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ABSTRACT 

   

     Multivariate statistical methods have been widely applied to complex systems for 

fault detection. While methods based on principal component analysis (PCA) are 

popular, more recently kernel PCA (KPCA) has been utilized to better model nonlinear 

process data. 

     This report proposes a new method for fault detection using a reduced kernel principal 

component analysis (RKPCA) to cope with the computational problem introduced by 

KPCA. The proposed RKPCA method consists on reducing the number of observations 

in a data matrix using the dissimilarities between the pairs of its observations. 

     PCA, KPCA and the suggested approach RKPCA are carried out using the cement 

rotary kiln system. The Hotelling’s T², Q in addition to the new proposed index called 

the combined statistic φ are used as fault indicators. The two methods PCA and KPCA 

are compared to the proposed approach in terms of False Alarms Rate (FAR), Missed 

Alarms Rate (MDR), Detection Time Delay (DTD), the cost function (J) and the 

Execution Time (ET).  

     The obtained results demonstrate the effectiveness of the proposed technique in 

reducing the computational time from 1h37min when KPCA is used to 

9min30s.Moreover, it has effectively detected the different types of faults when using 

the φ index. 

 

Keywords: Fault detection; Principal Component analysis (PCA); Kernel Principal 

Component analysis (KPCA); Reduced Kernel Principal Component analysis (RKPCA); 

the combined index.  
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      The industrial world has had very rapid and important development thus the 

manufacturing processes are becoming increasingly complex. For the improvement of 

reliability, availability, and safety, it is necessary to ensure efficient process monitoring 

techniques. This is achieved by applying advanced methods of supervision and fault 

diagnosis methods. Several fault detection techniques have been developed in literature 

[1, 2]. Venkatasubramanian et al. (2003) have proposed a classification of these methods 

based on the methodology used to construct fault diagnostic models from data, drawing 

a distinction between statistical methods and neural networks. The work has listed the 

fault detection and diagnosis methods in three different categories: (i) quantitative model-

based schemes, (ii) qualitative models and search strategies and (iii) process data-based 

methods [3]. 

     In industrial chemical and biological processes, data-based approaches are seen as the 

most cost effective approach to dealing with the complex systems and have seen 

explosive growth over the last few decades [4, 5]. They are referred to as statistical 

process control (SPC), and conventional SPC charts such as Shewhart control charts, 

cumulative sum (CUSUM) control charts, and exponentially weighted moving average 

(EWMA) control charts have been widely used. Such SPC charts are well established for 

monitoring univariate processes, but they do not function well for multivariable 

processes. Therefore, multivariate statistical process control (MSPC) techniques have 

been developed in order to extract useful information from process data and utilize it for 

process monitoring [5-8]. Principal component analysis (PCA) [9, 10] is among the most 

popular statistical methods used for modeling and faults detection problems, it  is capable 

of compressing high-dimensional data with little loss of information by projecting the 

data onto a lower-dimensional subspace defined by a new set of derived variables 

(principal components (PCs)) [11]. Various fault detection techniques have been 

developed and utilized in practice. The main indices used with PCA methods are 

Hotelling’s T², and the sum of squared residuals, SPE, or Q statistic. In some complex 

processes with particularly nonlinear characteristics, PCA performs poorly due to its 

assumption that the process data are linear [12]. To address the nonlinearity problem, 

Kramer (1992) proposed a nonlinear PCA based on auto-associative neural network (NN) 

[12]. Dong & McAvoy (1996) suggested a nonlinear PCA that combined principal curve 

and NN [13]. Alternative nonlinear PCA methods developed by Hiden et al. (1999), 

Cheng and Chiu (2005),  Kruger et al. (2005) and Maulud et al. (2006) have also been 

proposed to solve the nonlinear process monitoring problem [14-17]. However, most of 
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the existing non- linear PCA approaches are based on neural network, which has to solve 

a nonlinear optimization problem. A new nonlinear PCA technique for tackling the 

nonlinear problem, called kernel PCA (KPCA), has been in development in recent years 

(18-20). The main idea of KPCA is first to map the input space into a feature space via a 

nonlinear map, which makes data structure more linear, and then to extract principal 

components in the feature space [18-20]. Similar to the PCA, the Hotelling’s T² statistic 

and the Q statistic are two indices commonly used in KPCA-based process monitoring 

[21].  

     Although capable of capturing nonlinear relationships between variables with a high 

degree of accuracy, kernel principal component analysis (KPCA) suffers from a high 

computational cost and requires the storage of the symmetric kernel matrix (computation 

time increases with the number of samples) [4].  

Existing studies for reducing the computational cost of kernel PCA have been proposed 

including Approximate and iterative techniques [22]. Approximate approaches suggested 

by Lopez-Paz et al. (2014) construct a low rank approximator of the kernel matrix, and 

use its eigensystems as an alternative. Due to the low-rank structure, the approximator 

can be easily stored and manipulated. The major limitation of approximate approaches is 

that there always exists a non-vanishing gap between their solution and that found by 

eigendecomposing 𝐾 directly [23]. Iterative approaches proposed by Kim et al. (2005) 

use partial information of  𝐾 in each round to estimate the top eigenvectors, and thus do 

not need to keep the entire matrix in memory. With appropriate initialization, the solution 

of iterative approaches will converge to the groundtruth asymptotically. However, there 

is no guarantee of the convergence rate or the global convergence property for general 

initial conditions [24]. 

     In this project, as an alternative and effective method to detect abnormalities in 

processes with nonlinear nature and to deal with the problem of need storage and 

computation time when using Kernel principal component (KPCA), a new nonlinear 

method is suggested. We propose a new reduced version of KPCA which consists on 

approximating the information matrix by a set of observations using the distance between 

observations such that only one observation is preserved in case of similarity. The 

Hotelling’s T² and Q statistics are used as faults indicators. In addition, we propose a new 

index called the combined index or simply 𝜑 statistic which incorporates the T² and Q 

statistics in a balanced way [25, 26].  
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     The proposed method (RKPCA) has been tested on a cement manufacturing plant and 

compared to PCA and KPCA in terms of False Alarm Rate (FAR),Missed Alarm Rate 

(MDR),Detection Time Delay (DTD), the Cost function (J) and the Execution Time (ET). 

     This report is organized as follow: Chapter I presents the theoretical background 

required to know about fault detection and diagnosis field. Chapter II the mathematical 

foundation of PCA, KPCA and the proposed method RKPCA are explored and their 

application as multivariate statistical process control (MSPC) techniques in complex 

processes are demonstrated. Chapter III provides the detailed description of the cement 

plant followed by the experimental setup. The obtained results are discussed and 

concluding remarks are drawn.  
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I.1. Introduction 

     Fault detection and diagnosis is an important problem in process engineering. It is the 

central component of abnormal event management (AEM) which deals with the timely 

detection, diagnosis and correction of abnormal conditions of faults in a process [3]. 

Over the years, the increasing need for efficiency and product quality has encouraged the 

development of many fault diagnosis methods and which can be classified into three 

categories: Quantitative Model based methods, Qualitative model based methods, and 

process history based methods [27]. 

     In this chapter, we first address the definitions and nomenclature used in the area of 

process fault diagnosis. In the next section, we propose a list of ten desirable 

characteristics that one would like a diagnostic system to possess. In section 4, we discuss 

the transformations of data that take place during the process of diagnostic decision 

making. In section 5, a classification of fault diagnosis methods is provided. 

 

I.2. Definitions of fault detection and diagnosis  

     A fault is generally defined as a departure of an observed variable or calculated 

parameter from an accepted range [28]. More specifically, a fault is an unpermitted 

deviation of at least one characteristic property of a variable from an acceptable behavior. 

This means that a fault may lead to the malfunction or failure of the system [29].  

     The time dependency of faults may show up as (Fig. 1). 

 

 

 

Figure 1. Time dependency of faults: (a) Incipient; (b) Abrupt; (c) Intermittent [29]. 
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- Abrupt fault (stepwise): The cause of the fault and/or the effects remains 

continuing until corrected. 

- Incipient fault (drift-like): The effect on process remains constant until corrected. 

- Intermittent fault (with interrupts): The effect disappears and reappears in time.  

     Faults can also be classified as additive and multiplicative faults (Fig.2). Additive 

faults influence a variable by the addition of fault features. These types of faults can 

appear as offsets in a process metric from a normal or desired value. Multiplicative faults 

affect the variable as a product and often manifest themselves as parameter changes with 

the process [29].  

      Faults may include: 

- Structural changes 

     Structural changes results from changes in the process itself. They occur due to hard 

failures in the process equipment. Structural malfunctions result in a change in the 

information flow between various variables. An example of a structural failure would be 

failure of a controller. Other examples include a stuck valve, a broken or leaking pipe 

and so on [3]. 

- Malfunctioning sensors and actuators 

     Errors that usually occur with actuators and sensors are due to a fixed failure, a 

constant bias (positive or negative). The occurrence of a failure in one of the instruments 

could cause the plant state variables to deviate beyond acceptable limits. It is the purpose 

of diagnosis to quickly detect any instrument fault which could seriously degrade the 

performance of the control system [3].  

- Gross parameter changes in a model 

     Parameter failures happen when there is a disturbance entering from the environment 

through one or more independent variables. An example of such a malfunction is a 

change in the concentration of the reactant from its normal or steady state value in a 

reactor feed. Here, the concentration is an independent variable [3]. 

 
 

Figure 2. Basic fault models: (a) Additive and (b) Multiplicative faults [3]. 
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     Within the context of supervision, supervisory functions exist to indicate undesired 

or not-permitted process states and to take action in reaction to these indications [29]. 

We can distinguish between the following functions: 

- Monitoring: Variables are measured and compared to alarm limits. This information is 

presented to an operator. 

- Automatic Protection: Actions are taken in reaction to a dangerous state (includes 

interlocks). 

- Fault Detection and Diagnosis: Data is measured; features calculated; symptoms 

detected; diagnosis and decision on actions made. 

     The obvious advantages of the first two functions are simplicity and reliability. The 

disadvantage is the delay in reacting to sudden or gradually increasing faults. It is also 

not possible to perform in depth diagnosis. Therefore, a method having the features of 

the third function is necessary. This will allow deep insight into the process behavior. 

 

I.3. Desirable attributes of a fault detection and diagnosis 

system 

     In order to compare methodologies or to assess whether a fault detection and 

diagnosis system is successful, it is useful to identify a set of desirable characteristics that 

a diagnostic system should possess [3]. 

 

I.3.1. Quick detection and diagnosis 

     Fault detection and diagnosis system should respond to a failure or a malfunction as 

quickly as possible. However, systems designed for rapid detection are sensitive to high 

frequency influences, which makes the system sensitive to noise leading to frequent false 

alarms in even normal operations [3].  

 

I.3.2. Isolability 

     This characteristic shows the capability of a diagnostic system to distinguish multiple 

failures; these failures sometimes overlap with modeling uncertainties in terms of 

residuals. For example, if a diagnostic system, such as analytical-based or rule-based 

methods, requires multiple models in the procedures, rejecting modeling uncertainties 

will frequently occur and isolability will gradually decline for each step of multiple 
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modeling processes. Therefore, there is a trade-off between isolability and the rejection 

of modeling uncertainties in an appropriate diagnostic system [3].  

 

I.3.3. Robustness  

     A diagnostic system satisfying robust feature means its performance should be 

insensitive to the effect of various noise and modeling uncertainties [3].  

 

I.3.4. Novelty identifiability 

     A fault detection and diagnosis system should be able to decide whether a process is 

in a normal or malfunction operation and, if an abnormal condition occurs, whether the 

causes are from known or novel unknown malfunction [3]. 

 

I.3.5. Adaptability 

     It is also desirable to have extendable systems. This would allow processes to change 

due to changes in the external inputs, structural changes and also changes in the 

environmental conditions. Thus the diagnostic system should be adaptable to changes 

[3]. 

 

I.3.6. Classification error estimate 

     The evaluation of a diagnostic system can be performed through this feature in terms 

of accuracy and reliability to encourage the confidence of users. The feature of error 

estimate shows the efficiency of diagnostic decisions [3]. 

 

I.3.7. Explanation facility 

     Fault detection and diagnosis system should explain where and how faults occur in a 

system. This feature is significantly required for on-line decision applications of 

diagnostic classifiers. It is useful for building operators to examine a system according 

to the explanations or recommendations of a fault detection and diagnosis approach [3]. 

 

I.3.8. Modelling requirements 

     Number of modeling methods of FDD should be as minimal as possible for quick and 

easy implementations; otherwise, the method will be not suitable to apply in real-time 

applications. Rules-based and process historical methods generally require no modeling 
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process, whereas the detailed first-principle model based method may hardly satisfy this 

feature [3]. 

 

I.3.9. Multiple fault identifiability 

     The ability to identify multiple faults is an important but a difficult requirement. It is 

a difficult problem due to the interacting nature of most faults. Naturally, the combination 

of several faults typically occurs in nonlinear or larger systems, leading to the difficult 

separation of individual fault [3]. 

 

I.3.10. Storage and computational requirements 

     This criterion is specifically required for the fast real-time implementation of 

diagnostic classifiers. Then, the systems should be reasonably balanced between high 

storage capacities and less computational complexity. 

 

I.4. Transformation of measurements in a diagnostic system 

     One can view the diagnostic decision making process as a series of transformations 

or mappings on process measurements [3].  

Figure 3 shows the various transformations that a process data go through before the final 

diagnostic decision is made. 

- Measurement space:  is a space of measurements 𝑥1, 𝑥2, … , 𝑥𝑁 with no a priori problem 

knowledge relating these measurements. These are the input to the diagnostic system. 

- Feature space:  is a space of points 𝑦 = (𝑦1, 𝑦2, … , 𝑦𝑖) where 𝑦𝑖 is the 𝑖𝑡ℎ feature obtained 

as a function of the measurements. These measurements are analyzed and combined 

using a priori process knowledge to extract useful features about the process behavior to 

aid diagnosis. The mapping from the feature space to decision space is usually achieved 

by either using a discriminant function or in some cases using simple threshold functions. 

- Decision space: The decision space is a space of points 𝑑 = (𝑑1, 𝑑2, … , 𝑑𝑘) where 𝑘 is 

the number of decision variables, obtained by suitable transformations of the feature 

space. 

- Class space:  is a set of integers 𝑐 = (𝑐1, 𝑐2, … , 𝑐𝑗)  where 𝑗 is the number of failure classes 

and normal class of data to any of which a given measurements pattern may belong. 
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Figure 3. Transformations in a diagnostic system [3]. 

 

I.5. Classification of fault detection and diagnosis methods 

     There is great quantity of literature on fault diagnosis systems ranging from analytical 

methods to artificial intelligence and statistical approaches. The classification of these 

fault diagnosis methods very often is not consistent. This is mainly because researchers 

are often focused on a particular branch [29]. 

     The major difference in fault diagnosis methods is the knowledge used for 

formulating the diagnostics. At the limits, diagnostics can be based on a priori knowledge 

(e.g., models based entirely on first principles) or driven completely empirically (e.g., by 

black-box models). Both approaches use models and both use data, but the approach to 

formulating the diagnostics differs fundamentally [30]. The model-based approach is 

usually developed based on some fundamental understanding of the physics of the 

process. It can be classified into quantitative model-based and Qualitative model-based. 

In quantitative models this understanding is expressed in terms of mathematical 

functional relationships between the inputs and outputs of the system. In contrast, in 

qualitative model equations these relationships are expressed in terms of qualitative 

functions centered on different units in a process [3]. 

     Purely process history approaches (i.e., methods based on black-box models) use no 

a priori knowledge of the process but, instead, derive behavioral models only from 

measurement data from the process itself. In this latter case, the models may not have 

any direct physical significance [30].There are different ways in which this data can be 

transformed and presented as a priori knowledge to a diagnostic system. This is known 

as the feature extraction process from the process history data, and is done to facilitate 
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later diagnosis. This extraction process can mainly proceed as either quantitative or 

qualitative feature extraction (Fig. 4) [3]. 

 

 

Figure 4. Classification of fault detection and diagnosis methods. 

 

I.5.1. Quantitative model based methods 

    Model-based methods rely on analytical redundancy by using explicit mathematical 

models of the monitored process, plant, or system to detect and diagnose faults [30]. The 

essence of this concept is to check for consistency between the actual outputs of the 

monitored system and the outputs obtained from a (redundant. i.e. not physical) analytical 

mathematical model. Therefore, any inconsistency expressed as residuals, can be used 

for detection and isolation purposes. These residuals should be close to zero when no 

fault occurs but show ‘significant’ values when the underlying system changes [3]. 

     The quantitative model-based approaches have been based on using general input-

output and state space models to generate residuals. These approaches can be classified 

into observers, parity space and frequency domain approaches. 

I.5.1.1. Observers 

     The main concern of observer-based FDI is the generation of a set of residuals which 

detect and uniquely identify different faults. The method develops a set of observers, 
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each one of which is sensitive to a subset of faults while insensitive to the remaining 

faults and the unknown inputs [3, 30]. 

I.5.1.2. Parity space 

    The essence of this method is to check the parity (consistency) of the plant models 

with sensor outputs (measurements) and known process inputs. Under ideal steady state 

operating conditions, the so-called residual or the value of the parity equations is zero 

[3]. 

I.5.1.3. Frequency domain approaches 

     Residuals are also generated in the frequency domains via factorization of the transfer 

function of the monitored system.  

     Quantitative model based methods are often used because of the fact that:  

- Models are based on sound physical or engineering principles. 

- They provide the most accurate estimators of output when they are well 

formulated. 

- Detailed models based on first principles can model both normal and “faulty” 

operation; therefore, “faulty” operation can be easily distinguished from normal 

operation. 

- The transients in a dynamic system can only be modeled with detailed physical 

models [30].  

 

     Whereas weaknesses of fault detection and diagnosis methods based on quantitative 

model-based include: 

- They can be complex and computationally intensive. 

- The effort required to develop a model is significant. 

- These models generally require many inputs to describe the system, some for 

which values may not be readily available [30]. 

 

I.5.2. Qualitative Model-Based Methods 

     Fault detection and diagnostics based on qualitative modeling techniques represent 

another broad category that is based on a priori knowledge of the system. Unlike 

quantitative modeling techniques in which knowledge of the system is expressed in terms 

of quantitative mathematical relationships, qualitative models use qualitative 
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relationships or knowledge bases to draw conclusions regarding the state of a system and 

its components (e.g., whether operations are “faulty” or “normal”) [3]. 

Qualitative model-based methods can be classified into: 

I.5.2.1. Digraphs based causal models  

     Causal graphs provide a good way to represent physical cause-effect relations between 

different process variables that are of interest for fault diagnosis. In the causal directed 

graph models, the nodes denote the variables, while the directed edges between the nodes 

represent the causal relations between these variables, through which faults can 

propagate. The Signed Directed Graph (SDG) method, the simplest causal directed graph 

method, uses pure qualitative information, which can give rise to ambiguous fault 

diagnosis [31]. 

I.5.2.2. Fault Trees 

     Fault tree analysis (FTA) describes all possible causes of a specified system state in 

terms of the state of the components within the system. This will be achieved with the 

use of coherent and non-coherent fault trees. A coherent fault tree is constructed from 

AND and OR logic, therefore only considers component failed states. The non-coherent 

method expands this allowing the use of NOT logic which implies that the existence of 

component failed states and working states are both taken into account [32]. 

I.5.2.3. Qualitative Physics Approaches 

     The detailed physical models are based on detailed knowledge of the physical 

relationships and characteristics of all components in a system. Using this detailed 

knowledge for mechanical systems, a set of detailed mathematical equations based on 

mass, momentum, and energy balances along with heat and mass transfer relations are 

developed and solved. Detailed models can simulate both normal and “faulty” 

operational states of the system (although modeling of faulty states is not required by all 

methods).qualitative physics approach is represented in mainly two approaches. The first 

approach is to derive qualitative equations from the differential equations termed as 

confluence equations [33]. Considerable work has been done in this area of qualitative 

modeling of systems and representation of causal knowledge [34].The other approach in 

qualitative physics is the derivation of qualitative behavior from the Ordinary Differential 

Equations (ODEs). These qualitative behaviors for different failures can be used as a 

knowledge source [35]. 

 

 



Chapter I. Fault detection and diagnosis 

13 
 

     The main advantages of qualitative model-based methods include: 

- They are well suited for data-rich environments and noncritical processes. 

- These methods are simple to develop and apply. 

- Their reasoning is transparent, and they provide the ability to reason even under 

uncertainty. 

- They possess the ability to provide explanations for the suggested diagnoses 

because the method relies on cause-effect relationships. 

- Some methods provide the ability to perform FDD without precise knowledge of 

the system and exact numerical values for inputs and parameters [30, 35, 36]. 

 

      Whereas, Weaknesses of FDD based on qualitative models include: 

- The methods are specific to a system or a process. 

- Although these methods are easy to develop, it is difficult to ensure that all rules 

are always applicable and to find a complete set of rules, especially when the 

system is complex.  

- As new rules are added to extend the existing rules or accommodate special 

circumstances, the simplicity is lost. 

- These models, to a large extent, depend on the expertise and knowledge of the 

developer [30, 35, 36]. 

 

I.5.3. Process History (Data-driven) Methods 

     In process history based methods, only the availability of large amount of historical 

process data is needed. This data can be transformed and presented as a priori knowledge 

to a diagnostic system using different ways. And this is known as feature extraction. This 

extraction process can be either qualitative or quantitative in nature. Two of the major 

methods that extract qualitative history information are the expert systems and trend 

modelling methods. Methods that extract quantitative information can be broadly 

classified as non-statistical or statistical methods [37]. 

 

I.5.3.1. Qualitative feature extraction 

     Two of the major methods that extract qualitative history information are expert 

systems and Qualitative Trend Analysis [37]. 
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- Expert systems 

     An expert system is generally a very specialized system that solves problems in a 

narrow domain of expertise. The main components in an expert system development 

include: knowledge acquisition, choice of knowledge representation, the coding of 

knowledge in a knowledge base, the development of inference procedures for 

diagnostic reasoning and the development of input – output interfaces. The main 

advantages in the development of expert systems for diagnostic problem-solving are 

ease of development, transparent reasoning, the ability to reason under uncertainty 

and the ability to provide explanations for the solutions provided [35, 37]. 

- Qualitative trend analysis (QTA) 

     Trend analysis and prediction are important components of process monitoring 

and supervisory control. Trend modeling can be used to explain the various important 

events that happen in a process, to diagnosis malfunctions and to predict future states. 

From a procedural perspective, in order to obtain a signal trend not too susceptible to 

momentary variations due to noise, some kind of filtering needs to be employed [35]. 

 

I.5.3.2. Quantitative feature extraction 

     Methods that extract quantitative information can be broadly classified as Non-

statistical or statistical methods. Neural networks are an important class of non-statistical 

classifiers. Principal component analysis (PCA)/partial least squares (PLS) and statistical 

pattern classifiers form a major component of the statistical feature extraction methods 

[35, 37]. 

- Multivariate statistical approaches: 

     Multivariate statistical techniques are powerful tools capable of compressing data and 

reducing its dimensionality so that essential information is retained and easier to analyze 

than the original huge data set; and they are able to handle noise and correlation to extract 

true information effectively. Multivariate statistical process control methods, such as 

Principal Component Analysis (PCA) and Partial Least Squares (PLS), have been used 

in process monitoring problems. These are based on transforming a set of highly 

correlated variables to a set of uncorrelated variables [38, 39]. Principal component 

analysis (PCA) probably the most popular among these techniques [9, 40]. PCA is 

capable of compressing high-dimensional data with little loss of information by 

projecting the data onto a lower-dimensional subspace defined by a new set of derived 

variables (principal components (PCs)) [11]. 
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- Statistical classifier approaches 

     Fault diagnosis is essentially a classification problem and hence can be cast in a 

classical statistical pattern recognition framework. Fault diagnosis can be considered as 

a problem of combining, over time, the instantaneous estimates of the classifier using 

knowledge about the statistical properties of the failure modes of the system [35, 41, 42]. 

- Neural network approach 

     Neural networks have been proposed for classification and function approximation 

problems. In general, neural networks that have been used for fault diagnosis can be 

classified along two dimensions: (i) the architecture of the network such as sigmoidal 

and radial basis (ii) The learning strategy such as supervised and unsupervised learning 

[37]. 

     Fault detection and diagnosis methods based on process history are well suited to 

problems for which theoretical models of behavior are poorly developed or inadequate 

to explain observed performance and where training data are plentiful or inexpensive to 

create or collect. This approach provides black-box models, which are easy to develop 

and do not require an understanding of the physics of the system being modeled with a 

generally manageable computational requirement.  

     Beside all the advantages listed earlier, the most significant drawbacks is that most 

of the models cannot be used to extrapolate beyond the range of the training data and a 

large amount of training data is needed, representing both normal and faulty operation. 

The models are specific to the system for which they are trained and rarely can be used 

on other systems. Process data-based methods are suitable where no other methods 

exist. Some are applicable for virtually any kind of pattern recognition problems [30, 

35]. 

 

I.6. A comparison of various approaches 

     In the previous section, we have reviewed the three conceptually different 

frameworks for process fault diagnosis (Quantitative model-based, Qualitative model-

based and Process history). In this section, we provide a comparative evaluation of these 

different frameworks against a common set of desirable characteristics for a diagnostic 

system which are proposed in section 3. The evaluations are summarized in Table 1. 
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Table 01. Comparison of diagnosis methods [37]. 

  

Observer 

 

Digraphs 

Expert 

systems 

 

QTA 

 

PCA 

Neural 

networks 

Quick detection and 

diagnosis 

√ ? √ √ √ √ 

Isolability √ x √ √ √ √ 

Robustness √ √ x √ √ √ 

Novelty identifiability ? √ x ? √ √ 

Classification error x x x x x x 

Adaptability x √ √ ? x x 

Explanation facility x √ √ √ x x 

Modelling requirement 

 

? √ √ √ √ √ 

Storage and computation √ ? √ √ √ √ 

Multiple fault 

identifiability 

√ √ x x x x 

√: suitable; x: not suitable; ? : not assessed 

 

I.7. Statistical Process Monitoring (SPM) 

     Statistical Process monitoring is an analytical decision making tool which allows to 

see when a process is working correctly and when it is not. Variation is present in any 

process, deciding when the variation is natural and when it needs correction is the key to 

quality control.  

     Control chart is a major tool of SPM. It is a graphical representation for the process 

quality characteristics, that has been measured or computed from an acquired data, and 

which determines whether the process is under statistical control (healthy state) or not.  

    Control chart consists of two parts (Fig.5): the first is a series of measurements plotted 

in time order. Whereas the second is the control limits which is represented usually by 

three horizontal lines: the center line (CL) (typically, the mean); the upper control limit 

(UCL) and the lower control limit (LCL). They are used to define the range within which 

any variability is considered to be due to chance causes (natural variability) only. 

Consequently, point that lies beyond the control limits is treated because of an assignable 

cause (fault) [43]. 

     The control limits are defined based on the empirical distribution of the monitored 

quality. Therefore, the control limits are determined with a given confidence level; i.e., 



Chapter I. Fault detection and diagnosis 

17 
 

we select Control Limits to ensures that 1 − 𝛼 percent of the points expressing chance 

causes are lying within the control limits.  

 

 

Figure 5. Control chart for SPC. 

 

I.8. Conclusion 

     The basic aim of this chapter is to give some definitions and terminologies used in the 

field of fault detection and diagnosis and to review various methods of fault detection 

from different perspectives. We have also compared these methods against a common 

set of desirable characteristics for a diagnostic system that we proposed in section 3. A 

definition of SPC was investigated in order to achieve a background in the field. Due to 

the vastness of FDD field, a deep investigation for each method is a time expensive 

process. In the next chapters, we will focus mainly on multivariate statistical approaches. 
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II.1. Introduction 

     Methods based on historical process data are seen as the most cost-effective 

approaches dealing with the complex systems [4]. Traditionally, data-driven techniques 

based on statistical process control (SPC) charts such as Shewhart, CUSUM and EWMA 

charts have been used to monitor processes and improve product quality. However, such 

univariate control charts show poor fault detection performance when applied to 

multivariate processes. This shortcoming of univariate control charts has led to the 

development of many process monitoring schemes that use multivariate statistical 

methods [26]. 

     When the assumptions of linearity hold, multivariate statistical process control based 

on the use of principal component analysis can be used very effectively for early 

detection and analysis of any abnormal plant behavior [4, 10]. However, the PCA 

identifies only linear structure in a given dataset, as it is nothing but a linear projection 

[15, 21, 27].  

     In order to extend this technique to deal with nonlinear structures, many studies have 

been proposed to define nonlinear extensions of PCA. The kernel principal component 

analysis (KPCA) is among the most popular nonlinear statistical methods [18, 19, 20] .It 

can efficiently compute principal components (PCs) in high-dimensional feature spaces 

by means of integral operators and nonlinear kernel functions. Despite recently reported 

KPCA-based monitoring applications, KPCA monitoring model requires the storage of 

the symmetric kernel matrix (computation time may increase with the number of 

samples)[27]. RKPCA deals with the problem of need storage and computation time by 

approximating the data matrix by a reduced one. 

     This chapter is organized as follow: theoretical background of PCA method as a 

multivariate statistical tool for process monitoring is presented and a simple calculation 

of the statistic indices The Hotelling T², Q and the combined is provided in section 2. In 

section 3, KPCA for fault detection is presented with its Theorical literature. In section 

4, the proposed reduced KPCA method for process monitoring is detailed. 

 

II.2. Principal Component Analysis (PCA) 

    Principal component analysis (PCA), is a statistical technique that was proposed by 

Karl Pearson in 1901 and developed by Hotelling in 1947. Its aim is to transform a set of 
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correlated original data to an uncorrelated data set that represents most of the information 

of the original data (Fig.6) [37]. 

 

Figure 6. Dimension redaction from 3D to 2D using PCA. 

 

II.2.1. Statistical process modeling using PCA 

     Let  𝑋0 , denotes the original data matrix with 𝑚 process physical variables and  𝑛  

samples, 𝑋0 𝜖 𝑅𝑛×𝑚. This data matrix is first normalized to a matrix 𝑋𝜖 𝑅𝑛×𝑚 with: (i) 

zero mean: to simplify the computation of the covariance matrix and (ii) unit variance: 

to unify the units of different the measurements (Pressure (Pa), Voltage (V), Temperature 

(°C), etc.) [37, 44] and whose covariance matrix is [30]: 

𝑺 =
𝟏

𝒏 − 𝟏
 𝑿𝑻𝑿                                                                                     (𝟐. 𝟏) 

Based on Singular Value Decomposition technique 𝑆 can be written as: 

   𝑺 = 𝑷𝚲𝑷𝑻                                                                                             (𝟐. 𝟐)  

Where 𝑃 is an  𝑚 × 𝑚 matrix whose columns are known as principal component loading 

vectors. And the eigenvalues (𝜆1, 𝜆2, 𝜆3 … , 𝜆𝑚) of 𝑆 are the elements decreasingly 

ordered of diagonal matrix 𝛬. 

The mean centered and scaled matrix measurement 𝑋 is then given by: 

𝑿 = 𝑻. 𝑷𝑻                                                                                             (𝟐. 𝟑) 

Where 𝑇 𝜖 𝑅𝑛×𝑚 denotes the principal component scores and can be written as: 

     𝑻 = 𝑿. 𝑷                                                                                               (𝟐. 𝟒) 
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By definition, PCA method represents the data by fewer sufficient components. Thus, 

using ℓ < 𝑚 of the components, one can obtain ℓ -dimensional scores by the following 

relationship. 

 �̂�𝒏 = 𝑿. 𝑷𝓵                                                                               (𝟐. 𝟓)  

 

Where 𝑃ℓ contains only the ℓ  first columns of 𝑃.  ℓ  Represents the number of retained 

principal component (PC’s). 

Once retaining ℓ principal components, the decomposition of the used matrices becomes: 

  𝑷 = [�̂�𝒎×𝓵 �̃�𝒎×(𝒎−𝓵)]                                                           (𝟐. 𝟔) 

 

𝑻 = [�̂�𝒏×𝓵 �̃�𝒏×(𝒎−𝓵)]                                                             (𝟐. 𝟕) 

 

        𝚲 = [
�̂�𝓵×𝓵 𝟎𝓵×(𝒎−𝓵)

𝟎(𝒎−𝓵)×𝓵 �̃�(𝒎−𝓵)×(𝒎−𝓵)

]                                            (𝟐. 𝟖) 

 

The data matrix 𝑋 can be decomposed as: 

𝑿 = 𝑿�̂��̂�𝑻 + 𝑿�̃��̃�𝑻 = 𝑿𝑪 + 𝑿(𝑰 − 𝑪) = �̂� + 𝑬            (2.9) 

 

     Where �̂� and 𝐸 are respectively the modeled and the non-modeled variations of 𝑋 by 

projection onto the principal component subspace and the residual subspace. 𝐶 = �̂��̂�𝑇 

and 𝐼 − 𝐶 = �̃��̃�𝑇 are projection matrices that provides the linear combinations   with 

large and low variations respectively. 

     When a new measurement 𝑥 𝜖 𝑅1×𝑚 is observed, it can be decomposed into two parts 

using PCA model to: 

𝒙 = �̂� + 𝒆                                                                                (𝟐. 𝟏𝟎)    

 

     Where �̂� = 𝑥𝐶 and 𝑒 = 𝐼 − 𝐶  are the projection of the new observed sample onto the 

principal component subspace and the residual subspace respectively [45]. 

 

II.2.2. Model dimension selection 

     Numerous methods exist for selecting the number of PCs when the PCA technique is 

used for fault detection. Some of the popular methods are: cross validation method [46], 

parallel analysis [47], revised parallel analysis [48], Kaiser–Guttman method [49] and 
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Cumulative Percent Variance (CPV) [50]. In the cumulative percent variance (CPV) 

method, the minimum model dimension that can express a substantial part of the total 

variance of the data is selected. 

     The cross-validation method uses part of the training samples for model construction; 

the remaining samples are compared with the prediction by the model and when the 

prediction residual sum of squares (PRESS) is less than the residual sum of squares of 

the previous model, the new component is added to the model. 

     CPV is the most common used in fault detection [45]. It retains ℓ principal 

components having their sum of variances greater than a certain percentage of the total 

variance (usually taken from 70% to 90%). It determines the quality of the constructed 

model based on the chosen CPV, and it is related to all other approaches since retaining 

any number of components will result in a certain captured percentage of total variance. 

𝑪𝑷𝑽(𝓵) =
∑ 𝝀𝒊

𝒊=𝓵
𝒊=𝟏

∑ 𝝀𝒊
𝒊=𝒎
𝒊=𝟏

 %                                                                            (𝟐. 𝟏𝟏) 

 

     Where 𝜆𝑖  the variance of the score is vector and ℓ  is the number of PCs that are 

retained. When CPV is larger than the selected percentage (taken from 70% to 90%), the 

corresponding number ℓ of PCs is determined. 

     In this report herein, the cumulative percent variance (CPV) is utilized to compute the 

optimum number of retained PCs. 

 

II.2.3. Fault detection using PCA 

     After obtaining a lower-dimensional representation, new observations are mapped 

into the associated space and are generally monitored in terms of two statistics: 𝑄 and 

T 2. In this work, 𝜑-Statistic is introduced as a third monitoring index. 

     The 𝑄 statistic measures the goodness-of-fit of the lower dimensional model. 

Abnormal values of 𝑄 can indicate either an unusual observation or that the lower-

dimensional model does not account for some of the process variability. The T 2 statistic 

measures deviations in the lower-dimensional space. Because this space should 

characterize the major components of the process under normal operation condition 

(NOC), outliers identified by large T 2 values can indicate abnormal conditions [51]. 
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     The 𝜑-Statistic represents the combination of the two previous indices and it monitors 

the whole measurement space [52]. The three statistics and their corresponding control 

limits are given as follows: 

II.2.3.1. 𝑸 -Statistic 

     The 𝑄 statistic, sometimes called the Squared Prediction Error (SPE), represents the 

variability in the residual subspace (Fig. 07). So it measures the lack of fit of the data to 

the PCA model [45], it is given by: 

𝑸 = 𝒙(𝑰 − 𝑪)(𝑰 − 𝑪)𝑻𝒙𝑻 = ‖𝒆‖𝟐                                                  (𝟐. 𝟏𝟐) 

The distribution of the Q-statistic can be approximated as: 

𝑸𝜶 = [
𝒉𝟎𝑪𝜶√𝟐𝜽𝟐

𝜽𝟏
+ 𝟏 +

𝜽𝟐𝒉𝟎(𝒉𝟎 − 𝟏)

𝜽𝟏
𝟐

]

𝟏
𝒉𝟎

⁄

                           (𝟐. 𝟏𝟑) 

 

Where  𝜃𝑖 = ∑ 𝜆𝑗
𝑖𝑗=𝑚

𝑗=ℓ+1  , 𝑖 = 1,2,3 and ℎ0 = 1 −
2𝜃1𝜃2

3𝜃2
2  

      𝐶𝛼 is the critical value for an appropriately chosen confidence level (1 − 𝛼) Of the 

standard normal distribution. 

     The threshold 𝑄𝛼 is applied to define the normal variations of the random noise, and 

any violation of the threshold can indicate that the random noise has significantly 

changed, hence this is used to detect faults [45]. 

II.2.3.2. 𝑻²-Statistic 

      𝑇2also called the Hotelling’s T² is another index used for fault detection when PCA 

is used simultaneously for both dimensional reduction and detecting faults. It represents 

variability within the principle components subspace and it detects variation that can be 

greater than what can be explained by the PCA model (Fig.07), and it is defined as: 

𝑻𝟐 = 𝒙 �̂��̂�−𝟏 �̂�𝑻 𝒙𝑻                                                                          (𝟐. 𝟏𝟒) 

 

     The process is considered under normal operation, if 𝑇2 is below an upper control 

limit defined for a properly chosen significance level 𝛼 as: 

𝑻𝜶 =
(𝒏𝟐 − 𝟏)𝓵

𝒏(𝒏 − 𝓵)
𝑭𝜶(𝓵, 𝒏 − 𝓵)                                                       (𝟐. 𝟏𝟓) 

 

     Where 𝐹𝛼(ℓ, 𝑛 − ℓ) is the critical value of the Fisher–Snedecor distribution with ℓ 

and (𝑛 − ℓ) degrees of freedom [45]. 
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Figure 07. A set of projected observations (green) and two original observations (A, B) [21].  

(A) has a large SPE (squared vertical distance) but small T² (squared horizontal distance) relative to (B). 

 

II.2.3.3. 𝝋-Statistic 

     Yue and Qin proposed the use of a combined index for monitoring the principal and 

residual space simultaneously. Such an index is a combination of the T² and SPE indices 

weighted by their control limits [25]. 𝜑-Statistic gives informations about the variability 

in the whole measurement space. For a new measurement vector  𝑥 , 𝜑 is defined as: 

𝝋 =
𝑻²

𝑻²𝜶

+
𝑸

𝑸𝜶
                                                                                (𝟐. 𝟏𝟔) 

     We use the approximate distribution to calculate the confidence limits of the 

combined index. The distribution of 𝜑 can be approximated using ℊ𝜒²(ℎ) where the 

parameters ℊ and ℎ are given by 

𝓰 =

𝓵
(𝑻𝜶

𝟐 )𝟒 + ∑
𝝀𝒊

𝟐

𝑸𝜶
𝟒

𝑵
𝒊=𝓵+𝟏

(𝑵 − 𝟏)(
𝓵

(𝑻𝜶
𝟐 )𝟐 + ∑

𝝀𝒊

𝑸𝜶
𝟐 )𝑵

𝒊=𝓵+𝟏

                                             (𝟐. 𝟏𝟕) 

𝒉 =
(

𝓵
(𝑻𝜶

𝟐 )𝟐 + ∑
𝝀𝒊

𝑸𝜶
𝟐 )𝑵

𝒊=𝓵+𝟏

𝟐

 

𝓵
(𝑻𝜶

𝟐 )𝟒 + ∑
𝝀𝒊

𝟐

𝑸𝜶
𝟒

𝑵
𝒊=𝓵+𝟏

                                                            (𝟐. 𝟏𝟖) 
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Table 02. PCA-based fault detection algorithm [45]. 

PCA-based fault detection algorithm  

1. Offline monitoring 

- Obtain training fault free data set that represent the normal operations. 

- Scale the data to zero mean and unit variance. 

- Compute the covariance matrix  𝑆 using (2.1) 

- Calculate the eigenvectors and eigenvalues of 𝑆. 

- Determine how many principal components to be used. Many techniques can be used 

in this regard. In this work, the CPV criterion is used (2.11). 

- Calculate 𝑄𝛼, 𝑇𝛼
2, 𝜑𝛼 using equations (2.13), (2.15) and (2.17; 2.18) respectively. 

2. Online monitoring 

- Obtain testing data (possibly faulty data). 

- Scale the data using mean and variance of the training set. 

- Calculate 𝑇2, 𝑄, 𝜑. 

- Check for faults: if 𝑇2 > 𝑇𝛼
2 or 𝑄 > 𝑄𝛼 or 𝜑 > 𝜑𝛼, then declare a fault. 

 

II.2.4. PCA main drawbacks 

     The selection of the optimal number of principal components (PCs) in fault detection 

using principal components analysis (PCA) is a critical and sensitive operation because 

overestimating the number of components will results in a contamination of the extracted 

informations by adding noise dimensions with no useful informations. This will lead to 

an important amount of false alarms. In the other hand, underestimating the number of 

components results in a loss of information [44]. 

     Limitations of the PCA approach include also its lack of exploitation of 

autocorrelation and its linear nature [37]. The minor principal components would 

normally represent insignificant variance in the data for the linear case, but this cannot 

be said with certainty for nonlinear data. To confidently represent a nonlinear data set, 

more principal components have to be retained. This increases computational 

requirements. It is also difficult to discern which minor components capture nonlinearity 

and which represent insignificant variation [12]. 

     In the next section, a nonlinear version of PCA called Kernel principal is presented to 

dealing with nonlinear systems that cannot be accommodated adequately by linear 

multivariate methods. 
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II.3. Kernel Principal Component Analysis (KPCA) 

     For some complicated cases in industrial processes with particular nonlinear 

characteristics, the conventional PCA performs poorly due to its assumption that the 

process data are linear. To overcome this limitation, several nonlinear extensions of PCA 

were reported. The kernel principal component analysis is considered among the most 

popular nonlinear statistical methods [53] developed recently [18, 26].  

     Using a nonlinear mapping, KPCA first maps the original process data into a high 

dimensional feature space where the data structure is more likely to be linear (Fig. 08) 

[54]. Linear PCA is then conducted on this feature space, and the resulting principal 

components are able to capture nonlinearities in the original data space.  

 

 
Figure 8. The principle of Kernal PCA [26]. 

 

 

II.3.1. Statistical process modeling using KPCA 

     Let 𝑋 = [𝑋1 𝑋2 ⋯ 𝑋𝑁]𝑇; the training set scaled to zero mean and unit 

variance, 𝑋𝑖𝜖𝑅𝑚, 𝑖 = 1, … , 𝑁 with N observations and m process variable. By a nonlinear 

mapping 𝜙, a measured input is projected into a hyper-dimensional feature space 𝐹 as: 

𝝓: 𝑿𝒊 𝝐 𝑹𝒎  → 𝝓(𝑿𝒊) = 𝝓𝒊 𝝐 𝑭                                                      (𝟐. 𝟏𝟗) 

 

     Note that the feature space 𝐹 have an arbitrarily large, possibly infinite dimensionality 

equal to ℎ [18]. 

     KPCA seeks to decouple the nonlinear correlations among the data set through 

diagonalizing its covariance matrix [26], which can be expressed in the linear feature 

space 𝐹  as: 

𝑪𝝓 =
𝟏

𝑵
∑ 𝝓(𝑿𝒊)𝝓(𝑿𝒊)

𝑻𝑵
𝒊=𝟏 =

𝟏

𝑵
𝝌𝝌𝑻 𝝐 𝑹𝒉×𝒉                                (𝟐. 𝟐𝟎)        
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  With  𝜒 = [𝜙1 𝜙2 ⋯ 𝜙𝑁]𝑇 𝜙𝑖 is the training data arranged in the feature space 𝐹.  

     To diagonalize the covariance matrix, the following eigenvalue problem in the feature 

space is solved, 

𝝀𝒗 = 𝑪𝝓𝒗                                                                                        (𝟐. 𝟐𝟏) 

     Where 𝜆 ≥ 0 are eigenvalues and 𝑣 𝜖 𝐹\{0} their corresponding eigenvectors. The 

importance of the eigenvectors is indicated by the magnitude of their corresponding 

eigenvalues. By combining equation (2.20) and (2.21), we get: 

𝑪𝝓𝒗 =
𝟏

𝑵
∑ 𝝓(𝑿𝒊)𝝓(𝑿𝒊)

𝑻

𝑵

𝒊=𝟏

𝒗                                                                     

        =
𝟏

𝑵
∑〈𝝓(𝑿𝒊), 𝒗〉

𝑵

𝒊=𝟏

 𝝓(𝑿𝒊)                                                      (𝟐. 𝟐𝟐) 

     Where 〈𝑋, 𝑌〉 represents the dot product between 𝑋 and 𝑌. This implies that all 

solutions 𝑣 with 𝜆 ≠ 0 lie in the span of 𝜙(𝑥1), … , 𝜙(𝑥𝑁) , so that, 

𝝀 〈𝝓(𝑿𝒌), 𝒗〉 = 〈𝝓(𝑿𝒌), 𝑪𝝓𝒗〉           𝒌 = 𝟏, … , 𝑵                      (𝟐. 𝟐𝟑) 

     Therefore, there must exist coefficients 𝛼𝑖 , 𝑖 = 1, … , 𝑁 such that every eigenvector 𝑣 

of 𝐶𝜙 can be linearly expanded by: 

𝒗 = ∑ 𝜶𝒊

𝑵

𝒊=𝟏

𝝓(𝑿𝒊)                                                                                (𝟐. 𝟐𝟒) 

     Combining equation (2.23) and (2.24), we get (2.25): 

𝝀 ∑ 𝜶𝒊〈𝝓(𝑿𝒌), 𝝓(𝑿𝒊)〉

𝑵

𝒊=𝟏

=
𝟏

𝑵
∑ 𝜶𝒊

𝑵

𝒊=𝟏

〈𝝓(𝑿𝒊), ∑ 𝝓(𝑿𝒋)

𝑵

𝒋=𝟏

〉 × 〈𝝓(𝑿𝒊𝒋), 𝝓(𝑿𝒊)〉 ,  

                                                                                              𝒌 = 𝟏, … , 𝑵       (𝟐. 𝟐𝟓) 

     Note that the eigenvalue problem shown in equation (2.25) only involves dot products 

of mapped vectors in the feature space. The mapping need not be explicitly computed 

and only the dot products of two vectors in the feature space are needed [26, 27].  

     Now defining a matrix  𝐾𝜖 𝑅𝑁×𝑁 by: 

[𝑲]𝒊𝒋 = 𝑲𝒊𝒋 = 𝒌(𝒙𝒊, 𝒙𝒋) = 〈𝝓(𝑿𝒊), 𝝓(𝑿𝒋)〉                                              (𝟐. 𝟐𝟔) 

The left hand side of equation (2.25) can be expressed as:  

𝝀 ∑ 𝜶𝒊〈𝝓(𝑿𝒌), 𝝓(𝑿𝒊)〉

𝑵

𝒊=𝟏

= 𝝀 ∑ 𝜶𝒊𝑲𝒌𝒊

𝑵

𝒊=𝟏

                                             (𝟐. 𝟐𝟕) 

And the right hand side of equation (2.25) can be given by: 
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𝟏

𝑵
∑ 𝜶𝒊

𝑵

𝒊=𝟏

〈𝝓(𝑿𝒊), ∑ 𝝓(𝑿𝒋)

𝑵

𝒋=𝟏

〉 × 〈𝝓(𝑿𝒊𝒋), 𝝓(𝑿𝒊)〉 =
𝟏

𝑵
∑ 𝜶𝒊

𝑵

𝒊=𝟏

∑ 𝑲𝒊𝒋𝑲𝒋𝒊

𝑵

𝒋=𝟏

   (𝟐. 𝟐𝟖) 

Combining equations (2.26) and (2.27), we get: 

𝝀𝑵𝑲𝜶 = 𝑲𝟐𝜶                                                                                       (𝟐. 𝟐𝟗) 

Where 𝛼 = [𝛼1 ⋯ 𝛼𝑁]𝑇.To get solutions of equation (2.29), we solve the following 

eigenvalue problem, 

𝑵𝝀𝜶 = 𝑲𝜶                                                                                             (𝟐. 𝟑𝟎) 

A justification of this procedure is given by Schölkopf in [18]. 

     Now, performing PCA in the feature space F is equivalent to solving the eigenvalue 

problem shown in equation (2. 30). This yields eigenvectors 𝛼1 … 𝛼𝑁 with eigenvalues 

𝜆1 … 𝜆𝑁 [26].The dimensionality of the problem can be reduced by retaining only the first 

ℓ eigenvectors using the cumulative percent variance method given in equation (2.11). 

The eigenvector 𝛼1 … 𝛼𝑁 can be normalized by normalizing the corresponding 

eigenvectors in the feature space 𝐹, i.e,[27] 

〈𝒗𝒌, 𝒗𝒌〉 = 𝟏   𝒌 = 𝟏, … , 𝓵                                                                   (𝟐. 𝟑𝟏)   

     Using 𝑣𝑘 = ∑ 𝛼𝑖
𝑘𝜙(𝑋𝑖)

𝑁
𝑖=1  equation (2.31) leads to, 

                  𝟏 = 〈∑ 𝜶𝒊
𝒌𝝓(𝑿𝒊)

𝑵

𝒊=𝟏

 , ∑ 𝜶𝒋
𝒌𝝓(𝑿𝒋)

𝑵

𝒊=𝒋

 〉                         

                   = ∑ ∑ 𝜶𝒊
𝒌𝜶𝒋

𝒌〈𝝓(𝑿𝒊), 𝝓(𝑿𝒋)〉

𝑵

𝒋=𝟏

𝑵

𝒊=𝟏

                        

                                                      = ∑ ∑ 𝜶𝒊
𝒌𝜶𝒋

𝒌𝑲𝒊𝒋
𝑵
𝒋=𝟏

𝑵
𝒊=𝟏                                  

                                = 〈𝜶𝒌, 𝑲𝜶𝒌〉                                               

      = 𝝀𝒌〈𝜶𝒌, 𝜶𝒌〉                                                              (𝟐. 𝟑𝟐) 

     Thus, the associated eigenvectors 𝛼1, … , 𝛼𝑁 can be expressed 

〈𝜶𝒌, 𝜶𝒌〉 =
𝟏

𝝀𝒌
                     𝒌 = 𝟏, … , 𝑵                (𝟐. 𝟑𝟑) 

      

     Which shows that   𝑣1, … , 𝑣𝑁 are given by 

𝒗𝒊 = ∑
𝜶𝒋

𝒊

√𝝀𝒊

𝑵

𝒋=𝟏

𝝓𝒋 =
𝟏

√𝝀𝒊

𝝌𝑻𝜶𝒊                                     (𝟐. 𝟑𝟒) 
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     We denote  𝑃�̂� = [𝑣1, … , 𝑣ℓ] the principal subspace that spans the maximal variance 

between data. And 𝑃�̃� = [𝑣ℓ+1, … , 𝑣𝑁] the residual subspace that contains the noises [55]. 

Using equation (2.34), 𝑃�̂� and 𝑃�̃� can be expressed as: 

𝑷�̂� = [
𝟏

√𝝀𝟏

𝝌𝑻𝜶𝟏 …
𝟏

√𝝀𝓵

𝝌𝑻𝜶𝓵
] = 𝝌𝑻�̂�  �̂�

−𝟏
𝟐⁄                      (𝟐. 𝟑𝟓) 

𝑷�̃� =   [
𝟏

√𝝀𝓵+𝟏

𝝌𝑻𝜶𝓵+𝟏 …
𝟏

√𝝀𝑵

𝝌𝑻𝜶𝑵
]                                   (𝟐. 𝟑𝟔) 

     Where �̂� = [𝛼1 … 𝛼ℓ] and Λ̂ = 𝑑𝑖𝑎𝑔(𝜆1 … 𝜆ℓ) are the ℓ principal 

eigenvectors and eigenvalues of 𝐾 respectively, corresponding to the largest eigenvalues 

in descending order. 

     By projecting 𝜙(𝑋) onto eigenvectors in the feature space 𝐹, we get, 

𝒕𝒌 = 〈𝒗𝒌, 𝝓(𝑿)〉 = ∑ 𝜶𝒊
𝒌〈𝝓(𝑿𝒊), 𝝓(𝑿)〉

𝑵

𝒊=𝟏

,    𝒌 = 𝟏, … , 𝑵                   (𝟐. 𝟑𝟕) 

    The projection on the principal and residual spaces respectively are given by: 

�̂� = 𝑷�̂�
𝑻

𝝓     𝝐 𝑹𝓵                                                                                            (𝟐. 𝟑𝟖) 

�̃� = 𝑷�̃�
𝑻

𝝓       𝝐 𝑹𝒉−𝓵                                                                                      (𝟐. 𝟑𝟗) 

    When solving the eigenvalue problem given in equation (2. 30) or projecting from the 

input space into the KPCA space using equation (2.37), we can avoid computing the 

nonlinear mappings or the dot products in the feature space by introducing a Kernel 

function of the form 𝐾(𝑋, 𝑌) = 〈𝜙(𝑋), 𝜙(𝑌)〉 [18,20]. There exist a number of kernel 

functions:  

- Polynomial Kernel: 𝐾(𝑋, 𝑌) = 〈𝑋, 𝑌〉𝑑 

- Sigmoid Kernel: 𝐾(𝑋, 𝑌) = tanh(𝛽0 〈𝑋, 𝑌〉 + 𝛽1) 

- Radial basis Kernel: 𝐾(𝑋, 𝑌) = exp (
−‖𝑋−𝑌‖2

𝐶
) 

     Where 𝛽0, 𝛽1 and 𝐶 are specified a priori by the user [54, 56]. 

     These kernel functions provide a low-dimensional KPCA subspace that represents 

the distributions of the mapping of the training vectors in the feature space [55]. A 

specific selection of the kernel function implicitly determines the mapping 𝜙 and the 

feature space𝐹. 

     Before applying KPCA, mean centering in the high-dimensional space must be 

performed [27]. This can be done by substituting the kernel matrix 𝐾 with, 

       �̃� = 𝑲 − 𝟏𝑵𝑲 − 𝑲𝟏𝑵 + 𝟏𝑵𝑲𝟏𝑵                                                  (𝟐. 𝟒𝟎) 
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     Where, 1𝑁 = [
1 … 1
⋮ ⋱ ⋮
1 … 1

]  𝜖𝑅𝑁×𝑁  

 

II.3.2. Fault detection using KPCA 

     The KPCA-based monitoring method is similar to that using PCA in that the three 

indices: Q, The Hotelling’s T² and the combined and can be interpreted in the same way 

in the feature space [21]. 

II.3.2.1. Q-statistic 

     Q-statistic or the SPE index is defined as the norm of the residual vector in the feature 

space. It is calculated as the squared norm of the residual components [27] 

𝑺𝑷𝑬 = �̃�𝑻�̃� = 𝝓𝑻𝑷�̃�𝑷�̃�
𝑻

𝝓 = 𝝓𝑻�̂�𝒇 𝝓                                                    (𝟐. 𝟒𝟏) 

     Since we do not know the dimension of the feature space, it is not possible to know 

the number of residual components there. Thus, we cannot calculate explicitly the loading 

matrix 𝑃�̃� . However, we can calculate the product 𝑃�̃�𝑃�̃�
𝑇

as the orthogonal projection to 

the principal component space [27], which is  

 �̂�𝒇 = 𝑷�̃�𝑷�̃�
𝑻

= 𝑰𝑵 − 𝑷�̂��̂�𝒇
𝑻

                                                                         (𝟐. 𝟒𝟐) 

     And leads to 

𝑺𝑷𝑬 = 𝝓𝑻(𝑰𝑵 − 𝑷�̂��̂�𝒇
𝑻

)𝝓 = 𝝓𝑻𝝓 − 𝝓𝑻𝑷�̂��̂�𝒇
𝑻

𝝓                                  (𝟐. 𝟒𝟑) 

 

     Using equations (2.26) and (2.35) The SPE index can be calculated as a function of 

input vector 𝑥 as 

   𝑺𝑷𝑬 = 𝒌(𝒙, 𝒙) − 𝝓𝑻𝝌𝑻�̂��̂�−𝟏�̂�𝑻𝝌𝝓                                    

             = 𝒌(𝒙, 𝒙) − 𝒌(𝒙)𝑻�̂��̂�−𝟏�̂�𝑻𝒌(𝒙)                  (𝟐. 𝟒𝟒) 

= 𝒌(𝒙, 𝒙) − 𝒌(𝒙)𝑻�̂�𝒌(𝒙)                                             

     Where �̂� = �̂�Λ̂−1�̂�𝑇. 

     The threshold developed for linear PCA in equation (2. 13) can be directly used for 

KPCA. 

II.3.2.2. T²-statistic 

     The Hotelling’s T² index is calculated in the feature space as [27] 

    𝑻𝟐 = �̂�𝑻�̂�−𝟏�̂�                                                       (𝟐. 𝟒𝟓) 

     The T² is calculated using kernel functions as 

𝑻𝟐 = 𝒌(𝒙)𝑻�̂� �̂�−𝟐�̂�𝑻𝒌(𝒙)                                       
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= 𝒌(𝒙)𝑻𝑫𝒌(𝒙)                                     (𝟐. 𝟒𝟔) 

     Where 𝐷 = �̂� Λ̂−2�̂�𝑇.The (1 − 𝛼) × 100% control limit for T² is calculated using F 

distribution as in conventional PCA given by equation (2.15). 

III.3.2.3. 𝝋-Statistic 

     Similarly to PCA, 𝜑-Statistic incorporates the SPE and T² in a balance way which is 

given by equation (2.16). And its control limits can be approximated by ℊ𝜒²(ℎ) with ℊ 

and ℎ are parameters given by equation (2.17) and (2.18) [25]. 

 

Table 03. KPCA-based fault detection algorithm [57]. 

Algorithm 2: KPCA-based fault detection  

1. Developing the normal operating condition (NOC) model 

 

- Acquire normal operating data and normalize the data using the mean and 

standard deviation of each variable. 

- Decide on the type of kernel function to use and determine the kernel 

parameter.  

- Compute the kernel matrix of the NOC using equation (2.26) and normalize it 

using equation (2.40)  

- Solve the eigenvalue problem given in equation (2.30) and normalize the 

eigenvectors using equation (2.33) 

- Calculate the monitoring statistics (T² and SPE) of the normal operating data. 

- Determine the control limits of the T² and SPE charts. 

 

2. Online monitoring 

 

- Obtain new data for each sample and scale it with the mean and variance 

obtained at step 1 of the modeling procedure. 

- Given the m-dimensional scaled test data 𝑥𝑡𝜖𝑅𝑚, compute the kernel vector 

𝑘𝑡𝜖𝑅1×𝑁by [𝑘𝑡]𝑗 = 𝑘𝑡(𝑥𝑡, 𝑥𝑗)where 𝑥𝑗𝜖𝑅𝑚, 𝑗 = 1, … , 𝑁 is the normal 

operating data. 

- Mean center the test kernel vector 𝑘𝑡 as follows: 

𝒌�̃� = 𝒌𝒕 − 𝟏𝒕𝑲 − 𝒌𝒕𝟏𝑵 − 𝟏𝒕𝑲𝟏𝑵                                          (𝟐. 𝟒𝟕) 

 

- Where 1𝑁 and K are obtained from step 3 from the modelling procedure and 

1𝑡 = 1
𝑁⁄ [1 … 1] 𝜖 𝑅1×𝑁 

- Calculate the monitoring statistics (T² and SPE) of the test data. 

- Monitor whether T² or SPE exceeds its control limit calculated in the 

modeling procedure. 

 

 

 II.3.3. KPCA main drawback 

     Although capable of capturing nonlinear relationships between variables with a high 

degree of accuracy, kernel principal component analysis (KPCA) suffers from a high 
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computational cost and requires the storage of the symmetric kernel matrix (computation 

time increases with the number of samples), Given a set of 𝑛 training examples, kernel 

PCA needs to perform eigendecomposition of the 𝑛𝑥𝑛 kernel matrix 𝐾. As it takes 𝑂(𝑛2) 

space to store 𝐾 and 𝑂(𝑛3) time to eigendecompose it, kernel PCA is prohibitively 

expensive for big data, where 𝑛  is very large [4, 22]. 

     In order to surmount the problem of high computational cost and storage, we have 

investigated the use of a reduced version of KPCA called reduced kernel principal 

component (RKPCA). 

 

II.4. The proposed approach Reduced Kernel principal 

component (RKPCA) 

     When a large number of highly dependent variables are recorded, process data often 

contain redundant information as well as noise due to measurement errors. It is therefore 

possible to model variable relationships via a data-reduction method. (Okba et al. (2015)) 

proposed a RKPCA method that consists on approximating the retained principal 

components given by the KPCA method by a set of observation vectors which point to 

the directions of the largest variances with the retained principal components [27]. 

     In this work, a new RKPCA is developed. The key idea of the proposed RKPCA 

method is to reduce the number of observations (samples) in the data matrix using the 

distance between samples such that only one observation is preserved in case of 

redundancy or similarity. 

    The proposed reduced KPCA (RKPCA) method selects a reduced number of 

observations 𝑋𝑏𝜖{𝑋𝑖}  𝑖 = 1, … , 𝑁 among the N measurement variables of the 

information matrix such that the retained observations can be used as a new data matrix. 

     It consists on calculating the distance between the observations in order to eliminate 

the similar ones. Once the reduced matrix is formed, conventional KPCA can be applied. 

     Assume a data matrix 𝑋 = [𝑋1 𝑋2 ⋯ 𝑋𝑁]𝑇 with N observations and m process 

variables. Data consisting of measures of dissimilarity between all pairs of two 

observations can be represented using a dissimilarity matrix D as 

 

𝑫 = [
𝑫𝟏𝟏 … 𝑫𝟏𝑵

⋮ ⋱ ⋮
𝑫𝑵𝟏 … 𝑫𝑵𝑵

]                                                                               (𝟐. 𝟒𝟖) 
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The elements 𝑫𝒊𝒋  𝒊, 𝒋 = 𝟏, … , 𝑵  are called dissimilarities [58]. 

D can be constructed by means of a distance measure. 

 

For 𝑿𝒊 = [𝑿𝒊𝟏 𝑿𝒊𝟐 ⋯ 𝑿𝒊𝒎],𝑿𝒋 = [𝑿𝒋𝟏 𝑿𝒋𝟐 ⋯ 𝑿𝒋𝒎] the most commonly used 

distance between observations is the Euclidean distance. 

- Euclidean distance: is the ordinary straight-line distance and it is the sum of the squared 

differences between two observations [59]. 

 

𝑫𝒊𝒋 = √∑(𝑿𝒊𝒌 − 𝑿𝒋𝒌)
𝟐

𝒎

𝒌=𝟏

                                                                           (𝟐. 𝟒𝟗) 

     The Euclidean distance may not be appropriate if the measurements are from different 

units. Thus, before calculating the dissimilarity matrix D, data matrix X should be 

normalized. 

 

Table 04. RKPCA-based fault detection algorithm. 

 
Algorithm 3: RKPCA-based fault detection 

- Obtain data under normal operating conditions (NOC) and scale the data using the mean and 

standard deviation of the columns of the data set which represent the different variables 

- Calculate the elements of the dissimilarity matrix D using equation (2.49) 

- Pick the smallest distance 𝐷𝑖𝑗(𝑠) and eliminate all the jth  observation from the non-normalized 

matrix. 

- Normalize the new data matrix and construct the reduced kernel matrix 

- Estimate the reduced KPCA model using algorithm 1 (the eigenvalues and vectors of the reduced 

kernel matrix). 

- Calculate T², Q and 𝜑 

- Determine the control limits 𝑇𝛼
2, 𝑄𝛼 , 𝜑𝛼 

- Obtain test data 𝑋𝑡𝑡 and normalize it using the mean and standard deviation of the new data matrix 

obtained in step 4 

- Calculate T², Q and 𝜑 and compare them to their respective thresholds 𝑇𝛼
2, 𝑄𝛼 , 𝜑𝛼 . if the control 

limits are violated then an abnormal case holds. 

- Choose another distance 𝐷𝑖𝑗  such that 𝐷𝑖𝑗 > 𝐷𝑖𝑗(𝑠) ,eliminate the corresponding jth  observation from 

the non-normalized matrix and repeat from step 3 

- Keep increasing the distance  𝐷𝑖𝑗  as long as the T², Q and 𝜑 of the testing set are not deteriorated. 
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II.5. Conclusion 

     During this chapter, the mathematical basis of PCA models was established as well 

as the selection of the model parameters, such as the number of PCs and the loadings. 

Furthermore, KPCA approach and its theorical background has been proposed to cope 

with the problem of linearity. However, Due to its high computational cost, the RKPCA 

technique was introduced with its theory to deal with this issue.  

     The foundations of fault detection  using this three methods was presented using the 

well-known Hotelling’s 𝑇² and 𝑄-statistics, in addition to a new proposed index called φ. 
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III.1. Introduction 

     In this chapter, the aforementioned PCA, KPCA and the proposed RKPCA methods 

are applied to the data of the cement plant collected under its NOC state and several 

common faults that can occur and disturb the normal operation of the system. The 

obtained results are shown in different figures and in term of False Alarm Rate (FAR), 

Missed Alarm Rate (MDR), Detection Time Delay (DTD), the Cost function (J) and the 

execution time (ET). This is followed by a discussion about these results and a 

comparison between PCA, KPCA and the proposed RKPCA approach. Before exhibiting 

the results and the discussion, the system and the data used in this experiment are 

described so that to make the experiment clear to the reader and make the results obtained 

more credible. 

 

III.2. Process description 

     Cement is a substance which is made of grinded gypsum and cement clinker which 

itself is produced from a burned mixture of limestone and clay in certain percentages. 

Cement manufacturing is a complex process that begins with mining and then grinding 

raw materials that include limestone and clay, to a fine powder, called raw meal, which 

is then heated to a sintering temperature as high as 1450 °C in a cement rotary kiln. In 

this process, the chemical bonds of the raw materials are broken down and then they are 

recombined into new compounds. The result is called clinker, which are rounded nodules 

between 1mm and 25mm across. The clinker is ground to a fine powder in a cement mill 

and mixed with gypsum to create cement [60]. 

     Cement rotary kiln is the most vital part of a cement factory whose outcome is     

cement clinker. In Ain El Kebira cement plant in the Algerian east, where the work is 

conducted, a short rotary kiln of 5.4m shell diameter (Without brick and coating) and 80 

m length, with 3˚ incline is used. Two 560 (kws) asynchronous motors spin the kiln at a 

low variable speed around 2.14 (rpm) producing clinker of density varying from 1300 to 

1450 (kg/m3) under normal conditions. Two natural gas burners are used, the main one 

in the discharge end and the secondary in the first level of preheater tower [45]. The 

relevant signals that monitor the kiln system were collected from the historian of the 

aforementioned plant; they are listed and described in Table 05 and Figure 09. It gives 

simplified schematic of the installation. 
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Table 05. Process variables of the cement rotary kiln [45]. 

 

 

 
Figure 09. An overview of the manufacturing process in cement plant including signals used in the 

application (1-44) [45]. 
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III.3. Computation of monitoring performance metrics 

     Monitoring performance was based on five metrics: False Alarms rate (FAR), Missed 

Alarms rate (MDR), Detection Time Delay (DTD), the Cost function J, Execution time 

(ET). 

 

III.3.1. False Alarms rate 

Calculated as the percentage of normal samples identified as faults (or abnormal) during 

the normal operation of the plant. 

𝑭𝑨𝑹 =
𝑵𝑵,𝑭

𝑵𝑵
× 𝟏𝟎𝟎%                                                                      (𝟑. 𝟏)  

Where, 𝑁𝑁,𝐹 is the number of normal samples detected as faults and 𝑁𝑁 is the number 

of normal samples [45]. 

 

III.3.2. Missed Alarms rate  

Calculated as the percentage of faulty samples identified as healthy samples during 

abnormal operation of the plant [45]. 

𝑴𝑫𝑹 =
𝑵𝑭,𝑵

𝑵𝑭
× 𝟏𝟎𝟎%                                                              (3.2) 

Where, 𝑁𝐹,𝑁is the number of faulty samples identified as normal, and 𝑁𝐹 is the number 

of faulty samples [45]. 

 

III.3.3. Detection Time Delay 

Defined as the time required for indicating the fault after its occurrence. 

𝑫𝑻𝑫 = 𝒕𝒅 − 𝒕𝒐                                                                         (3.3) 

Where, 𝑡𝑑 and 𝑡𝑜is the detection and occurrence time respectively [45]. 

 

III.3.4. The Cost function 

 Another approach to evaluate a given method is to use the cost function. Using the 

three evaluation criteria introduced previously, a cost function of the form 

𝑱 = 𝒒𝟏
𝑭𝑨𝑹

𝑭𝑨𝑹𝒅
+ 𝒒𝟐

𝑴𝑫𝑹

𝑴𝑫𝑹𝒅
+ 𝒒𝟑

𝑫𝑻𝑫

𝑫𝑻𝑫𝒅
                                                        (𝟑. 𝟒)  

 is used. 

Where, 𝐹𝐴𝑅𝑑 , 𝑀𝐷𝑅𝑑 and 𝐷𝑇𝐷𝑑 are the desired values of 𝐹𝐴𝑅, 𝑀𝐷𝑅 and 𝐷𝑇𝐷 

respectively.Whereas 𝑞1, 𝑞2 and 𝑞3are their respective weights. By changing the values 
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of 𝑞′𝑠 one can tailor the cost function of the problem at hand. For example, if one 

wanted to emphasize the FAR and ignore the amount of MDR, then one would increase 

𝑞1 and decrease 𝑞2. The optimal solution would be the configuration that minimizes the 

cost function 𝐽 [61]. 

In this study herein, FAR, MDR and DTD are of the same importance i.e. 𝑞1 = 𝑞2 =

𝑞3 = 1.And 𝐹𝐴𝑅𝑑 , 𝑀𝐷𝑅𝑑and 𝐷𝑇𝐷𝑑 values are 1%, 1% and 1s respectively. 

 

III.3.5. Execution time 

      The execution time or CPU time of a given task is defined as the time spent by the 

system executing that task in other way you can say the time during which a program is 

running [62]. In this work, a computer with Intel ® Core™ i5-2450M CPU @ 2.50 GHz 

is used. 

 

III.4. Application procedure 

     This work is based on the real-time data collected by process computers from the 

cement plant. Table 6 lists the different data sets used in order to construct and test the 

proposed RKPCA then evaluate and compare its performances to that of PCA and KPCA. 

 

Table 06. Data sets used in the application [45]. 

 

 

III.4.1. Data generation and description 

     Set 1, Training data set: consists of 44 variables listed in Table 5 and indicated in 

Figure 09. About 768 observation samples (more than 4 h) are collected during normal 

condition operation NOC, with a sampling rate of 1 sample each 20s.This set is used to 

construct the fault detection model: (i) building the PCA, KPCA and RKPCA model, (ii) 

computing the upper limits of T², Q and 𝜑 for each model [45]. 

     Set 2, Testing data set: consists of 11 000 sample, collected from the plant during 

healthy operation with a sampling interval of 1s. This data set is used to test the accuracy 
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of the model compared to the upper limits calculated using the training set in terms of 

the false alarms contributed by the T², Q and 𝜑 statistics[45]. 

     Set 3, Faulty process data: The faulty data is collected from the Cement plant for more 

than half of an hour (2084 s) with a sampling interval of 1s. The set consists of two 

regions; first region corresponds to healthy operation, whereas the second region 

corresponds to the process faulty operation. The fault occurs after 7 min and evolves 

slowly in the process. We use this data to check the ability of the proposed detection 

method to detect the fault [45]. 

     Set 4, seven simulated sensor/actuator faults: This set contains 7 simulated sensor 

faults occurring in the rotary kiln process. It includes abrupt, random, intermittent, and 

slow drift additive faults that might be single as well as multiple faults. Each simulation 

covers 1500s of process operation. The original data is taken during healthy operation of 

the rotary kiln, and then faults are introduced from 500th sample to 1000th sample. Thus 

each simulation has three regions (healthy; faulty; healthy). Each region lasts for 500s. 

The simulation is done by adding a fault of magnitude 2% to the data collected during 

normal (healthy) operation. In the intermittent case, the fault is introduced in the 

following intervals: 500-580, 610-660, 700-740, 800-830, 870-900 and 975-1000 with 

amplitude 5.5%, 4.5%, 5%, 5.5%, 5% and 4.5% respectively[45]. 

 Table 7 lists the 7 sensor faults, with type and magnitude of each fault. 

 

Table 07. Simulated sensor faults introduced at 500-1000 s [45]. 

 

 

III.4.2. Application of PCA, KPCA and the proposed approach RKPCA 

to cement rotary kiln process 

     In this part, PCA, KPCA and the proposed approach RKPCA are applied to the 

previously described cement plant and the followed steps to build and evaluate the 

models are explained.  

III.4.2.1. PCA monitoring model 

     PCA has been applied to cement rotary kiln system. The training data in Table 6 under 

normal operation condition is first scaled (to have zero mean and unit variance) then  used 
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to build the PCA model and to determine the statistical control limits 𝑇𝛼
2, 𝑄𝛼, 𝜑𝛼 at the 

confidence levels 95% and 99%. In this study herein, the CPV method is utilized to find 

out the optimum number of retained PCs. The CPV method is set to capture 90% of the 

total variance in the training data, which results in retaining 20 PC’s(ℓ = 20). The 

performance of the PCA model is evaluated in the training part using the monitoring 

performance metric FAR.  

     The testing set in Table 6 are used to validate the model by comparing the time 

evolution of the fault detection indices T², Q and 𝜑 to their respective thresholds 

𝑇𝛼
2, 𝑄𝛼, 𝜑𝛼 (at the confidence levels 95% and 99%) obtained in the training part in terms 

of FAR . 

     The PCA model is then  applied to 8 fault sets (Tab. 07) in order to assess the model’s 

efficiency based on the monitoring performances FAR (for the healthy region), MDR and 

DTD (for the faulty region). 

     The cost function has been also calculated to simplify the comparison between 

different methods where an average value of J of all the fault sets is deduced and 

compared to other J’s obtained from other methods. Concerning the execution time 

criteria the Tic/Toc matlab command is used to assess the model in terms of time 

consuming. 

 

III.4.2.2. KPCA monitoring model 

     As described in Algorithm 2, the fault-free training data (Table 6) is used to construct 

a KPCA reference model to be used in fault detection. This data is first scaled (to have 

zero mean and unit variance), and then used to construct the KPCA model. In this study, 

the same criteria as in PCA model has been used for comparison purposes. Hence, the 

CPV method is also utilized to find out the optimum number of retained PCs that captures 

90% of the total variance, which results in retaining 20 PCs (ℓ = 20). Another, important 

parameter for kernel-based methods in model development for process monitoring is the 

choice of the kernel function and its width. The radial basis kernel 𝐾(𝑋, 𝑌) =

exp (
−‖𝑋−𝑌‖2

𝐶
)  is utilized in this work and normalized using equation (2.40). The value 

of the kernel parameter c depends on the process being monitored and has been set to 

c=13 000 in this application. The fault detection techniques through Q, T² and 𝜑 statistics 

are first carried out using the training fault-free data and their respective thresholds 
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𝑇𝛼
2, 𝑄𝛼, 𝜑𝛼 at the confidence levels 95% and 99% are calculated. The KPCA model is 

then assessed using FAR. 

     The testing data in table 6 is used to validate the KPCA model. First, the data is scaled 

by using the mean and standard deviation of the training set, and then the Kernel matrix 

of the testing part is calculated and normalized as described in algorithm 2. KPCA model 

is also applied to the process fault and the seven simulated sensor faults (Table 7) and 

has been assessed in terms of FAR (For healthy region), MDR and DTD (for faulty 

region). 

     The cost function has been calculated using the monitoring indices where an average 

value of J of all the fault sets is deduced. 

     For KPCA modeling, an important criteria is taken in consideration: the execution 

time. As stated previously, kernel PCA is known by its high computational and storage 

problem and our purpose is to decrease this time by the proposed RKPCA approach. The 

Tic/Toc matlab command is used to calculate the execution time. 

 

III.4.2.3. The proposed RKPCA monitoring model 

     As mentioned in the previous chapters, the proposed approach is a reduced version of 

KPCA, which means, once the number of observations is reduced in the training set, a 

conventional KPCA can be applied. 

     The reduction part consists on calculating the dissimilarity matrix from the 

normalized 768×768 training data matrix. The dissimilarities or the distances are sorted 

in ascending order to simplify. As a first step, one observation from each pair 

with the smallest dissimilarity is eliminated from the non-normalized training set 

768×768. Hence, the number of observations has been reduced. After normalizing the 

new reduced training data, a conventional KPCA model is applied. The new model is 

then evaluated in terms of FAR and execution time ET, and the number of samples 

obtained in each model is recorded. 

     Due to a deterioration of the FAR values noticed in the testing set, this procedure was 

repeated 53 times by selecting 53 distance from the total distances.  

     To select the optimum distance that provides a considerable reduction in samples, the 

reduced models or the distances that provides the minimum values of FAR when using  

𝑇95
2 , 𝑇99

2 , 𝑄95, 𝑄99, 𝜑95, 𝜑99 are selected. In our case, 7 models or distances are retained. 

These models are then applied to the process fault and the seven simulated sensor faults. 
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     For each model and with each fault, FAR, MDR, DTD and J of the three indices using 

the thresholds 𝑇95
2 , 𝑇99

2 , 𝑄95, 𝑄99, 𝜑95, 𝜑99 are calculated. At the end, an average value of 

J is obtained for each model or distance, the optimal distance is then the distance with 

the minimum average J. 

 

III.5. Results and discussion 

III.5.1. PCA monitoring model 

III.5.1.1. NOC results 

The thresholds of T², Q and 𝜑 deduced from the training set are found to be:  

𝑻𝟗𝟓
𝟐 = 𝟑𝟓. 𝟕𝟒 , 𝑻𝟗𝟗

𝟐 = 𝟓𝟏. 𝟏𝟑 , 𝑸𝟗𝟓 = 𝟕. 𝟓𝟕 , 𝑸𝟗𝟗 = 𝟏𝟎. 𝟕𝟏, 𝝋𝟗𝟓 = 𝟏. 𝟐𝟏, 𝝋𝟗𝟗 = 𝟏. 𝟔𝟓 

     The performance of the fault detection model based PCA in terms of FAR set is 

summarized in table 8. From this table, it can be seen that globally the three monitoring 

indices (T², Q, 𝜑) showed  good results of FAR. The FAR contributed by the PCA model 

in the training set are good. This clearly indicates the accuracy of the model. In the testing 

set, a low FAR is obtained for the rotary kiln monitoring using PCA. Besides, it is even 

negligible when using a confidence level of 99%. 

      The execution of the model lasted only 3.57 min and that because PCA has performed 

an eigendecomposition of a 44×44 covariance matrix. 

 

Table 08. FAR contributed by T², Q, 𝜑 under NOC using PCA.  

Method NOC Data index Confidence 

level 

FAR (%) Execution 

time (min) 

 

 

 

 

 

 

PCA 

 

 

training data 

T² 95% 4.95  

 

 

 

 

3min 34 s 

99% 1.04 

Q 95% 4.95 

99% 1.04 

φ 95% 4.95 

99% 1.04 

 

 

testing data 

T² 95% 4.45 

99% 0.37 

Q 95% 5.84 

99% 0.82 

φ 95% 5.53 

99% 0.61 

 

     Figure 10 shows the time evolution of the fault detection index 𝜑 based PCA for 

training and testing set. The horizontal line in red represent the threshold with a 
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confidence level of 95%, whereas the one in green represent the threshold with a 

confidence level of 99%. 

 

  

Figure 10. φ monitoring results of healthy process operation using PCA. (a) testing data set; (b) training 

data set. 

 

III.5.1.2. the involuntary real process fault results 

     Figure 11 shows the occurrence of an involuntary process fault using 𝜑 statistics with 

its corresponding thresholds. 

 

Figure 11. 𝜑 monitoring of real involuntary process fault in the cement rotary kiln using PCA. 

 

     The performances of the fault detection approach based on PCA model in terms of 

MDR, FAR, DTD and the Cost function J are summarized in Table 9.  

     The involuntary process fault was promptly detected by the Q statistic at its two 

thresholds 𝑄95, 𝑄99; and T² and 𝜑 at their thresholds 𝑇99
2 , 𝜑99 respectively. However, the 

detection time is delayed when detected by 𝑇95
2 , 𝜑95 to 30s and 2s respectively. In terms 

of MDR, the PCA based 𝜑 index has provided the best performance at confidence level 

of 95% (MDR=0.00%), whereas negligible values using T² and Q monitoring indices.  

a b 
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     In terms of FAR, T², Q and 𝜑 showed high values except using 𝑇99
2  where FAR equals 

1.67%.As a summarized index, the process fault is efficiently detected when using  Q 

and 𝜑 at their thresholds 𝑄99 and 𝜑99 respectively. 

 

Table 09. Missed detection rate (MDR), False Alarm Rate (FAR), detection time delay 

(DTD) and the cost function J values for the eight faults of cement rotary kiln using PCA.   

 

 

 

Faults  Performances T²  Q  φ 

95% 99%  95%  

 

 95% 99% 

 

Process 

fault 

MDR 

FAR 

DTD 

J 

1.38 

15.48 

0.00 

16.86 

1.98 

1.67 

30.00 

33.65 

 0.24 

59.05 

0.00 

59.29 

1.68 

14.05 

0.00 

15.73 

 0.00 

71.67 

0.00 

71.67 

1.14 

14.52 

2.00 

17.66 

 

Random 

and 

single 

MDR 

FAR 

DTD 

J 

2.00 

1.10 

1.00 

4.10 

2.40 

0.30 

1.00 

3.70 

 1.20 

5.60 

1.00 

7.80 

1.20 

0.80 

1.00 

3.00 

 1.20 

3.90 

1.00 

6.10 

1.40 

0.60 

1.00 

3.00 

 

Abrupt 

and 

single 

MDR 

FAR 

DTD 

J 

0.00 

1.80 

0.00 

1.80 

0.00 

0.90 

0.00 

0.90 

 0.40 

5.50 

0.00 

5.90 

7.60 

1.70 

0.00 

9.30 

 0.00 

3.80 

0.00 

3.80 

0.00 

1.30 

0.00 

1.30 

 

Drift 

and 

single 1 

MDR 

FAR 

DTD 

J 

4.60 

4.20 

18.80 

27.60 

6.80 

0.70 

27.00 

34.50 

 2.40 

4.60 

0.00 

7.00 

10.80 

0.40 

5.00 

16.20 

 2.60 

5.60 

5.00 

13.20 

5.80 

1.10 

27.00 

33.90 

 

Drift 

and 

single 2 

MDR 

FAR 

DTD 

J 

13.40 

0.70 

1.50 

15.60 

21.20 

0.10 

90.00 

111.30 

 1.40 

4.00 

1.40 

6.80 

2.20 

0.10 

1.90 

4.20 

 1.40 

1.70 

2.50 

5.60 

2.40 

0.10 

10.50 

13.00 

 

Abrupt and 

multiple 

MDR 

FAR 

DTD 

J 

0.00 

1.10 

0.00 

1.10 

0.00 

0.20 

0.00 

0.20 

 0.00 

5.80 

0.00 

5.80 

0.00 

1.50 

0.00 

1.50 

 0.00 

3.40 

0.00 

3.40 

0.00 

0.60 

0.00 

0.60 

 

Drift and 

multiple 

MDR 

FAR 

DTD 

J 

17.00 

2.40 

55.00 

74.40 

22.60 

1.00 

111.40 

135.00 

 12.60 

9.60 

54.90 

77.10 

15.60 

1.30 

71.40 

88.30 

 12.20 

5.60 

54.40 

72.20 

15.80 

1.50 

54.90 

72.20 

 

Intermittent 

and single 

MDR 

FAR 

DTD 

J 

0.00 

5.14 

0.00 

5.14 

0.00 

1.04 

0.00 

1.04 

 0.00 

9.80 

0.00 

9.80 

0.00 

1.85 

0.00 

1.85 

 0.00 

8.67 

0.00 

8.67 

0.00 

1.37 

0.00 

1.37 

J average  18.32 40.03  22.43 17.51  23.08 17.87 
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III.5.1.3. The simulated sensor faults results 

      In this section, the performance of the PCA based fault detection is evaluated in 

detecting single as well as multiple sensor faults of abrupt, random, intermittent, and drift 

types (Fig. 12). 

      The performances of all the seven simulated sensor faults are tabulated in Table 9. 

 

 

 

Figure 12. 𝜑 monitoring results of sensor faults using PCA. (a) Sfault1; (b) Sfault2; (c) Sfault3; (d) 

Sfault4; (e) Sfault5; (f) Sfault6; (g) Sfault7. 

 

     For abrupt fault in single sensor (SFault2) or multiple sensors (SFault5) and 

intermittent fault in single sensor (SFault7), the faults are instantly detected. 

a 

c b 

d 

f 

e 

g 
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     The detection time of the random fault in single sensor (SFault1) and drift faults in 

single sensor (SFault3, SFault4) are slightly delayed. However, the PCA model have 

detected the drift fault in multiple sensors (SFault6) after approximately 2min using 𝑇99
2  

and approximately 1min using the remaining thresholds.  

     In terms of MDR and FAR, Abrupt fault in single sensor (Sfault2) or multiple sensors 

(Sfault5) and intermittent fault in single sensor (Sfault7) showed the best performance 

with zero found missed alarms (MDR= 0.00%) and negligible values of false alarms.    

      Acceptable values of FAR and MDR are seen when detecting the Random fault in 

single sensor (Sfault1), especially when using 𝑇99
2  where FAR equals 0.30%. However, 

a large amount of missed alarms is noticed when detecting drift fault in multiple sensors 

(Sfault6) using all indices, drift fault in single sensor (Sfaul3) when using the confidence 

level of 99% and drift fault in single sensor (Sfault4) when using T² monitoring index.      

     As a summarized index, the cost function is calculated in each fault and for each 

monitoring index (with its two confidence levels 95% and 99%). J shows the overall 

performance of the PCA based fault detection. From table 9, J has shown efficient results 

when detecting Sfault1 and Sfault7 especially with confidence level 99% and Sfault2 and 

Sfault5 when using thresholds 𝑇99
2  and 𝜑99.  

      Sfault3 and Sfault4 have provided acceptable values with thresholds 𝑄99 and 𝑇99
2  

respectively whereas high values when the remaining indices are used. 

PCA has presented a big J value using the three monitoring indices for the detection of 

Sfault6. 

 

III.5.2. KPCA monitoring model 

III.5.2.1. NOC results 

     The thresholds of T², Q and 𝜑 deduced from the training data are found to be:  

𝑻𝟗𝟓
𝟐 = 𝟑𝟓. 𝟔𝟖 , 𝑻𝟗𝟗

𝟐 = 𝟓𝟎. 𝟖𝟒 , 𝑸𝟗𝟓 = 𝟎. 𝟏𝟐 × 𝟏𝟎−𝟒 , 𝑸𝟗𝟗 = 𝟎. 𝟏𝟕 × 𝟏𝟎−𝟒,  

𝝋𝟗𝟓 = 𝟏. 𝟐𝟑, 𝝋𝟗𝟗 = 𝟏. 𝟔𝟗 

 

      The performances of the fault detection model based KPCA in terms of FAR are 

tabulated in table 10. 

      From table 10, the FAR values provided by the three monitoring indices T², Q and 𝜑 

shows good results which confirm the accuracy of the KPCA model. In the validation 

phase, the model has provided the best performances in the three monitoring indices. 
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     1h 37min represents the time consumed in processing and analyzing the NOC data 

sets, which is a considerable time. This is because KPCA performed an 

eigendecomposition of a 768×768 kernel matrix. 

    

Table 10. FAR contributed by T², Q, 𝜑 under NOC using KPCA.  

Method NOC Data index Confidence 

level 

FAR (%) Execution 

time (min) 

 

 

 

 

 

KPCA 

 

 

training data 

T² 95% 4.95  

 

 

 

 

1h37min 

99% 1.04 

Q 95% 4.95 

99% 1.04 

φ 95% 4.95 

99% 1.04 

 

 

testing data 

T² 95% 0.37 

99% 0.08 

Q 95% 0.83 

99% 0.65 

φ 95% 0.96 

99% 0.57 

 

     Figure 13 shows the monitoring results of KPCA model in normal operation (training 

and testing set) using the index 𝜑. The horizontal line in red represent the index threshold 

with a confidence level of 95%, whereas the one in green represent the index threshold 

with a confidence level of 99%. 

 

 

Figure 13. φ monitoring results of healthy process operation using KPCA. (a) testing data set; (b) 

training data set. 

 

III.5.2.2. The involuntary real process fault results 

     Table 11 summarizes the performances of KPCA-based model in terms of MDR, 

FAR, DTD and Cost function J.  

a b 
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     The table shows that the detection time of this fault is lightly delayed when the three 

monitoring indices are used with their two confidence level (95%, 99%). 

In terms of FAR and MDR, high amount of false alarms is shown by the three indices 

except for 𝑇99
2  where FAR equals to 1.67.Whereas, a slight number of missed detected 

samples is noticed especially when using 𝜑95 for the detection where zero amount of 

missed samples is provided. 

     In order to give a global view of the performances in detecting this fault, the cost 

function is used. Minimum values of J are seen when the thresholds 𝜑99 and 𝑄99 are 

utilized. 

 

Table 11. Missed detection rate (MDR), False Alarm Rate (FAR), detection time delay 

(DTD) and the cost function J values for the eight faults of cement rotary kiln using 

KPCA.   

Faults  Performances T²  Q  φ 

95% 99%  95% 99%  95% 99% 

 

Process fault 

MDR 

FAR 

DTD 

J 

1.44 

14.29 

0.00 

15.73 

1.98 

1.67 

30.00 

33.65 

 0.18 

62.62 

1.10 

63.90 

1.26 

14.76 

2.00 

18.02 

 0.00 

70.71 

0.00 

70.71 

1.14 

11.90 

2.00 

15.04 

 

Random and 

single 

MDR 

FAR 

DTD 

J 

2.00 

1.10 

0.35 

3.45 

48.60 

0.20 

2.00 

50.80 

 1.20 

5.70 

1.00 

7.90 

1.20 

0.80 

1.00 

3.00 

 1.20 

3.60 

1.00 

5.80 

1.40 

0.50 

1.00 

2.90 

 

Abrupt and 

single 

MDR 

FAR 

DTD 

J 

0.00 

1.80 

0.00 

1.80 

0.00 

0.90 

0.00 

0.90 

 0.00 

5.30 

0.00 

5.30 

0.00 

1.70 

0.00 

1.70 

 0.00 

3.70 

0.00 

3.70 

0.00 

1.30 

0.00 

1.30 

 

Drift and 

single 1 

MDR 

FAR 

DTD 

J 

4.60 

4.10 

19.00 

27.70 

6.80 

0.70 

27.00 

34.50 

 1.80 

4.70 

0.50 

7.00 

7.00 

0.40 

5.50 

12.90 

 2.60 

5.40 

5.00 

13.00 

6.00 

1.10 

27.00 

34.10 

 

Drift and 

single 2 

MDR 

FAR 

DTD 

J 

13.60 

0.70 

1.50 

15.80 

22.00 

0.10 

90.00 

112.10 

 1.40 

4.20 

1.50 

7.10 

2.20 

0.10 

1.90 

4.20 

 1.20 

1.70 

2.50 

5.40 

2.60 

0.10 

10.40 

13.10 

 

Abrupt and 

multiple 

MDR 

FAR 

DTD 

J 

0.00 

1.10 

0.00 

1.10 

0.00 

0.20 

0.00 

0.20 

 0.00 

6.00 

0.00 

6.00 

0.00 

1.50 

0.00 

1.50 

 0.00 

3.40 

0.00 

3.40 

0.00 

0.60 

0.00 

0.60 

 

Drift and 

multiple 

MDR 

FAR 

DTD 

J 

17.00 

2.40 

55.00 

74.40 

22.80 

1.00 

111.40 

135.20 

 12.40 

10.00 

55.00 

77.40 

15.60 

1.30 

71.50 

88.40 

 12.20 

5.40 

55.00 

72.60 

16.00 

1.40 

55.00 

72.40 

 

Intermittent 

and single 

MDR 

FAR 

DTD 

J 

0.00 

5.14 

0.00 

5.14 

0.00 

1.04 

0.00 

1.04 

 0.00 

9.96 

0.00 

9.96 

0.00 

1.85 

0.00 

1.85 

 0.00 

8.59 

0.00 

8.59 

0.00 

1.29 

0.00 

1.29 

J average  18.14 46.04  23.07 16.44  22.90 17.59 
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     The time evolution of the fault detection index 𝜑  based KPCA of the real process 

fault are depicted in Figure 14.  

 

Figure 14. 𝜑 monitoring of real involuntary process fault in the cement rotary kiln using KPCA. 

 

III.5.2.3. Simulated sensor faults results 

     The performances of the KPCA based model in detecting all these faults are 

summarized in table 11. 

     From the table, abrupt fault in single sensor (Sfault2) or multiple sensors (Sfault5) 

and intermittent fault in single sensor (Sfault7) are detected immediately and efficiently 

with no delay and zero amount of missed detected samples. As well, the quantity of false 

alarms is negligible except when the intermittent fault in single sensor (Sfault7) is 

detected using the three indices with confidence limit of 95%. 

     The KPCA based model has also promptly detected the random fault (Sfault1) and 

the drift fault in single sensor (Sfault3) with the three monitoring indices. Whereas, the 

detection is delayed to 1min30s when using  𝑇99
2  to detect the drift fault in single sensor 

(Sfault4). 

     In terms of FAR, negligible values in detecting random fault in single sensor (Sfault1) 

and drift fault in single sensor (Sfault3, Sfault4) are noticed. Similarly, the amount of 

missed alarms are acceptable except the detection of: Sfault1 using𝑇99
2 , Sfault3 using the 

three indices with confidence level of 99% and Sfault4 using the monitoring index T². 

     Globally, the performance of KPCA model in terms of average J has shown that abrupt 

fault in single sensor (Sfault2) or multiple sensors (Sfault5) and intermittent fault in 

single sensor (Sfault7) are efficiently detected particularly when using the confidence 

limit 99%. Whereas, random fault (Sfault1) and drift fault in single sensor (Sfault4) are 
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effectively detected using the two statistics Q and𝜑 as well as (Sfault3) using the Q. Drift 

fault in multiple sensors (Sfault6) has shown high values of J in the three monitoring 

indices. 

     Figure 15 show the time evolution of the 𝜑 monitoring index using KPCA. The 

detection of single as well as multiple sensor faults of abrupt, random, intermittent, and 

drift types can be noticed from the graphs. 
 

 

 

 

 

Figure 15. 𝜑 monitoring results of sensor faults using KPCA. (a) Sfault1; (b) Sfault2; (c) Sfault3; (d) 

Sfault4; (e) Sfault5; (f) Sfault6; (g) Sfault7. 

a 

f 
g 

d e 

b c 
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III.5.3. The proposed RKPCA monitoring model 

III.5.3.1. NOC results  

     The monitoring results of the 53 RKPCA model in normal operation (training and 

testing set) using the three indices T², Q and 𝜑 (with confidence levels 95% and 99%) 

are obtained. The models are assessed using the FAR values, as well as the number of 

samples and the execution time for each model (see table 01. Appendix).  

    The FAR values shown in Table 01 in Appendix are depicted as a graph in Figure 16. 

 

 

 

 

 

Figure 16. FAR contributed by T², Q and φ under NOC (Testing set) versus the 53 selected distances. 
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     From the figure 16, an increasing FAR of Q (with confidence limit 95% and 99%) is 

noticed starting from distance 4.7867 (108 sample). The dropping of the number of 

samples from 768 to 108 has caused a loss of information and a big variability in the 

residual space due to the lack of fit of the new data to the RKPCA. Since 𝜑 (with 

confidence levels 95% and 99%) is expressed in terms of Q, an increasing in its FAR is 

obvious. At the same time, T² has shown a decreasing FAR values which shows that the 

informations explained by the PC’s are not affected by this reduction. 

     The encircled points in Figure 16 represents the seven retained distances and their 

relative minimum FAR. The models that match these distances are applied to the various 

faults, and evaluated in terms of average J (see tables 2-8 in appendix). 

     Distance 4.6082 with 144 sample and 9min30s execution time has provided the best 

performances (minimum average J) among the 7 distances in each of Q with confidence 

level 99% and 𝜑 with the two confidence levels 95% and 99% (Tab. 12). Thereby, the 

model that matches this distance is selected as the RKPCA model. 

The bold values highlight the best performance of the proposed method. 

 

Table 12. The average value of the cost function J of the seven retained models.  

  T² Q 𝜑 

Distances N° of samples Execution 

time (min) 

95% 99% 95% 99% 95% 99% 

Average J 

3.7831 447 30.08 27.98 51.74 20.31 21.89 23.76 27.54 

3.9461 359 23.88 12.39 47.96 20.23 22.98 23.30 28.27 

4.1115 298 22.66 18.48 48.31 19.10 23.41 23.35 28.18 

4.1564 281 22.09 18.29 55.19 19.88 20.20 22.99 27.02 

4.2062 267 20.28 24.53 56.36 18.43 16.11 21.31 24.80 

4.6082 144 9.51 30.87 69.35 23.89 12.17 17.09 12.19 

4.7867 108 6.82 31.30 65.78 37.34 26.27 30.78 15.64 

 

     The thresholds of T², Q and 𝜑 deduced from the training set are found to be:  

𝑻𝟗𝟓
𝟐 = 𝟐𝟕. 𝟔𝟒 , 𝑻𝟗𝟗

𝟐 = 𝟕𝟖. 𝟐𝟖 , 𝑸𝟗𝟓 = 𝟗. 𝟓𝟒 × 𝟏𝟎−𝟒 , 𝑸𝟗𝟗 = 𝟎. 𝟏𝟑 × 𝟏𝟎−𝟐, 𝝋𝟗𝟓 = 𝟏. 𝟎𝟒, 𝝋𝟗𝟗 = 𝟏. 𝟒𝟐 

 

     The performance of the fault detection model based RKPCA in terms of FAR in the 

NOC is summarized in table 13. The FAR contributed by the RKPCA model in the 

training set are good especially for confidence level 99%. This clearly indicates the 

model’s precision. In the testing set, T² monitoring has shown the best performance in 

terms of FAR. Also, small values of FAR are seen in Q and 𝜑 using the confidence level 

99% whereas large values are noticed when using confidence level 95%. 
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Table 13. FAR contributed by T², Q, 𝜑 under NOC using the proposed RKPCA.  

Method NOC Data index Confidence 

level 

FAR (%) Execution 

time (min) 

 

 

 

 

 

 

RKPCA 

 

 

training data 

T² 95% 4.86  

 

 

 

 

9 min 30 s 

99% 0.69 

Q 95% 4.86 

99% 0.69 

φ 95% 4.86 

99% 0.69 

 

 

testing data 

T² 95% 1.02 

99% 0.00 

Q 95% 20.55 

99% 3.75 

φ 95% 9.31 

99% 0.88 

 

     Figure 17 shows the time evolution of the fault detection index 𝜑 based RKPCA for 

training and testing set. The horizontal line in red represent the threshold with a 

confidence level of 95%, whereas the one in green represent the threshold with a 

confidence level of 99%. 

 

  

Figure 17. φ monitoring results of healthy process operation using RKPCA. (a) testing data set; (b) 

training data set. 

 

III.5.3.2. The involuntary real process fault 

     Table 14 summarizes the performances of RKPCA-based model in terms of MDR, 

FAR, DTD and Cost function J. 

      From the table, φ index with its two confidence levels 95% and 99% has detected 

immediately the process fault (DTD=0.00s).Whereas a slight delay is noticed when using  

T² and Q indices. In terms of MDR, the proposed RKPCA has shown small amount of 

missed detected samples when using all the indices. However, FAR provided 

considerable values when using all indices with confidence level 95%.  

a b 
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Table 14. Missed detection rate (MDR), False Alarm Rate (FAR), detection time delay 

(DTD) and the cost function J values for the eight faults of cement rotary kiln using the 

proposed RKPCA.   

 

Faults  Performances T²  Q  φ 

95% 99%  95% 99%  95% 99% 

 

Process 

fault 

MDR 

FAR 

DTD 

J 

0.60 

54.29 

4.80 

59.69 

3.31 

0.00 

55.00 

58.31 

 1.02 

13.10 

3.00 

17.12 

1.92 

0.95 

3.90 

6.77 

 0.60 

20.71 

0.00 

21.31 

2.04 

1.19 

0.00 

3.23 

 

Random 

and single 

MDR 

FAR 

DTD 

J 

30.80 

1.30 

0.00 

32.10 

44.40 

0.20 

0.00 

44.60 

 1.00 

18.00 

1.00 

20.00 

1.60 

1.80 

1.00 

4.40 

 1.00 

9.10 

1.00 

11.10 

1.80 

0.80 

1.00 

3.60 

 

Abrupt and 

single 

MDR 

FAR 

DTD 

J 

0.00 

1.00 

0.00 

1.00 

0.00 

0.20 

0.00 

0.20 

 0.00 

25.10 

0.00 

25.10 

0.00 

4.10 

0.00 

4.10 

 0.00 

11.40 

0.00 

11.40 

0.00 

1.20 

0.00 

1.20 

 

Drift and 

single 1 

MDR 

FAR 

DTD 

J 

4.80 

3.30 

22.00 

30.10 

8.80 

0.10 

42.00 

50.90 

 2.40 

7.30 

0.50 

10.20 

7.00 

0.40 

8.30 

15.70 

 2.80 

2.60 

5.00 

10.40 

5.80 

0.10 

8.70 

14.60 

 

Drift and 

single 2 

MDR 

FAR 

DTD 

J 

10.00 

0.50 

0.00 

10.50 

27.00 

0.10 

118.9 

146.00 

 1.20 

10.40 

1.30 

12.90 

1.80 

0.90 

1.74 

4.44 

 1.20 

3.30 

1.30 

5.80 

1.80 

0.30 

1.95 

4.05 

 

Abrupt and 

multiple 

MDR 

FAR 

DTD 

J 

0.00 

0.30 

0.00 

0.30 

0.00 

0.20 

0.00 

0.20 

 0.00 

34.70 

0.00 

34.70 

0.00 

7.60 

0.00 

7.60 

 0.00 

15.60 

0.00 

15.60 

0.00 

2.20 

0.00 

2.20 

 

Drift and 

multiple 

MDR 

FAR 

DTD 

J 

20.60 

1.30 

90.00 

111.90 

47.00 

0.10 

206.60 

253.70 

 8.00 

11.90 

32.00 

51.90 

10.80 

1.60 

38.80 

51.20 

 10.00 

4.70 

38.50 

53.20 

12.20 

0.50 

55.00 

67.70 

 

Intermittent 

and single 

MDR 

FAR 

DTD 

J 

0.00 

1.37 

0.00 

1.37 

0.00 

0.96 

0.00 

0.96 

 0.00 

19.20 

0.00 

19.20 

0.00 

3.21 

0.00 

3.21 

 0.00 

7.95 

0.00 

7.95 

0.00 

0.96 

0.00 

0.96 

J average  30.87 69.35  23.89 12.17  17.09 12.19 

 

     To summarize, J has shown that the real process fault is detected effectively using Q 

and φ, particularly with confidence level 99%. However, large values are provided by 

the T² index. 

     The time evolution of the fault detection index φ based RKPCA of the real process 

fault is depicted in Figure 18. 
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Figure 18. 𝜑 monitoring of real involuntary process fault in the cement rotary kiln using the proposed 

RKPCA. 

 

III.5.3.3. Simulated sensor faults 

     The performances of the RKPCA based model in detecting all these various faults are 

summarized in table 14. 

     From the table, abrupt fault in single sensor (Sfault2) or multiple sensors (Sfault5) 

and intermittent fault in single sensor (Sfault7) are detected immediately and efficiently 

with zero missed detected samples and with no delay. In addition, the evaluation using 

FAR showed effective results. 

     The T² index provided zero detection time with its two confidence limits when 

detecting the random fault (Sfault1) and with 95% confidence limit when detecting the 

drift fault in single sensor (Sfault3, Sfault4).As well as, small values when using the 

remaining indices. In terms of MDR, all of the three monitoring indices (T², Q and φ) 

have detected the Drift fault in single sensor (Sfault3) efficiently (negligible values of 

MDR), whereas the random fault (Sfault1) and the drift fault in single sensor (Sfault4) 

has shown large values when T² index is used. In terms of FAR, random fault (Sfault1) 

and drift fault in single sensor (Sfault4) have been detected effectively using the three 

monitoring indices except Q index with confidence level 95% where a considerable value 

of FAR is noticed (FAR=18.00% and 10.40% respectively). 

     The detection of the drift fault in multiple sensors (Sfault6) is delayed to 3min26s and 

1min30s when detected using T² with confidence level 99% and 95% respectively, 

whereas slightly delayed when using the remaining indices. In terms of MDR and FAR, 

large amount of missed detected samples are noticed in the three indices, however, 
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negligible amount of false alarms are shown expect when detected using Q with 

confidence level 95%. 

     To recapitulate, the average values of J of the φ index (with its two confidence levels 

99% and 95%) and Q (with confidence level 99%) have shown the best performances in 

detecting all the faults (process fault and 7 simulated sensor faults).  

     Figure 19 shows the time evolution of the RKPCA based monitoring indices, where 

it is possible to detect single as well as multiple sensor faults of abrupt, random, 

intermittent, and drift types. 

 

 

  

         

    

Figure 19. 𝜑 monitoring results of sensor faults using RKPCA. (a) Sfault1; (b) Sfault2; (c) Sfault3; (d) 

Sfault4; (e) Sfault5; (f) Sfault6; (g) Sfault7. 

g f 

e d 

c b 

a 



Chapter III. Application, Results & Discussion 

56 
 

III.5.4. Comparison between PCA, KPCA and the proposed approach 

RKPCA  

     Based on tables 08, 10 and 13 the proposed RKPCA approach has achieved the best 

reduction in the execution time compared to KPCA technique. The computational time 

has dropped from 1h37min to only 9min30s.This is due to the reduction in the number 

of samples from 768 to 144 sample ,which means the number of observations has been 

reduced by approximately 5 times, and this huge. This reduction in time is very important 

in nowadays processes. 

      The performances of the proposed method in terms of FAR using the three indices (in 

testing set) has also provided good results when the confidence level 99% is used, as well 

as the PCA technique. However, KPCA technique has provided the best FAR reduction 

compared to PCA and RKPCA. This implies that KPCA technique has dealt with the 

non-captured nonlinearities when PCA is used, and the loss of information resulted from 

the reduction in RKPCA. 

      Based on table 15 and compared to PCA and KPCA, RKPCA based φ index has 

provided the best average J reduction. The bold values highlight the best performance of 

the proposed method. 

   The proposed approach can perfectly detect all the faults with an average J of 12.17, 

17.09 and 12.19 when Q with confidence level 99% and φ index (with confidence levels 

95% and 99%) are used respectively. Whereas, it has some difficulties when the detection 

is performed using T² index. 

   

 

 

 

 

 

 

 

 

 

 

 

 



Chapter III. Application, Results & Discussion 

57 
 

Table 15. A comparative table between PCA, KPCA and the proposed RKPCA using 

the average J value contributed by T², Q and φ. 

Method index Confidence level Average J 

 

 

PCA 

T² 95% 18.32 

99% 40.03 

Q 95% 22.43 

99% 17.51 

φ 95% 23.08 

99% 17.87 

 

 

KPCA 

T² 95% 18.14 

99% 46.04 

Q 95% 23.07 

99% 16.44 

φ 95% 22.90 

99% 17.59 

 

 

RKPCA 

T² 95% 30.87 

99% 69.35 

Q 95% 23.89 

99% 12.17 

φ 95% 17.09 

99% 12.19 

 

III.6. conclusion  

     In this part of work, PCA, KPCA and the proposed approach RKPCA were applied to 

a set of healthy and faulty data obtained from a cement plant. The three methods were 

assessed in terms of FAR, MDR, DTD, the cost function J and the execution time. The 

results provided by the proposed methodology has proven its capability in reducing the 

computational time problem introduced by KPCA.As well as its efficiency to detect 

different types of faults (Abrupt , Drift, Intermittent). 
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      Fault detection and diagnosis is an important problem in process engineering 

nowadays. Therefore, early detection and diagnosis of process faults while the plant is 

still operating can help avoid abnormal event progression and reduce productivity loss. 

Several methods were developed and have been suggested to deal with the fault detection 

problem. Method based on multivariate statistical process control (MSPC) are among the 

most efficient techniques that have seen growth in the last decade. 

     In this work, PCA, KPCA and the suggested approach RKPCA were used as 

multivariate statistical methods to monitor the cement rotary kiln system. The monitoring 

was based on the common used indices: Hotelling’s T² and Q, in addition to a new 

proposed index called the combined index φ. 

     KPCA technique was first introduced to cope with the linear assumption of the PCA. 

It has provided negligible values in terms of FAR during the healthy operation and good 

results in detecting the several faults compared to PCA method .However, it has shown 

a big problem in terms of time consuming. 

     The new RKPCA approach was proposed to deal with the high computational time 

resulted from using KPCA method. The idea behind the novel approach was to reduce 

the number of samples in the data matrix. The three methods PCA, KPCA and RKPCA 

were compared to each other in terms of the performances: FAR, MDR, DTD, the cost 

function J and the execution time. The proposed approach has shown the best results in 

reducing the execution time and its ability to efficiently detect all the faults with φ index 

(with its two confidence levels 95% and 99%) and Q index using confidence level 99%. 

Whereas, it has some difficulties when the detection is performed using T² index.  

     Further improvements to the performance of the proposed approach may be obtained 

by improving the choice of the bandwidth used in the kernel function. Additionally, 

parameters such as the number of the retained principal component may be tuned based 

on the process considered to obtain a better performances in terms of false alarm and 

missed detection rates. 
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TABLE 01 

The table below shows the FAR values contributed by T², Q and 𝜑 with confidence levels 

95% and 99% using the 53 RKPCA models. In addition, the number of samples and the 

time execution of each model are given. 

These FAR values are depicted in Figure 16 in order to obtain the minimum FAR values 

and their relative distances provided by the testing set.  

The values in bold highlight the seven selected distances with their corresponding 

execution time and the number of samples obtained for each model. 

 

 FAR for training data FAR for testing data 

T² Q φ T² Q Φ 

Distances TC 

(min) 

N° of 

samples 

95% 99% 95% 99% 95% 99% 95% 99% 95% 99% 95% 99% 

1.8484 56.60 767 5.10 0.75 4.20 0.60 4.50 0.60 4.38 0.37 6.09 0.82 5.46 0.56 

2.3127 54.26 764 4.97 1.05 4.97 1.05 4.97 1.05 4.35 0.37 5.81 0.84 5.41 0.55 

2.7010 52.79 758 5.01 1.06 5.01 1.06 5.01 1.06 4.38 0.36 5.70 0.88 5.41 0.55 

2.8357 51.97 754 5.04 1.06 5.04 1.06 5.04 1.06 4.35 0.35 5.69 0.87 5.46 0.55 

2.8732 51.60 750 4.93 0.93 4.93 0.93 4.93 0.93 4.35 0.35 5.74 0.87 5.42 0.55 

2.9219 49.74 743 4.98 0.94 4.98 0.94 4.98 0.94 4.27 0.35 5.55 0.88 5.44 0.44 

2.9732 49.20 737 5.02 0.95 5.02 0.95 5.02 0.95 4.18 0.34 4.98 0.95 5.45 0.46 

3.0485 49.07 721 4.99 0.97 4.99 0.97 4.99 0.97 4.14 0.35 4.93 0.94 5.31 0.38 

3.0637 48.88 719 5.01 0.97 5.01 0.97 5.01 0.97 4.15 0.35 5.02 0.94 5.32 0.38 

3.0851 48.61 714 5.04 0.98 5.04 0.98 5.04 0.98 4.14 0.35 5.05 0.93 5.31 0.38 

3.0978 48.20 708 4.94 0.99 4.94 0.99 4.94 0.99 4.07 0.35 5.07 0.89 5.35 0.35 

3.1096 47.76 705 4.96 0.99 4.96 0.99 4.96 0.99 4.07 0.35 5.04 0.86 5.46 0.35 

3.1812 47.66 693 5.05 1.01 5.05 1.01 5.05 1.01 4.15 0.35 5.05 0.85 5.35 0.33 

3.2135 47.42 686 4.96 1.02 4.96 1.02 4.96 1.02 4.24 0.34 4.78 0.86 5.17 0.30 

3.2630 45.25 672 5.06 1.04 5.06 1.04 5.06 1.04 4.21 0.40 4.85 0.89 5.21 0.29 

3.3139 44.20 663 4.98 1.06 4.98 1.06 4.98 1.06 3.95 0.38 4.55 0.86 5.20 0.27 

3.3765 43.97 643 4.98 0.93 4.98 0.93 4.98 0.93 3.64 0.33 4.45 0.86 4.98 0.24 

3.4289 43.46 623 4.98 0.96 4.98 0.96 4.98 0.96 3.68 0.30 4.75 0.77 4.96 0.25 

3.4923 42.04 601 4.99 1.00 4.99 1.00 4.99 1.00 3.70 0.25 3.95 0.66 4.80 0.21 

3.5338 41.03 574 5.05 1.05 5.05 1.05 5.05 1.05 3.74 0.20 3.96 0.82 4.95 0.21 

3.5937 40.17 545 4.95 0.92 4.95 0.92 4.95 0.92 3.54 0.19 3.88 0.77 4.82 0.17 

3.6185 38.24 538 5.02 0.93 5.02 0.93 5.02 0.93 3.38 0.19 3.90 0.80 4.78 0.17 

3.6516 37.53 524 4.96 0.95 4.96 0.95 4.96 0.95 3.20 0.19 3.75 0.59 4.58 0.15 
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3.6858 31.48 502 4.98 1.00 4.98 1.00 4.98 1.00 3.40 0.18 4.25 0.31 4.67 0.14 

3.7568 31.24 463 4.97 1.08 4.97 1.08 4.97 1.08 2.95 0.18 3.63 0.33 4.43 0.13 

3.7831 30.08 447 4.70 0.89 4.92 0.89 4.70 0.89 2.84 0.18 3.30 0.35 4.90 0.08 

3.8078 26.34 431 5.10 0.93 5.10 0.93 5.10 0.93 3.04 0.18 3.82 0.18 4.78 0.11 

3.8147 25.65 427 4.92 0.94 4.92 0.94 4.92 0.94 3.31 0.17 3.93 0.20 4.94 0.11 

3.9461 23.88 359 5.01 1.11 5.01 1.11 5.01 1.11 2.24 0.11 4.89 0.10 4.55 0.09 

4.0147 23.17 331 5.14 0.91 5.14 0.91 5.14 0.91 2.24 0.08 4.73 0.12 4.32 0.07 

4.1115 22.66 298 5.03 1.01 5.03 1.01 5.03 1.01 1.62 0.01 4.62 0.10 3.92 0.06 

4.1564 22.09 281 4.98 1.07 4.98 1.07 4.98 1.07 1.72 0.00 5.44 0.20 4.97 0.05 

4.2062 20.28 267 4.87 1.12 4.87 1.12 4.87 1.12 1.53 0.00 5.60 0.46 5.07 0.05 

4.2707 18.53 253 5.14 1.19 5.14 1.19 5.14 1.19 1.07 0.00 7.82 0.75 5.85 0.09 

4.2865 18.24 243 4.94 0.82 4.94 0.82 4.94 0.82 1.23 0.00 8.36 1.04 5.33 0.12 

4.2974 18.16 238 5.04 0.84 5.04 0.84 5.04 0.84 1.25 0.00 7.64 1.11 5.55 0.10 

4.3069 17.94 236 5.08 0.85 5.08 0.85 5.08 0.85 1.13 0.00 7.85 1.17 5.38 0.08 

4.3153 16.42 233 5.15 0.86 5.15 0.86 5.15 0.86 1.08 0.00 8.37 0.88 4.67 0.07 

4.3253 15.82 229 4.80 0.87 4.80 0.87 4.80 0.87 1.27 0.00 9.62 0.88 6.05 0.10 

4.3413 15.56 226 4.87 0.88 4.87 0.88 4.87 0.88 1.25 0.00 9.29 1.10 6.26 0.10 

4.3543 14.10 216 5.09 0.93 5.09 0.93 5.09 0.93 1.29 0.00 10.06 0.69 6.89 0.06 

4.3626 13.97 208 4.81 0.96 4.81 0.96 4.81 0.96 1.15 0.00 9.25 1.18 6.39 0.07 

4.3791 13.78 205 4.88 0.98 4.88 0.98 4.88 0.98 1.25 0.00 8.41 1.15 7.19 0.06 

4.3900 13.47 199 5.03 1.01 5.03 1.01 5.03 1.01 1.33 0.00 9.41 1.84 5.54 0.09 

4.4324 11.81 185 4.86 1.08 4.86 1.08 4.86 1.08 1.08 0.00 12.75 2.26 7.57 0.07 

4.4592 11.38 175 5.14 1.14 5.14 1.14 5.14 1.14 1.23 0.00 14.78 1.99 7.19 0.06 

4.5017 10.44 165 4.85 1.21 4.85 1.21 4.85 1.21 0.93 0.00 10.81 5.15 6.91 0.24 

4.5379 10.32 160 5.00 1.25 5.00 1.25 5.00 1.25 0.85 0.00 11.08 3.52 6.03 0.18 

4.6082 9.51 144 4.86 0.69 4.86 0.69 4.86 0.69 1.02 0.00 20.55 3.75 9.31 0.88 

4.6555 8.54 133 5.26 0.75 5.26 0.75 5.26 0.75 1.40 0.00 19.88 7.18 13.21 0.95 

4.7400 7.78 120 5.00 0.83 5.00 0.83 5.00 0.83 1.01 0.00 19.38 10.09 11.25 1.39 

4.7867 6.82 108 4.63 0.93 4.63 0.93 4.63 0.93 0.75 0.00 31.86 18.95 21.04 3.77 

4.8418 6.03 96 5.21 1.04 5.21 1.04 5.21 1.04 0.77 0.00 38.25 17.02 27.79 4.81 
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TABLE 2-8 

The 7 tables below represent the performances of each of the 7 selected models in 

detecting the different types of faults in terms of: Missed Detection Rate (MAR), False 

Alarm Rate (FAR), Detection Time Delay (DTD) and The cost function J.  

An average J value of the 8 faults is calculated for each model (The values in bold). 

 

Table2. The MDR, FAR, DTD and J contributed by T², Q and φ of the model that 

matches: Distance 1=3.7831 , number of samples=447 

 

Faults Performances T²  Q  φ 

95% 99%  95% 99%  95% 99% 

 

Process 

fault 

MDR 

FAR 

DTD 

J 

1.26 

18.57 

1.25 

21.08 

2.58  

0.00 

43.00 

45.58 

 0.36 

53.81 

0.00 

54.17 

1.62 

13.10 

2.00 

16.72 

 0.00 

80.48 

0.00 

80.48 

2.52 

0.00 

33.50 

35.02 

 

Random 

and single 

MDR 

FAR 

DTD 

J 

2.00 

0.70 

0.60 

3.30 

45.00 

0.10 

2.00 

47.10 

 1.20 

4.10 

1.00 

6.30 

1.40 

0.50 

1.00 

2.90 

 1.20 

3.70 

1.00 

5.90 

2.00 

0.20 

1.00 

3.20 

 

Abrupt and 

single 

MDR 

FAR 

DTD 

J 

0.00 

1.40 

0.00 

1.40 

0.00 

0.70 

0.00 

0.70 

 0.20 

2.70 

0.00 

2.90 

5.20 

0.80 

0.00 

6.00 

 0.00 

3.10 

0.00 

3.10 

0.00 

0.40 

0.00 

0.40 

 

Drift and 

single 1 

MDR 

FAR 

DTD 

J 

4.60 

4.20 

18.70 

27.50 

7.20 

0.40 

27.50 

35.10 

 4.60 

1.30 

5.00 

10.90 

9.40 

0.20 

36.00 

45.60 

 3.00 

5.30 

5.50 

13.80 

7.80 

0.10 

36.00 

43.90 

 

Drift and 

single 2 

MDR 

FAR 

DTD 

J 

12.80 

0.60 

48.00 

61.40 

22.80 

0.10 

113.30 

136.2 

 1.60 

1.20 

1.80 

4.60 

2.40 

0.10 

10.50 

13.00 

 1.40 

1.00 

0.20 

2.60 

0.60 

0.10 

17.50 

18.20 

 

Abrupt and 

multiple 

MDR 

FAR 

DTD 

J 

0.00 

0.60 

0.00 

0.60 

0.00 

0.20 

0.00 

0.20 

 0.00 

4.90 

0.00 

4.90 

0.00 

0.80 

0.00 

0.80 

 0.00 

4.40 

0.00 

4.40 

0.00 

0.20 

0.00 

0.20 

 

Drift and 

multiple 

MDR 

FAR 

DTD 

J 

18.00 

1.80 

85.00 

104.80 

27.40 

0.70 

120.00 

148.10 

 13.20 

5.60 

55.00 

73.80 

16.40 

0.90 

71.80 

89.10 

 12.20 

5.50 

55.00 

72.70 

20.00 

0.50 

98.00 

118.50 

 

Intermittent 

and single 

MDR 

FAR 

DTD 

J 

0.00 

3.53 

0.00 

3.53 

0.00 

0.96 

0.00 

0.96 

 0.00 

4.98 

0.00 

4.98 

0.00 

1.04 

0.00 

1.04 

 0.00 

7.15 

0.00 

7.15 

0.00 

0.96 

0.00 

0.96 

J average  27.98 51.74  20.31 21.89  23.76 27.54 
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Table3. The MDR, FAR, DTD and J contributed by T², Q and φ of the model that 

matches: Distance=3.9461, number of samples=359. 

 

Faults Performances T²  Q  φ 

95% 99%  95% 99%  95% 99% 

 

Process 

fault 

MDR 

FAR 

DTD 

J 

1.20 

18.81 

3.50 

24.51 

2.58 

0.00 

43.00 

45.58 

 0.24 

53.57 

0.00 

53.81 

2.76 

0.95 

0.00 

3.71 

 0.00 

78.10 

0.00 

78.10 

2.52 

0.24 

33.50 

36.26 

 

Random 

and single 

MDR 

FAR 

DTD 

J 

1.80 

0.80 

0.75 

3.35 

43.20 

0.20 

2.00 

45.40 

 1.20 

4.10 

1.00 

6.30 

1.80 

0.20 

1.00 

3.00 

 1.20 

3.20 

1.00 

5.40 

2.00 

0.20 

1.00 

3.20 

 

Abrupt and 

single 

MDR 

FAR 

DTD 

J 

0.00 

1.40 

0.00 

1.40 

0.00 

0.40 

0.00 

0.40 

 0.00 

3.70 

0.00 

3.70 

0.60 

0.40 

0.00 

1.00 

 0.00 

2.80 

0.00 

2.80 

0.00 

0.40 

0.00 

0.40 

 

Drift and 

single 1 

MDR 

FAR 

DTD 

J 

5.00 

3.00 

18.60 

26.60 

7.40 

0.10 

27.50 

35.00 

 4.20 

1.90 

2.00 

8.10 

10.80 

0.10 

43.00 

53.90 

 2.80 

3.80 

7.00 

13.60 

7.20 

0.10 

35.00 

42.30 

 

Drift and 

single 2 

MDR 

FAR 

DTD 

J 

12.60 

0.30 

1.00 

13.90 

21.60 

0.10 

71.80 

93.50 

 1.60 

1.00 

1.50 

4.10 

3.00 

0.10 

10.90 

14.00 

 1.40 

0.90 

0.50 

2.80 

6.00 

0.10 

17.35 

23.45 

 

Abrupt and 

multiple 

MDR 

FAR 

DTD 

J 

0.00 

0.80 

0.00 

0.80 

0.00 

0.20 

0.00 

0.20 

 0.00 

7.90 

0.00 

7.90 

0.00 

0.20 

0.00 

0.20 

 0.00 

5.00 

0.00 

5.00 

0.00 

0.20 

0.00 

0.20 

 

Drift and 

multiple 

MDR 

FAR 

DTD 

J 

18.40 

1.70 

5.50 

25.60 

28.40 

0.70 

133.60 

162.70 

 11.20 

10.00 

50.80 

72.00 

18.00 

0.60 

88.50 

107.10 

 12.00 

5.01 

55.00 

72.01 

19.40 

5.00 

95.00 

119.40 

 

Intermittent 

and single 

MDR 

FAR 

DTD 

J 

0.00 

2.97 

0.00 

2.97 

0.00 

0.96 

0.00 

0.96 

 0.00 

5.94 

0.00 

5.94 

0.00 

0.96 

0.00 

0.96 

 0.00 

6.75 

0.00 

6.75 

0.00 

0.96 

0.00 

0.96 

J average  12.39 47.96  20.23 22.98  23.30 28.27 
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Table 4. The MDR, FAR, DTD and J contributed by T², Q and φ of the model that 

matches: Distance= 4.1115 , number of samples=298 

Faults Performances T²  Q  φ 

95% 99%  95% 99%  95% 99% 

 

Process 

fault 

MDR 

FAR 

DTD 

J 

1.38 

24.29 

1.80 

27.47 

2.64 

0.00 

43.00 

45.64 

 0.30 

50.71 

0.00 

51.01 

2.88 

0.48 

3.00 

6.36 

 0.00 

77.38 

0.00 

77.38 

2.58 

0.00 

33.90 

36.48 

 

Random 

and single 

MDR 

FAR 

DTD 

J 

2.00 

0.80 

0.80 

3.60 

43.40 

0.20 

0.30 

43.90 

 1.20 

4.20 

1.00 

6.40 

1.80 

0.20 

1.00 

3.00 

 1.20 

3.90 

1.00 

6.10 

2.00 

0.20 

1.00 

3.20 

 

Abrupt and 

single 

MDR 

FAR 

DTD 

J 

0.00 

1.20 

0.00 

1.20 

0.00 

0.20 

0.00 

0.20 

 0.00 

4.70 

0.00 

4.70 

0.00 

0.40 

0.00 

0.40 

 0.00 

3.00 

0.00 

3.00 

0.00 

0.40 

0.00 

0.40 

 

Drift and 

single 1 

MDR 

FAR 

DTD 

J 

4.60 

2.90 

18.50 

26.00 

7.40 

0.10 

27.70 

35.20 

 4.20 

5.50 

5.50 

15.20 

11.00 

0.10 

46.00 

57.10 

 3.00 

3.50 

8.50 

J=15.00 

7.60 

0.10 

35.00 

J=42.70 

 

Drift and 

single 2 

MDR 

FAR 

DTD 

J 

11.40 

0.30 

0.00 

11.70 

21.60 

0.10 

71.80 

93.50 

 1.60 

1.00 

1.50 

4.10 

2.80 

0.20 

10.50 

13.50 

 1.40 

0.70 

1.3 

3.40 

6.00 

0.10 

17.40 

23.50 

 

Abrupt and 

multiple 

MDR 

FAR 

DTD 

J 

0.00 

0.50 

0.00 

0.50 

0.00 
0.20 

0.00 

0.20 

 0.00 

6.40 

0.00 

6.40 

0.00 

0.40 

0.00 

0.40 

 0.00 

4.60 

0.00 

4.60 

0.00 

0.20 

0.00 

0.20 

 

Drift and 

multiple 

MDR 

FAR 

DTD 

J 

18.20 

1.60 

55.00 

74.80 

31.60 

0.30 

135.00 

166.90 

 10.60 

10.70 

38.70 

60.00 

17.20 

0.40 

88.00 

105.60 

 11.60 

4.60 

55.00 

71.20 

19.60 

0.40 

98.00 

118.00 

 

Intermittent 

and single 

MDR 

FAR 

DTD 

J 

0.00 

2.57 

0.00 

2.57 

0.00 

0.96 

0.00 

0.96 

 0.00 

5.06 

0.00 

5.06 

0.00 

0.96 

0.00 

0.96 

 0.00 

6.18 

0.00 

6.18 

0.00 

0.96 

0.00 

0.96 

J average  18.48 48.31  19.10 23.41  23.35 28.18 
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Table 5. The MDR, FAR, DTD and J contributed by T², Q and φ of the model that 

matches: Distance=4.1564, number of samples=281 

Faults Performances T²  Q  φ 

95% 99%  95% 99%  95% 99% 

 

Process 

fault 

MDR 

FAR 

DTD 

J 

1.50 

23.57 

0.25 

25.32 

2.64 

0.00 

43.00 

45.64 

 0.18 

51.19 

1.50 

52.87 

1.98 

2.14 

2.00 

6.12 

 0.00 

80.00 

0.00 

80.00 

2.46 

0.00 

33.60 

35.46 

 

Random 

and single 

MDR 

FAR 

DTD 

J 

2.00 

0.80 

0.00 

2.80 

43.40 

0.20 

0.35 

43.95 

 1.20 

5.20 

1.00 

7.40 

1.80 

0.20 

1.00 

3.00 

 1.20 

4.60 

1.00 

6.80 

2.00 

0.20 

1.00 

3.20 

 

Abrupt and 

single 

MDR 

FAR 

DTD 

J 

0.00 

1.10 

0.00 

1.10 

0.00 

0.20 

0.00 

0.20 

 0.00 

5.80 

0.00 

5.80 

0.00 

0.50 

0.00 

0.50 

 0.00 

4.00 

0.00 

4.00 

0.00 

0.40 

0.00 

0.40 

 

Drift and 

single 1 

MDR 

FAR 

DTD 

J 

4.60 

3.70 

18.70 

27.00 

7.40 

0.10 

36.50 

44.00 

 4.00 

2.30 

2.80 

9.10 

9.40 

0.10 

42.00 

51.50 

 2.80 

5.00 

6.00 

13.80 

7.40 

0.10 

36.00 

43.50 

 

Drift and 

single 2 

MDR 

FAR 

DTD 

J 

12.20 

0.30 

0.00 

12.50 

23.60 

0.10 

113.50 

137.20 

 1.60 

1.40 

7.50 

10.50 

2.40 

0.30 

10.50 

13.20 

 1.60 

1.10 

1.30 

4.00 

4.80 

0.10 

12.90 

17.80 

 

Abrupt and 

multiple 

MDR 

FAR 

DTD 

J 

0.00 

0.50 

0.00 

0.50 

0.00 

0.20 

0.00 

0.20 

 0.00 

7.40 

0.00 

7.40 

0.00 

0.50 

0.00 

0.50 

 0.00 

4.90 

0.00 

4.90 

0.00 

0.20 

0.00 

0.20 

 

Drift and 

multiple 

MDR 

FAR 

DTD 

J 

18.40 

1.40 

55.00 

74.80 

33.60 

0.10 

135.70 

169.40 

 10.20 

11.60 

38.80 

60.60 

15.20 

0.60 

70.00 

85.80 

 10.80 

5.50 

48.00 

64.30 

19.40 

0.30 

95.00 

114.70 

 

Intermittent 

and single 

MDR 

FAR 

DTD 

J 

0.00 

2.33 

0.00 

2.33 

0.00 

0.96 

0.00 

0.96 

 0.00 

5.38 

0.00 

5.38 

0.00 

1.04 

0.00 

1.04 

 0.00 

6.18 

0.00 

6.18 

0.00 

0.96 

0.00 

0.96 

J average  18.29 55.19  19.88 20.20  22.99 27.02 
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Table 6. The MDR, FAR, DTD and J contributed by T², Q and φ of the model that 

matches: Distance=4.2062 , number of samples=267 

Faults Performances T²  Q  φ 

95% 99%  95% 99%  95% 99% 

 

Process 

fault 

MDR 

FAR 

DTD 

J 

1.14 

41.90 

3.50 

46.54 

2.64 

0.00 

43.00 

45.64 

 0.30 

43.33 

2.00 

45.63 

1.86 

1.43 

2.50 

5.79 

 0.00 

71.90 

0.00 

71.90 

2.46 

0.00 

33.60 

36.06 

 

Random 

and single 

MDR 

FAR 

DTD 

J 

30.40 

0.70 

0.00 

31.10 

43.20 

0.20 

0.50 

43.90 

 1.20 

5.50 

1.00 

7.70 

1.60 

0.30 

1.00 

2.90 

 1.20 

4.70 

1.00 

6.90 

2.00 

0.20 

1.00 

3.20 

 

Abrupt and 

single 

MDR 

FAR 

DTD 

J 

0.00 

0.90 

0.00 

0.90 

0.00 

0.20 

0.00 

0.20 

 0.00 

6.40 

0.00 

6.40 

0.00 

1.50 

0.00 

1.50 

 0.00 

4.40 

0.00 

4.40 

0.00 

0.40 

0.00 

0.40 

 

Drift and 

single 1 

MDR 

FAR 

DTD 

J 

4.60 

3.20 

18.80 

26.60 

7.60 

0.10 

38.50 

46.20 

 3.40 

2.30 

5.50 

11.20 

7.40 

0.10 

27.30 

34.8 

 2.80 

4.40 

8.50 

15.70 

7.40 

0.10 

27.50 

35.00 

 

Drift and 

single 2 

MDR 

FAR 

DTD 

J 

13.20 

0.30 

0.00 

13.50 

25.00 

0.10 

118.00 

143.10 

 1.60 

1.60 

1.50 

4.70 

2.00 

0.30 

1.90 

4.20 

 1.60 

1.20 

1.35 

4.15 

4.40 

0.10 

10.90 

15.40 

 

Abrupt and 

multiple 

MDR 

FAR 

DTD 

J 

0.00 

0.50 

0.00 

0.50 

0.00 

0.20 

0.00 

0.20 

 0.00 

8.00 

0.00 

8.00 

0.00 

0.90 

0.00 

0.90 

 0.00 

5.90 

0.00 

5.90 

0.00 

0.20 

0.00 

0.20 

 

Drift and 

multiple 

MDR 

FAR 

DTD 

J 

18.40 

1.40 

55.00 

74.80 

34.60 

0.10 

136.00 

170.70 

 10.20 

9.40 

38.70 

58.30 

14.00 

0.70 

63.00 

77.70 

 10.80 

5.80 

39.00 

55.60 

18.20 

0.30 

88.70 

107.20 

 

Intermittent 

and single 

MDR 

FAR 

DTD 

J 

0.00 

2.33 

0.00 

2.33 

0.00 

0.96 

0.00 

0.96 

 0.00 

5.54 

0.00 

5.54 

0.00 

1.12 

0.00 

1.12 

 0.00 

5.94 

0.00 

5.94 

0.00 

0.96 

0.00 

0.96 

J average  24.53 56.36  18.43 16.11  21.31 24.80 
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Table 7. The MDR, FAR, DTD and J contributed by T², Q and φ of the model that 

matches: Distance=4.6082 , number of samples=144. 

Faults Performances T²  Q  φ 

95% 99%  95% 99%  95% 99% 

 

Process 

fault 

MDR 

FAR 

DTD 

J 

0.60 

54.29 

4.80 

59.69 

3.31 

0.00 

55.00 

58.31 

 1.02 

13.10 

3.00 

17.12 

1.92 

0.95 

3.90 

6.77 

 0.60 

20.71 

0.00 

21.31 

2.04 

1.19 

0.00 

3.23 

 

Random 

and single 

MDR 

FAR 

DTD 

J 

30.80 

1.30 

0.00 

32.10 

44.40 

0.20 

0.00 

44.60 

 1.00 

18.00 

1.00 

20.00 

1.60 

1.80 

1.00 

4.40 

 1.00 

9.10 

1.00 

11.10 

1.80 

0.80 

1.00 

3.60 

 

Abrupt and 

single 

MDR 

FAR 

DTD 

J 

0.00 

1.00 

0.00 

1.00 

0.00 

0.20 

0.00 

0.20 

 0.00 

25.10 

0.00 

25.10 

0.00 

4.10 

0.00 

4.10 

 0.00 

11.40 

0.00 

11.40 

0.00 

1.20 

0.00 

1.20 

 

Drift and 

single 1 

MDR 

FAR 

DTD 

J 

4.80 

3.30 

22.00 

30.10 

8.80 

0.10 

42.00 

50.90 

 2.40 

7.30 

0.50 

10.20 

7.00 

0.40 

8.30 

15.70 

 2.80 

2.60 

5.00 

10.40 

5.80 

0.10 

8.70 

14.60 

 

Drift and 

single 2 

MDR 

FAR 

DTD 

J 

10.00 

0.50 

0.00 

10.50 

27.00 

0.10 

118.9 

146.00 

 1.20 

10.40 

1.30 

12.90 

1.80 

0.90 

1.74 

4.44 

 1.20 

3.30 

1.30 

5.80 

1.80 

0.30 

1.95 

4.05 

 

Abrupt and 

multiple 

MDR 

FAR 

DTD 

J 

0.00 

0.30 

0.00 

0.30 

0.00 

0.20 

0.00 

0.20 

 0.00 

34.70 

0.00 

34.70 

0.00 

7.60 

0.00 

7.60 

 0.00 

15.60 

0.00 

15.60 

0.00 

2.20 

0.00 

2.20 

 

Drift and 

multiple 

MDR 

FAR 

DTD 

J 

20.60 

1.30 

90.00 

111.90 

47.00 

0.10 

206.60 

253.70 

 8.00 

11.90 

32.00 

51.90 

10.80 

1.60 

38.80 

51.20 

 10.00 

4.70 

38.50 

53.20 

12.20 

0.50 

55.00 

67.70 

 

Intermittent 

and single 

MDR 

FAR 

DTD 

J 

0.00 

1.37 

0.00 

1.37 

0.00 

0.96 

0.00 

0.96 

 0.00 

19.20 

0.00 

19.20 

0.00 

3.21 

0.00 

3.21 

 0.00 

7.95 

0.00 

7.95 

0.00 

0.96 

0.00 

0.96 

J average  30.87 69.35  23.89 12.17  17.09 12.19 

 

 

 

 

 



APPENDIX 

 
 

Table 8. The MDR, FAR, DTD and J contributed by T², Q and φ of the model that 

matches: Distance=4.7867, number of samples=108. 

Faults Performances T²  Q  φ 

95% 99%  95% 99%  95% 99% 

 

Process 

fault 

MDR 

FAR 

DTD 

J 

2.10 

33.81 

13.50 

49.41 

3.61 

0.00 

56.00 

59.61 

 0.00 

41.43 

0.00 

41.43 

0.18 

23.57 

16.80 

40.55 

 0.00 

54.05 

0.00 

54.05 

 

0.72 

10.24 

0.70 

11.66 

 

Random 

and single 

MDR 

FAR 

DTD 

J 

33.80 

0.50 

0.00 

34.30 

43.00 

0.20 

0.00 

43.20 

 0.80 

27.00 

1.00 

28.80 

1.00 

12.10 

1.00 

14.10 

 0.80 

17.80 

1.00 

19.60 

1.80 

1.80 

1.00 

4.60 

 

Abrupt and 

single 

MDR 

FAR 

DTD 

J 

0.00 

0.40 

0.00 

0.40 

1.20 

0.20 

0.00 

1.40 

 0.00 

51.70 

0.00 

51.70 

0.00 

39.80 

0.00 

39.80 

 0.00 

40.70 

0.00 

40.70 

0.00 

14.40 

0.00 

14.40 

 

Drift and 

single 1 

MDR 

FAR 

DTD 

J 

5.60 

6.20 

23.00 

34.80 

9.20 

0.10 

42.00 

51.30 

 1.20 

11.70 

4.40 

17.30 

3.20 

3.60 

4.90 

11.70 

 1.80 

9.00 

0.75 

11.55 

4.40 

0.70 

8.80 

13.90 

 

Drift and 

single 2 

MDR 

FAR 

DTD 

J 

9.40 

0.10 

7.80 

17.30 

21.00 

0.10 

103.00 

124.10 

 0.60 

18.80 

0.40 

19.80 

1.00 

7.80 

0.40 

9.20 

 1.00 

9.70 

0.50 

11.20 

1.60 

0.70 

1.80 

4.10 

 

Abrupt and 

multiple 

MDR 

FAR 

DTD 

J 

0.00 

0.20 

0.00 

0.20 

0.00 

0.20 

0.00 

0.20 

 0.00 

45.30 

0.00 

45.30 

0.00 

27.00 

0.00 

27.00 

 0.00 

27.80 

0.00 

27.80 

0.00 

4.10 

0.00 

4.10 

 

Drift and 

multiple 

MDR 

FAR 

DTD 

J 

21.00 

0.60 

91.50 

113.10 

42.40 

0.10 

203.00 

245.50 

 6.40 

33.60 

20.00 

60.00 

8.40 

19.80 

21.00 

49.20 

 8.40 

20.50 

32.50 

61.40 

11.00 

2.70 

55.00 

68.70 

 

Intermittent 

and single 

MDR 

FAR 

DTD 

J 

0.00 

0.96 

0.00 

0.96 

0.00 

0.96 

0.00 

0.96 

 0.00 

34.40 

0.00 

34.40 

0.00 

18.63 

0.00 

18.63 

 0.00 

20.00 

0.00 

20.00 

0.00 

3.69 

0.00 

3.69 

J average  31.30 65.78  37.34 26.27  30.78 15.64 

 

 

 


