

systems that optimally describe the cross-covariance between two datasets while PCA defines a 

new orthogonal coordinate system that optimally describes variance in a single dataset [16] [17]. 

2.1.2 Derivation of PCA 

2.1.2.1 Intuition 

PCA can be thought of as fitting an n-dimensional ellipsoid to the data, where each axis of the 

ellipsoid represents a principal component. If some axis of the ellipsoid is small, then the 

variance along that axis is also small, and by omitting that axis and its corresponding principal 

component from our representation of the dataset, we lose only a commensurately small amount 

of information. 

 To find the axes of the ellipsoid, we must first subtract the mean of each variable from the 

dataset to center the data around the origin. Then, we compute the covariance matrix of the data, 

and calculate the eigenvalues and corresponding eigenvectors of this covariance matrix. Then we 

must normalize each of the orthogonal eigenvectors to become unit vectors. Once this is done, 

each of the mutually orthogonal, unit eigenvectors can be interpreted as an axis of the ellipsoid 

fitted to the data. The proportion of the variance that each eigenvector represents can be 
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calculated by dividing the eigenvalue corresponding to that eigenvector by the sum of all 

eigenvalues. This procedure is sensitive to the scaling of the data, and there is no consensus as to 

how to best scale the data to obtain optimal results. 

2.1.2.2 Notation and Assumption 

Before we go to the mathematical procedures for deriving PCA we’ll define some notations and 

make some assumptions: 

- 𝒙 is a vector of 𝒑 random variables 

- 𝛼𝑘 is a vector of 𝒑 constants  

- 𝜶𝒌
′ 𝒙 = ∑ 𝜶𝒌𝒋𝒙𝒋

𝒑
𝒋=𝟏  

- Σ is the known covariance matrix for the random variable x 

- Foreshadowing : Σ will be replaced with S, the sample 

covariance matrix, when Σ is unknown. 

As a first step we have to find 𝜶𝒌
′ 𝒙 that maximizes: 

 

 

Var(𝜶𝒌
′ 𝒙) = 𝜶𝒌

′ Σ𝜶𝒌 

 

(2 .1) 

Without any constrain we would pick a very big 𝜶𝒌 so we’ll choose a normalization constrain (unit 

length vector): 

 

 

𝜶𝒌
′ 𝜶𝒌 = 𝟏 

 

(2.2) 

Then to maximize 𝜶𝒌
′ Σ𝜶𝒌 subject to 𝜶𝒌

′ 𝜶𝒌 = 𝟏, Lagrange multipliers will be used. We maximize 

the function: 

 𝜶𝒌
′ Σ𝜶𝒌 −  𝜆(𝜶𝒌

′ 𝜶𝒌 − 𝟏) (2.3) 

 

w.r.t. to 𝜶𝒌 by differentiating w.r.t. to 𝜶𝒌. 

And this results in: 

 
𝑑

𝑑𝜶𝒌
(𝜶𝒌

′ Σ𝜶𝒌 −  𝜆(𝜶𝒌
′ 𝜶𝒌 − 𝟏)) = 0 (2.4) 
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                             Σ𝜶𝒌 −  𝜆𝜶𝒌 = 0 

                                               Σ𝜶𝒌 =  𝜆𝜶𝒌 

 

This should be recognizable as an eigenvector equation where 𝜶𝒌 is an eigenvector of                                                

𝚺𝒃𝒇 and 𝝀𝑘 is the associated eigenvalue. The question now is which eigenvector to choose? If we 

recognize that the quantity to be maximized 

 𝜶𝒌 =  𝜶𝒌
′ 𝜆𝑘𝜶𝒌 =  𝜆𝑘𝜶𝒌

′ 𝜶𝒌 = 𝜆𝑘 (2.5) 

 

then we should choose 𝜆𝑘 to be as big as possible. So, calling 𝜆1 the largest eigenvalue of Σ and 

𝜶𝟏 the corresponding eigenvector then the solution to: 

 
Σ𝜶𝟏 =  𝜆1𝜶𝟏 

 
(2.6) 

is the first principal component of 𝒙.  In general 𝜶𝒌 will be the 𝑘𝑡ℎ PC of x and Var(𝜶′x) = 𝜆𝑘 We 

will demonstrate this for k = 2, k > 2 is more involved but similar. 

 The second PC, 𝜶𝟐𝒙 maximizes 𝜶𝟐𝛴𝜶𝟐 subject to being uncorrelated with 𝜶𝟏x. The uncorrelation 

constraint can be expressed using equation 2.7: 

 

𝑐𝑜𝑣(𝜶𝟏
′ 𝒙, 𝜶𝟐

′ 𝒙) =  𝜶𝟏
′ Σ𝜶𝟐 = 𝜶𝟐

′ Σ𝜶𝟏 = 𝜶𝟐
′ 𝜆1𝜶𝟏

′  

                                                  =    𝜆1𝜶𝟐
′ 𝜶 = 𝜆1𝜶𝟏

′ 𝜶𝟐 = 𝟎 

 

(2.7) 

if we choose the last we can write a Lagrangian to maximize 𝜶𝟐 we get equation 2.8 : 

 𝜶𝟐
′ Σ𝜶𝟐 −  𝜆(𝜶𝟐

′ 𝜶𝟐 − 𝟏) −  𝜙𝜶𝟐
′ 𝜶𝟏 (2.8) 

 

Differentiation of this quantity w.r.t. 𝜶𝟐 (and setting the result equal to zero) yields:  

 

𝒅

𝒅𝜶𝟐
(𝜶𝟐

′ Σ𝜶𝟐 −  𝜆(𝜶𝟐
′ 𝜶𝟐 − 𝟏) −  𝜙𝜶𝟐

′ 𝜶𝟏) = 𝟎 

                                  Σ𝜶𝟐 − 𝜆2𝜶𝟐 − 𝜙𝜶𝟏  =  𝟎  

(2.9) 

 

If we left multiply 𝜶𝟏 into this expression: 

  

 𝜶𝟏
′ Σ𝜶𝟐 −  𝜆𝜶𝟏

′ 𝜶𝟐 − 𝜙𝜶𝟏
′ 𝜶𝟏 =    𝟎 (2.10) 
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                             0 − 0− 𝜙𝟏 =   𝟎 

 

then we can see that 𝜙 must be zero and that when this is true that we are left with: 

 𝚺𝜶𝟐 −  𝜆𝜶𝟐 = 𝟎 (2.11) 

 

Clearly the last equation is another eigenvalue equation and the same strategy of choosing 𝛼2 to 

be the eigenvector associated with the second largest eigenvalue yields the second PC of x, namely 

𝜶𝟐
′ x. 

This process can be repeated for k = 1 . . . p yielding up to p different eigenvectors of Σ along with 

the corresponding eigenvalues 𝜆1, . . . 𝜆𝑝.  

Furthermore, the variance of each of the PC’s are given by equation 2.12: 

 
Var[𝜶𝒌

′ x] = 𝜆𝑘,   k = 1, 2, . . . , p 

 
(2.12) 

2.1.3 Properties of PCA 

In this section three of the mathematical and statistical properties of PCs are discussed, based on a 

known population covariance (or correlation) matrix Σ. 

2.1.3.1 Property 1 

For any integer q, 1 ≤ q ≤ p, consider the orthogonal linear transformation 

 

 

𝒚 = 𝑩′𝒙 

 

(2.13) 

where y is a q-element vector and 𝑩′ is a (q × p) matrix, and let 𝜮𝒚 = 𝑩′Σ𝑩 be the variance-

covariance matrix for y . Then the trace of 𝜮𝒚 , denoted tr(𝜮𝒚), is maximized by taking𝑩 = 𝑨𝒒 , 

where 𝑨𝒒 consists of the first q columns of is the transposition of A. 

2.1.3.2 Property 2 

Consider again the orthonormal transformation 

 
 

𝒚 = 𝑩′𝒙 
(2.14) 
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with x, B, A and 𝜮𝒚 defined as before. Then tr(𝜮𝒚) is minimized by taking 𝑩 =  𝑨𝒒
∗  where 𝑨𝒒

∗  

consists of the last q columns of A. 

The statistical implication of this property is that the last few PCs are not simply unstructured left-

overs after removing the important PCs. Because these last PCs have variances as small as possible 

they are useful in their own right. They can help to detect unsuspected near-constant linear 

relationships between the elements of x, and they may also be useful in regression, in selecting a 

subset of variables from x, and in outlier detection. 

 

2.1.3.3 Property 3 

Spectral decomposition of Σ 

 
Σ = 𝜆1𝜶𝟏

′ 𝜶𝟏 + ⋯ + 𝜆𝑝𝜶𝒑
′ 𝜶𝒑 

 
(2.15) 

Before we look at its usage, we first look at diagonal elements, 

 
𝑉𝑎𝑟(𝑥𝑗) = ∑ 𝜆𝑘𝛼𝑘𝑗

2

𝑃

𝑘=1

 

 

(2.16) 

Then, perhaps the main statistical implication of the result is that not only can we decompose the 

combined variances of all the elements of x into decreasing contributions due to each PC, but we 

can also decompose the whole covariance matrix into contributions 𝜆𝑘𝜶𝒌𝜶𝒌
′  from each PC. 

Although not strictly decreasing, the elements of 𝜆𝑘𝜶𝒌𝜶𝒌
′  will tend to become smaller as k 

increases, as 𝜆𝑘𝜶𝒌𝜶𝒌
′  is non-increasing for k increasing, whereas the elements of 𝜶𝒌 tend to stay 

about the same size because of the normalization constraints: 𝜶𝒌𝜶𝒌
′ = 𝟏, 𝒌 = 𝟏, … , 𝒑. 

2.1.4 PCA Using the Sample Covariance Matrix 

If we recall that the sample covariance matrix (an unbiased estimator for the covariance matrix 

of x) is given by equation 2.17 

 

 

𝑺 =
𝟏

𝒏 − 𝟏
𝑿′𝑿 

 

(2.17) 
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where 𝑿 is a (n × p) matrix with (i, j)th element (𝑥𝑖𝑗 − 𝑥𝑗) (in other words, X is a zero mean design 

matrix). We construct the matrix A by combining the p eigenvectors of S (or eigenvectors of 𝑿′𝑿 

– they’re the same) then we can define a matrix of PC scores 

 

 

𝒁 =  𝑿𝑨 

 

(2.18) 

Of course, if we instead form Z by selecting the q eigenvectors corresponding to the q largest 

eigenvalues of S when forming A then we can achieve an “optimal” (in some senses) q-

dimensional projection of x. 

2.1.4.1 Computing the PCA Loading Matrix 

Given the sample covariance matrix 

 
𝑺 =

𝟏

𝒏 − 𝟏
𝑿′𝑿 

 

(2.19) 

the most straightforward way of computing the PCA loading matrix is to utilize the singular value 

decomposition of S = 𝑨′ΛA where A is a matrix consisting of the eigenvectors of S and Λ is a 

diagonal matrix whose diagonal elements are the eigenvalues corresponding to each eigenvector. 

Creating a reduced dimensionality projection of X is accomplished by selecting the q largest 

eigenvalues in Λ and retaining the q corresponding eigenvectors from A. 

 

2.2 Independent Component Analysis (ICA) 

Independent component analysis (ICA) is a method for finding underlying factors or components 

from multivariate (multidimensional) statistical data. What distinguishes ICA from other methods 

is that it looks for components that are both statistically independent, and nongaussian.  

2.2.1 Motivation 

Imagine that you are in a room where two people are speaking simultaneously. You have two 

microphones, which you hold in different locations. The microphones give you two recorded time 

signals, which we could denote by 𝑥1(t) and 𝑥2(t), with 𝑥1 and 𝑥2 the amplitudes, and t the time 

index. Each of these recorded signals is a weighted sum of the speech signals emitted by the two 

speakers, which we denote by 𝑠1 (t) and 𝑠2 (t). We could express this as a linear equation: 
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                                                                      𝑥1(t)   = 𝑎11𝑠1 + 𝑎12𝑠2      

                                                𝑥2(t)  = 𝑎21𝑠1+ 𝑎22𝑠2 

 

(2.20) 

where 𝑎11, 𝑎12, 𝑎21, and 𝑎22 are some parameters that depend on the distances of the microphones 

from the speakers. It would be very useful if you could now estimate the two original speech 

signals 𝑠1 (t) and 𝑠2 (t), using only the recorded signals 𝑥1 (t) and 𝑥2 (t). This is called the cocktail-

party problem. For the time being, we omit any time delays or other extra factors from our 

simplified mixing model. 

As an illustration, consider the waveforms in Figure 2.1 and Figure 2.2. These are, of course, not 

realistic speech signals, but suffice for this illustration. The original speech signals could look 

something like those in Figure 2.1 and the mixed signals could look like those in Figure 2.2. The 

problem is to recover the data in Figure 2.1 using only the data in Figure 2.2. 

 

 

Figure 2-1 The original signals 
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                                                           Figure 2-2 The observed mixtures of the source signals in Figure 2.2 

Actually, if we knew the parameters 𝑎𝑖𝑗, we could solve the linear equation (2.20) by classical 

methods. The point is, however, that if you don’t know the 𝑎𝑖𝑗, the problem is considerably more 

difficult.  

One approach to solving this problem would be to use some information on the statistical 

properties of the signals 𝑠𝑖(t) to estimate the 𝑎𝑖𝑖. Actually, and perhaps surprisingly, it turns out 

that it is enough to assume that 𝑠1 (t) and 𝑠2 (t), at each time instant t, are statistically independent. 

This is not an unrealistic assumption in many cases, and it need not be exactly true in practice. The 

recently developed technique of Independent Component Analysis, or ICA, can be used to estimate 

the 𝑎𝑖𝑗 based on the information of their independence, which allows us to separate the two original 

source signals 𝑠1(t) and 𝑠2(t) from their mixtures 𝑥1(t) and 𝑥2(t). Figure 2.3 gives the two signals 

estimated by the ICA method. As can be seen, these are very close to the original source signals 

(their signs are reversed, but this has no significance.) 

2.2.2 Definition of ICA 

To rigorously define ICA (Jutten and Hérault, 1991; Comon, 1994), we can use a statistical 

“latent variables” model. Assume that we observe n linear mixtures 𝑥1,...,𝑥𝑛 of n independent 

components 
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 𝑥𝑗  =  𝑎𝑗1𝑠1 +  𝑎𝑗2𝑠2+ . . . + 𝑎 𝑎𝑗𝑛𝑠𝑛, for all 𝑗. (2.21) 

 

We have now dropped the time index t; in the ICA model, we assume that each mixture 𝑥𝑗 as well 

as each independent component 𝑠𝑘 is a random variable, instead of a proper time signal. The 

observed values 𝑥𝑗 (t), e.g., the microphone signals in the cocktail party problem, are then a sample 

of this random variable. Without loss of generality, we can assume that both the mixture variables 

and the independent components have zero mean: If this is not true, then the observable variables 

𝑥𝑖 can always be centered by subtracting the sample mean, which makes the model zero-mean.  

It is convenient to use vector-matrix notation instead of the sums like in the previous equation. Let 

us denote by x the random vector whose elements are the mixtures 𝑥1,..., 𝑥𝑛, and likewise by s the 

random vector with elements 𝑠1,..., 𝑠𝑛. Let us denote by A the matrix with elements 𝑎𝑖𝑗. Generally, 

bold lower case letters indicate vectors and bold upper-case letters denote matrices. All vectors are 

understood as column vectors; thus 𝑿𝑻 , or the transpose of X, is a row vector. Using this vector-

matrix notation, the above mixing model is written as  

 

 

𝐱 =  𝐀𝐬. 

 

(2.22) 

Sometimes we need the columns of matrix A; denoting them by 𝒂𝒋 the model can also be written 

as      

 𝒙 =  ∑ 𝑎𝑖𝑠𝑖

𝒏

𝒊=𝟏

 (1.23) 

The statistical model in equation (2.22) is called independent component analysis, or ICA model. 

The ICA model is a generative model, which means that it describes how the observed data are 

generated by a process of mixing the components 𝑠𝑖. The independent components are latent 

variables, meaning that they cannot be directly observed. Also the mixing matrix is assumed to be 

unknown. All we observe is the random vector x, and we must estimate both A and s using it. This 

must be done under as general assumptions as possible. 

The starting point for ICA is the very simple assumption that the components 𝑠𝑖 are statistically 

independent. It will be seen below that we must also assume that the independent component must 

have nongaussian distributions. However, in the basic model we do not assume these distributions 
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known (if they are known, the problem is considerably simplified.) For simplicity, we are also 

assuming that the unknown mixing matrix is square, but this assumption can be sometimes relaxed. 

Then, after estimating the matrix A, we can compute its inverse, say W, and obtain the independent 

component simply by: 

 

 

𝐬 =  𝐖𝐱. 

 

(2.24) 

ICA is very closely related to the method called blind source separation (BSS) or blind signal 

separation. A “source” means here an original signal, i.e. independent component, like the speaker 

in a cocktail party problem. “Blind” means that we know very little, if anything, on the mixing 

matrix, and make little assumptions on the source signals. ICA is one method, perhaps the most 

widely used, for performing blind source separation. In many applications, it would be more 

realistic to assume that there is some noise in the measurements (see e.g. (Hyvärinen, 1998a; 

Hyvärinen, 1999c)), which would mean adding a noise term in the model. For simplicity, we omit 

any noise terms, since the estimation of the noise-free model is difficult enough in itself, and seems 

to be sufficient for many applications. 

2.2.3 Preprocessing 

Before examining specific ICA algorithms, it is instructive to discuss preprocessing steps that are 

generally carried out before ICA. 

2.2.3.1 Centering 

A simple preprocessing step that is commonly performed is to “center” the observation vector x 

by subtracting its mean vector m = E{x}. That is then we obtain the centered observation vector, 

𝑥𝑐, as follows: 

 

 

𝑥𝑐 = 𝑥 − 𝑚 

 

(2.25) 

This step simplifies ICA algorithms by allowing us to assume a zero mean. Once the unmixing 

matrix has been estimated using the centered data, we can obtain the actual estimates of the 

independent components as follows: 

  (2.26) 
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𝑠̂(t) = 𝐴−1(𝑥𝑐 + m) 

 

From this point on, all observation vectors will be assumed centered. The mixing matrix, on the 

other hand, remains the same after this preprocessing, so we can always do this without affecting 

the estimation of the mixing matrix. 

 

2.2.3.2 Whitening 

Another step which is very useful in practice is to prewhiten the observation vector x. Whitening 

involves linearly transforming the observation vector such that its components are uncorrelated 

and have unit variance [18]. Let 𝑥𝑤 denote the whitened vector, then it satisfies the following 

equation: 

 

 

E{𝑥𝑤𝑥𝑤
𝑇  } = I 

 

(2.27) 

where E{𝑥𝑤𝑥𝑤
𝑇  } is the covariance matrix of 𝑥𝑤. Also, since the ICA framework is insensitive to 

the variances of the independent components, we can assume without loss of generality that the 

source vector, s, is white, i.e. E{s𝑠𝑇} = I 

A simple method to perform the whitening transformation is to use the eigenvalue decomposition 

(EVD) of x [18]. That is, we decompose the covariance matrix of x as follows: 

 

 

E{x𝑥𝑇} = VD𝑉𝑇 

 

(2.28) 

where V is the matrix of eigenvectors of E{x𝑥𝑇},and D is the diagonal matrix of eigenvalues, i.e. 

D = diag{𝜆1,𝜆2,...,𝜆𝑛} The observation vector can be whitened by the following transformation: 

 

 

𝑥𝑤 = 𝑉𝐷−1/2𝑉𝑇𝑥 

 

(2.29) 

where the matrix 𝐷−1/2 is obtained by a simple component wise operation as  𝐷−1/2 = 

diag{𝜆1
−1/2

, 𝜆2
−1/2

,..., 𝜆𝑛
−1/2

}. Whitening transforms the mixing matrix into a new one, which is 

orthogonal. 
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𝑥𝑤= V𝐷−1/2𝑉𝑇As = 𝐴𝑤s 

 
(2.30) 

Hence, 

 

E{𝑥𝑤𝑥𝑤
𝑇  } = 𝐴𝑤E{s𝑠𝑇 }𝐴𝑤

𝑇  

                                                           = 𝐴𝑤𝐴𝑤
𝑇  

                                                           = I 

(2.31) 

 

Whitening thus reduces the number of parameters to be estimated. Instead of having to estimate 

the 𝑛2 elements of the original matrix A, we only need to estimate the new orthogonal mixing 

matrix, where An orthogonal matrix has n(n−1)/2 degrees of freedom. One can say that whitening 

solves half of the ICA problem. This is a very useful step as whitening is a simple and efficient 

process that significantly reduces the computational complexity of ICA. An illustration of the 

whitening process with simple ICA source separation process is explained in the later section. 

 

2.2.4 ICA Algorithms 

There are several ICA algorithms available in literature. However, the following three algorithms 

are widely used in numerous signal processing applications. These includes FastICA, JADE, and 

Infomax. Each algorithm used a different approach to solve equation. 

2.2.4.1 FastICA 

FastICA is a fixed point ICA algorithm that employs higher order statistics for the recovery of 

independent sources. FastICA can estimate ICs one by one (deflation approach) or simultaneously 

(symmetric approach). FastICA uses simple estimates of Negentropy based on the maximum 

entropy principle, which requires the use of appropriate nonlinearities for the learning rule of the 

neural network.  

Fixed point algorithm is based on the mutual information. Which can be written as: 

                                                     

 𝐼(𝑠) =  ∫ 𝑓𝑠(𝑠)𝑙𝑜𝑔
𝑓𝑠(𝑠)

∏ 𝑓𝑠𝑖
(𝑠𝑖)

𝑑𝑠 (2.32) 
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This measure is kind of distance of independence. Minimizing mutual information leads to ICA 

solution. For the fast ICA algorithm, the above equation is rewritten as:                                             

 𝐼(𝑠) = 𝐽(𝑠) −  ∑ 𝐽𝑠𝑖

𝑖

+  
1

2
𝑙𝑜𝑔

∏ 𝐶𝑖𝑖

𝑑𝑒𝑡𝐶𝑠𝑠
 (2.33) 

 

where 𝑠̂ = Wx, 𝐶𝑠𝑠 is the correlation matrix, and 𝑐𝑖𝑖 is the ith diagonal element of the correlation 

matrix. The last term is zero because 𝑠𝑖 are supposed to be uncorrelated. The first term is constant 

for a problem, because of the invariance in Negentropy. The problem is now reduced to separately 

maximising the Negentropy of each component. 

Estimation of Negentropy is a delicate problem. The papers [19] [20] and [21] [22] have addressed 

this problem. For the general version of fixed point algorithm, the approximation was based on a 

maximum entropy principle. The algorithm works with whitened data, although aversion of non-

whitened data exists. 

– Criteria 

The maximisation is preferred over the following index     

 𝐽𝐺(𝑤) = [𝐸{𝐺(𝑤𝑇𝑣)} − 𝐸{𝐺(𝑣)}2 (2.34) 

                                    

to find one independent component, with ν standard gaussian variable, and G, the one-unit contrast 

function. 

– Update rule 

Update rule for the generic algorithm is 

 

𝑤∗ = 𝐸{𝑣𝑔(𝑤𝑇𝑣)} − 𝐸{𝑔́(𝑤𝑇𝑣)}𝑤 

𝑤 = 𝑤∗/‖𝑤∗‖ 

 

(2.35) 

to extract one component. There is symmetric version of the FP algorithm, whose update rule is 

 

𝑊∗ = 𝐸{𝑔(𝑊𝑣)𝑣𝑇} − 𝐷𝑖𝑎𝑔(𝐸{𝑔́(𝑊𝑣)})𝑊 

𝑊 =  (𝑊∗𝑊∗𝑇)−
1
2𝑊∗ 

 

(2.36) 

where Diag(v) is a diagonal matrix with 𝐷𝑖𝑎𝑔𝑖𝑖(v) = 𝑣𝑖. 

– Parameters 
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FastICA uses the following nonlinear parameters for convergence. 

 𝑔(𝑦) =  {
𝑦3

        tanh (𝑦)
 (2.37) 

 

The choice is free except that the symmetric algorithm with tanh non linearity does not separate 

super Gaussian signals. Otherwise the choice can be devoted to the other criteria, for instance the 

cubic non linearity is faster, whereas the tanh linearity is more stable. These questions are 

addressed in [23]. 

 In practice, the expectations in FastICA must be replaced by their estimates. The natural estimates 

are of course the corresponding sample means. Ideally, all the data available should be used, but 

this is often not a good idea because the computations may become too demanding. Then the 

averages can be estimated using a smaller sample, whose size may have a considerable effect on 

the accuracy of the final estimates. The sample points should be chosen separately at every 

iteration. If the convergence is not satisfactory, one may then increase the sample size. This thesis 

uses FastICA algorithm for all applications. 
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3 Chapter 3  

Ensemble Machine Learning 

3.1 Introduction 

Ensemble is a Machine Learning concept in which the idea is to train multiple models using the 

same learning algorithm. The ensembles take part in a bigger group of methods, called 

multiclassifiers, where a set of hundreds or thousands of learners with a common objective are 

used together to solve the problem. 

3.1.1 Bagging 

Bagging (Bootstrap Aggregating) is an ensemble method that creates separate samples of the 

training dataset and creates a classifier for each sample. The results of these multiple classifiers 

are then combined (such as averaged or majority voting). The trick is that each sample of the 

training dataset is different, giving each classifier that is trained, a subtly different focus and 

perspective on the problem [24]. 

3.1.2 Boosting 

Boosting is an ensemble method that starts out with a base classifier that is prepared on the training 

data. A second classifier is then created behind it to focus on the instances in the training data that 

the first classifier got wrong. The process continues to add classifiers until a limit is reached in the 

number of models or accuracy [24]. 

 

Figure 3-1 Ensembling Diagram 

 

http://en.wikipedia.org/wiki/Bootstrap_aggregating
http://en.wikipedia.org/wiki/Boosting_(machine_learning)
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3.2 Decision Tree 

3.2.1 Introduction 

A decision tree is a predictive model which can be used to approximate discrete-valued target 

functions. Decision tree are usually represented graphically as hierarchical structure. The topmost 

node, which does not have any incoming edge, is called root node. A node with outgoing edges 

are called internal node. Each internal node denotes a test on an attribute. Each edge represents an 

outcome of the test. All other nodes are leaf nodes. Each leaf holds a class label. When classifying 

a new instance, the instance is navigated from the root node down to the leaf, according to the 

outcome of the tests along the path. The class label in the leaf node indicates the class to which the 

instance should belong. 

 

Figure 0-2 Decision Tree 

 

3.2.2 Decision Tree Algorithm  

Denote D as a data partition, attribute list is a list of candidate attributes describing the data set and 

attribute selection method is a heuristic method for selecting the splitting criterion that best 

separates a given data partition, D. A basic decision tree algorithm, called buildTree (D, attribute 

list) is summarized as follows [32].  

• The tree first starts as a single node N.  

• If the instances in D are all of the same class, N becomes a leaf and labeled with that class. 



Chapter 3   Ensemble Machine Learning 
 

39 

 

• Otherwise, Attribute selection method is called to decide the splitting criterion. The splitting 

criterion indicates the splitting attribute and may also indicate a split point. If the splitting attribute 

is nominal, it will be removed from the attribute list. 

• The node N is labeled with the splitting criterion, which serves as a test at the node. A branch is 

grown from node N for each of the outcomes of the splitting criterion. The training instances in D 

are partitioned accordingly into, for example, D1, D2, ...Dm. 

• Let Di be the set of instances in D satisfying outcome i. If Di is empty, N is attached a leaf labeled 

with the majority class in D. Otherwise, it is attached the node returned by buildTree (D, attribute 

list). The recursive partitioning stops when any one of the following terminating conditions is 

reached. 

– All instances in the training set belong to a single class. 

– There are no remaining attributes which can be used for further partition. 

– There are no instances for a given branch. 

Besides three stopping criteria presented above, in some algorithms, there are some other 

conditions, such as the maximum tree depth has been reached, the number of cases in the terminal 

node is less than the minimum number of cases for parent nodes or the gained information at the 

best splitting criterion is not greater than a certain threshold. 

• The resulting decision tree is returned. 

Decision tree learning is one of the most popular methods and has been successfully applied in 

many fields, such as finance, marketing, engineering and medicine. The reason for its popularity, 

according to many researchers, is that it is simple and transparent. The construction of a decision 

tree is fast and does not require any domain knowledge or parameter setting. Its representation in 

tree form is intuitive and easy to interpret for humans. However, successful use may depend on 

the data set at hand.  

Many decision tree algorithms have been developed, including ID3 [25], C4.5(a successor of ID3) 

[26] and CART (Classification and Regression Trees) [27]. Most of them adopt a greedy approach 

in which decision trees are constructed in a top-down recursive divide-and-conquer manner. 

Although those algorithms differ in many aspects, the main differences are their attribute selection 

measures and pruning tree methods. 

The next sections will present some attribute selection measures and pruning tree methods that are 

commonly used. 
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3.2.3 Attribute Selection Measures 

3.2.3.1 Information Gain 

The ID3 algorithm [25] uses information gain as its attribute selection measure, which is a measure 

for selecting the splitting criterion that best separates a given data partition. The idea behind the 

method is to find which attribute would cause the biggest decrease in entropy if being chosen as a 

split point. The information gain is defined as the entropy of the whole set minus the entropy when 

a particular attribute is chosen. The entropy of a data set is given by 

 

 
𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝐷) =  − ∑ 𝑝𝑖

𝑚

𝑖 =1

𝑙𝑜𝑔2(𝑝𝑖) 

 

(3.1) 

where 𝑝𝑖 is the probability that an instance in set D belongs to class Ci. It is calculated by |𝐶𝑖|/|D|. 

Suppose the attribute A is now considered to be the split point and A has v distinct values {𝑎1, 𝑎2, 

..., 𝑎𝑣}. Attribute A can be used to split D into v subsets {𝐷1, 𝐷2, ... 𝐷𝑣} where 𝐷𝑖 consists of 

instances in D that have outcome 𝑎𝑗. The new entropy is defined by the following equation. 

 
𝐸𝑛𝑡𝑟𝑜𝑝𝑦𝐴(𝐷) =  ∑

 |𝐷𝑗|

|𝐷|
∗ 𝐸𝑛𝑡𝑟𝑜𝑝𝑦(D𝑗

𝑣

𝑗 = 1

) 

 

(3.2) 

The information gain when using attribute A as a split point is as follows. 

 

 

𝐺𝑎𝑖𝑛(𝐴)  =  𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝐷)  − 𝐸𝑛𝑡𝑟𝑜𝑝𝑦𝐴(𝐷) 

 

(3.3) 

Gain(A) presents how much would be gained by branching on A. Therefore, the attribute A with 

the highest Gain(A) should be chosen to use. 

3.2.3.2 Gain Ratio 

The information gain measure presented in section 3.2.3.1 is bias toward attributes having a large 

number of values, thus leading to a bias toward tests with many outcomes. C4.5 [26], a successor 

of ID3, uses an extension to information gain called Gain ratio, which attempts to overcome this 

shortcoming. The method normalizes information gain by using a split information factor, defined 

as follows. 
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𝑆𝑝𝑙𝑖𝑡𝐼𝑛𝑓𝑜𝐴(𝐷) =  − ∑
 |𝐷𝑗|

|𝐷|
×

𝑣

𝑗 = 1

𝑙𝑜𝑔2(
 |𝐷𝑗|

|𝐷|
) 

 

(3.4) 

Gain ratio is then given by the following equation. 

 

 

𝐺𝑎𝑖𝑛𝑅𝑎𝑡𝑖𝑜(𝐴) =  
𝐺𝑎𝑖𝑛(𝐴)

𝑆𝑝𝑙𝑖𝑡𝐼𝑛𝑓𝑜(𝐴)
 

 

(3.5) 

The attribute with the highest gain ratio is selected as the splitting point. 
3.2.3.3 Gini Index 

The CART algorithm [27] uses the gini index as its attribute selection measure. The Gini index 

measures the impurity of set D. Therefore, it is also called Gini impurity. The Gini index only 

consider a binary split for each attribute. Gini index point of D is defined as follows. 

 

 

𝐺𝑖𝑛𝑖(𝐷) = 1 − ∑ 𝑝𝑖
2

𝑚

𝑖 =1

 

 

(3.6) 

Suppose the attribute A is now considered to be the split point and A has 2 distinct values 𝑎1, 𝑎2. 

Attribute A can then be used to split D into 𝐷1 and 𝐷2 where 𝐷𝑖 consists of instances in D that 

have outcome 𝑎𝑗. The gini index of D given that partitioning is given by the following equation. 

 

 

𝐺𝑖𝑛𝑖𝐴(𝐷) =  
 |𝐷1|

|𝐷|
 𝐺𝑖𝑛𝑖(𝐷1) + 

 |𝐷2|

|𝐷|
 𝐺𝑖𝑛𝑖(𝐷2) 

 

(3.7) 

The reduction in impurity is defined as: 

 

 

∆𝐺𝑖𝑛𝑖(𝐴)  =  𝐺𝑖𝑛𝑖(𝐷)  −  𝐺𝑖𝑛𝑖𝐴 (𝐷) 

 

(3.8) 

The attribute with the highest reduction in impurity is selected for the next classification step. 
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3.2.3.4 ReliefF 

Unlike the algorithms presented above, ReliefF [28] is not impurity based. It selects splitting points 

according to how well their values distinguish between similar instances. A good attribute is the 

one that can separate similar instances with different classes and leave similar instances with the 

same classes together. 

Let D be the training set with n instances of p attributes. Each attribute is scaled to the interval    

[0, 1]. Let W be a p-long weight vector of zero. The algorithm will be repeated m times, and at 

each iteration, it chooses a random instance X. The closest same-class instance is called near-hit, 

and the closest different-class instance is called near-miss. The weight vector W is updated as 

follows. 

 

 

𝑊𝑖 =  𝑊𝑖−1 −  (𝑥𝑖 − 𝑛𝑒𝑎𝑟𝐻𝑖𝑡𝑖)2 + (𝑥𝑖 − 𝑛𝑒𝑎𝑟𝑀𝑖𝑠𝑠𝑖)2 

 

(3.9) 

After m iterations, each element of the weight vector is divided by m. This vector is called 

relevance vector. Attributes are selected if their relevance is greater than a specified threshold. 

 

3.3 Random Forest 

3.3.1 Introduction 

Random Forests were introduced by Leo Breiman in 2001. they are a combination of tree 

predictors such that each tree depends on the values of a random vector sampled independently 

and with the same distribution for all trees in the forest. 

A random forest is a classifier consisting of a collection of tree-structured classifiers {h(x, 𝛩𝑘), k 

= 1, . . .} where the {𝛩𝑘} are independent identically distributed random vectors and each tree 

casts a unit vote for the most popular class at input x [29]. 

The idea behind the random forests (for both classification and regression) is as follows [30]: 

1. Draw 𝑛tree bootstrap samples from the original data. 

2. For each of the bootstrap samples, grow an unpruned classification or regression tree, with 

the following modification: at each node, rather than choosing the best split among all 

predictors, randomly sample  𝑚try  of the predictors and choose the best split from among 
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those variables. (Bagging can be thought of as the special case of random forests obtained 

when 𝑚try   = p, the number of predictors.) 

3. Predict new data by aggregating the predictions of the 𝑛tree trees (i.e., majority votes for 

classification, average for regression). 

An estimate of the error rate can be obtained, based on the training data, by the following: 

1. At each bootstrap iteration, predict the data not in the bootstrap sample (what Breiman calls 

“out-of-bag”, or OOB, data) using the tree grown with the bootstrap sample. 

2. Aggregate the OOB predictions. (On the average, each data point would be out-of-bag 

around 36% of the times, so aggregate these predictions.) Calculate the error rate, and call 

it the OOB estimate of error rate. 

3.3.2 The Random Forest Algorithm 

As the name suggests, a Random Forest is a tree-based ensemble with each tree depending on a 

collection of random variables. More formally, for a p-dimensional random vector X = 

(X1, . . . , XP) Trepresenting the real-valued input or predictor variables and a random variable Y 

representing the real-valued response, we assume an unknown joint distribution EXY (X,Y) [31]. 

The goal is to find a prediction function f(X) for predicting Y. The prediction function is 

determined by a loss function L(Y, f(X)) and defined to minimize the expected value of the loss 

 

 

EXY (L(Y, f(X)) ) 

 

(3.2) 

where the subscripts denote expectation with respect to the joint distribution of X and Y. 

Intuitively, L(Y, f(X)) is a measure of how close f(X) is to Y; it penalizes values of f(X) that are a 

long way from Y. Typical choices of L are squared error loss 

L(Y, f(X)) = (Y −  f(X))2  for regression and zero-one loss for classification: 

 

 

L(Y, f(X)) =  I(Y ≠  f(X)) =  {
0 if Y =  f(X)
1 otherwise.

 

 

(3 .3) 

 



Chapter 3   Ensemble Machine Learning 
 

44 

 

It turns out that minimizing 𝐸𝑋𝑌 (L(Y, f(X)) ) for squared error loss gives the conditional 

expectation 

 

 

f(x)  =  E(Y|X =  x) 

 

(3.4) 

otherwise known as the regression function. In the classification situation, if the set of possible 

values of Y is denoted by Y , minimizing 𝐸𝑋𝑌 (L(Y, f(X)) ) for zero-one loss gives 

 
f(x)  =  arg max𝑦∈Y P(Y = y|X = x) 

 
(3.5) 

otherwise known as the Bayes rule. 

Ensembles construct f in terms of a collection of so-called “base learners” ℎ1 (x),..., ℎ𝐽(x) and these 

base learners are combined to give the “ensemble predictor” f(x). In regression, the base learners 

are averaged 

 

 

f(x) =  
1

𝐽
∑ ℎ𝑗(x)

𝐽

𝑗=1

 

 

(3.6) 

while in classification, f(x) is the most frequently predicted class (“voting”) 

 

 

f(x)  =  arg max𝑦∈Y ∑ I(y =  ℎ𝑗(x))

𝑱

𝒋=𝟏

 

 

(3 .7) 

In Random Forests the jth base learner is a tree denoted ℎ𝑗(X, Θ𝑗), where Θ𝑗 is a collection of 

random variables and the Θ𝑗’s are independent for j = 1,...,J. 

 

3.3.3 The Out-of-Bag (OOB) Data  

In the forest building process, when bootstrap sample set is drawn by sampling with replacement 

for each tree, about one-third of the cases are left out and not used in the construction of that tree. 
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This set of cases is called Out-of-bag data. Each tree has its own OOB data set which is used for 

calculating the error rate for an individual tree [30].  

3.3.4 Out-of-Bag (OOB) Error 

Out-of-bag (OOB) error, also called out-of-bag estimate, is a method of measuring the prediction 

error of random forests. To get the OOB error rate of a whole random forest, put each case left out 

in the construction of the kth tree down the kth tree to get a classification. Take j to be the class 

that gets most of the votes every time case n is OOB. The proportion of times that j is not equal to 

the true class of n averaged over all cases is the OOB error estimate [30]. 

For regression with squared error loss, generalization error is typically estimated using the out-of-

bag mean squared error (MSE): 

 MSEoob =  
1

𝑁
∑(𝑦𝑖 −  fˆ𝑜𝑜𝑏(𝑥𝑖))2

𝑁

𝑖=1

 (3.8) 

 

where  fˆ𝑜𝑜𝑏(𝑥𝑖) is the out-of-bag prediction for observation i. 

For classification with zero one loss, generalization error rate is estimated using the out-of-bag 

error rate: 

 

 𝐸𝑜𝑜𝑏 =  
1

𝑁
∑ 𝐼(𝑦𝑖 ≠  fˆ𝑜𝑜𝑏(𝑥𝑖))

𝑁

𝑖=1

 (3.9) 

 

3.3.5 Variable Importance 

Random forests can be used to rank the importance of variables (features) in a regression or 

classification problem. The following steps were described in [12]. 

      • In every tree grown in the forest, put down the OOB cases and count the number of votes 

cast for the correct class 

      • To measure the importance of variable m, randomly permute the values of variable m in the 

OOB cases and put these cases down the tree. 

       • Subtract the number of votes for the correct class in the perturbed data from the 

number of votes for the correct class in the original data. The average of this number 

https://en.wikipedia.org/wiki/Random_forest
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over all trees in the forest is the raw importance score of variable m. 

 

Variable which produce large values for this score are ranked as more important than 

variables which produce small values. 

3.3.6 Proximity Matrix 

Let N be the number of cases in the training set. A proximity matrix is an NxN matrix, which gives 

an intrinsic measure of similarities between cases. At each tree, put all cases (both training and 

OOB) down the tree. If case i and case j both land in the same terminal node, increase the proximity 

between i and j by one. At the end of the run, the proximities are divided by the number of trees in 

the run. The proximity between a case and itself is set equal to one [32]. 

Each cell in the proximity matrix shows the proportion of trees over which each pair of 

observations falls in the same terminal node. The higher the proportion is, the more alike those 

observations are, and the more proximate they have.  

Proximity matrix can be used to replace missing values for training and test set. It can also be 

employed to detect outliers. The following sections will illustrate how missing values are replaced 

and outliers are detected using the proximity matrix. 

3.3.7 Missing Value Replacement 

There are two ways which can be used to replace missing values in random forest. The first way 

is fast, simple and easy to implement. To be specific, if the m’th variable of case n is missing and 

it is numeric, it is replaced with the median of all values of this variable in the same class, say j, 

with case n. On the other hand, if the mth variable is categorical, it is replaced with the most 

frequent non-missing value in class j [32]. 

A more advanced algorithm capitalizes on the proximity matrix. This algorithm is computationally 

more expensive but more powerful. It starts by imputing missing values using the first algorithm, 

then it builds a random forest with the completed data. The proximity matrix from the random 

forests is used to update the imputations of the missing values. For numerical variable, the imputed 

value is the weighted average of the nonmissing cases, where the weights are the proximities. For 

categorical variable, the imputed value is the category with the largest proximity. So, by following 

this algorithm, cases more similar to the case with the missing data are given greater weight. 
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3.4 Gradient Boosted Machine 

3.4.1 Introduction 

Gradient boosting machines are a family of powerful machine-learning techniques that have shown 

considerable success in a wide range of practical applications. They are highly customizable to the 

particular needs of the application, like being learned with respect to different loss functions. 

 

3.4.2 Function Estimation 

Consider the problem of function estimation in the classical supervised learning setting. The fact 

that the learning is supervised leaves a strong restriction on the researcher, as the data has to be 

provided with the sufficient set of proper target labels (which can be very costly to extract, e.g., 

come from an expensive experiment). We arrive with the dataset (𝑥, 𝑦)𝑖=1
𝑁 , where 𝑥 = (𝑥1, … , 𝑥𝑑) 

refers to the explanatory input variables and y 

to the corresponding labels of the response variable. The goal is to reconstruct the unknown 

functional dependence 𝑥 
𝑓
→  𝑦  with our estimate 𝑓(𝑥), such that some specified loss function 

𝜳(𝑦, 𝑓)  is minimized: 

 

𝑓(𝑥) = 𝑦 

 𝑓(𝑥) = arg 𝑚𝑖𝑛𝑓(𝑥)  𝜳(𝑦, 𝑓(𝑥)) 

 

(3.10) 

Please note that at this stage, we don’t make any assumptions about the form of neither the true 

functional dependence f(x), nor the form of the function estimate 𝑓(𝑥). If we rewrite the estimation 

problem in terms of expectations, the equivalent formulation would be to minimize the expected 

loss function over the response variable 𝐸𝑦(𝜳[𝑦, 𝑓(𝑥)]), conditioned on the observed explanatory 

data x: 

 𝑓(𝑥) = arg 𝑚𝑖𝑛𝑓(𝑥)  𝐸𝑥[𝐸𝑦(𝜳[𝑦, 𝑓(𝑥)])|𝑥] (3.11) 

 

Where 𝐸𝑦(𝜳[𝑦, 𝑓(𝑥)]) is the expected y loss and 𝐸𝑥[𝐸𝑦(𝜳[𝑦, 𝑓(𝑥)])|𝑥] is the expectation over 

the whole dataset. 

The response variable y can come from different distributions. This naturally leads to specification 

of different loss functions. In particular, if the response variable is binary, i.e., y ∈ {0, 1}, one can 
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consider the binomial loss function. If the response variable is continuous, i.e., y ∈ R, one can use 

classical L2 squared loss function or the robust regression Huber loss. For other response 

distribution families like the Poisson-counts, specific loss functions have to be designed. 

To make the problem of function estimating tractable, we can restrict the function search space to 

a parametric family of functions f(x, θ). This would change the function optimization problem into 

the parameter estimation one:   

 

 

𝑓(𝑥) = 𝑓(x,  θ̂ ) 

 

(3.12) 

 

 θ̂ =  arg 𝑚𝑖𝑛θ 𝐸𝑥[𝐸𝑦(𝜳[𝑦, 𝑓(𝑥, θ)])|𝑥] (3.13) 

 

Typically, the closed-form solutions for the parameter estimates are not available. To perform the 

estimation, iterative numerical procedures are considered. 

3.4.3 Numerical Optimization 

Given M iteration steps, the parameter estimates can be written in the incremental form: 

 θ̂ = ∑ θ̂𝑖

𝑀

𝑖=1

 (3.14) 

 

The simplest and the most frequently used parameter estimation procedure is the steepest gradient 

descent. Given N data points (𝑥, 𝑦)𝑖=1
𝑁  we want to decrease the empirical loss function J(θ) over 

this observed data: 

 𝐽(θ) =  ∑ 𝛹(𝑦𝑖, 𝑓(𝑥𝑖, θ̂))

𝑁

𝑖=1

 (3.15) 

 

The classical steepest descent optimization procedure is based on consecutive improvements along 

the direction of the gradient of the loss function ∇J(θ). As the parameter estimates θ̂ are presented 

in an incremental way, we would distinguish the estimate notation. By the subscript index of the 

estimates θ̂𝑡 we would consider the t-th incremental step of the estimate θ̂. The superscript θ̂𝑡 
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corresponds to the collapsed estimate of the whole ensemble, i.e., sum of all the estimate 

increments from step 1 up till step t. The steepest descent optimization procedure is organized as 

follows: 

1. Initialize the parameter estimates θ̂0 for each iteration t, repeat: 

2. Obtain a compiled parameter estimate  θ̂𝑡  from all of the previous iterations: 

 θ̂𝑡 =  ∑ θ̂𝑖

𝑡−1

𝑖 = 0

 (3.16) 

 

3. Evaluate the gradient of the loss function ∇J(θ), given the obtained parameter estimates 

of the ensemble: 

 ∇J(θ) = {∇J(θ𝑖)} = [
𝜕𝐽(θ)

𝜕𝐽(θ𝑖)
]θ=θ̂𝑡  

(3.17) 

 

4. Calculate the new incremental parameter estimate θ̂𝑡: 

 θ̂t ⟵  − ∇J(θ) (3.18) 

 

5.  Add the new estimate θ̂𝑡 to the ensemble. 

3.4.4 Optimization in Function Space 

The principle difference between boosting methods and conventional machine-learning techniques 

is that optimization is held out in the function space. That is, we parameterize the function estimate 

f in the additive functional form: 

 

 𝑓(𝑥) =  𝑓𝑀(𝑥) =  ∑ 𝑓𝑖

𝑀

𝑖=0

(𝑥) (3.19) 

In this representation, M is the number of iterations, 𝑓0 is the initial guess and { 𝑓𝑖}𝑖=1
𝑀  are the 

function increments, also called as “boosts.” 

To make the functional approach feasible in practice, one can follow a similar strategy of 

parameterizing the family of functions. Here we introduce the parameterized “base-learner” 
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functions h(x, θ) to distinguish them from the overall ensemble function estimates 𝑓(𝑥). One can 

choose different families of baselearners such as decision trees or splines.  

We can now formulate the “greedy stagewise” approach of function incrementing with the base-

learners. For this purpose, the optimal step-size ρ should be specified at each iteration. 

For the function estimate at the t-th iteration, the optimization rule is therefore defined as: 

 

 𝑓𝑡   ⟵ 𝑓𝑡−1 +  ρ𝑡ℎ(𝑥,θ𝑡) (3.20) 

 

 (ρ𝑡,θ𝑡) =  arg 𝑚𝑖𝑛ρ,θ ∑ 𝛹(𝑦𝑖
𝑁
𝑖=1 , 𝑓𝑡−1) + ρ ℎ(x𝑖, θ) (3.21) 

 

3.4.5 Gradient Boost Algorithm 

One can arbitrarily specify both the loss function and the baselearner models on demand. In 

practice, given some specific loss function 𝛹(y, f) and/or a custom base-learner h(x, θ), the solution 

to the parameter estimates can be difficult to obtain. To deal with this, it was proposed to choose 

a new function ℎ(𝑥, θ𝑡) to be the most parallel to the negative gradient {𝑔𝑡(𝑥𝑖)}𝑖=1
𝑁  along the 

observed data: 

 𝑔𝑡(𝑥) =  𝐸𝑦[
𝜕𝛹(𝑦, 𝑓(𝑥))

𝜕𝑓(𝑥)
|𝑥]𝑓(𝑥)= 𝑓̂𝑡−1(𝑥) 

(3.22) 

 

Instead of looking for the general solution for the boost increment in the function space, one can 

simply choose the new function increment to be the most correlated with −𝑔𝑡(𝑥). This permits the 

replacement of a potentially very hard optimization task with the classic least-squares 

minimization one: 

 (𝑝𝑡, θ𝑡) arg 𝑚𝑖𝑛ρ,θ ∑[−𝑔𝑡(𝑥𝑖) +  ρ ℎ(x𝑖 , θ) ]2

𝑁

𝑖=1

 (3.23) 

 

To summarize, we can formulate the complete form of the gradient boosting algorithm, as 

originally proposed by Friedman (2001). The exact form of the derived algorithm with all the 

corresponding formulas will heavily depend on the design choices of Ψ(y, f) and h(x, θ) [33].  
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4 Chapter 4 

 

       Experiment and Results 

4.1 Introduction  

This chapter presents the methodology that has been applied to solve the problem of predicting 

failures in turbofan engines. We will describe the dataset used, the method used for prediction and 

the preparations that had to be done.  R programming environment was used to construct the GBM 

and RF models and test the results. The data sets were read from files and the algorithms were 

applied on it using R language. The advantage of R environment is that it is easy to port data to R, 

process and visualize the results. The results were stored in variables. These variables were plotted 

using the visualization methods available in R. 

Figure 4.1 summarizes the workflow of our work: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 4-1 Flowchart for the Machine Learning model 
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4.2 Data Description  

The dataset is taken from NASA data repository. The dataset selected includes the run-to-failure 

sensor measurements from degrading turbofan engines. Although the turbo fan engines are of same 

type, each engine starts with different degree of initial conditions and there are variations in the 

manufacturing process of the engines, which are not known to the user.  

For the turbo fan engines under consideration, the performance of each engine can be changed by 

adjusting three operational settings. Each engine has 21 sensors collecting different measurements 

related to the engine state at runtime. The main characteristic of the dataset is that it is a time series 

data, the schema of which is included in Table 4.1. 

 

 

Index Data Fields Types Descriptions 

1 Id Integer Aircraft Engine Identifier 

2 Cycle Integer Time, in cycles 

3 Setting 1 Double Operational Setting 1 

4 Setting 2 Double Operational Setting 2 

5 Setting 3 Double Operational Setting 3 

6 S1 Double Sensor Measurement 1 

7 S2 Double Sensor Measurement 2 

8 .. .. .. 

9 S21 Double Sensor Measurement 21 

  

At the beginning of the time series, the engine's operation is normal. After many cycles, a fault is 

developed in the engine and gradually the engine fails. 

Three data sets were provided as text files for training, testing and measurement of accuracy as 

part of our approach. The dataset has been classified as:  

 Training data: It is the aircraft engine’s run-to-failure data. 

 Testing data: It is the aircraft engine’s operating data without failure events recorded. 

 Ground truth data: It contains the information of true remaining cycles for each engine in 

the testing data. In the training set, the amount of fault grows in magnitude until the system 

fails. In the test set, the time series ends some time before the failure of the system. 

Table 4-1 Dataset schema 
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4.3 Data Preparation 

Data preparation is the first and crucial step in developing a predictive model. Data preparation is 

an indispensable step in order to convert various data forms and types into proper format that is 

meaningful to machine learning predictive model. Large amounts of data are generated using C-

MPASS tool. The generated data comprise all the variables including the predictor variables that 

can be used for establishment of prediction models. Data available are “horizontal”: too many 

different variables available (to be reduced) and few observations available in the same operating 

conditions. With variable selection, chi-square, correlation analysis, ICA and PCA we want to 

reduce the number of regressors while with data clustering we aim to increment observations 

usable for modeling.  

Data Preparation includes: 

 RUL target function 

 Cleansing data 

 Feature scaling 

4.3.1 RUL Target Function 

According to the original PHM ’08 Prognostic Data Challenge, the objective of the competition 

was to predict the number of operational cycles after the last cycle for the partial time series, also 

known as the RUL. Based on this and the fact that our cycle increases linearly with data point 

order for each unit, we should expect our RUL to decrease linearly in relation to the cycle for each 

data point in each unit. 

And here is the RUL where x is the cycle number of a given data point and c is the maximum cycle 

number of a given unit: 

 

 

 

𝑅𝑈𝐿(𝑥) =  {
𝑐 − 𝑥

0 
     

𝑖𝑓 𝑥 ≤𝑐
𝑂.𝑊.

 

 

(4.1) 
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If we understand that each unit has a last cycle, which is also the maximum cycle 

number, and that our initial cycle number, which is also our minimum cycle number, is 1, 

then we can simply take the maximum cycle number and subtract it by the cycle number 

of the given dataset. This can be further simplified by simply reversing the cycle numbers 

of the given unit and subtract by one, since the cycle number for each unit in the PHM 

training set increases by 1 for each data point. This true RUL function is shown in Figure 1.1 

and generalized in equation 4.1. 

4.3.2 Cleansing Data 

Data cleansing phase is an important phase in predictive modeling. The dataset needs to be 

cleansed for anomalies and also the data should be normalized for all the range of values of raw 

data varies widely. A data cleansing procedure discards 452 instances with null and missing values. 

4.3.3 Feature Scaling 

“Feature Scaling” is the technique that followed to normalize the data set. The goal of the data 

cleansing is to obtain a complete cleansed data set that can be modeled with outliers removed and 

solutions for handling of missing data applied. To normalize the input data set, the continuous 

variables were transformed on a linear scale to a value with a range of 0 to 1 or -1 to 1. Ordinal 

data were spaced equally over the same range. Missing values were substituted with the class 

mean. Data with different scales can induce instability in neural networks (Weigend and 

Figure 4-3 Cycle Number of Data points in PHM TRAIN Figure 4-2 RUL target of Data points in PHM TRAIN 
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Gershenfeld, 1994). In order to normalize the raw data of input and output the following 

normalization equation is used: 

 

 

𝑥𝑛𝑜𝑟𝑚 = 2 ×
(𝑥 − 𝑥𝑚𝑖𝑛)

(𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛 )
− 1 

 

(4.2) 

where x is the data to be normalized, i.e., and x min and x max are minimum and maximum values 

of the raw data. In such a way, all the inputs and the desired outputs are normalized within the 

range of ±1. 

4.4 Data Pre-processing  

In data preprocessing several actions against the data we’ll be performed in order to make it 

ready for model building and to address some problems like: 

- Over-fitting 

- More Computational Power 

- Less Prediction Accuracy 

4.4.1 Near Zero Variance Analysis 

One interesting aspect of this dataset is that it contains some variables that have extremely low 

variances. This means that there is very little information in these variables because they mostly 

consist of a single value (e.g. one). Near zero variance algorithm takes in data x, then looks at the 

ratio of the most common value to the second most common value, freqCut. And the percentage 

of distinct values out of the number of total samples, uniqueCut.                                                                               
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Table 4-2 Near zero variance values 

 Frequency Ratio Percent Unique Zero Variance Near zero variance 

Setting 1 1.0376 0.7658 FALSE FALSE 

Setting 2 1.0033 0.0630 FALSE FALSE 

Setting 3 0.0000 0.0048 TRUE TRUE 

Sensor 1 0.0000 0.0048 TRUE TRUE 

Sensor 2 1.0052 1.5025 FALSE FALSE 

Sensor 3 1.0384 14.5993 FALSE FALSE 

Sensor 4 1.1111 19.6354 FALSE FALSE 

Sensor 5 0.0000 0.0048 TRUE TRUE 

Sensor 6 49.8152 0.0096 FALSE TRUE 

Sensor 7 1.0086 2.4865 FALSE FALSE 

Sensor 8 1.0189 0.2568 FALSE FLASE 

Sensor 9 1.0666 31.0358 FALSE FALSE 

Sensor 10 0.0000 0.0048 TRUE TRUE 

Sensor 11 1.0088 0.7706 FALSE FALSE 

Sensor 12 1.0514 2.0697 FALSE FALSE 

Sensor 13 1.0174 0.2714 FALSE FALSE 

Sensor 14 1.0000 29.4604 FALSE FALSE 

Sensor 15 1.0270 9.2966 FALSE FALSE 

Sensor 16 0.0000 0.0048 TRUE TRUE 

Sensor 17 1.1893 0.0630 FALSE FALSE 

Sensor 18 0.0000 0.0048 TRUE TRUE 

Sensor 19 0.0000 0.0048 TREU TRUE 

Sensor 20 1.0189 0.5816 FALSE FALSE 

Sensor 21 1.3529 22.9993 FALSE FALSE 
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4.4.2 Correlation Analysis (CA) 

Next step to reduce the set of parameters was done with correlation analysis. Correlation Analysis 

is useful for determining the direction and strength of the association (linear relationship) between 

two variables. This technique is performed to omit parameters bringing little information to the 

dataset. The strength of the linear association between two variables is quantified by the correlation 

coefficient. For every couple of measurement parameters (𝑥1, 𝑥2) we compute the correlation 

coefficient. The most familiar measure of dependence between two quantities is the Pearson 

product-moment correlation coefficient or “Pearson’s correlation coefficient”, commonly called 

simply the “correlation coefficient”. The population correlation coefficient 𝜌𝑥,𝑦  between two 

random variables X and Y with expected values µx and µy and standard deviations 𝜎𝑥 and 𝜎𝑦 is 

defined as 

 

𝜌𝑥,𝑦 = 𝑐𝑜𝑟(𝑋, 𝑌) 

         =  (𝑐𝑜𝑣(𝑋, 𝑌))/(𝜎𝑥𝜎𝑦) 

         =
𝐸[(𝑋 − µx)(𝑌 − µy)]

𝜎𝑥𝜎𝑦
 

 

(4.3) 

where µx , µy and 𝜎𝑥 , 𝜎𝑦 are respectively the mean and the standard deviations of x, y. E is the 

expected value operator, cov means covariance. Variables/Predictors showing a pairwise 

correlation of +/-0.8 or higher are removed, Coefficient 𝜌𝑥,𝑦 between two random variables X and 

Y. Figures 4.4, 4.5 show the correlation matrix. The reduced parameter set contains p= 10 

predictors.  

Figure 4-5 Heat map of variables correlation before CA Figure 4-4 Heat map of variables correlation after CA 
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The algorithm is as follows: 

1. Calculate the correlation matrix of the predictors 

2. Determine the two predictors associated with the largest absolute pair-wise correlation (call 

them predictors A and B) 

3. Determine the average correlation between A and other variables. Do the same for 

predictor B.   

4. If A has a larger average correlation, remove it; otherwise remove predictor B.  

Repeat Step 1–Step 4 until no absolute correlations are above the threshold. The idea is to first 

remove the predictors that have most correlated relationships. 

After performing the correlation analysis algorithm 6 variables has been removed and it remains 

10 variables. 

 

4.4.3 Chi Square Test of Importance 

To reduce the number of features even more we’ll use chi-square independence test when having 

independent variables, and is requested to compare an observed frequency-distribution to a 

theoretical expected frequency-distribution to test the null hypothesis of independence. Using the 

formula: 

 𝑥2 =  ∑
(O − E)2

E
 

(4.4) 

 

we obtained the following results in table 4.3 for each variable and comparing to certain threshold 

we’ve been able to omit 2 variables that are independent of the outcome RUL. 
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Table 4-3 Chi-square values 

Attribute Importance  

Setting 1 0.0000 

Setting 2 0.0000 

Sensor 2 0.3789 

Sensor 3 0.3603 

Sensor 8 0.3447 

Sensor 9 0.3218 

Sensor 15 0.4069 

Sensor 17 0.3773 

Sensor 20 0.3911 

Sensor 21 0.3993 

                                                                                        

4.4.4 Feature aggregation  

The added features are lagged covariates of the sensor readings to add previous information of 

variables and moving averages and standard deviations as simple and common type of smoothing 

used in time series analysis and time series forecasting and to the hope of smoothing and to remove 

noise and better expose the signals of the underlying causal processes. Therefore, the aggregated 

features are: 

- for any sensor reading, X(t), we included X(t − k), for all nonzero k, where k ≥ min lag and 

k ≤ max lag. 

- for any sensor reading, X(t), we included Xa(t) =avg(X(t-1) + …+X(t-w)) and Xs(t) =sd 

(X(t-1) + …+X(t-w)) where w =5 is the chosen window for averaging. 

4.4.5 PCA Data Reduction  

At this point we’ve been left with 24 variables, 8 original scaled features and 16 aggregated 

features. And those variables represent the full variance of the data. So as a dimensionality 

reduction step and to bring a new set of variables (PCs) to the model, removing the redundancy in 

the information that can be gathered by the dataset, we applied PCA algorithm with 0.85 variance 

retained and the number of components was chosen with a trivial algorithm that computes the 
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biggest eigenvalues and use the associated eigenvectors. Figure 4.6 shows the percent variance 

represented per each principal component. With only 10 components we were able to explain 

+85% of data variance. 

 

 

 The first component explains 46.43% of the variance, the second component explains 15.86%, 

the third explains 8.49% and the rest are below 4%. 

Figure 4.7 shows the relationship between components and the possibility of failure in next n=20 

steps. 

Figure 4-6 Variance represented by each PC 
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Figure 4-7 Scatter plot of principal component 

As we can see, there is a better separation between data points that represent the happening of 

failure and other points in the first column than in the second column and the rest columns, and 

also the same thing for the densities of the components. This results to the possibility that PCA 

data has a relationship with RUL target function and truly represent the information in the 

original data.  

4.4.6 ICA Data Reduction  

ICA is the blind source separation problem where the goal is to recover mutually independent but 

unknown source signals from their linear mixtures without knowing the mixing coefficients. Two 

differences between PCA and ICA are that the components here are statistically independent and 

not uncorrelated. And second, the un-mixing matrix is not orthogonal like PCA. The algorithm 

works on the principle of minimizing mutual information between the variables, minimizing 

mutual information is the correct criteria for judging independence. Also minimizing mutual 
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information is same as maximizing entropy. There are several algorithms for doing ICA and the 

one used is FastICA. 

Figure 4.8 shows the relationship between the independent components. 

 

4.5 Model Building Phase 

The data set is divided into two datasets, train data and test data. For datasets from PCA and ICA 

dimensionality reduction steps, evaluate model accuracy with 10-fold cross validation technique. 

The validation of our work was evaluated with the test set. Build a prediction model with the 

following algorithms: 

1-Random Forest: Random forest is an ensemble learning method, it operates by 

constructing a set of decision trees at training time and outputting the mean prediction of 

the individual trees. 

 

Figure 4-8 Scatter plot of independent components 
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2-Gradient Boosting Method(GBM): Gradient Boosting Method is a forward learning 

ensemble method. It is based on the idea that good predictive results can be obtained 

through increasingly refined approximations. GBM sequentially builds regression trees on 

all the features of the dataset in a fully distributed way - each tree is built in parallel. 

 Caret R package was used to make finding optimal parameters for an algorithm very easy. It 

provides a grid search method for searching parameters, combined with various methods for 

estimating the performance of a given model. The table below shows the best parameters for our 

models.  

 

Table 4-4 Optimal hyperparameters for the models 

 n_estemators min_samples_leaf 

 

n.trees 

 

shrinkage 

 

interaction.depth 

 

RF 4 50 x x x 

GBM x x 150 0.1 3 

 

4.6 Results  

Combining the prediction results from gradient boosted machine and random forest over the two 

reduced datasets PCA_data and ICA_data gives rise to the table below:  

 

Table 4-5 Results obtainded by each model. 

 RMSE Rsquared MAE 

RF_PCA 47.11034 0.5544315 35.87538 

RF_ICA 48.72274 0.5254168 37.32867 

GBM_PCA 43.24703 0.6259616 31.15214 

GBM_ICA 45.13191 0.5940377 32.95328 

 

The following set of graphs includes the cycles against RUL plots for the 2 machine learning 

algorithms under consideration, covering both predicted and actual RUL values. The variation of 

predicted RULs and actual RULs of PCA and ICA based reduced dataset predicted using GBM 

and RF models are depicted in these graphs (Figures 4.9, 4.10, 4.11, 4,12). If actual and predicted 
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lines coincide, it indicates maximum accuracy. For the most accurate algorithm, maximum points 

will be overlapped on the regression lines. It can be noticed in the graphs that the actual RUL 

exceeds the predicted RUL in maximum and minimum points, and we can take this as errors in the 

regressions. Also it can be noticed ripples in the predicted RUL and that could be taken-off if some 

smoothing filter applied at the end of model prediction step. 

 

 

 

 

Figure 4-9 Actual RUL vs Predicted RUL for GBM model over PCA data 
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Figure 4.10 Actual RUL vs Predicted RUL for GBM model over ICA data 

 

Figure 4.11  Actual RUL vs Predicted RUL for RF model over PCA data 

 

 

 
Figure 4-10 Actual RUL vs Predicted RUL for RF model over ICA data 
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4.7 Discussion and Conclusion 

The two different algorithms were evaluated under similar conditions on the same two datasets for 

consistent comparison of results. While predicting RUL, the main objective is to reduce the error 

between the actual RUL and the predicted RUL. For each dataset, the test results were compared 

with the actual values of the RUL available in the dataset. The root mean squares of the errors 

were sited and it is observed that the best results were obtained by gradient boosted machine on 

the PCA dataset. Gradient boosted machine captures the variance of several input variables at the 

same time and enables high number of observations to take part in the prediction. It was observed 

that the performance of all two algorithms were consistent in the two different datasets, generating 

proportional accuracy for the different algorithms tested. 

With more resources of machine maintenance data becoming available in the future, we can try to 

build more individual learning models and add them to the GBM and RF models for ensemble 

modeling. Cross-validation can also be done as an improvement instead of simply dividing the 

data into training and testing set.  

Figure 4.12  Actual RUL vs Predicted RUL for RF model over ICA data 
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General Conclusion 

 

The main objective of predictive maintenance is to predict the equipment failure. The Remaining 

Useful Lifetime prediction has been carried out so as to plan the maintenance requirements of the 

turbo fan engine. By doing predictive maintenance, failures can be predicted and maintenance can 

be scheduled in advance. This reduces the cost and effort for doing maintenance. It increases safety 

of employees and reduces lost production time. 

This report dealt with data driven approach using machine learning instead of model based 

approach, where generally more complex to derive the model of failure and predict it. In addition, 

using the aggregated features was more helpful where we generated new features in building the 

model so we gained more dynamic information which helped us to find more accurate results.   

 In our work, we pre-processed the data using chi-square and correlation analysis to find and use 

only relevant attributes in our model. After that we generated new features using moving average 

and moving standard deviation to be included in the model building phase, and the reason was to 

bring previous information to current data points. PCA and ICA were used to reduce 

dimensionality of our data. Then we have studied the performance of two machine learning 

algorithms, random forest and gradient boosted machine. Another approach we take in 

consideration was the comparison between the dimensionality reduction techniques, where we 

found that in PCA the data was better explained. In other hands, the comparison between the two 

algorithms stated that the gradient boosted machine GBM was slightly better than random forest 

in predicting the RUL over the tested dataset. 

As future work we suggest to extend this approach on other industrial processes where we can 

predict the RUL that can save money and cost. Moreover, the algorithms can be tested for more 

real time data and always be one step ahead in predicting the maintenance requirements. 
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Appendix A 

Random Forest and GBM Algorithms 

Definition 

 A random forest is a classifier consisting of a collection of tree-structured classifiers {h(x, 𝛩𝑘), k 

= 1, . . .} where the {𝛩𝑘} are independent identically distributed random vectors and each tree 

casts a unit vote for the most popular class at input x. 

Random Forest Algorithm for Regression or Classification 

1. For b = 1 to B: 

(a) Draw a bootstrap sample 𝑍∗ of size N from the training data. 

(b) Grow a random-forest tree 𝑇𝑏 to the bootstrapped data, by recursively repeating the 

following steps for each terminal node of the tree, until the minimum node size 𝑛𝑚𝑖𝑛 is 

reached. 

 Select m variables at random from the p variables. 

 Pick the best variable/split-point among the m. 

 Split the node into two daughter nodes. 

2.   Output the ensemble of trees  {𝑇𝑏}1
𝐵. 

To make a prediction at a new point x:  

Regression:  𝑓𝑟𝑓
𝐵 (𝑥) =  

1

𝐵
∑ 𝑇𝑏(𝑥)𝐵

𝑏=1  

Classification: Let 𝐶̂𝑏(x) be the class prediction of the bth random-forest tree. Then 𝐶̂𝑟𝑓
𝐵 (x) = 

majority vote {𝐶̂𝑏(x) }1
𝐵. 

 

 

Gradient Boosted Machine algorithm 

Inputs: 

• input data (𝑥, 𝑦)𝑖=1
𝑁   

• number of iterations M 

• choice of the loss-function 𝛹(𝑦, 𝑓) 

• choice of the base-learner model h(x, θ) 
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Algorithm: 

1: initialize 𝑓0 with a constant 

2: for t = 1 to M do 

3:     compute the negative gradient gt(x) 

4:     fit a new base-learner function h(x, θt) 

5:     find the best gradient descent step-size ρt: 

        ρ𝑡 = 𝑎𝑟𝑔𝑚𝑖𝑛ρ ∑ 𝛹[𝑦𝑖, 𝑓𝑡−1(𝑥𝑖) +  ρ ℎ(x𝑖, θ𝑡)]𝑁
𝑖=1  

6:     update the function estimate: 

        𝑓𝑡   ⟵ 𝑓𝑡−1 +  ρ𝑡ℎ(𝑥,θ𝑡) 

7: end for
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Appendix B 

FastICA Algorithm 

Input:  C Number of desired components 

Input:  X ∈   ℝ𝑁×𝑀 Prewhitened matrix, where each column represents an  

N-dimensional sample, where C <= N  

Output:  W ∈   ℝ𝑁×𝐶   Un-mixing matrix where each column projects X onto independent 

component. 

Output:  𝑆 ∈   ℝ𝐶×𝑀 Independent components matrix, with M columns representing a sample 

with C dimensions. 

For p in 1 to c: 

    wp  ⟵  Random vector of length N 

    While  wp changes  

             wp  ⟵  
1

𝑀
X𝑔(wp

𝑇X)
𝑇

−  
1

𝑀
𝑔′(wp

𝑇X)1wp 

             wp  ⟵  wp −  (∑ wp
𝑇wjwj

𝑇𝑝−1
𝑗=1 )𝑇 

             wp  ⟵  
wp

‖wp‖
 

Output: W = [w1, … , w𝐶] 

Output: S = W𝑇𝑋 
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