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Abstract 

    The state feedback multivariable control design based on eigenvalues assignment is 

reviewed and is employed to develop a systematic design procedure to meet the lateral 

handling qualities design objectives of a fighter aircraft over a single flight condition.  

    The objective in this project is to investigate state feedback multivariable control 

design based on similarity transformations in terms of feedback gain, robustness and 

effect of similarity transformations. The desirable design can be made using two main 

transformations block controller form and general controller form. The block controller, 

observer and diagonal forms are used among an infinite number of choices of assigning 

a set of solvents. In addition to those forms, the general controller form is used directly 

to find the resulting state feedbacks.  

    The similarity transformation provides significant insight into the design process and 

plays a pivotal role in the design of state feedback gain magnitude according to the 

specified criteria of robustness, sensitivity and time specifications of the feedback 

system. 

    Through this project we would like to give the designer many possibilities to select the 

most suitable design depending on the specified need for the flight condition of a fighter 

aircraft.   
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Chapter 1  Multivariable control systems 

1.1 Introduction 

This chapter is about reviewing the main concepts of multivariable control systems and 

the necessary mathematical fundamentals for the control design and analysis.  

1.2 Basic concepts 

A system is called a SISO system if it has only one input and output terminals. Starting 

from that concept systems with more than one input and/or more than one output are 

known as MIMO systems. 

𝒙(𝒕) = [

𝑥1(𝑡)
𝑥2(𝑡)

⋮
𝑥𝑛(𝑡)

]                                         System                                      𝒚(𝒕) = [

𝑦1(𝑡)
𝑦2(𝑡)

⋮
𝑦𝑞(𝑡)

] 

 

Figure 1-1 MIMO system representation 

 

Here are a few examples of multivariable processes: 

• A heated liquid tank where both the level and the temperature shall be controlled. 

• A distillation column where the top and bottom concentration shall be controlled. 

• A robot manipulator where the positions of the manipulators (arms) shall be controlled. 

• A chemical reactor where the concentration and the temperature shall be controlled. 
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• A head box (in a paper factory) where the bottom pressure and the paper mass level in 

the head box shall be controlled. 

Any linear multivariable control system can be described in one of the two forms:  

✓ Internal description: State space description. 

✓ External description: Transfer function description. 

In this project, the system under study will be described using state-space description. 

1.3 State-space description 

A linear MIMO system can be described using a state space description (SSD). This form 

is very useful to describe the internal dynamics of a multivariable system through the 

concept of state. 

The state space description of the system provides a complete picture of the system 

structure showing how all of the internal variables Xi (t) (i = 1,2,..., n) interact with one 

another, how the inputs Uk (t) (k = 1,2,..., m) affect the system states  Xi (t ), and how the 

outputs Y j (t) ( j = 1,2,..., p) are obtained from various combinations of the state-variables 

Xi (t) and the inputs Uk (t). 

 
{
𝑥̇(𝑡) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡)

𝑦(𝑡) = 𝐶𝑥(𝑡) + 𝐷𝑢(𝑡)
 (1.1) 

 

A linear state model is formed by a set of first order linear differential equations with 

constant coefficient (𝑥̇(𝑡)) and a set of linear equations (𝑦(𝑡)). 

The state at the initial time 𝑡0 = 0 𝑖𝑠  𝑥0 = 𝑥(𝑡0) 
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                         ⋮ 

 

Figure 1-2 System inputs and outputs 

 

 

 

 

 

 

 

 

where 

𝑥(𝑡) = [𝑥1(𝑡),   .  .  .  , 𝑥𝑛(𝑡)]𝑇 is the state vector and 𝑥𝑖(𝑡), 𝑖 = 1,2, . . . , 𝑛 are the state 

variables. 

𝑢(𝑡) = [𝑢1(𝑡),   .  .  .  , 𝑢𝑚(𝑡)]𝑇 it the input vector. m refers to the number of inputs. 

𝑦(𝑡) = [𝑦1(𝑡),   .  .  .  , 𝑦𝑝(𝑡)]𝑇 is the output vector. p refers to the number of outputs. 

and the system matrices (A, B, C, D) are real, constant, and with dimensions n×n, n×m, 

p×n, and p×m, respectively. 

In the above model, from Eq. (1.1) 𝑥̇(𝑡) is called the “dynamic equation,” which 

describes the “dynamic part” of the system and how the initial system state x(0) and 

system input u(t) will determine the system state x(t). Hence matrix A is called the 

“dynamic matrix” of the system, and from (1.1), y(t) describes how the system state x(t) 

Figure 1-3 Block diagram representation of the linear state space equations. 

System described by state 

space variables 

{𝑥1, 𝑥2, ⋯ ⋯ ⋯ 𝑥𝑛} 

𝑢1(𝑡) 

𝑢𝑚(𝑡) 

𝑢1(𝑡) 

𝑢𝑝(𝑡) 

Input vector 𝑢 output vector 𝑦 
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and system input u(t) will instantly determine system output y(t). This is the “output part” 

of the system and is static (memoryless) as compared with the dynamic part of the system. 

From the definition of eq (1.1), parameters m and p represent the number of system 

inputs and outputs, respectively. If 𝑚 > 1, then we call the corresponding system “multi-

input.” If 𝑝 > 1, then we call the corresponding system “multi-output.” A multi-input or 

multi-output system is also called a “MIMO system.” On the other hand, a system is 

called “SISO” if it is both single-input and single-output. [1] 

Definition 1.1 [2] 

The state of a system at time t0 is the amount of information at t0 that, together with 

 [t0 , ∞]determines uniquely the behavior of the system for all t ≥ t0. 

1.4 Reachability and Controllability  

Definition 1.2 [3] 

Reachability is the ability of the control input to drive the state x(t) from any initial 

condition x(to) to any final value x(tf). 

Theorem 1.1 

The system described in (1.1) is said to be fully reachable if and only if:  

rank (𝑹(𝐴, 𝐵)) = n. 

where R (A, B) is the reachability matrix and it is given by: 

 𝑹(𝐴, 𝐵) = [𝐵   𝐴𝐵    𝐴2𝐵      𝐴𝑛−1𝐵  ]     (1.2) 

Proof: [3] 

Definition 1.3 [4] 

The dynamic system described by (1.1) or the pair (A,B) is said to be controllable , if 

there exists an input 𝑢[0,𝑡] which transfers the initial state 𝑥(0) = 𝑥0 to the zero state 

𝑥(𝑡1) = 0 in a finite time 𝑡1, the state 𝑥0 is said to be controllable. 
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 If all initial states are controllable the system is said to be completely controllable. 

The solution of (1.1) is:  

 

𝑥(𝑡) = 𝑒𝐴𝑡𝑥0 + ∫𝑒𝐴(𝑡−𝜏)𝐵𝑢(𝜏)𝑑𝜏

𝑡

0

  (1.3) 

If the system is controllable, i.e., there exists an input to make 𝑥(𝑡1)  =  𝑥1 =  0 at a 

finite time 𝑡 =  𝑡1, then after pre-multiplying by 𝑒−𝐴𝑡1 yields: 

 

𝑥0 = ∫ 𝑒−𝐴𝜏𝐵𝑢(𝜏)𝑑𝜏

𝑡1

0

  (1.4) 

Thus, any controllable state satisfies (1.3), and for a completely controllable system, 

every state 𝑥0 ∈ 𝑅𝑛 satisfies 𝑡1 > 0 and 𝑢[0,𝑡]. 

It is found that complete controllability of a system depends on matrix A and B and is 

independent of the output matrix C. 

Theorem 1.2 [2] 

The n dimensional linear time invariant state equation in (1.1) is controllable if and only 

if any of the following equivalent conditions is satisfied: 

a. All rows of 𝑒−𝐴𝜏𝐵 are linearly independent on [0,∞] over the field of complex 

numbers. 

b. 𝑤(0, 𝑡1) = ∫ 𝑒−𝐴𝑡𝜏𝐵𝐵𝑇𝑒−𝐴𝑇𝑡𝑑𝑡
𝑡1

0
  is nonsingular for any 𝑡1 > 0. 

c. The 𝑛 × 𝑚𝑛 controllability matrix 𝛷 = [ 𝐵 𝐴𝐵 𝐴2𝐵 , . . . . , 𝐴𝑛−1𝐵] has rank n. 

Proof: [2] 

Remarks  

- Since the state value x(t) depends on the eigenvalues (modes) of the system, we 

can rephrase reachability also as the ability of the control input u(t) to drive the 

eigenvalues from any location to any other location. 
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- The system is completely (totally, fully) reachable i.e. rank (𝑹(𝐴, 𝐵)) = n, 

meaning that all the eigenvalues of the system can be relocated by state feedback 

using the input. 

- If rank (𝑹(𝐴, 𝐵)) > n the system is said to be partially reachable and so only 

some eigenvalues can be relocated. 

- Reachability implies controllability but the inverse is not correct.  

 

1.5 Observability  

Definition 1.4 [4]  

The dynamical system described by the equations (1.1) or the pair (A,B)  is said to be 

observable if, for any t1 > 0, the initial state x (0) = x0 can be determined from the time 

history of the input u(t) and the output y(t) in the interval of [0; t1]. Otherwise, the system 

is said to be unobservable. 

The output of the system (1.1) is given by: 

 

𝑦(𝑡) = 𝐶𝑒𝐴𝑡𝑥0 + ∫𝐶𝑒𝐴(𝑡−𝜏)𝐵𝑢(𝜏)𝑑𝜏

𝑡

0

+ 𝐷𝑢(𝜏)  (1.5) 

Theorem 1.3: [2] 

The n dimensional linear time invariant dynamical equation in (1.1) is observable if and 

only if any of the following equivalent conditions are satisfied: 

a. All columns of 𝐶𝑒𝐴𝑡 are linearly independent on [0,∞] over the field of complex 

numbers. 

b. 𝑤(0, 𝑡1) = ∫ 𝑒𝐴𝑇𝑡𝐶𝑇𝐶𝑒𝐴𝑡𝑑𝑡
𝑡1

0
 is nonsingular for any 𝑡1 > 0. 

c. The 𝑛𝑝 × 𝑝 observability matrix 𝛷𝑜 = [ 𝐶 𝐶𝐴 𝐶𝐴2 , . . . . , 𝐶𝐴𝑛−1]𝑇 has rank n. 

Proof: [2] 
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1.6 MIMO Canonical Forms 

  A reachable (observable) system can be transformed to canonical representations 

pointing out this property. These representations will be useful in illustrating some 

control properties, as will be seen later in control design on chapter 5. 

For MIMO systems there is possibility of defining some canonical forms. The most well-

known are the following: [3] 

1.6.1 Block Controller Form 

Definition 1.5: The system is block controllable of index 𝑙  if the matrix 

 𝑤𝑐  = [ 𝐵 𝐴𝐵 𝐴2𝐵 , . . . . , 𝐴𝑙−1𝐵] has full rank. 

where l is the ratio of  
𝑛

𝑚
, n is the number of columns of the matrix A and m is the number 

of columns of the matrix B. 

The system (1.1) can be transformed into block controller form if the following 

conditions are satisfied: 

a. The number 
𝑛

𝑚
= 𝑙 is an integer. 

b. The system is controllable of index 𝑙. 
 

Let 𝑤𝑐  = [ 𝐵 𝐴𝐵 𝐴2𝐵 , . . . . , 𝐴𝑙−1𝐵]; the system is controllable if rank (𝑤𝑐) = 𝑛. 

Then we make a change of coordinates 

 𝑥𝑐 = 𝑇𝑐𝑥 (1.6) 

where  
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𝑇𝑐 =

[
 
 
 
 
 
 

𝑇𝑐1

𝑇𝑐1𝐴
.
.
.

𝑇𝑐1𝐴
𝑙−2

𝑇𝑐1𝐴
𝑙−1]

 
 
 
 
 
 

  (1.7) 

 

and  

 𝑇𝑐1 = [ 0𝑚 0𝑚 . . . . 𝐼𝑚][ 𝐵 𝐴𝐵  . . . . 𝐴𝑙−1𝐵]−1  (1.8) 

 

Then, (1.1) becomes  

 
{
𝑥̇𝑐(𝑡) = 𝐴𝑐𝑥𝑐(𝑡) + 𝐵𝑐𝑢(𝑡)

𝑦(𝑡) =  𝐶𝑐𝑥𝑐(𝑡) + 𝐷𝑢(𝑡)
 (1.9) 

 

where                                𝐴𝑐 = 𝑇𝑐𝐴𝑇𝑐
−1, 𝐵𝑐 = 𝑇𝑐𝐵 and 𝐶𝑐 = 𝐶𝑇𝑐

−1
 

or  

𝐴𝑐 = 

[
 
 
 
 
 

0𝑚     0𝑚                    .   .   .   0𝑚

0𝑚     𝐼𝑚                     .   .   .   0𝑚

.          .                        .   .   .     .  
   .          .                        .   .   .     .     
0𝑚     0𝑚                     .   .   .    𝐼𝑚 

−𝐴𝑙   − 𝐴𝑙−1                  .   .   .    − 𝐴1]
 
 
 
 
 

, 𝐵𝑐 =

[
 
 
 
 
 
0𝑚 
0𝑚 
.
.
.

 𝐼𝑚 ]
 
 
 
 
 

 and 𝐶𝑐 = [ 𝐶𝑙  𝐶𝑙−1 . . . . 𝐶1]. 

0𝑚  the null and  𝐼𝑚 the identity matrices are both 𝑚 × 𝑚, 𝐴𝑖 and 𝐶𝑖(𝑖 = 1,2, … , 𝑙) are 

block elements. 

1.6.2 Block Observer Form 

Definition 1.6: The system is block observable of index 𝑞 if the matrix  

𝑤𝑜 = [ 𝐶 𝐶𝐴 𝐶𝐴2 , . . . . , 𝐶𝐴𝑞−1]𝑇 has full rank. 
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where q is the ratio of  
𝑛

𝑝
, n is the number of columns of the matrix A and p is the number 

rows of the matrix C. 

The system (1.1) can be transformed into block observer form if the following conditions 

are satisfied: 

a. The number 
𝑛

𝑝
= 𝑞 is an integer. 

b. The system is observable of index q. 

Let 𝑤𝑜 =

[
 
 
 
 
 

𝐶
𝐶𝐴
.
.
.

𝐶𝐴𝑞−1]
 
 
 
 
 

; the system is observable if rank (𝑤𝑜) = 𝑛. 

Then we make a change of coordinates  

 𝑥𝑜 = 𝑇𝑜
−1𝑥 (1.10) 

 

where  

  𝑇𝑜 = [ 𝑇𝑜1  𝐴𝑇𝑜1  . . . . 𝐴
𝑞−2𝑇𝑜1   𝐴

𝑞−1𝑇𝑜1] (1.11) 

 

and  

 

𝑇𝑜1 = 

[
 
 
 
 
 

𝐶
𝐶𝐴
.
.
.

𝐶𝐴𝑞−1]
 
 
 
 
 
−1

[
 
 
 
 
 
𝑂𝑝

𝑂𝑝

.

.

.
𝐼𝑝 ]

 
 
 
 
 

  (1.12) 

 

Then (1.1) becomes  

 
{
𝑥̇𝑜(𝑡) = 𝐴𝑜𝑥𝑜(𝑡) + 𝐵𝑜𝑢(𝑡)

𝑦(𝑡) =  𝐶𝑜𝑥𝑜(𝑡) + 𝐷𝑢(𝑡)
 (1.13) 
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where                               𝐴𝑜 = 𝑇𝑜
−1𝐴𝑇𝑜, 𝐵𝑜 = 𝑇𝑜

−1𝐵 and 𝐶𝑜 = 𝐶𝑇𝑜 

or 

𝐴𝑜 = 

[
 
 
 
 
 
0𝑝      0𝑝        .    .    .       0𝑝            − 𝐴𝑞

0𝑝       𝐼𝑝       .    .    .        0𝑝       − 𝐴𝑞−1

.          .                     .     .       .               .     
 .          .                     .     .     .                .     
0𝑝      0𝑝     .     .        .       0𝑝            − 𝐴2 

0𝑝      0𝑝         .    .      .      𝐼𝑝           − 𝐴1 ]
 
 
 
 
 

, 𝐵𝑜 =

[
 
 
 
 
 
𝐵1 
𝐵2 
.
.
.

 𝐵𝑞]
 
 
 
 
 

 and 𝐶𝑜 = [ 0𝑝 0𝑝 . . . . 𝐼𝑝]. 

1.6.3 General Controller form 

To convert a MIMO system into general controller form, we must find another similarity 

transformation using the reachability matrix 𝑅(𝐴, 𝐵) = (𝐵 𝐴𝐵 . . .  𝐴𝑛−𝑚), where m is the 

rank of B. If 𝑅(𝐴, 𝐵) is full rank, the system is said to be fully reachable.  

Now 𝐵 = [𝑏1 𝑏2 . . . 𝑏𝑚] then 

 𝑅(𝐴, 𝐵) = (𝑏1 𝑏2 . . . 𝑏𝑚, 𝐴𝑏1 𝐴𝑏2 . . . 𝐴𝑏𝑚, . . . , 𝐴𝑛−𝑚 𝑏1 𝐴
𝑛−𝑚𝑏2 . . . 𝐴

𝑛−𝑚𝑏𝑚) (1.14) 

In the reachability matrix 𝑅(𝐴, 𝐵) we look for linearly independent vectors 

corresponding to 𝑏𝑖, we then record the number of these linearly independent vectors and 

are referred to as reachability indices 𝐾𝑖 or Kronecker indices. 

𝐾𝑖 is the number of linearly independent vectors corresponding to 𝑏𝑖. 𝑖 =  1, 2, . . . , 𝑚. 

If the sum of the reachability indices equals to the n, the reachability base matrix 𝑃(𝐴, 𝐵) 

can be constructed.  where  

 𝑃(𝐴, 𝐵)

= [𝑏1, 𝐴𝑏1, 𝐴
2𝑏1, . . . . , 𝐴

𝑘1−1𝑏1, 𝑏2, 𝐴𝑏2, 𝐴
2𝑏2, . . . . , 𝐴

𝑘2−1𝑏2, …… . , 𝑏𝑚, 𝐴𝑏𝑚, 𝐴2𝑏𝑚, . . . . , 𝐴𝑘𝑚−1𝑏𝑚] 
(1.15) 

now a similarity transformation 𝑇𝑐 can be constructed, such that  

 𝑥𝑐 = 𝑇𝑐𝑥  (1.16) 

 𝑇𝑐 = [𝑝1, 𝑝1𝐴, 𝑝1𝐴
2, . . . . , 𝑝1𝐴

𝑘1−1, 𝑏2, 𝐴𝑝2, 𝑝2𝐴
2, . . . . , 𝑝2𝐴

𝑘2−1, . , 𝑝, 𝑝𝑚𝐴, 𝑝𝑚 𝐴2, . . . . , 𝑝𝑚𝐴𝑘𝑚−1]𝑇 (1.17) 
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where 𝑝𝑖 = 𝜎𝑖
𝑡ℎ row of 𝑃(𝐴, 𝐵)−1, 𝑖 =  1, 2, . . . , 𝑚 and 𝜎𝑖 = ∑ 𝐾𝑗  

𝑖
𝑗=1  

Then (1.1) becomes (1.9) 

where                                𝐴𝑐 = 𝑇𝑐𝐴𝑇𝑐
−1, 𝐵𝑐 = 𝑇𝑐𝐵 and 𝐶𝑐 = 𝐶𝑇𝑐

−1
 

Except matrices are in the forms: 

𝐴𝑐 = 𝑇𝑐𝐴𝑇𝑐
−1 =

[
 
 
 
 
 
 
 
 
0 1 … 0
⋮
0

⋮
0

⋱
…

⋮
1

𝑥 𝑥 … 𝑥

…
(0)

𝑥 𝑥 𝑥 𝑥
(0)

𝑥 𝑥 𝑥 𝑥

⋮
⋮

⋱
⋮
⋮

(0)
𝑥 𝑥 𝑥 𝑥

…
(0)

𝑥 𝑥 𝑥 𝑥

0 1 … 0
⋮
0

⋮
0

⋱
…

⋮
1

𝑥 𝑥 … 𝑥]
 
 
 
 
 
 
 
 

𝐵𝑐 =

[
 
 
 
 
 
 
 
 
 
0 0 … 0
⋮ ⋮ ⋮
1 𝑥 … 𝑥
0 0 … 0
⋮ ⋮ ⋮
0 1 … 𝑥
⋮ ⋮ ⋮ ⋮
0 0 … 0
⋮
0

⋮
0 …

⋮
1]
 
 
 
 
 
 
 
 
 

  

 

 

𝐴𝑐 has m blocks in controller form on the diagonal of dimensions 𝐾𝑖 × 𝐾𝑖  each.  

𝐶𝑐 is in trivial form. 

Remark: as long as m is greater than 1, there would be m! possible permutations of the 

columns of the matrix B, and thus there would be a reachability base matrix for each 

permutation and consequently a state feedback gain.  So, for m inputs there would be m! 

state feedback gains. 

𝐾1 𝐾𝑚−1 𝐾𝑚 

𝐾1 

𝐾𝑚 
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Chapter 2  Elements of Matrix Polynomial Theory  

2.1 Introduction 

In linear time-invariant single-input single-output systems, the transfer function is a ratio 

of two scalar polynomials. The system modelling of physical, linear, time-invariant 

multi-input multi-output control systems, results in high degree coupled differential 

equations, or an n-th degree m-th order differential equation in the form: [7] 

 𝑈(𝑡) = 𝑋(𝑛)(𝑡) + 𝐴1𝑋
(𝑛−1)(𝑡)  + … + 𝐴𝑛−1𝑋

(𝑛)(𝑡) + 𝐴𝑛𝑋(𝑡) (2.1) 

 

where Ai ∈ Rm×m, X (i) ∈ Rm×1
 represents the i-th derivate of the vector X (t) , and 

U (t) ∈ Rm×1
 being the input vector. 

The output y(t) ∈ Rp×1
 is generally given by a linear equation in the form: 

 𝑌(𝑡) = 𝐶1𝑋
(𝑛−1)(𝑡) + 𝐶2𝑋

(𝑛−2)(𝑡) + … +  𝐶𝑛−1𝑋
(1)(𝑡) + 𝐶𝑛𝑋(𝑡)  (2.2) 

where Ci  ∈ Rp×m . 

The Laplace transformation of (2.1) and (2.1) with zero initial conditions results in: 

 𝑆𝑛𝑋(𝑠) + 𝐴1𝑆
𝑛−1𝑋(𝑠) + … + 𝐴𝑛𝑋(𝑠) = 𝑈(𝑠) (2.3) 

and 

 𝑌(𝑠) = 𝐶1𝑆
𝑛−1𝑋(𝑠) + 𝐶2𝑆

𝑛−2𝑋(𝑠) + … + 𝐶𝑛𝑋(𝑠) (2.4) 

 

 which yields, 

 𝑌(𝑠) = [𝐶1𝑆
𝑛−1 + 𝐶2𝑆

𝑛−2 + …+ 𝐶𝑛][𝐼𝑚𝑆𝑛+𝐴1𝑆
𝑛−1 + …+ 𝐴𝑛]−1𝑈(𝑠) (2.5) 

   

where Im stands for the m × m identity matrix. 
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Equation (2.5) can be written as: 

 𝑌(𝑠) = 𝑁𝑅(𝑠)𝐷𝑅
−1(𝑠)𝑈(𝑠) (2.6) 

which yields the p × m transfer function matrix, 

 𝐻(𝑠) =  𝑁𝑅(𝑆)𝐷𝑅
−1(𝑆) (2.7) 

where DR (s) and NR (s) are m × m and p × m matrix polynomials also called λ-matrices, 

(the complex variable λ is often used instead of s for continuous time systems and z for 

discrete time systems), defined by: 

 𝐷𝑅(𝑆) = 𝐼𝑚𝑆𝑛+𝐴1𝑆
𝑛−1 + …+ 𝐴𝑛 (2.8) 

 𝑁𝑅(𝑆) = 𝐶1𝑆
𝑛−1 + 𝐶2𝑆

𝑛−2 + …+ 𝐶𝑛 (2.9) 

The equation (2.7) is the right matrix fraction description (RMFD), or the polynomial 

matrix description of MIMO system shown in (2.1 & 2.2). The matrix polynomial DR (s) 

in (2.7) is a right denominator matrix. 

An alternative presentation of H (s) is the left matrix fraction description (LMFD) defined 

by: 

 𝐻(𝑠) =  𝐷𝐿
−1(𝑆)𝑁𝐿(𝑆) (2.10) 

where DL(s) is a p × p left denominator matrix polynomial and NL(s) is p × m left 

numerator matrix polynomial. 

In this section, we attempt to emphasize on the latent structure of the matrix polynomials, 

which consists mainly of the latent roots and latent vectors as well as solvents. 

Definition 2.1  

The following m×m matrix: 

 

𝐴(𝜆) =  

[
 
 
 
 
 

𝑎11(𝜆)    𝑎12(𝜆) …  𝑎1𝑚(𝜆)

 𝑎21(𝜆)    𝑎22(𝜆) …  𝑎2𝑚(𝜆)
.                 .        …        .  
.                 .         …       .

  .                 .         …        .  
𝑎𝑚1(𝜆)    𝑎𝑚2(𝜆) …  𝑎𝑚𝑚(𝜆)]

 
 
 
 
 

 (2.11) 
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is called a λ-matrix of order m, where 𝑎𝑖𝑗(𝜆) are scalar polynomials over the field of 

complex numbers [8]. 

Definition 2.2 The matrix polynomial A(λ) is called: 

i. Monic if A0 is the identity matrix. 

ii. Comonic if An is the identity matrix. 

iii. Regular if det(A(λ)) ≠ 0. 

iv. Nonsingular if det(A(λ)) is not identically zero. 

v. Unimodular if det(A(λ)) is a nonzero constant. 

2.2 Latent Structure of Matrix Polynomials 

Definition 2.3 [9] 

- The complex number λ0 is called a latent root of the  A(λ) if it is a solution of the 

scalar polynomial equation det(A(λ)) = 0. 

- The vector Xi ∈ Rm is called a right latent vector associated with λi if it satisfies 

A(λi)Xi= 𝜃. 

- The row vector Yi ∈ Rm is called a left latent vector associated with λi if it satisfies 

Yi A(λi) = 𝜃. 

2.3 Construction of solvents  

2.3.1 Construction of Right Solvents 

Suppose that the set {𝜆1, 𝜆2, … , 𝜆𝑚} of  𝑚  latent  roots  of  𝐴(S)  has  a  linear  

independent  set  of corresponding right latent vectors{𝑋1, 𝑋2, … , 𝑋𝑚}. Let 𝑀 = 
(𝑋1 𝑋2 … 𝑋𝑚) be the 𝑚 × 𝑚 matrix whose columns are the linearly independent 

right latent vectors and 𝑀−1 = [𝑌1   𝑌2   …    𝑌𝑚]𝑇  be its inverse. The 𝑚 × 𝑚 matrix 

𝑅 = 𝑀𝛬𝑀−1, where 𝛬 =diag (𝜆1, 𝜆2, … , 𝜆𝑚), is a right solvent of 𝐴(𝑠). [10] 

2.3.2 Construction of left solvents  

In a similar manner, we will establish that a left solvent 𝐿 ∈ Rm×m  can be 

constructed from a set {𝜆1, 𝜆2, … , 𝜆𝑚} of 𝑚 latent roots and a corresponding set of 

𝑚 linearly independent left latent (row) vectors {𝑌1, 𝑌2, … , 𝑌𝑚}. The 𝑚 × 𝑚 matrix 𝐿 

= 𝑃−1𝛬𝑃, where 𝑃 = [𝑌1 𝑌2 … 𝑌𝑚]𝑇 , Λ= diag(𝜆1, 𝜆2, … , 𝜆𝑚)  
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and 𝑃−1  = (𝑋1 𝑋2 …  𝑋𝑚) is a left solvent of 𝐴(𝑠). [10] 

2.4 Solvents of Matrix Polynomials  

Definition 2.4  

Let X be m×m complex matrix, the two matrix polynomials, defined by: 

 𝐴𝑅(𝑋) = 𝐴0𝑋
𝑙 + 𝐴1𝑋

𝑙−1 + …+ 𝐴𝑙−1𝑋 + 𝐴𝑙 (2.12) 

and 

 𝐴𝐿(𝑋) = 𝑋𝑙𝐴0 + 𝑋𝑙−1𝐴1 + …+  𝑋𝐴𝑙−1 + 𝐴𝑙 (2.13) 

are referred to as the right and the left matrix polynomials associated with the λ-matrix 

A(λ) respectively. 

Definition 2.5  

A right solvent R of A(λ) is defined by  

 𝐴(𝑅) = 𝐴0𝑅
𝑙 + 𝐴1𝑅

𝑙−1 + …+ 𝐴𝑙−1𝑅 + 𝐴𝑙 = 0𝑚 (2.14) 

and the left Solvent L of A(λ) is defined by  

 𝐴(𝐿) = 𝐿𝑙𝐴0 + 𝐿𝑙−1𝐴1 + …+  𝐿𝐴𝑙−1 + 𝐴𝑙 = 0𝑚 (2.15) 

where 0m is an m×m null matrix, and R, L are m × m complex matrices. 

2.5 Block Companion Form 

In analogy with scalar polynomials a useful tool for the analysis of matrix polynomials 

is the block companion form matrix. [3] 

Given a λ – matrix 

 𝐴(𝜆) = 𝐼𝜆𝑙 + 𝐴1𝜆
𝑙−1 + …+ 𝐴𝑙  (2.16) 
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where Ai ∈ Cm×m and λ ∈ C, the associated lower block companion form is: 

 

𝐴𝐿 =

[
 
 
 
 
0𝑚 𝐼𝑚 0𝑚 … 0𝑚

0𝑚 0𝑚 𝐼𝑚 … 0𝑚

. . . ⋱ .
0𝑚 0𝑚 0𝑚 … 𝐼𝑚
−𝐴𝑙 −𝐴𝑙−1 −𝐴𝑙−2 … −𝐴1]

 
 
 
 

 (2.17) 

and the associated right block companion form is: 

 

𝐴𝑅 =

[
 
 
 
 
 
0𝑚 0𝑚 … 0𝑚 −𝐴𝑙

𝐼𝑚 0𝑚 … 0𝑚 −𝐴𝑙−1

0𝑚 𝐼𝑚 … 0𝑚 −𝐴𝑙−2

. . … . .
0𝑚 0𝑚 … 0𝑚 −𝐴2

0𝑚 0𝑚 … 𝐼𝑚 −𝐴1 ]
 
 
 
 
 

 (2.18) 

Remarks 

- AL is the block transpose of AR. 

- If λi is a latent root of A(λ) and pi and qi are the corresponding right and left latent 

vectors respectively, then λi is an eigenvalue of AL and of AR defined in (2.17) and 

(2.18) respectively. 

2.6 Block Vandermonde Matrix 

The block Vandermonde matrix has a fundamental importance in the theory of matrix 

polynomials. 

Given a set of m × m matrices {R1, R2 ,..., Rk }which are a complete set of right solvents 

of a matrix polynomial A(λ) , the following km × km matrix 

 

𝑉(𝑅1, 𝑅2, … , 𝑅𝑘) = [

𝐼𝑚 𝐼𝑚 … 𝐼𝑚
𝑅1 𝑅2 … 𝑅𝑘

⋮ ⋮ ⋮ ⋮
𝑅1

𝑘−1 𝑅2
𝑘−1 … 𝑅𝑘

𝑘−1

] (2.19) 

is called the right block Vandermonde matrix of order k, and the block transpose of left 

block Vander monde matrix of order k is a km× km matrix defined by 
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𝑉(𝐿1, 𝐿2, … , 𝐿𝑘) =

[
 
 
 
𝐼𝑚 𝐿1 … 𝐿1

𝑘−1

𝐼𝑚 𝐿2 … 𝐿2
𝑘−1

⋮ ⋮ ⋮ ⋮
𝐼𝑚 𝐿𝑘 … 𝐿𝑘

𝑘−1]
 
 
 

 (2.20) 

where {L1, L2,., Lk } represents a set of m × m left solvents of a matrix polynomial A(λ). 

Remark:  Vander monde matrices are non-singular [11]  

2.7 Complete Set of Solvents 

Definition 2.6 [10] 

Given A(λ), the set of m × m matrices {R1, R2 ,..., Rl}is called a complete set of solvents 

if the following conditions are met: 

i- σ (Ri ) ∩ σ (R j ) = Ø for i ≠ j  

ii- ⋃ σ (𝑅𝑖 )𝑙
𝑖=1 = σ (A(λ)) 

iii- det 𝑉(𝑅1, 𝑅2, … , 𝑅𝑘)  ≠ 0 

where σ (Ri) is the spectrum of Ri and σ (A(λ)) is the spectrum of A(λ). 

2.8 Matrix polynomial construction from a complete set of solvents 

[12] 

We want to construct the matrix polynomial defined by D(λ) from a set of solvents or a 

set of desired poles which will determine the behavior of the system that we want. 

Suppose we have a desired complete set of solvents. The problem is to find the desired 

polynomial matrix or the characteristic equation of the block controller form defined by: 

 𝐷(𝜆) = 𝐷0𝜆
𝑙 + 𝐷1𝜆

𝑙−1 + …+ 𝐷𝑙−1𝜆 + 𝐷𝑙 (2.21) 

we want to find the coefficients Di for i =1, …, l 
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2.8.1 Matrix polynomial Construction from a complete set of right solvents 

Consider a complete set of right solvents {R1, R2 ,..., Rl}for the matrix polynomial D(λ), If Ri 

is a right solvent of D(λ) so:  

𝑅𝑖
𝑙 + 𝐷1𝑅𝑖

𝑙−1 + …+ 𝐷𝑙−1𝑅 + 𝐷𝑙 = 0𝑚  
.

⇒ 𝐷1𝑅𝑖
𝑙−1 + …+ 𝐷𝑙−1𝑅 + 𝐷𝑙 = −𝑅𝑖

𝑙 

Replacing i from 1 to l we obtain the following:  

 [𝐷𝑑𝑙 , 𝐷𝑑(𝑙−1), … , 𝐷𝑑1] = −[𝑅1
𝑙 , 𝑅2

𝑙 , … , 𝑅𝑖
𝑙]𝑉𝑅

−1 (2.22) 

where VR is the right block Vander monde matrix. 

 

2.8.2 Matrix polynomial Construction from a complete set of left solvents 

Consider a complete set of left solvents {L1, L2 ,..., Ll}for the matrix polynomial D(λ), 

If Li is a left solvent of D(λ) so: 

𝐿𝑖
𝑙 + 𝐿𝑖

𝑙−1𝐷1 + …+  𝐿𝐷𝑙−1 + 𝐷𝑙 = 0𝑚  
.

⇒ 𝐿𝑖
𝑙−1𝐷1 + …+  𝐿𝐷𝑙−1 + 𝐷𝑙 = −𝐿𝑖

𝑙  

 

Replacing i from 1 to l we obtain the following:  

 

[

𝐷𝑑𝑙

𝐷𝑑(𝑙−1)

⋮
𝐷𝑑1

] = -𝑉𝐿
−1[

𝐿1
𝑙

𝐿2
𝑙

⋮
𝐿𝑖
𝑙

]  

where VL is the left block Vander monde matrix. 

(2.23) 
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Chapter 3  State Feedback Design and Criteria 

3.1 Introduction 

One of the most popular and well-known techniques used to assign the eigenvalues of 

the closed-loop system to desired locations is the state feedback. In the case of 

multivariable systems, the feedback gain matrix permitting the assignment of the desired 

set of poles is not unique. 

In this part of the thesis, the specifics of two multivariable control methodologies are 

detailed. The first is the general controller canonical form transformation design, the 

second is block controller canonical form transformation design. The second section 

deals with the design criteria used to evaluate the methodologies. 

3.2 State Feedback Design Methodologies  

Consider the n-dimensional linear time–invariant, multivariable dynamical system 

described by equation (1.1) 

A linear state-feedback control signal can be applied to the system as: 

 𝑢(𝑡) = −𝐾𝑥(𝑡) (3.1) 

where K is a p × n real constant matrix, called the feedback gain matrix, and equation 

(1.1) becomes: 

                                                           {
𝑥̇(𝑡) = (𝐴 − 𝐵𝐾)𝑥(𝑡)

𝑦(𝑡) = (𝐶 − 𝐷𝐾)𝑥(𝑡)
                                               (3.2) 
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In the following, we will illustrate that if the dynamical (1.1) is reachable, then the 

eigenvalues of (A - BK) can be arbitrarily assigned by a proper choice of K. This will be 

established by using two different methods. 

3.2.1 Method 1: General controller canonical form transformation 

Design procedure: 

After obtaining the matrix [𝐴𝑐 − 𝐵𝐶𝐾𝐶] in the desired form, we construct a desired 

matrix Ad which has its eigenvalues as the desired ones. The matrix Ad can have different 

blocks in companion form on the diagonal, which means that it will have in the rows 

[𝐾1, 𝑘1 + 𝑘2, . . . . , ∑ 𝐾𝑖]
𝑚
𝑖=1  elements resulting from the choice of the number of blocks 

and their sizes. Meaning that, we can choose different blocks in the desired matrix to 

assign the desired eigenvalues (from 1 to m blocks) each describing a part of the set of 

the desired eigenvalues. Then, we equate the two matrices Ad and [𝐴𝑐 − 𝐵𝐶𝐾𝐶] and 

computing 𝐾𝐶 by identification. 

1) Transform the given system (1.1) into general controller canonical form (see 

section 1.6.3 of chapter 1). 

2) Construct the desired matrix Ad with the desired number of blocks and the desired 

eigenvalues. 

3) Compute Kc by identification from 𝐴𝑑 = [𝐴𝑐 − 𝐵𝐶𝐾𝐶]. 

4) Compute K from Kc, such that K=KcTc. 

3.2.2 Method 2: Block controller canonical form transformation 

Design Procedure: 

1) Transform the given system (1.1) to block controller form (see section 1.6.1 

chapter 1). 

2) Apply the control signal 𝑢(𝑡) = −𝐾𝑐𝑥𝑐(𝑡)   

where 𝐾 = 𝐾𝑐𝑇𝑐 = [𝐾𝑐𝑙, 𝐾𝑐(𝑙−1), … , 𝐾𝑐1]𝑇𝑐 and 𝐾𝑐𝑖  ∈  𝑅𝑚×𝑚 for 𝑖 = 1, … , 𝑙  

The resulting closed loop system is shown below: 
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  𝑥𝑐̇ = (𝐴𝐶 − 𝐵𝐶𝐾𝐶)𝑥𝑐

𝑦𝑐 = 𝐶𝐶𝑥𝐶
 (3.2) 

where  

 

𝐴𝐶 − 𝐵𝐶𝐾𝐶 =  

[
 
 
 
 

0𝑚 𝐼𝑚 … 0𝑚

0𝑚 0𝑚 … 0𝑚

⋮ ⋮ ⋱ ⋮
0𝑚 0𝑚 … 𝐼𝑚

−(𝐴𝑙 + 𝐾𝑐𝑙) −(𝐴𝑙−1 + 𝐾𝑐(𝑙−1)) … −(𝐴1 + 𝐾𝑐1)]
 
 
 
 

 (3.3) 

The characteristic matrix polynomial of this closed loop system is then: 

 𝐷(𝜆) = 𝐼𝑚𝜆𝑙 + (𝐴1 + 𝐾𝑐1)𝜆
𝑙−1 + …+ (𝐴𝑙 + 𝐾𝑐𝑙) 

 
(3.4) 

3) Construct the block poles (solvents) using the desired eigenvalues (see section 

2.3 chapter 2). 

4) Using the constructed solvents, construct the matrix coefficients of the desired 

characteristic matrix polynomial 𝐷d(𝜆) (see section 2.8 chapter 2). 

𝐷𝑑(𝜆) = 𝐼𝑚𝜆𝑙 + 𝐷𝑑1𝜆
𝑙−1 + … + 𝐷𝑑𝑙  

5) Compute K𝐶  by equating the characteristic matrix polynomial of this closed loop 

system and the desired characteristic matrix polynomial 𝐷d(𝜆). 

 𝐷𝑑(𝜆) = 𝐷(𝜆). we obtain the coefficients Kci as follows: 

 𝐾𝑐𝑖 = 𝐷𝑑𝑖 − 𝐴𝑖  𝑓𝑜𝑟 𝑖 = 1,… , 𝑙 (3.5) 

where is 𝐷𝑑𝑖 is obtained while Constructing the complete set of solvents (see 

section 2.8 chapter 2). 

6) Compute the gain matrix K from K𝐶, such that K = K𝐶𝑇𝐶.  

3.3 Evaluation Criteria 

The design techniques will be compared based on an evaluation of how well each 

method handles the specific requirements of lateral handling qualities of the fighter 

aircraft control design, based on the following list of evaluation criteria: 
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i. The gain magnitude 

ii. Time domain response 

iii. Robust performance 

iv. Robust stability 

3.3.1 Feedback Gain magnitude 

The norm of a matrix can provide a scalar measure to the magnitude of the matrix. 

3.3.2 Norm of a matrix 

  [6] 

Definition 3.1 

The norm is a real number, denoted as ||e||, which satisfies the following properties: 

 
1. Non-negative: ||e|| ≥ 0. 

2. Positive: ||e|| = 0 iff e = 0. 

3. Homogenous: ||α.e||= |α|.||e||. 

4. Triangle inequality: ||e1+ e2 || ≤ ||e1 ||+ ||e2 ||. 

 
where: e is a vector, and α is a scalar. 

 
In this thesis we will consider only matrix norms(2-Norm). 

Definition 3.2 

A norm ||A|| of a matrix A is a matrix norm which, in addition to the four 

norm properties given earlier in definition 3.1, satisfies the multiplicative 

property (also called the consistency condition): ||𝐴. 𝐵|| ≤  ||𝐴|| ∙ ||𝐵||. 

3.3.2.1 Most Common Matrix Norm Types 

i. The Matrix 1-norm 

It is the maximum absolute column sum. 

‖𝐴‖1 = max
1≤𝑗≤𝑛

(∑ |𝑎𝑖𝑗|
𝑚

𝑖=1
) (3.6)  



Chapter 3                                                                  State Feedback Design and Criteria 

 

23 

 

ii. The Matrix ∞-norm 

It is the maximum absolute row sum. 

 
‖𝐴‖∞ = max

𝑖
(∑ |𝑎𝑖𝑗|

𝑚

𝑖=1
) (3.6) 

iii. The Matrix Euclidian norm (also called the 2-norm) 

It is the square root of the largest eigen value of AT.A or the largest singular 

value of A 

 ‖𝐴‖2 = 𝑚𝑎𝑥 {𝑒𝑖𝑔𝑒𝑛𝑣𝑎𝑙𝑢𝑒(√𝐴𝑇𝐴)} (3.7) 

iv. The Matrix Frobenius-norm 

 ‖𝐴‖𝐹 = √𝑡𝑟𝑎𝑐𝑒𝐴𝑇𝐴 (3.8) 

3.3.3 Condition number  

Definition 3.3  

The condition number of an invertible matrix A is defined as 𝜒(𝐴) = |𝐴||𝐴−1| 

This quantity enables to know how close is the matrix A to singularity. This affects the 

accuracy of computations based on the matrix A. It can also be seen as a function to a 

perturbed input argument. 

Note that the condition number of a matrix is always greater or equal to 1. 

3.3.3.1  Condition Number and Conditioning 

• If 𝜒(𝐴)  is  large, A is called ill-conditioned (with respect to inversion). 

• If  𝜒(𝐴)  ) is small, A is called well-conditioned (with respect to inversion). 

3.3.4 Time Domain Performance  

Time domain criteria are often used to describe the performance of control 

systems. Although developed for second order systems, they can be valuable 

for higher order systems. 
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Figure 3-1 typical second-order system step response 

3.3.4.1 Maximum Overshoot 

The maximum overshoot is related to the maximum peak value of the response with 

respect to the final value. 

 Mp = y(tp) −  y(∞) (3.9) 

 
𝑃𝑒𝑟𝑐𝑒𝑛𝑡 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑜𝑣𝑒𝑠ℎ𝑜𝑜𝑡 =  

𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑜𝑣𝑒𝑠ℎ𝑜𝑜𝑡

y(∞)
 × 100 % (3.10) 

3.3.4.2 Peak Time TP 

It is the time needed for the response to reach the first break of overshoot (i.e.: the peak 

value). 

3.3.4.3 Settling Time Ts 

It is the time required for the response curve to reach and stay within a range about the 

final value of a size specified by an absolute percentage of the final value (usually 2% 

or 5%). 
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3.3.4.4 Rise Time Tr 

It is defined as the time required for the step response to reach- 10 to 90 percent of the 

final value. 

3.3.5 Robustness and Sensitivity Analysis 

3.3.5.1 The sensitivity of eigenvalues (Robust Performance) 

Robust performance is defined as the low sensitivity of system performance with respect to 

system model uncertainty and terminal disturbance. It is well known that the eigenvalues of the 

dynamic matrix determine the performance of the system then from that the sensitivities of these 

eigenvalues determine the robustness of the system. [13] 

3.3.5.1.1 Types of Robustness 

1) Eigen Value Sensitivity 

It is used to measure how much the system’s eigenvalues are sensitive to the model 

uncertainties, it includes: 

i.  Individual Eigen Value Sensitivity: 

The sensitivity of the i-th eigen value of a matrix A to perturbations in some or all of 

its elements is given by the following expression: 

 
𝑠(𝜆𝑖) =

||𝐿𝑖||2. ||𝑅𝑖||2

|𝐿𝑖
𝑇 𝑅𝑖|

 (3.11) 

where Li  and Ri  are the left and right eigenvectors corresponding to eigen value 𝜆𝑖, 

respectively. 

ii. Overall Eigen Value Sensitivity: 

The overall eigen value sensitivity of the matrix A, which is the condition number 

of the modal matrix, is defined as: 

 𝑆(𝑉) = ||𝑅||2. ||𝑅
−1||2 (3.12) 
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where R is the right eigenvector matrix of the matrix A. 

2) Relative change: 

It measures the relative change in eigen value 𝜆𝑖  following a perturbation of the 

system matrix A. 

 

 
𝑟(𝜆𝑖) =

|𝜆𝑖 − 𝜆𝑖′|

|𝜆𝑖|
 (3.13) 

 

where: 

 𝜆𝑖is the original eigen value. 

𝜆𝑖′ is the new eigen value following the perturbation. 

3.3.5.2 Stability Robustness 

Stability is the most important property in control design; the sensitivity to such a 

property is called stability robustness. Basically, stability means that if every dynamic 

matrix eigen value has a negative real part; hence the sensitivity of these eigenvalues 

with respect to model uncertainties is a direct way to measure the sensitivity of the whole 

system stability. 

Some stability robustness measures have been developed in the control literature; among 

these, we have the so-called M2 and M3 measures. [4] 

3.3.5.2.1 The Robust Stability Measure M2 

It is defined as  

 𝑀2 = 𝑠(𝑣)−1|𝑅𝑒{𝜆𝑛}| (3.14) 

where (|𝑅𝑒{𝜆𝑛}| ≤ ⋯ ≤ |𝑅𝑒{𝜆1}|) 

|𝑅𝑒{𝜆𝑛}|is the shortest distance between the unstable region and the eigenvalue  𝜆𝑖  

 M2 equals this distance divided (or weighted) by the sensitivity of all the eigenvalues of 

the matrix. As the sensitivity goes up, M2  goes down. 
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3.3.5.2.2 The Robust Stability Measure M3 

It is defined as: 

 𝑀3 = min
1≤𝑖≤𝑛

{𝑠(𝜆𝑖)
−1|𝑅𝑒{𝜆𝑖}|} (3.15) 

 

M2  measures  the  likelihood  margin  for  every  eigenvalue  to  become  unstable.  It is 

equal to |𝑅𝑒(𝜆𝑖)| divided by its corresponding sensitivity 𝑠(𝜆𝑖), 𝑖 = 1, … , 𝑛. 
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Chapter 4   Aircraft Aerodynamics  

4.1 Introduction 

    Airplanes, also known as aircrafts come in various shapes and sizes each with their 

own characteristics. There are number of ways to identify aircrafts by type. The primary 

distinction is between those that are lighter than air such as hot air balloons, airships or 

dirigibles and those that are heavier than air such as helicopters, gliders and airbuses. 

Kites also fall in the latter category   

   In this thesis the aircraft used to conduct the study is a fighter-aircraft which is of the 

type heavier than air. 

4.2 Airplane Definition  

    Airplane, also called Aeroplan or plane, is any of a class of fixed-wing aircraft that is 

heavier than air, propelled by a screw propeller or a high-velocity jet, and supported by 

the dynamic reaction of the air against its wings. [14] 

An airplane is composed of four essential parts: a wing system, an Empennage (also 

known as tail), a power plant and a fuselage. 

• Wing system: In order to fly, one must lift the weight of the airplane itself, the 

fuel, the passengers, and the cargo. The wings generate most of the lift to hold 

the plane in the air.   

• Tail: Small wings are located in the tail which serves to control and manoeuvre 

the aircraft. The tail usually has a fixed horizontal piece, called the horizontal 

stabilizer, and a fixed vertical piece, called the vertical stabilizer. The stabilizers 

job is to provide stability for the aircraft, to keep it flying straight. 

• Power plant: the power plant provides the thrust necessary to push the vehicle 

through the air. 

https://www.merriam-webster.com/dictionary/dynamic
https://www.grc.nasa.gov/www/k-12/airplane/weight1.html
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• Fuselage: The fuselage or body of the airplane, holds all the pieces together. The 

pilots sit in the cockpit at the front of the fuselage. Passengers and cargo are 

carried in the rear of the fuselage. Some aircraft carry fuel in the fuselage; others 

carry the fuel in the wings. 

 

 

 

 

 

 

 

4.3 Axes of an Aircraft 

    An airplane in flight is controlled around one or more of three axes of rotation. These 

axes of rotation are the longitudinal, lateral, and vertical. On the airplane, all three axes 

intersect at the center of gravity (CG). As the airplane pivots on one of these axes, it is in 

essence pivoting around the center of gravity (CG). The center of gravity is also referred 

to as the center of rotation. 

    On the brightly colored airplane shown in the figure 4.1, the three axes are shown in 

the colors red (vertical axis), blue (longitudinal axis), and orange (lateral axis). The flight 

control that makes the airplane move around the axis is shown in a matching color.  

The rudder, in red, causes the airplane to move around the vertical axis and this 

movement is described as being a yaw. The elevator, in orange, causes the airplane to 

move around the lateral axis and this movement is described as being a pitch. The 

ailerons, in blue, cause the airplane to move around the longitudinal axis and this 

movement is described as being a roll. [15] 

 

Figure 4-1 Major components of an aircraft 



Chapter 4                                                                                      Aircraft Aerodynamics 

 

30 

 

 

 

 

 

 

 

 

 

 

4.4 Aircraft Primary Flight Controls 

    The primary controls are the ailerons, elevator, and the rudder, which provide the 

aerodynamic force to make the aircraft follow a desired flightpath. In the figure 4-3 the 

flight control surfaces are hinged or movable airfoils designed to change the attitude of 

the aircraft by changing the airflow over the aircraft’s surface during flight. These 

surfaces are used for moving the aircraft about its three axes. 

   Typically, the ailerons and elevators are operated from the flight deck by means of a 

control stick, a wheel, and yoke assembly and on some of the newer design aircraft, a 

joystick. The rudder is normally operated by foot pedals on most aircraft. Lateral control 

is the banking movement or roll of an aircraft that is controlled by the ailerons. 

Longitudinal control is the climb and dive movement or pitch of an aircraft that is 

controlled by the elevator. Directional control is the left and right movement or yaw of 

an aircraft that is controlled by the rudder. [16] 

 

 

Figure 4-2 Axes of an aircraft 
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4.5 The Forces Acting on an Aircraft 

There are four forces acting on an aircraft in flight: 

• Weight: Weight is a force that is always directed toward the center of the earth. 

The magnitude of the weight depends on the mass of all the airplane parts, plus 

the amount of fuel, plus any payload on board (people, baggage, freight, etc.). 

The weight is distributed throughout the airplane. But we can often think of it as 

collected and acting through a single point called the center of gravity. In flight, 

the airplane rotates about the center of gravity. 

Figure 4-3 Primary flight control of an aircraft 

https://www.grc.nasa.gov/www/k-12/airplane/weight1.html
https://www.grc.nasa.gov/www/k-12/airplane/wteq.html
https://www.grc.nasa.gov/www/k-12/airplane/cg.html
https://www.grc.nasa.gov/www/k-12/airplane/rotations.html
https://www.grc.nasa.gov/www/k-12/airplane/acg.html
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• Lift: To overcome the weight force, airplanes generate an opposing force 

called lift. Lift is generated by the motion of the airplane through the air and is 

an aerodynamic force. Lift is directed perpendicular to the flight direction. The 

magnitude of the lift depends on several factors including the shape, size, and 

velocity of the aircraft. As with weight, each part of the aircraft contributes to the 

aircraft lift force. Most of the lift is generated by the wings. Aircraft lift acts 

through a single point called the center of pressure. The center of pressure is 

defined just like the center of gravity, but using the pressure distribution around 

the body instead of the weight distribution. 

• Drag: As the airplane moves through the air, there is another aerodynamic force 

present. The air resists the motion of the aircraft and the resistance force is 

called drag. Drag is directed along and opposed to the flight direction. Like lift, 

there are many factors that affect the magnitude of the drag force including 

the shape of the aircraft, the "stickiness" of the air, and the velocity of the aircraft. 

Like lift, we collect all of the individual components' drags and combine them 

into a single aircraft drag magnitude. And like lift, drag acts through the aircraft 

center of pressure. 

• Thrust: To overcome drag, airplanes use a propulsion system to generate a force 

called thrust. The direction of the thrust force depends on how the engines are 

attached to the aircraft. The magnitude of the thrust depends on many factors 

associated with the propulsion system including the type of engine, the number 

of engines, and the throttle setting. 

 

 

 

 

 

 

 

 

 

 

Figure 4-4 The four forces acting on an aircraft. 

https://www.grc.nasa.gov/www/k-12/airplane/lift1.html
https://www.grc.nasa.gov/www/k-12/airplane/presar.html
https://www.grc.nasa.gov/www/k-12/airplane/factors.html
https://www.grc.nasa.gov/www/k-12/airplane/shape.html
https://www.grc.nasa.gov/www/k-12/airplane/size.html
https://www.grc.nasa.gov/www/k-12/airplane/vel.html
https://www.grc.nasa.gov/www/k-12/airplane/cp.html
https://www.grc.nasa.gov/www/k-12/airplane/drag1.html
https://www.grc.nasa.gov/www/k-12/airplane/shaped.html
https://www.grc.nasa.gov/www/k-12/airplane/airsim.html
https://www.grc.nasa.gov/www/k-12/airplane/bgp.html
https://www.grc.nasa.gov/www/k-12/airplane/thrust1.html
https://www.grc.nasa.gov/www/k-12/airplane/trbtyp.html
https://www.grc.nasa.gov/www/k-12/airplane/thsum.html
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The motion of the airplane through the air depends on the relative strength and direction 

of the forces shown above. If the forces are balanced, the aircraft cruises at constant 

velocity. If the forces are unbalanced, the aircraft accelerates in the direction of the 

largest force. [17] 

4.6 Stability and Control of an Aircraft 

    When an airplane is in straight-and-level flight at a constant velocity, all the forces 

acting on the airplane are in equilibrium. If that straight-and-level flight is disrupted by 

a disturbance in the air, such as wake turbulence, the airplane might pitch up or down, 

yaw left or right, or go into a roll. If the airplane has what is characterized as stability, 

once the disturbance goes away, the airplane will return to a state of equilibrium. Also, 

to achieve the best performance, the aircraft must have the proper response to the 

movement of the controls. Control is the pilot action of moving the flight controls, 

providing the aerodynamic force that induces the aircraft to follow a desired flightpath. 

When an aircraft is said to be controllable, it means that the aircraft responds easily and 

promptly to movement of the controls. Different control surfaces are used to control the 

aircraft about each of the three axes. Moving the control surfaces on an aircraft changes 

the airflow over the aircraft’s surface. This, in turn, creates changes in the balance of 

forces acting to keep the aircraft flying straight and level. [18] 

Static Stability 

    An aircraft is in a state of equilibrium when the sum of all the forces acting on the 

aircraft and all the moments is equal to zero. An aircraft in equilibrium experiences no 

accelerations, and the aircraft continues in a steady condition of flight. A gust of wind or 

a deflection of the controls disturbs the equilibrium, and the aircraft experiences 

acceleration due to the unbalance of moment or force. 
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    The three types of static stability are defined by the character of movement following 

some disturbance from equilibrium. Positive static stability exists when the disturbed 

object tends to return to equilibrium. Negative static stability, or static instability, exists 

when the disturbed object tends to continue in the direction of disturbance. Neutral static 

stability exists when the disturbed object has neither tendency, but remains in equilibrium 

in the direction of disturbance. These three types of stability are illustrated in Figure 4.5. 

Dynamic Stability 

    While static stability deals with the tendency of a displaced body to return to 

equilibrium, dynamic stability deals with the resulting motion with time. If an object is 

disturbed from equilibrium, the time history of the resulting motion defines the dynamic 

stability of the object. In general, an object demonstrates positive dynamic stability if the 

amplitude of motion decreases with time. If the amplitude of motion increases with time, 

the object is said to possess dynamic instability. 

    Any aircraft must demonstrate the required degrees of static and dynamic stability. If 

an aircraft were designed with static instability and a rapid rate of dynamic instability, 

the aircraft would be very difficult, if not impossible, to fly. Usually, positive dynamic 

stability is required in an aircraft design to prevent objectionable continued oscillations 

of the aircraft. 

 

Figure 4-5 The Three types of stability of an aircraft 
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Longitudinal Stability 

    When an aircraft has a tendency to keep a constant AOA (Angle of Attack) with 

reference to the relative wind (i.e., it does not tend to put its nose down and dive or lift 

its nose and stall); it is said to have longitudinal stability. Longitudinal stability refers to 

motion in pitch. The horizontal stabilizer is the primary surface which controls 

longitudinal stability. The action of the stabilizer depends upon the speed and AOA of 

the aircraft. 

4.7 Motion of an Aircraft 

    The aircraft is assumed to be a rigid-body; the distance between any points on the 

aircraft do not change in flight. Thus, its motion can be considered to have six degrees of 

freedom. By applying Newton’s Second Law to that rigid body the equations of motion 

can be established in terms of the translational and angular accelerations which occur as 

a consequence of some forces and moments being applied to the aircraft. 

From Newton’s Second Law: 

Figure 4-6 Body axis system. 
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𝐹 =
𝑑

𝑑𝑡
(𝑚𝑉𝑇) (4.1) 

and 

𝑀 =
𝑑

𝑑𝑡
(𝐻) (4.2) 

Where F represents the sum of all externally applied forces, M represents the sum of all 

applied torques, VT the total velocity vector, and H is the angular momentum. 
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Chapter 5  Simulation and Results 

5.1 Introduction 

    The nonlinear equations of motion of a typical fighter aircraft are used to generate 

linear perturbation models at various flight conditions [19].  Flight condition 1 represents 

the nominal cruise condition [Mach number, 0.67; altitude, 9096 m (20 000 ft); angle of 

attack, 3.45o]. 

The system chosen for the investigation of the state feedback multivariable control design 

based on similarity transformation in terms of feedback gain and robustness is obtained 

from the fighter aircraft state space model at flight condition 1 [19].  (NASA Technical 

Paper 1234) 

The state space representation, referenced to the stability axes, takes the form of equation 

(1.1) as follows: 

𝐴 = [

−3.79𝑒 + 00     4.06𝑒 − 01
−1.34𝑒 − 01 −3.59𝑒 − 01

−5.20𝑒 + 01   0.
   4.24𝑒 − 01   0.

                  

   6.02𝑒 − 01 −9.97𝑒 − 01
  1.00𝑒 + 00    6.03𝑒 − 01

−2.72𝑒 − 01   4.62𝑒 − 02
0. 0.                

] 

𝐵 = [

2.50𝑒 + 01
1.42𝑒 + 00

   9.83𝑒 + 00
−4.20𝑒 + 00

5.01𝑒 − 03
0.

   5.03𝑒 − 02
0.

] 

𝐶 = [−1.25𝑒 − 02 −6.12𝑒 − 02 −3.41𝑒 + 00 −1.50𝑒 − 03] 

𝐷 = [1.03𝑒 + 00 −2.66 − 01] 
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and where 𝑥(𝑡) =  (

𝑝

 𝜓̇
𝛽
𝛷

); 𝑢(𝑡) = (
𝛿𝑎

𝛿𝑟
) ; y(t) = 𝑎𝑦 ;  𝑝 : Roll rate (deg); 𝑎𝑦: lateral 

acceleration(m/sec2); 𝛿𝑎: Aileron angular deflection (deg)t ; 𝛿𝑟 : Rudder angular 

deflection;  𝜓̇: Yaw rate (deg/sec);   𝛽: sideslip angle (deg)   and   𝛷 : Bank angle (deg). 

System eigenvalues are: 𝜆1 = −3.70 , 𝜆2 = −0.03 and 𝜆3,4 = −0.34 ± 𝑗2.66 . 

The desired eigenvalues are: 𝜆1 = −6.00, 𝜆2 = −0.01 and 𝜆3,4 = −1.5 ± 𝑗0.75 . 

For more information about linearized equations of motion of an aircraft and the 

equations of motion in stability axis system, the reader may see [20]. 

5.2 State Feedback design using General Controller 

Canonical Form 

The matrix B in the previous system has two columns. Thus, there are two possible 

permutations of the columns of B. Referring to the resulting matrices after permutation, 

B1 and B2, with B1 = (b1 b2) and B2 = (b2 b1), where b1 is the first column of B and b2 is 

the second column. From these two matrices and using the matrix A, there would be two 

reachability matrices R1(A, B1) and R2(A, B2). 

𝑅1 = (𝑏1 𝑏2, 𝐴𝑏1 𝐴𝑏2)  with reachability indices K1 = 2 and K2 = 2.  

𝑅2 = (𝑏2 𝑏1, 𝐴𝑏2 𝐴𝑏1)  with reachability indices K1 = 2 and K2 = 2. 

5.2.1 State Feedback design using the reachability matrix R1 

First, the reachability base matrix obtained from A and B1 is  𝑃1 = (𝑏1 𝐴𝑏1 𝑏2 𝐴𝑏2). 

Then, the similarity transformation 𝑇𝑐 = [

    0.0001 −0.0008
    0.0353    0.0828

−0.0803    0.0403
   0.0151 −0.0037

−0.0002    0.0021
   0.0120 −0.2106

   0.2104 −0.0010
−0.0397    0.0097

] 

and its inverse are computed. After that, Ac, Bc and Cc are also computed, and are: 
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𝐴𝑐 = [

    0    1
−0.1872 −3.7608

      0  0
  −7.1298  −1.3432

  

  0    0
−0.0808 −0.0878

0   1
−7.3003 −0.6602 

] 

𝐵1𝑐 = [

0
1

  0
  0

0
0

  0
 1

] 

𝐶𝑐 = [−0.4775 −3.2290 −16.3761 −1.1432] 

Ac is as expected in general controller form composed of two blocks in companion form 

of dimension 2 x 2 in the diagonal. Thus, there would be three ways of assigning the 

eigenvalues in the closed-loop system’s matrix [𝐴𝑐 − 𝐵1𝑐𝐾𝑐] where: 

𝐾𝑐 = [
𝑘11 𝑘12

𝑘21 𝑘22

𝑘13 𝑘14

𝑘23 𝑘24
] 

The three ways of assigning the eigenvalues are:  

1. Putting the matrix [𝐴𝑐 − 𝐵1𝑐𝐾𝑐] in block diagonal form with the complex pair 

𝜆3,4 in the upper block and the two other eigenvalues in the lower block. 

2. Putting the matrix [𝐴𝑐 − 𝐵1𝑐𝐾𝑐] in block diagonal form with the complex pair 

𝜆3,4 in the lower block and the two other eigenvalues in the upper block. 

3. Putting the matrix [𝐴𝑐 − 𝐵1𝑐𝐾𝑐] in one companion form. 

Now the eigenvalue 𝜆2 is the closest to the 𝑗𝜔-axis. It’s being pushed closer to and away 

from the imaginary axis to investigate the effect of this pole’s placement. 

The following tables summarizes the obtained state feedback gains from each of the 

previous stated ways and each with their resulting gains for each placement of the 

eigenvalue 𝜆2.  
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Case λ2 = -0.01: 

Table 5-1 State feedback gains obtained from case λ2 = -0.01 using R1 

Case λ2 = -0.001: 

Table 5-2 State feedback gains obtained from case λ2 = -0.001 using R1 

Case λ2 = -0. 1 

Table 5-3 State feedback gains obtained from case λ2 = -0.1 using R1 

 

State feedback gain 𝐾𝑐 State feedback gain  𝐾 = 𝐾𝑐𝑇𝑐 

1.   
𝐾𝑐1 = [

2.6253 −0.7608
−0.0808 −0.0878

−7.1298 −1.3432
−7.2403 5.3498

] 𝐾1 = [
−0.0416 0.2024
0.0621 −1.1491

−1.6711 0.1039
−1.7300 0.0565

] 

2.  
𝐾𝑐2 = [

−0.1272 2.2492
−0.0808 −0.0878

−7.1298 −1.3432
−4.4878 2.3398

] 𝐾2 = [
0.0645 0.4539
0.0256 −0.5095

−1.4023 −0.0192
−1.0317 0.0244

] 

3.  
𝐾𝑐3 = [

−0.1872 −3.7608
0.08795 16.9953

−8.1298 −1.3432
13.6022 8.3498

] 𝐾3 = [
−0.1475 −0.0457
0.6976 −0.3221

−1.6988 0.0017
2.7804 0.0076

] 

State feedback gain 𝐾𝑐 State feedback gain  𝐾 = 𝐾𝑐𝑇𝑐 

1.   
𝐾𝑐1 = [

2.6253 −0.7608
−0.0808 −0.0878

−7.1298 −1.3432
−7.2943 5.3408

] 𝐾1 = [
−0.0416 0.2024
0.0620 −1.1473

−1.6711 0.1039
−1.7410 0.0565

] 

2.  
𝐾𝑐2 = [

−0.1812 2.2402
−0.0808 −0.0878

−7.1298 −1.3432
−4.4878 2.3398

] 𝐾2 = [
0.0641 0.4532
0.0256 −0.5095

−1.3981 −0.0213
−1.0317 0.0244

] 

3.  
𝐾𝑐3 = [

−0.1872 −3.7608
−0.0639 16.8080

−8.1298 −1.3432
13.5212 8.3408

] 𝐾3 = [
−0.1475 −0.0457
0.6908 −0.3358

−1.6988 0.0017
2.7731 0.0022

] 

State feedback gain 𝐾𝑐 State feedback gain  𝐾 = 𝐾𝑐𝑇𝑐 

1.   
𝐾𝑐1 = [

2.6230 −0.7608
−0.0808 −0.0878

−7.1298 −1.3432
−6.7030 5.4398

] 𝐾1 = [
−0.0416 0.2024
0.0631 −1.1669

−1.6711 0.1039
−1.6206 0.0568

] 

2.  
𝐾𝑐2 = [

0.4128 2.3392
−0.0808 −0.0878

−7.1298 −1.3432
−4.4878 2.3398

] 𝐾2 = [
0.0677 0.4509
0.0256 −0.5095

−1.4443 0.0022
−1.0317 0.0244

] 

3.  
𝐾𝑐3 = [

−0.1872 −3.7608
1.6067 18.8682

−8.1298 −1.3432
14.4122 8.4398

] 𝐾3 = [
−0.1475 −0.0457
0.7647 −0.1855

−1.6988 0.0017
2.8536 0.0619

] 
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5.2.2 State Feedback design using the reachability matrix R2 

The previous process is repeated using the reachability matrix R2 

Case λ2 = -0.01 

Table 5-4 State feedback gains obtained from case λ2 = -0.01 using R2 

Case λ2 = -0.001 

              Table 5-5 State feedback gains obtained from case λ2 = -0.001 using R2 

 

 

 

 

State feedback gain 𝐾𝑐 State feedback gain  𝐾 = 𝐾𝑐𝑇𝑐 

1.   
𝐾𝑐1 = [

−4.4878 2.3389
−7.1298 −1.3422

−0.0808 −0.0878
−0.1812 2.2402

] 𝐾1 = [
0.0256 −0.5093
0.0645 0.4530

−1.0316 0.0244
−1.3981 −0.0213

] 

2.  
𝐾𝑐2 = [

−7.2943 5.3408
−7.1298 −1.3422

−0.0808 −0.0878
2.6253 −0.7608

] 𝐾2 = [
0.0620 −1.1473

−0.0416 0.2023
−1.7410 0.0565
−1.6689 0.1028

] 

3.  
𝐾𝑐3 = [

−7.3003 −0.6602
−7.1129 15.5526

−1.0808 −0.0878
20.6343 5.2407

] 𝐾3 = [
−0.0099 0.1170
0.3735 −2.8729

−1.4240 −0.0421
−3.6907 0.9697

] 

State feedback gain 𝐾𝑐 State feedback gain  𝐾 = 𝐾𝑐𝑇𝑐 

1.   
𝐾𝑐1 = [

−4.4878 2.3389
−7.1298 −1.3422

−0.0808 −0.0878
−0.1272 2.2492

] 𝐾1 = [
0.0256 −0.5093
0.0645 0.4537

−1.0316 0.0244
−1.4023 −0.0192

] 

2.  
𝐾𝑐2 = [

−7.2403 5.3498
−7.1298 −1.3422

−0.0808 −0.0878
2.6253 −0.7608

] 𝐾2 = [
0.0621 −1.1491

−0.0416 0.2023
−1.7300 0.0565
−1.6689 0.1028

] 

3.  
𝐾𝑐3 = [

−7.3003 −0.6602
−6.9610 15.7399

−1.0808 −0.0878
20.715 5.2492

] 𝐾3 = [
−0.0099 0.1170
0.3761 −0.9114

−1.4240 −0.0421
−3.6725 0.9746

] 
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Case λ2 = -0.1 

Table 5-6 State feedback gains obtained from case λ2 = -0.1 using R2 

 

5.2.3 Robustness and sensitivity analysis 

    After finding all the gain matrices, the individual and overall eigenvalue sensitivities, 

robust performances and stability measures M2 and M3 (for λ2) are computed. 

S(λi) refers to the sensitivity of the eigenvalue λi, while S(V) refers to the overall EV 

sensitivity. 

RP refers to the robust performance and EV refers to eigenvalue.  

M2 and M3 refer to stability measures 2 and 3 respectively. 

Robust Stability 

Using the reachability matrix R1 and the state feedback gain Kc1, the resulting closed-

loop matrix is [𝐴 − 𝐵1𝐾1] = [

   −3.3606    6. .2755
   0.1859 −5.4728

       6.7835  −3.1532
     −0.6531  0.0898

  

  0.0573   −0.9402
1.000      0.0603

 
−0.1766   0.0428

0 0 

] 

The right eigenvector associated to this closed-loop matrix is  

State feedback gain 𝐾𝑐 State feedback gain  𝐾 = 𝐾𝑐𝑇𝑐 

1.   
𝐾𝑐1 = [

−4.4878 2.3389
−7.1298 −1.3422

−0.0808 −0.0878
−0.4128 2.3392

] 𝐾1 = [
0.0256 −0.5093
0.0677 0.4607

−1.0316 0.0244
−1.4443 −0.0022

] 

2.  
𝐾𝑐2 = [

−6.7003 5.4398
−7.1298 −1.3422

−0.0808 −0.0878
2.6253 −0.7608

] 𝐾2 = [
0.0631 −1.1669

−0.0416 0.2023
−1.6200 0.0568
−1.6689 0.1028

] 

3.   
𝐾𝑐3 = [

−7.3003 −0.6602
−5.4423 17.6128

−1.0808 −0.0878
21.5253 5.3397

] 𝐾3 = [
−0.0099 0.1170
0.4015 −3.2957

−1.4240 −0.0421
−3.4910 1.0235

] 
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𝑉 =  [

    0.9097    0.8592
−0.3817     0.0282 − 0.0105𝑖

      0.8592     0.0017
   0.0282 + 0.0105𝑖  −0.0426

  

−0.0695 −0.0018 − 0.0010𝑖
−0.1478 −0.4548 − 0.2325𝑖

−0.0018 + 0.0010𝑖   0.4481
−0.4548 + 0.2325𝑖 0.8930

] 

• The norm of this eigenvector is ||𝑉|| = 1.7071, while the norm of the left 

eigenvector is 

||𝑇|| = ||𝑉−1|| = 7.4762. Then the overall sensitivity is equal to: 

𝑆(𝑉) =  ||𝑉|| ∙ ||𝑉−1|| = 12.7625 

• The norms of the component vectors of the right eigenvector are all equal to 
1, and the component vectors of the left eigenvector have norms as follows: 

||𝑡1|| = 2.3197, ||𝑡2|| = 2.2170, ||𝑡3|| = 5.2496, ||𝑡4|| = 5.2496 

• The sensitivities of the individual eigenvalue are: 

𝑠(𝜆1) =  ||𝑣1|| ∙ ||𝑡1|| = 2.3197, 𝑠(𝜆2) =  ||𝑣2|| ∙ ||𝑡2|| = 2.2170, 

𝑠(𝜆3/4) =  ||𝑣3,4|| ∙ ||𝑡3,4|| = 5.2496 

• The stability measures are: 

 𝑀2 = (𝑆(𝑉))−1|𝑅𝑒{𝜆2}| = 7.83e − 04 

𝑀3 = 𝑚𝑖𝑛0≤𝑖≤4 {(𝑆(𝜆𝑖))
−1

|𝑅𝑒{𝜆𝑖}|} = 4.51e − 03 

Robust Performance 

The following perturbation matrix is         𝐴′ = [

0.0042 0.0066
0.0092 0.0004

0.0068 0.0066
0.0076 0.0017

0.0079 0.0085
0.0096 0.0093

0.0074 0.0071
0.0039 0.0003

] 

generated randomly using MATLAB 

The new closed-loop matrix, after perturbation, is: 

[𝐴 − 𝐵1𝐾1 + 𝐴′] = [

−3.3554    6. .2646
  0.1947 −5.4649

     6.8984  −3.1463
  −0.6917       0.0914

  

  0.0652   −0.9318
1.0096      0.0696

 
−0.1687     0.0499
   0.0039       0.0003 

] 

its eigenvalues are: 𝜆1 = −6.0173, 𝜆2 = 0.0179 and 𝜆3,4 = −1.4946 ± 𝑗0.7859 
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The relative change of the eigenvalues of the closed-loop matrix due to the perturbation 

is 𝑟𝑖 = |
𝜆𝑖−𝜆𝑖

′

𝜆𝑖
| were 𝜆𝑖 is the eigenvalue of the closed-loop matrix and 𝜆𝑖

′
 the 

eigenvalue of the perturbated closed-loop matrix. This lead 

𝑟1 = 0.0029, 𝑟2 = 0.0031 and 𝑟3,4 = 0.031 

The previous computations are repeated for each case input matrix B1 and B2, state 

feedback gains, K1, K2 and K3 and the three different values of 𝜆2. The results are 

summarized in the following tables. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Case 𝜆2 = -0.01 
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                           Table 5-7 General controller form from R1 results summary 

 

 

 

 

 

 

 

 

 

Table 5-8 General controller form from R2 results summary 

 

 

 

 

 

 

 

 

 

 

Used input matrix B1 

Gain K1 K2 K3 

||K|| 2.5190 1.7436 3.3370 

S(V) 12.7625 12.7996 42.9231 

R
o
b

u
st

 s
ta

b
il

it
y
 

 

 

 

 

𝑠(𝜆𝑖) 

-6.0 2.3197 2.3189 12.7814 

-0.01 2.2170 2.2225 2.9699 

-1.5+j0.75 5.2496 5.2434 15.2784 

-1.5-j0.75 5.2496 5.2434 15.2784 

M2 7.8354e-

04 

7.812e-04 2.3297e-04 

M3 0.00451 0.00449 0.003367 

R
o
b

u
st

 

p
er

fo
rm

a
n

c
e
 

 

 

 

 

 

𝑟𝑖(𝜆𝑖) 

-6.0 0.0029 0.0039 0.0064 

-0.01 0.0031 0.0021 0.0035 

-1.5+0.75i 0.0031 0.0025 0.0068 

-1.5-0.75i 0.0031 0.0025 0.0068 

Used input matrix B2 

Gain K1 K2 K3 

||K|| 1.7436 2.5177 4.9110 

S(V) 12.7781 12.9779 88.9438 

R
o
b

u
st

 s
ta

b
il

it
y
 

 

 

 

 

𝑠(𝜆𝑖) 

-6.0 2.3176 2.3211 28.3074 

-0.01 2.2244 2.7170 3.0646 

-1.5+j0.75 5.2349 5.3362 30.4233 

-1.5-j0.75 5.2349 5.3362 30.4233 

M2 7.8258-04 7.705e-04 1.1243e-04 

M3 0.004495 0.0036 0.00326 

R
o
b

u
st

 

p
er

fo
rm

a
n

c
e
 

 

 

 

 

 

𝑟𝑖(𝜆𝑖) 

-6.0 0.0039 0.0029 0.0365 

-0.01 0.0021 0.0031 0.0002 

-1.5+0.75i 0.0025 0.0032 0.0278 

-1.5-0.75i 0.0025 0.0032 0.0278 
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Case 𝜆2 = -0.001 

Table 5-9 General controller form from R1 results summary 

 

 

 

 

 

 

 

 

 

Table 5-10 General controller form from R2 results summary 

 

 

 

 

 

 

 

 

 

Used input matrix B1 

Gain K1 K2 K3 

||K|| 2.5268 1.7401 3.3306 

S(V) 12.7424 12.7786 42.7129 

R
o
b

u
st

 s
ta

b
il

it
y
 

 

 

 

 

𝑠(𝜆𝑖) 

-6.0 2.3201 2.3189 12.7518 

-0.001 2.2140 2.2217 2.9368 

-1.5+j0.75 5.2496 5.2434 15.2173 

-1.5-j0.75 5.2496 5.2434 15.2173 

M2 7.8478e-05 7.8255e-05 2.3412e-05 

M3 4.5167e-04 4.5010e-04 3.4050e-04 

R
o
b

u
st

 

p
er

fo
rm

a
n

c
e
 

 

 

 

 

 

𝑟𝑖(𝜆𝑖) 

-6.0 0.0029 0.0039 0.0063 

-0.001 0.0031 0.0021 0.0036 

-1.5+0.75i 0.0031 0.0025 0.0067 

-1.5-0.75i 0.0031 0.0025 0.0067 

Used input matrix B2 

Gain K1 K2 K3 

||K|| 1.7401 2.5256 4.9026 

S(V) 12.7571 12.9574 88.1914 

R
o
b

u
st

 s
ta

b
il

it
y
 

 

 

 

 

𝑠(𝜆𝑖) 

-6.0 2.3176 2.3215 28.1276 

-0.001 2.2209 2.2140 3.0305 

-1.5+j0.75 5.2349 5.3362 30.1930 

-1.5-j0.75 5.2349 5.3362 30.1930 

M2 7.8387e-05 7.7175e-05 1.1338e-05 

M3 4.5026e-04 4.5167e-04 3.2997e-04 

R
o
b

u
st

 

p
er

fo
rm

a
n

c
e
 

 

 

 

 

 

𝑟𝑖(𝜆𝑖) 

-6.0 0.0039 0.0029 0.0363 

-0.001 0.0021 0.0031 0.0002 

-1.5+0.75i 0.0025 0.0032 0.0276 

-1.5-0.75i 0.0025 0.0032 0.0276 
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Case 𝜆2 = -0.1 

Table 5-11 General controller form from R1 results summary 

 

 

 

 

 

 

 

 

Table 5-12 General controller form from R2 results summary 

 

 

 

 

 

 

 

 

 

Used input matrix B1 

Gain K1 K2 K3 

||K|| 2.4416 1.7784 3.4045 

S(V) 12.9784 13.0239 45.1850 

R
o
b

u
st

 s
ta

b
il

it
y
  

 

 

 

𝑠(𝜆𝑖) 

-6.0 2.3254 2.3290 13.0940 

-0.1 2.2573 2.2702 3.3552 

-1.5+j0.75 5.2496 5.2434 15.9371 

-1.5-j0.75 5.2496 5.2434 15.9371 

M2 7.7051e-03 7.6781e-03 2.2131e-03 

M3 0.04430 0.04404 0.02980 

R
o
b

u
st

 

p
er

fo
rm

a
n

c
e
 

 

 

 

 

 

𝑟𝑖(𝜆𝑖) 

-6.0 0.0028 0.0039 0.0073 

-0.1 0.0031 0.0021 0.0032 

-1.5+0.75i 0.0031 0.0025 0.0077 

-1.5-0.75i 0.0031 0.0025 0.0077 

Used input matrix B2 

Gain K1 K2 K3 

||K|| 1.7784 2.4399 5.0149 

S(V) 13.0017 13.1985 96.9013 

R
o
b

u
st

 s
ta

b
il

it
y
 

 

 

 

 

𝑠(𝜆𝑖) 

-6.0 2.3276 2.3269 30.1647 

-0.1 2.2693 2.2578 3.5143 

-1.5+j0.75 5.2347 5.3367 32.8359 

-1.5-j0.75 5.2347 5.3367 32.8359 

M2 7.6913e-03 7.5766e-03 1.0319e-03 

M3 0.04406 0.04429 0.02845 

R
o
b

u
st

 

p
er

fo
rm

a
n

c
e
 

 

 

 

 

 

𝑟𝑖(𝜆𝑖) 

-6.0 0.0039 0.0028 0.0382 

-0.1 0.0021 0.0031 0.0005 

-1.5+0.75i 0.0025 0.0032 0.0295 

-1.5-0.75i 0.0025 0.0032 0.0295 
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5.2.4 Time Response 

    The step response to both inputs of the system are shown in the next figures for all 

three cases of λ2 and the information are show in the tables. 

Remarks about the figures and tables: 

• The response due to the first input (b1) is shown on the left while the response 

due to the second input (b2) is shown on the right. 

• For each case of λ2 there are six resulting state feedback gains. Thus, there are 

six closed loop systems. These systems are labeled as follows: 

• The response for the original system is also shown with its information and is 

referred to as G. 

• RiseTime — Time it takes for the response to rise from 10% to 90% of the 

steady-state response. 

• SettlingTime — Time it takes for the error |y(t) - yfinal| between the response y(t) 

and the steady-state response yfinal to fall to within 2% of yfinal. 

• SettlingMin — Minimum value of y(t) once the response has risen. 

• SettlingMax — Maximum value of y(t) once the response has risen. 

• Overshoot — Percentage overshoot, relative to yfinal). 

• Undershoot — Percentage undershoot. 

• Peak — Peak absolute value of y(t) 

GB1Kd1: Closed loop system obtained using the input matrix B1 and the 

state feedback gain K1 

GB2Kd2: Closed loop system obtained using the input matrix B1 and the 

state feedback gain K2 

GB1Kc: Closed loop system obtained using the input matrix B1 and the 

state feedback gain K3 

GB2Kd1: Closed loop system obtained using the input matrix B2 and the 

state feedback gain K1 

GB2Kd2: Closed loop system obtained using the input matrix B2 and the 

state feedback gain K2 

GB2Kc: Closed loop system obtained using the input matrix B2 and the 

state feedback gain K3 
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• PeakTime — Time at which the peak value occurs. 

Case 𝜆2 = -0.01 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5-1 response due to both inputs Case 𝜆2 = -0.01 

Figure 5-2 response due to both inputs (zoomed in) Case 𝜆2 = -0.01 
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Table 5-13 time response specifications Case 𝜆2 = -0.01 

System Step info for S (1,1) Step info for S (1,2) 

G 

  

GB1Kd1 

  

GB1Kd2 
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GB1Kc 

  

GB2Kd1 

  

GB2Kd2 

  

GB2Kc 
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Case 𝜆2 = -0.001 

 

Figure 5-4 response due to both inputs (zoomed in) case 𝜆2 = -0.001 

Figure 5-3 response due to both inputs case 𝜆2 = -0.001 
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Table 5-14 time response specifications Case 𝜆2 = -0.001 

System Step info for S (1,1) Step info for S (1,2) 

GB1Kd1 

  

GB1Kd2 

 
 

GB1Kc 
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GB2Kd1 

  

GB2Kd2 

  

GB2Kc 
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Case 𝜆2 = -0. 1 

 

 

Figure 5-5 response due to both inputs case 𝜆2 = -0.1 

Figure 5-6 response due to both inputs (zoomed in) case 𝜆2 = -0.1 
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Table 5-15 time response specifications case 𝜆2 = -0.1 

System Step info for S (1,1) Step info for S (1,2) 

GB1Kd1 

  

GB1Kd2 

  

GB1Kc 

  

GB2Kd1 
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GB2Kd2 

  

GB2Kc 

  

 

5.2.5 Discussion 

The discussion is based on the following criteria: 

• Feedback gain magnitude. 

• EV sensitivity (individual and overall). 

• Stability measure M1 and M2. 

• Relative change. 

The case where the matrix [𝐴𝑐 − 𝐵1𝑐𝐾𝑐]  is put in block diagonal form with the complex 

pair 𝜆3,4 in the upper block and the two other eigenvalues in the lower block is referred 

to as the upper block case from the two block form. 

The case where the matrix [𝐴𝑐 − 𝐵1𝑐𝐾𝑐] is put in block diagonal form with the complex 

pair 𝜆3,4 in the lower block and the two other eigenvalues in the upper block is referred 

to as the lower block case from the two block from. 

The case where matrix [𝐴𝑐 − 𝐵1𝑐𝐾𝑐] is put in one companion form is referred to as the 

one block form or one main block. 
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Case 𝜆2 = -0. 01 

Feedback magnitude gain  

The gain magnitude is found to be smaller when choosing the two blocks form (two 

blocks in the diagonal) rather than only one main block, since the gain ended being bigger 

in both permutations B1 and B2. 

In the first permutation (B1), the smallest gain was K2 = 1.7436; when the complex pair 

was chosen to be in the lower block of the two-block form feedback gain matrix. This 

smallest gain happens to be the same in the second permutation (B2), but in this case, it 

was K1 = 1.7436; when the complex pair was chosen to be in the upper block of the two-

block form feedback gain matrix.   

Individual and Overall eigenvalue sensitivity 

Here also the individual and overall EV sensitivities ended being smaller when choosing 

the two blocks form for feedback gain matrix. 

Apart for from the EV 𝜆2, the smallest individual sensitivities were with upper block case 

in the second permutation (B2) ) with S(𝜆1) = 2.3176 and S(𝜆3,4) = 5.2349, while the 

smallest overall and the individual sensitivity of 𝜆2 were with the upper block case of the 

first permutation (B1) with S(𝜆) = 12.7625 and S(𝜆2) = 2.2170. 

Robust stability measures M2 and M3 

The robust stability measures M2 and M3 were found to be bigger in the two blocks form 

too in both permutation B1 and B2. Also, in these measures, they were both big with 

upper block case. But between the two permutations, B1 happens to be the greatest with 

𝑀2 = 7.8354𝑒 − 04 for 𝜆2  and M3 = 0.00451.  

Relative change 

The smallest values of the relative change of the eigenvalues are mostly in the lower 

block case of the two blocks form, form the input matrix B1 with 𝑟1 = 0.0039 being the 

exception, 𝑟2 = 0.0021 and 𝑟3,4 = 0.025 the smallest. Meanwhile the upper block case 
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of the two blocks from, from the input matrix B2 had mostly the smallest values; 𝑟1 =

0.0039 being the exception, 𝑟2 = 0.0021 and 𝑟3,4 = 0.025 the smallest. 

Time Response  

a. for the first input of B 

The rise time was the smallest in the two blocks from mainly in the lower block case of 

the second permutation with RT = 3.6118s. 

The settling time was the smallest in the upper block case of the first permutation with 

ST = 33.83.63s.  

The smallest undershoot (1.0697) was obtained with the one block form in B2. 

b. for the second input of B 

The smallest rise time was with the upper block case in B2 with RT = 1.657s. 

The settling time was the smallest with the upper block case in B2 with ST = 2.6908s. 

Here, mostly in all the cases there was no overshoot nor undershoot.  

Case 𝜆2 = -0. 001 

Feedback magnitude gain  

The gain magnitude is found to be smaller when choosing the two blocks form (two 

blocks in the diagonal) rather than only one main block, since the gain ended being bigger 

in both permutations B1 and B2. 

In the first permutation (B1), the smallest gain was K2 with a magnitude of 1.7401. This 

smallest gain happens to be the same in the second permutation (B2), but in this case, it 

was K1 (the upper block case). 

Individual and Overall eigenvalue sensitivity 
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Apart for from the EV 𝜆2, the smallest individual sensitivities were with upper block case 

in the second permutation (B2) with S(𝜆1) = 2.3176 and S(𝜆3,4) = 5.2349, while the 

smallest overall and the individual sensitivity of 𝜆2 were with upper block case of the 

first permutation (B1) with S(𝑉) = 12.7424 and S(𝜆2) = 2.2140. 

Robust stability measures M2 and M3 

The robust stability measures M2 was found to be the biggest with upper block case with 

𝑀2 = 7.84781𝑒 − 05 for 𝜆2 , and M3 = 4,5167118e-04 for both B1 and B2.  

Relative change 

The values of the relative change aren’t that different from the previous case. Thus, the 

same results and comment. 

Time Response  

a. for the first input of B 

The rise time was the smallest in the two blocks from mainly in the upper block case of 

B1 the lower block case of B2with RT = 27.2481s. 

The settling time was the smallest in the upper block case of B1 and the lower block case 

of B2 with ST = 2.9382e+03.  

The smallest undershoot (0.1033) was obtained with the one block form of B2. 

b. for the second input of B 

The smallest rise time was with the upper block case in B2 with RT = 1.7067s. 

The settling time was the smallest with the upper block case in B2 with ST = 2.6997s. 

Here too, in most of the cases there was no overshoot nor undershoot. 

Case 𝜆2 = -0. 1 

Feedback gain magnitude 
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The gain magnitude is found to be smaller when choosing the two blocks form (two 

blocks in the diagonal) rather than only one main block, since the gain ended being bigger 

in both permutations B1 and B2. 

In the first permutation (B1), the smallest gain was K2 with a magnitude of 1.7784. This 

smallest gain happens to be the same in the second permutation (B2), but in this case, it 

was K1 (the upper block case).  

Individual and Overall eigenvalue sensitivity 

The smallest overall and the individual sensitivities of 𝜆1 and  𝜆2were with upper block 

case of the first permutation (B1) with S(𝑉) = 12.9784, S(𝜆1) = 2.3254 and S(𝜆2) = 

2.2573. For the complex pair, the smallest individual sensitivities were with upper block 

case in the second permutation (B2) with S(𝜆3,4) = 5.2347.  

Robust stability measures M2 and M3 

The robust stability measures M2 and M3 were found to be the biggest with upper block 

case of B1 with 𝑀2 = 7.70511𝑒 − 03 for 𝜆2  and M3 = 0.04430.  

Relative change 

Here too, the values of the relative change are approximately the same as in the previous 

cases.  

Time Response  

a. for the first input of B 

The rise time was the smallest in the two blocks form, mainly in the upper block case of 

B1 with RT = 0.0453s. 

The settling time was the smallest in the upper block case of ST = 3.4087.  

The smallest undershoot (11.8703) was with the one block form in B2. 

b. for the second input of B 
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The smallest rise time was with the single block configuration with RT = 0.16257s for 

the first permutation. 

The settling time was the smallest with the upper block case in B2 with ST = 2.6902s. 

Apart from the one block form in B1 in which there was a big overshoot of 65.4233, 

mostly in all the other cases there was no overshoot nor undershoot. 

 

Comparison between the 3 cases of 𝝀𝟐 

In terms of gain magnitude, the smallest gain was obtained when pushing the EV 𝜆2 

closer to the jω-axis, meaning that the best case was with 𝜆2 = 0.001. 

The overall EV sensitivity was the smallest in the second case too (case 𝜆2 = −0.001). 

Also, the same for all the individual eigenvalues sensitivity, apart from the complex 

pair’s sensitivity which was smaller in the third case (case 𝜆2 = −0.001). 

The robust stability measures were bigger in the third case, meaning when pushing the 

EV 𝜆2 away from the jω-axis (away from the unstable region too). 

For the time response, the settling and rise time are smaller when moving the EV 𝜆2  

away from the jω-axis (case 𝜆2 = −0.1), but the overshoot/undershoot is smaller when 

pushing it toward it (case 𝜆2 = −0.001).  

5.2.6 Conclusion 

    Overall the two block forms are the best choice in terms of feedback gain magnitude, 

individual and overall EV sensitivity, robust performance, stability measures M2 and M3 

and time response. Thus, going for a bigger number of blocks would be a better choice 

for the previously stated design criteria. However, the movement of the closest 

eigenvalue to the jω-axis away from that axis, improves only the time response 

characteristics (in terms of rise and settling time), robust stability measures M2 and M3, 

and degrades the other characteristics. The reverse happens when moving it closer the 

imaginary axis instead.  
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5.3 State Feedback design using Block Controller Form 

A controlled MIMO system has an infinite number of state feedback controllers that may 

be found which will provide the required stability characteristics. Consequently, an 

alternative and very powerful method for designing a state feedback controller for 

stabilizing systems is the right blocks/ left blocks/ right and left blocks pole placement 

method. The method is based on the manipulation of the equations of motion in block 

state space form and makes full use of the appropriate computational tools in the 

analytical process. The forms of block poles (Solvents) are not unique, but we restricted 

our study to the case of the canonical forms (diagonal, controllable and observable). 

The dimension of the matrix A of our system is 4×4 and the number of inputs is 2.  

The rank of the reachability matrix 𝑤𝑟  = [ 𝐵 𝐴𝐵]  is 4 (full rank) 

a. The number 
𝑛

𝑚
=

4

2
= 2 is an integer. 

b. The system is reachable of index 𝑙 = 2. 

Therefore, we can convert the system into block controller form by the following 

transformation matrix Tc: 

𝑇𝑐 = [

0.0002 −0.0013 −0.4004 0.0416
0.0000 0.0003 0.1025 −0.0005
0.0171 0.4022 0.0957 −0.0185
0.0058 −0.1023 −0.0245 0.0047

] 

where 𝑇𝑐 = [
𝑡𝑐1
𝑡𝑐1𝐴

]   ;  𝑤𝑟 = [𝐵 𝐴𝐵]  ; 𝑡𝑐1 = [02 𝐼2]𝑤𝑟
−1 

we obtain the following: 

𝐴𝑐 = [

0 0 1 0
0 0 0 1

0.0665 7.9811 −3.6266 −11.8852
−0.0372 −7.4150 −0.0429 −0.7944

] 
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𝐵𝑐 = [
02

𝐼2
] = [

0 0
0 0
1 0
0 1

] 

𝐶𝑐 = [−0.4674 −35.0101 −3.2290 −12.2020] 

5.3.1 State Feedback Design Using Right Solvents in Diagonal Form 

• Construction of the feedback gain matrix: 

The desired right block poles in diagonal form are constructed as follows:  

𝑅1 = (
−1.5 0.75
−0.75 −1.5

 )       𝑅2 = ( 
−6.00 0

0 −0.01
) 

where the desired eigenvalues are 𝜆1,2,3,4 = {−6.00,−0.01,−1.5 ± 𝑗0.75} 

and Such that: R1 consists of the eigenvalues: −1.5 ± 𝑗0.75                                                

and R2 consists of the eigenvalues: −6.00,−0.01 .  

Then we have to construct the matrix coefficients of the desired characteristic matrix 

polynomial:  𝐷𝑑(𝜆) = 𝐼𝜆2 + 𝐷𝑑1𝜆 + 𝐷𝑑2 

Such that: [𝐷𝑑2, 𝐷𝑑1] = −[𝑅1
2, 𝑅2

2]𝑉𝑅
−1 where the right block Vandermonde matrix 

                𝑉𝑅 = [
𝐼2 𝐼2
𝑅1 𝑅2

] = [

1 0 1 0
0 1 0 1

−1.5 0.75 −6.0 0
−0.75 −1.5 0 −0.01

] 

              [𝐷𝑑2, 𝐷𝑑1] = [
12.2912 0.0254 8.0485 2.5412
−2.0385 0.0095 −0.3398 0.9615

] 

Then by applying equation (3.5) we obtain Kc: 

              𝐾𝑐 = [
12.2247 8.0065 4.4219 −9.3440
−2.0758 −7.4055 −0.3827 0.1671

] 

       𝐾 = 𝐾𝑐𝑇𝑐 = [
0.0230 2.7216 −3.4227 0.3794

−0.0056 −0.1708 0.0318 −0.0752
] 

The norm of the feedback gain matrix is ||𝐾|| = 4.3915 
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Robustness: 

Robust stability: Robust stability is determined using the measures defined in the 

previous section. First, we find the norms of the left and right eigenvectors associated to 

each eigenvalue. The right eigenvector matrix associated to the closed-loop system (A-

BK) is: 

𝑉 = [

−0.9852 0.0112 −0.8574 + 0𝑗 −0.8574 + 0𝑗
−0.0485 −0.0216 0.0431 + 0.0229𝑗 0.0431 − 0.0229𝑗
0.005 −0.1033 0.0388 + 0.0331𝑗 0.0388 − 0.0331𝑗
0.1647 −0.9943 0.4563 + 0.2272𝑗 0.4563 − 0.2272𝑗

] 

||𝑉|| = 1.7474 

The left eigenvector matrix associated to the closed-loop system (A-BK) has norm equal 

to: 

||𝑇|| = ||𝑉−1|| = 95.9165 

Then the overall sensitivity is equal to: 

𝑆(𝑉) =  ||𝑉||||𝑉−1|| = 197.6044 

• The norms of all the right eigenvectors are equal to 1, and the associated left 
eigenvectors have norms as follows: 

||𝑡1|| = 27.9395, ||𝑡2|| = 19.7933, ||𝑡3|| = 64.1534, ||𝑡4|| = 64.1534 

• The sensitivity of each individual eigenvalue is: 

𝑠(𝜆𝑖) = {27.9395, 19.7933, 64.1534, 64.1534} 

Now the stability measures are: 

1) 𝑀2 = (𝑆(𝑉))−1|𝑅𝑒{𝜆2}| = 5.9664e − 05 

2) 𝑀3 = 𝑚𝑖𝑛0≤𝑖≤4 {(𝑆(𝜆𝑖))
−1

|𝑅𝑒{𝜆𝑖}|} = 5.0522e − 04 

Robust Performance: 

The following is a random small perturbation applied to state feedback matrix (A-BK) 

using MATLAB software: 
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A′ =  [

0.2290 0.5383 0.1067 0.8173
0.9133 0.9961 0.9619 0.8687
0.1524 0.0782 0.0046 0.0844
0.8258 0.4427 0.7749 0.3998

] 

Then the eigenvalues of the matrix (A-BK+A’) are: 

𝜆1,2,3,4 = {−5.9991,−0.0102,−1.5002 ± 𝑗0.7503} 
 

The relative change of each eigenvalue is given below by the following: 
 

𝑟𝑖(𝜆𝑖) = {0.0002; 0.0200;   2.14 × 10−4; 2.14 × 10−4} 

Remark: 

With the same procedure of this section, the obtained results for right solvents in 

controller form and observer forms are summarized in tables 5-17 & 5-18 respectively. 

The right solvents in controller form are: 

𝑅1 = (
0 1

−2.8125 −3
 )       𝑅2 = ( 

−6.01 −0.06
1 0

) 

Such that: R1 consists of the eigenvalues: −1.5 ± 𝑗0.75                                                

and R2 consists of the eigenvalues: −6.00,−0.01 .  

The right solvents in observer form are: 

𝑅1 = (
−6.01 1
−0.06 0

 )       𝑅2 = ( 
0 −2.8125
1 −3

) 

Such that: R1 consists of the eigenvalues: −6.00, −0.01                                                  

and R2 consists of the eigenvalues: −1.5 ± 𝑗0.75.  

5.3.2 State Feedback Design Using Left solvents in Controller Form 

• Construction of the feedback gain matrix: 

The desired left block poles in controller form are constructed as follows: 

        𝐿1 = (
0 1

−2.8125 −3
 )       𝐿2 = ( 

−6.01 −0.06
1 0

) 
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where the desired eigenvalues are 𝜆1,2,3,4 = {−6.00,−0.01,−1.5 ± 𝑗0.75} 

and such that: L1 consists of the eigenvalues: −6.00,−0.01                                         

and L2 consists of the eigenvalues: −1.5 ± 𝑗0.75.  

Then we have to construct the matrix coefficients of the desired characteristic matrix 

polynomial:  𝐷𝑑(𝜆) = 𝐼𝜆2 + 𝐷𝑑1𝜆 + 𝐷𝑑2  

Such that: [
𝐷𝑑2

𝐷𝑑1
] = −𝑉𝐿

−1 [
𝐿1

2

𝐿2
2] where 

the left block Vandermonde matrix 𝑉𝐿 = [
𝐼2 𝐿1

𝐼2 𝐿2
] = [

1.00 0.00 0 1.00
0.00 1.00 −2.8125 −3.00
1.00 0.00 −6.01 −0.06
0.00 1.00 1.00 0.00

] 

              [𝐷𝑑2, 𝐷𝑑1] = [
7.1998 1.2318 7.2418 0.2473

−1.2318 −0.1873 −4.3873 1.7682
] 

Then by applying equation (3.5) we obtain Kc: 

              𝐾𝑐 = [
7.1333 9.2129 3.6152 −11.6379

−1.2690 −7.6023 −4.4302 0.9738
] 

       𝐾 = 𝐾𝑐𝑇𝑐 = [
−0.0050 2.6385 −1.2814 0.1709
−0.0701 −1.8823 −0.7187 0.0372

] 

The norm of the feedback gain matrix is ||𝐾|| = 3.3150 

Robustness: 

Robust stability: Robust stability is determined using the measures defined in the 

previous section. First, we find the norms of the left and right eigenvectors associated to 

each eigenvalue. The right eigenvector matrix associated to the closed-loop system (A-

BK) is: 

𝑉 = [

−0.9833 −0.8576 + 0𝑗 −0.8576 + 0𝑗 0.0112
−0.0777 0.0443 + 0.0010𝑗 0.0443 − 0.0010𝑗 −0.0206
−0.0220 0.0472 + 0.0207𝑗 0.0472 − 0.0207𝑗 −0.1079
−0.1631 0.4560 + 0.2279𝑗 0.4560 + 0.2279𝑗 −0.9939

] 
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||𝑉|| = 1.7495 

The left eigenvector matrix associated to the closed-loop system (A-BK) has norm equal 

to: 

||𝑇|| = ||𝑉−1|| = 234.1382 

Then the overall sensitivity is equal to: 

𝑆(𝑉) =  ||𝑉||||𝑉−1|| = 409.6260 

• The norms of all the right eigenvectors are equal to 1, and the associated left 
eigenvectors have norms as follows: 

||𝑡1|| = 48.6598, ||𝑡2|| = 58.7224, ||𝑡3|| = 158.842, ||𝑡4|| = 158.842 

• The sensitivity of each individual eigenvalue is: 

𝑠(𝜆𝑖) = {48.6598, 58.7224, 158.842, 158.842} 

Now the stability measures are: 

1) 𝑀2 = (𝑆(𝑉))−1|𝑅𝑒{𝜆2}| = 2.4413e − 04 

2) 𝑀3 = 𝑚𝑖𝑛0≤𝑖≤4 {(𝑆(𝜆𝑖))
−1

|𝑅𝑒{𝜆𝑖}|} = 1.7000e − 04 

Robust Performance: 

The previous small perturbation is applied to state feedback matrix (A-BK). 

Then the eigenvalues of the matrix (A-BK+A’) are: 

𝜆1,2,3,4 = {−6.0022,−0.0102,−1.4989 ± 𝑗0.7498} 
 

The relative change of each eigenvalue is given below by the following: 
 

𝑟𝑖(𝜆𝑖) = {3.3333 × 10−4;  0.0200;   6.6667 × 10−4;   6.6667 × 10−4} 

Remark: 

With the same procedure of this section, the obtained results for left solvents in diagonal 

form and observer forms are summarized in tables 5-16 & 5-18 respectively. 

The left solvents in diagonal form are: 
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𝐿1 = (
−1.5 0.75
−0.75 −1.5

 )       𝐿2 = ( 
−6 0
0 −0.01

) 

Such that: L1 consists of the eigenvalues: −1.5 ± 𝑗0.75                                                

and L2 consists of the eigenvalues: −6.00,−0.01.  

The left solvents in observer form are: 

𝐿1 = (
−6.01 1
−0.06 0

 )       𝐿2 = ( 
0 −2.8125
1 −3

) 

Such that: L1 consists of the eigenvalues: −6.00,−0.01                                                  

and L2 consists of the eigenvalues: −1.5 ± 𝑗0.75.  

5.3.3 State Feedback Design Using Right and Left solvents in 

Observer Form  

 

• Construction of the feedback gain matrix: 

The desired right and left block poles in observer form are constructed as follows: 

        𝑅 = (
−6.01 1
−0.06 0

 )       𝐿 = ( 
0 −2.8125
1 −0.01

) 

where the desired eigenvalues are 𝜆1,2,3,4 = {−6.00,−0.01 − 1.5 ± 𝑗0.75} 

and such that: R consists of the eigenvalues: −6.00,−0.01                                           

and L consists of the eigenvalues: −1.5 ± 𝑗0.75.  

For the case of right and left solvents, equation (3.4) must equivalent to following 

equation: 

𝐷(𝜆) = (𝜆𝐼 − 𝐿)(𝜆𝐼 − 𝑅) = 𝐼𝜆2 + (−𝐿 − 𝑅)𝜆 +  𝐿𝑅 

Such that: {
𝐴1 + 𝐾𝑐1 = −𝐿 − 𝑅

𝐴2 + 𝐾𝑐2 = 𝐿𝑅
 

Then we obtain Kc: 
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              𝐾𝑐 = [
0.1022 7.9811 2.3834 −10.0727
−5.8672 −6.4150 −0.9829 2.2056

] 

       𝐾 = 𝐾𝑐𝑇𝑐 = [
−0.0180 1.9914 1.2516 −0.0912
−0.0047 −0.6156 1.5441 −0.2128

] 

      The norm of the feedback gain matrix is ||𝐾|| = 2.3920 

Robustness: 

Robust stability: Robust stability is determined using the measures defined in the 

previous section. First, we find the norms of the left and right eigenvectors associated to 

each eigenvalue. The right eigenvector matrix associated to the closed-loop system (A-

BK) is: 

𝑉 = [

0.9833 −0.8576 + 0𝑗 −0.8576 + 0𝑗 0.0112
−0.0777 0.0443 + 0.0010𝑗 0.0443 − 0.0010𝑗 −0.0206
−0.0220 0.0472 + 0.0207𝑗 0.0472 − 0.0207𝑗 −0.1079
−0.1631 0.4560 + 0.2279𝑗 0.4560 + 0.2279𝑗 −0.9939

] 

||𝑉|| = 1.7476 

The left eigenvector matrix associated to the closed-loop system (A-BK) has norm equal 

to: 

||𝑇|| = ||𝑉−1|| = 244.1199 

Then the overall sensitivity is equal to: 

𝑆(𝑉) =  ||𝑉||||𝑉−1|| = 426.6152 

• The norms of all the right eigenvectors are equal to 1, and the associated left 
eigenvectors have norms as follows: 

||𝑡1|| = 11.1127, ||𝑡2|| = 77.4321, ||𝑡3|| = 163.777, ||𝑡4|| = 163.777 

• The sensitivity of each individual eigenvalue is: 

𝑠(𝜆𝑖) = {11.1127, 77.4321, 163.777, 163.777} 

Now the stability measures are: 

1) 𝑀2 = (𝑆(𝑉))−1|𝑅𝑒{𝜆2}| = 2.3440e − 05 
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2) 𝑀3 = 𝑚𝑖𝑛0≤𝑖≤4 {(𝑆(𝜆𝑖))
−1

|𝑅𝑒{𝜆𝑖}|} = 1.2901e − 04 

Robust Performance: 

The previous small perturbation is applied to state feedback matrix (A-BK). 

Then the eigenvalues of the matrix (A-BK+A’) are: 

𝜆1,2,3,4 = {−5.9993,−0.0088,−1.5008 ± 𝑗0.7498} 
 

The relative change of each eigenvalue is given below by the following: 
 

𝑟𝑖(𝜆𝑖) = {1.1667 × 10−4;  0.12;   4.91 × 10−4;   4.91 × 10−4} 

Remark: 

With the same procedure of this section, the obtained results for right and left solvents in 

diagonal form and controller forms are summarized in tables 5-16 & 5-17 respectively. 

where the right and left solvents in diagonal form are: 

𝑅 = (
−1.5 0.75
−0.75 −1.5

 )       𝐿 = ( 
−6 0
0 −0.01

) 

Such that: L consists of the eigenvalues: −1.5 ± 𝑗0.75                                                 

and R consists of the eigenvalues: −6.00,−0.01.  

The right and left solvents in controller form are: 

𝑅 = (
0 1

−2.8125 −3
 )       𝐿 = ( 

−6.01 −0.06
1 0

) 

Such that: R consists of the eigenvalues: −6.00,−0.01                                                  

and L consists of the eigenvalues: −1.5 ± 𝑗0.75.  
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Results summary: 

• Diagonal Form 

 

Table 5-16 Diagonal Form Results Summary 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Diagonal form  

2 Rights 

Solvents 

2 Lefts 

Solvents 

Right & 

Left 

Solvents 

K1 K2 K3 

||K|| 4.3915 4.3387 3.8683 

𝑆(𝑉) 167.6044 482.9884 142.6934 

R
o
b

u
st

 s
ta

b
il

it
y
 

 
 
 
 

𝑠(𝜆𝑖) 

-6.0 27.9395 29.1998 38.5332 

-0.01 19.7933 76.0885 12.0739 

−1.5
+ 𝑗0.75 

64.1534 186.9085 52.5446 

−1.5
− 𝑗0.75 

64.1534 186.9085 52.5446 

M2 5.9664e-05 2.0704e-05 7.0080e-05 

 

M3 5.0522e-04 1.3108e-04 8.2787e-04 

R
o
b

u
st

 p
er

fo
rm

a
n

ce
 

 

 
 
 
 

𝑟𝑖(𝜆𝑖) 

-6.0 0.0002 1.16 e-04 2.33 e-04 

-0.01 0.0200 0.03 0.05 

-1.5+0.75i 2.14e-04 3.77 e-04 2.98e-04 

-1.5-0.75i 2.14 e-04 3.77e-04 2.98e-04 
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• Controller Form 

               Table 5-17 Controller Form Results Summary 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Controller form  

2 Rights 

Solvents 

2 Lefts 

Solvents 

Right & Left 

Solvents 

K4 K5 K6 

||K|| 3.0557 3.3150 2.4059 

𝑆(𝑉) 205.7081 409.6260 95.1026 

R
o
b

u
st

 s
ta

b
il

it
y
 

 
 
 
 

𝑠(𝜆𝑖) 

-6.0 5.3578 48.6598 30.0311 

-0.01 35.4676 58.7224 8.0311 

−1.5
+ 𝑗0.75 

79.9771 158.8421 34.2491 

−1.5
− 𝑗0.75 

79.9771 158.8421 34.2491 

M2 4.8613e-05 2.4413e-05 1.0515e-04 

M3 2.8195e-04 1.7000e-04 0.0012 
 

R
o
b

u
st

 p
er

fo
rm

a
n

ce
 

 

 
 
 
 

𝑟𝑖(𝜆𝑖) 

-6.0 6.6667e-04 3.3333 e-04 3.8333 e-04 

-0.01 0.0500 0.02 0.01 

-1.5+0.75i 1.78 e-04 6.6666 e-04 9.0000 e-04 

-1.5-0.75i 1.78 e-04 6.6666 e-04 9.0000 e-04 
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• Observer From 

 

Table 5-18  Observer Form Results Summary 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Observer form  

2 Rights 

Solvents 

2 Lefts 

Solvents 

Right & Left 

Solvents 

K7 K8 K9 

||K|| 3.4658 3.4285 2.3920 

𝑆(𝑉) 138.7501 201.9087 426.6152 

R
o
b

u
st

 s
ta

b
il

it
y
 

 
 
 
 

𝑠(𝜆𝑖) 

-6.0 18.6887 45.4315 11.1127 

-0.01 28.1662 21.2768 77.4321 

−1.5
+ 𝑗0.75 

52.6906 76.5988 163.7778 

−1.5
− 𝑗0.75 

52.6906 76.5988 163.7778 

M2 7.2072e-05 4.9527e-05 2.3440e-05 

M3 3.5504e-04 4.6989e-04 
 

1.2901e-04 
 

R
o
b

u
st

 p
er

fo
rm

a
n

ce
 

 

 
 
 
 

𝑟𝑖(𝜆𝑖) 

-6.0 2e-04 3.3333e-04 1.1667e-04 

-0.01 0.06 0.05 0.12 

-1.5+0.75i 1.3333e-
04 

4.8074e-
04 

4.91e-04 

-1.5-0.75i 1.3333e-
04 

4.8074e-
04 

4.91e-04 
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5.3.4 Time response results 

The following part summarize the time specifications (Settling time TS, Rise time Tr, 

Overshoot/Undershoot) to the step response to both inputs of the system. 

 

Remarks about the table and figures: 

• The response due to the first input (b1) is shown first while the response due to 

the second input (b2) is shown second. 

• For each case of solvents there are nine resulting state feedback gains. Thus, 

there are nine closed loop systems. These systems are labelled as follows: 

GKi: is for the closed loop system obtained using the state feedback gain Ki for 

i=1,..,9. 

• The response for the original system is also shown with its information and is 

referred to as G. 

 

 

Table 5-19 Time Response results 

System Step info for S (1,1) Step info for S (1,2) 

G 

  

GK1 
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GK2 

  

GK3 

 
 

GK4 

 
 

GK5 

 
 

GK6 
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GK7 

 
 

GK8 

 
 

GK9 
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Figure 5-7 the response due to the first input -b1 
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Figure 5-8 the response due to the second input -b2 

5.3.5 Discussion 

The discussion will be based on the following criteria: 

• For feedback gains, small gains are desirable because they minimize noise 

amplification.  
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• For time specifications, the smaller the settling time, smaller rise time, smaller 

overshoot/undershoot the better in time response.  

• For the sensitivities of the eigenvalues, we choose the one that has the lowest 

sensitivity. 

• For the robust stability the greater the value of its measure the more robustly 

stable the system. 

• For robust performance, the smaller the value of relative change the better the 

performance. 

In order to do a comparison study between left/ right/ left and right solvents placement 

we gather the preceding results in tables as shown below. To make the analysis easier 

and be clear, tables 5-16, 5.-17 ,5-18, 5.-19 can be summarized into table: 5-20 & 5-21 

 

Table 5-20 Comparative study between solvents in terms of gain, sensitivity and robustness 

 

 Diagonal form  Controller form  Observer form 
||K|| 1 Left 1 Right 

Solvent 

1 Left 1 Right 

Solvent 

1 Left 1 Right 

Solvent 

𝑆(𝑉) 1 Left 1 Right 

Solvent 

1 Left 1 Right 

Solvent 

Right Solvents 

Robust 

stability 
𝑠(𝜆𝑖) 1 Left 1 Right 

Solvent 

1 Left 1 Right 

Solvent 

Right Solvents 

M2 1 Left 1 Right 

Solvent 

1 Left 1 Right 

Solvent 

Right Solvents 

M3 1 Left 1 Right 

Solvent 
1 Left 1 Right 

Solvent 

Left Solvents 

Robust 

performance 

𝑟𝑖(𝜆𝑖) 
Right Solvents Right Solvents Right Solvents 
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Table 5-21 Comparative study between solvents in terms of time specifications 

 

From table 5-20 we conclude that the best control design in terms of feedback gain, 

sensitivity and robustness: 

• For the diagonal form the design using 1 right and 1 left solvent is recommended 

and more suitable. 

• For the controller form the design using 1 right and 1 left solvent is recommended 

and more suitable. 

• For the observer form the design using rights solvents is recommended and 

suitable. 

From table 5-21 we conclude that the best design in terms of time response: 

• For a best settling time, using right solvents is suitable. 

• For a best rise time, using either right or left is recommended. 

• For a small overshoot/ undershoot, using left solvents is suitable. 

5.3.6 Conclusion  

       The choice of feedback gain matrix is done by the comparison between the three 

forms of the block poles in terms of best response characteristics and system 

robustness. In our case we can say that the choice between left/ right/ left & right 

solvents is made according to the form of these solvents. We can conclude that the 

 
Diagonal form  Controller 

form  
Observer 

form 
 

 

Time 

specifications 

 

TS Right Solvents 

 

1 Left 1 Right 

Solvents 

Right Solvents 

 

Tr 1 Left 1 Right 

Solvents 

Right Solvents 

 
Left Solvents 

Overshoot/ 

undershoot 

Left Solvents Left Solvents Right Solvents 
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choice of the feedback gain matrix is made according to the application itself from a 

desirable system’s response hence we are providing the designer a flexibility to 

choose the best depending on the specified need. 

5.3.7     Effect of moving the dominant pole from/to the jω-axis  

    When a pole (or pole pair) is further to the left into the negative s-plane, the real 

component will be a large negative number and so the decay will be rapid. Conversely if 

a pole or pole pair is close to the imaginary axis, sigma is negative but not very large so 

the response decays much less rapidly. Hence the response of the system is dominated 

by poles or pole pairs close to the imaginary axis. Now the eigenvalue 𝜆2 is the closest 

to the 𝑗𝜔-axis. It’s being pushed closer to and away from the imaginary axis to investigate 

the effect of this pole’s placement on the previous sited criteria. 

The following tables summarizes the obtained results in terms of state feedback gain, 

sensitivity and robustness for the new placement of the eigenvalue 𝜆2 = −0.01 (the same 

previous design procedure). 
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5.3.7.1 Case 1: 𝝀𝟐= − 𝟎. 𝟏  

• Diagonal Form 

 

Table 5-22 Diagonal Form Results Summary case 𝜆2= − 0.1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Diagonal form  

2 Rights 

Solvents 

2 Lefts 

Solvents 

Right & 

Left 

Solvents 

K1 K2 K3 

||K||     4.4254 
 

    4.4041 3.8689 

𝑆(𝑉)   172.5939   535.8998 
  

144.0884 

R
o
b

u
st

 s
ta

b
il

it
y
 

 
 
 
 

𝑠(𝜆𝑖) 

-6.0    28.2343    33.6084    38.5332 

-0.1    21.2986    87.0032    12.6699 
 

−1.5
+ 𝑗0.75 

65.0177   203.6481    52.3102 

−1.5
− 𝑗0.75 

65.0177   203.6481 
  

   52.3102 

M2 5.7939e-04 1.8660e-04 
 

   6.9402e-04 

M3     0.0047     0.0011 0.0079 

R
o
b

u
st

 p
er

fo
rm

a
n

ce
 

 

 
 
 
 

𝑟𝑖(𝜆𝑖) 

-6.0 1.4516e-04    1.3874e-
04 

2.2945e-04 

-0.1     0.0021 0.0032 0.0052 

-1.5+0.75i 2.3400e-04 4.1437e-04 3.1432e-04 

-1.5-0.75i 2.3400e-04 4.1437e-04 3.1432e-04 
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• Controller Form 

Table 5-23 Controller Form Results Summary case λ2 = -0.1 

 

 

 

 
Controller form  

2 Rights 

Solvents 

2 Lefts 

Solvents 

Right & Left 

Solvents 

K4 K5 K6 

||K|| 3.2513 3.6186 2.3077 

𝑆(𝑉) 227.2524 496.1741 112.5588 

R
o
b

u
st

 s
ta

b
il

it
y
 

 
 
 
 

𝑠(𝜆𝑖) 

-6.0 5.7381 58.2382 30.7830 

-0.1 40.5504 73.2688 12.3308 

−1.5
+ 𝑗0.75 

86.6896 188.9880 42.0090 
 

−1.5
− 𝑗0.75 

86.6896 188.9880 42.0090 
 

M2 4.4004e-04 2.0154e-04 8.8842e-04 

M3 0.0025 0.0014 0.0081 

R
o
b

u
st

 p
er

fo
rm

a
n

ce
 

 

 
 
 
 

𝑟𝑖(𝜆𝑖) 

-6.0 6.5738e-05 4.0859e-04 3.3940e-04 

-0.1 0.0051 0.0016 6.9126e-04 

-1.5+0.75i 2.2111e-04 7.4984e-04 5.3799e-04 

-1.5-0.75i 2.2111e-04 7.4984e-04 5.3799e-04 
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• Observer Form 

 

Table 5-24 Observer Form Results Summary case λ2 = -0.1 

 

 

 

 

 
Observer form  

2 Rights 

Solvents 

2 Lefts 

Solvents 

Right & Left 

Solvents 

K7 K8 K9 

||K|| 3.8815 3.7867 2.1302 

𝑆(𝑉) 139.3179 206.1877 327.2328 

R
o
b

u
st

 s
ta

b
il

it
y
 

 
 
 
 

𝑠(𝜆𝑖) 

-6.0 28.7905 53.5639 12.2558 

-0.1 30.8743 19.1941 60.8189 
 

−1.5
+ 𝑗0.75 

51.5823 75.4486 123.5061 

−1.5
− 𝑗0.75 

51.5823 75.4486 123.5061 

M2 7.1778e-04 4.8499e-04 3.0559e-04 

 

M3 0.0032 
 

0.0052 0.0016 

R
o
b

u
st

 p
er

fo
rm

a
n

ce
 

 

 
 
 
 

𝑟𝑖(𝜆𝑖) 

-6.0 2.9302e-04 3.6359e-04 1.4343e-04 

-0.1 0.0069 0.0069 
 

0.0088 

-1.5+0.75i 2.7383e-04 4.8452e-04 4.8305e-04 

-1.5-0.75i 2.7383e-04 4.8452e-04 4.8305e-04 
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• Time specifications 

Table 5-25 Time Response results case λ2 = -0.1 

Syste

m 

Step info for S (1,1) Step info for S (1,2) 

GK1 

 
 

GK2 

 
 

GK3 

  

GK4 
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GK5 

  

GK6 

  

GK7 

  

GK8 

 
 

GK9 
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Figure 5-9 The response due to the first input b-1 case λ2= -0.1 
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Figure 5-10 The response due to the second input b-2 case λ2= -0.1 

 

5.3.7.2 Case 2: 𝝀𝟐 = −𝟎. 𝟎𝟎𝟏 

• Diagonal form  
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Table 5-26 Diagonal Form results case λ2 = -0.001 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Diagonal form  

2 Rights 

Solvents 

2 Lefts 

Solvents 

Right & 

Left 

Solvents 

K1 K2 K3 

||K|| 4.3884     4.3328     3.8682 

𝑆(𝑉) 167.1422   478.2137      142.5549 

R
o
b

u
st

 s
ta

b
il

it
y
 

 
 
 
 

𝑠(𝜆𝑖) 

-6.0 27.9122 28.7963    38.5332 

-0.001 19.6623 75.1458    12.0215 
 

−1.5
+ 𝑗0.75 

64.0742   185.3810    52.5660 

−1.5
− 𝑗0.75 

64.0742   185.3810    52.5660 

M2 5.9829e-06    2.0911e-06 7.0148e-06 

M3    5.0859e-
05 

 1.2960e-05      8.2808e-05 

R
o
b

u
st

 p
er

fo
rm

a
n

ce
 

 

 
 
 
 

𝑟𝑖(𝜆𝑖) 

-6.0    1.4594e-
04 

1.1845e-04    2.2945e-04 

-0.001 0.2180     0.3124     0.5473 
  

-1.5+0.75i 2.2849e-04 3.7025e-04    3.0683e-04 

-1.5-0.75i 2.2849e-04 3.7025e-04    3.0683e-04 
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• Controller Form  

 

 

             Table 5-27 Controller Form results case λ2 = -0.001 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Controller form  

2 Rights 

Solvents 

2 Lefts 

Solvents 

Right & Left 

Solvents 

K4 K5 K6 

||K||     3.0386     3.2892     2.4206 

𝑆(𝑉)   203.8608   402.5157 
  

   94.0467 

R
o
b

u
st

 s
ta

b
il

it
y
 

 
 
 
 

𝑠(𝜆𝑖) 

-6.0     5.3239    47.8571 
 

   30.2996 

-0.001    35.0448    57.5645 
 

    7.6608 

−1.5
+ 𝑗0.75 

   79.4014   156.3518    33.6818 

−1.5
− 𝑗0.75 

   79.4014   156.3518    33.6818 

M2 4.9053e-06 
 

 2.4844e-06 
  

1.0633e-05 

M3  2.8535e-05  1.7071e-05 
 

1.3245e-04 

 

R
o
b

u
st

 p
er

fo
rm

a
n

ce
 

 

 
 
 
 

𝑟𝑖(𝜆𝑖) 

-6.0  6.4760e-05 
 

3.5e-04    3.4644e-04 

-0.001     0.4680 0.2     0.0608 

-1.5+0.75i    2.0717e-
04 

6.6667e-04    5.5345e-04 

-1.5-0.75i    2.0717e-
04 

6.6667e-04    5.5345e-04 
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• Observer Form 

 

Table 5-28 Observer Form results case λ2 = -0.001 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Observer form  

2 Rights 

Solvents 

2 Lefts 

Solvents 

Right & Left 

Solvents 

K7 K8 K9 

||K||     3.4309     3.3979     2.4355 

𝑆(𝑉)   138.8385   201.8651   437.0383 
 

R
o
b

u
st

 s
ta

b
il

it
y
 

 
 
 
 

𝑠(𝜆𝑖) 

-6.0    17.8224 
 

   44.7262    10.9721 
 

-0.001    27.9449 
  

   21.5160 
 

   79.1015 

−1.5
+ 𝑗0.75 

   52.8491    76.8252   168.0810 

−1.5
− 𝑗0.75 

   52.8491    76.8252   168.0810 

M2  7.2026e-06  4.9538e-06    2.2881e-06 

M3  3.5785e-05  4.6369e-05 1.2511e-05 

R
o
b

u
st

 p
er

fo
rm

a
n

ce
 

 

 
 
 
 

𝑟𝑖(𝜆𝑖) 

-6.0  1.9275e-04 
 

 3.3430e-04 1.1667e-04 

-0.001     0.5465     0.4793 0.8 

-1.5+0.75i  1.3870e-04  4.5492e-04    3.0683e-04 

-1.5-0.75i  1.3870e-04  4.5492e-04    3.0683e-04 
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• Time Specifications 

 

Table 5-29 Time response results case λ2 = -0.001 

 System Step info for S (1,1) Step info for S (1,2) 

GK1 

 
 

GK2 

 
 

GK3 

  

GK4 
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GK5 

  

GK6 

  

GK7 

 
 

GK8 

  

GK9 
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Figure 5-11 The response due to the first input b-1 case λ2= -0.001 



Chapter 5                                                                                  Simulation and results 

 

96 

 

 

Figure 5-12 The response due to the second input b-2 case λ2= -0.001 

 

• Discussion 

Based on the data collected in tables (5-16, 5-17, 5-18, 5-19, 5-22, 5-23, 5-24, 5-25, 5-

26, 5-27, 5-28, 5-29) and figures (5-7, 5-8, 5-9, 5-10, 5-11, 5-12) we can conclude that: 
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• For the state feedback gains, moving away from jω-axis would increase the state 

feedback gains which will maximize to noise amplification.  

• For time specifications, moving away from jω-axis would reduce the rising time 

and settling time but increases the overshoot/ undershoot. The reverse happens 

when moving it closer instead. 

• For the sensitivities, since the sensitivity has proportional relationship with the 

state feedback gain, we can see clearly that moving away from jω-axis would 

increase the sensitivities (overall sensitivity and individual sensitivity) which 

would maximize modelling inaccuracies and parameter variations. 

• For the robustness, moving away from jω-axis means moving to stable region, 

we can see clearly an increasing in the values of stability measures M2 and M3 as 

well as the robust performance measures (relative changes 𝑟𝑖(𝜆𝑖)), meaning that 

having a more robust system. 
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General conclusion  

    State feedback design, in multivariable control systems, may be achieved using block 

pole assignment. Not only, given a set of desired eigenvalues, the state feedback gain in 

a MIMO system is not unique but the construction of the block poles isn’t either. Thus, 

different resulting state feedback gains means different design characteristics and 

performances.  

    In this thesis the two different canonical forms that have been used to investigate state 

feedback multivariable control design based on similarity transformation gave clear 

results on how one  MIMO system may perform differently in terms of feedback gain 

magnitude, robust stability, robust performance, EV sensitivity, time response and the 

placement of the dominant pole from the way the state feedback gain have designed.   

    In the nine different forms obtained using solvent assignments and the six different 

forms obtained from the general controller form, the latter lead mostly to the best results 

in terms of gain magnitude and robust stability, with the smallest gain magnitudes, 

individual and overall eigenvalue sensitivities, and biggest stability measures M2 and M3. 

However, the fact that there is infinity of ways of assigning the solvents in the block 

companion form, doesn’t mean that the general controller form will always be the one 

leading to the best results. The best robust performance was obtained from the solvent 

assignments with the smallest relative change values. 
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