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Abstract

The state feedback multivariable control design based on eigenvalues assignment is
reviewed and is employed to develop a systematic design procedure to meet the lateral

handling qualities design objectives of a fighter aircraft over a single flight condition.

The objective in this project is to investigate state feedback multivariable control
design based on similarity transformations in terms of feedback gain, robustness and
effect of similarity transformations. The desirable design can be made using two main
transformations block controller form and general controller form. The block controller,
observer and diagonal forms are used among an infinite number of choices of assigning
a set of solvents. In addition to those forms, the general controller form is used directly

to find the resulting state feedbacks.

The similarity transformation provides significant insight into the design process and
plays a pivotal role in the design of state feedback gain magnitude according to the
specified criteria of robustness, sensitivity and time specifications of the feedback

system.

Through this project we would like to give the designer many possibilities to select the
most suitable design depending on the specified need for the flight condition of a fighter

aircraft.
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Chapter 1 Multivariable control systems

1.1 Introduction

This chapter is about reviewing the main concepts of multivariable control systems and

the necessary mathematical fundamentals for the control design and analysis.

1.2 Basic concepts

A system is called a SISO system if it has only one input and output terminals. Starting
from that concept systems with more than one input and/or more than one output are

known as MIMO systems.

() n(®)
=" ——p [ e }:{}y(u ="
) Yo ()

Figure 1-1 MIMO system representation

Here are a few examples of multivariable processes:

* A heated liquid tank where both the level and the temperature shall be controlled.
* A distillation column where the top and bottom concentration shall be controlled.
* A robot manipulator where the positions of the manipulators (arms) shall be controlled.

* A chemical reactor where the concentration and the temperature shall be controlled.
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* A head box (in a paper factory) where the bottom pressure and the paper mass level in

the head box shall be controlled.

Any linear multivariable control system can be described in one of the two forms:
v Internal description: State space description.

v External description: Transfer function description.

In this project, the system under study will be described using state-space description.

1.3 State-space description

A linear MIMO system can be described using a state space description (SSD). This form
is very useful to describe the internal dynamics of a multivariable system through the
concept of state.

The state space description of the system provides a complete picture of the system
structure showing how all of the internal variables Xi (t) (i = 1,2,..., n) interact with one
another, how the inputs Uk (t) (k = 1,2,..., m) affect the system states Xi(t ), and how the
outputs Y j (t) (j=1,2,..., p) are obtained from various combinations of the state-variables
Xi () and the inputs Uk (t).

{x(t) = Ax(t) + Bu(t) (1.1)

y(t) = Cx(t) + Du(t)

A linear state model is formed by a set of first order linear differential equations with

constant coefficient (x(t)) and a set of linear equations (y(t)).

The state at the initial time t, = 0 is xu = x(tp)
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Input vector u output vector y
1 System described by state
u(t) ——> — > w(®)

space variables

urn(t)—> {xl’ X, xn} - > up(t)

- J

Figure 1-2 System inputs and outputs

= D
u—sa—-7p~ B }{1;}{ e C W
A —

Figure 1-3 Block diagram representation of the linear state space equations.

where

x(t) = [x.(t), ...,x,(®)]" is the state vector and x;(t),i = 1,2,...,n are the state
variables.

u(t) = [u (), ..., uy()]" itthe input vector. m refers to the number of inputs.
y(@) = [y1(®), ...,y (®)]" is the output vector. p refers to the number of outputs.

and the system matrices (A, B, C, D) are real, constant, and with dimensions nxn, nxm,

pxn, and pxm, respectively.

In the above model, from Eq. (1.1) x(t) is called the “dynamic equation,” which
describes the “dynamic part” of the system and how the initial system state X(0) and
system input U(t) will determine the system state X(t). Hence matrix A is called the

“dynamic matrix” of the system, and from (1.1), y(?) describes how the system state X(t)
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and system input U(t) will instantly determine system output y(t). This is the “output part”

of the system and is static (memoryless) as compared with the dynamic part of the system.

From the definition of eq (1.1), parameters m and p represent the number of system
inputs and outputs, respectively. f m > 1, then we call the corresponding system “multi-
input.” If p > 1, then we call the corresponding system “multi-output.” A multi-input or
multi-output system is also called a “MIMO system.” On the other hand, a system is

called “SISO” if it is both single-input and single-output. [1]
Definition 1.1 [2]

The state of a system at time to is the amount of information at to that, together with

[to , co]determines uniquely the behavior of the system for all t > to.

1.4 Reachability and Controllability

Definition 1.2 [3]

Reachability 1s the ability of the control input to drive the state x(z) from any initial

condition x(%,) to any final value x(t).
Theorem 1.1
The system described in (1.1) is said to be fully reachable if and only if:
rank (R(4, B)) =n.
where R (A, B) is the reachability matrix and it is given by:
R(A,B)=[B AB A*B A"'B ] (1.2)
Proof: [3]
Definition 1.3 [4]

The dynamic system described by (1.1) or the pair (4,B) is said to be controllable , if

there exists an input uyy, which transfers the initial state x(0) = x, to the zero state

x(t;) = 0 in a finite time t,, the state x, is said to be controllable.

4
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If all initial states are controllable the system is said to be completely controllable.
The solution of (1.1) is:

t
x(t) = e#xo + f et Bu(r)dr (1.3)
0

If the system is controllable, i.e., there exists an input to make x(t;) = x; = Oata

finite time t = t,, then after pre-multiplying by e 4% yields:

t1
Xo = f e A*Bu(r)dr (1.4)
0

Thus, any controllable state satisfies (1.3), and for a completely controllable system,

every state xo € R"™ satisfies t; > 0 and ujg 4.

It is found that complete controllability of a system depends on matrix A and B and is

independent of the output matrix C.
Theorem 1.2 [2]

The n dimensional linear time invariant state equation in (1.1) is controllable if and only

if any of the following equivalent conditions is satisfied:

a. All rows of e 7B are linearly independent on [0, o] over the field of complex
numbers.

b. w(0,t;) = fotl e~ At BBTe=A"td¢ is nonsingular for any t; > 0.
The n X mn controllability matrix @ = [ B AB A*B,....,A" 1B] has rank n.

Proof: |2]
Remarks

- Since the state value x(?) depends on the eigenvalues (modes) of the system, we
can rephrase reachability also as the ability of the control input u(?) to drive the

eigenvalues from any location to any other location.
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- The system is completely (totally, fully) reachable i.e. rank (R(4,B)) = n,
meaning that all the eigenvalues of the system can be relocated by state feedback
using the input.

- If rank (R(4, B)) < n the system is said to be partially reachable and so only
some eigenvalues can be relocated.

- Reachability implies controllability but the inverse is not correct.

1.5 Observability

Definition 1.4 [4]

The dynamical system described by the equations (1.1) or the pair (4,B) is said to be
observable if, for any t; > 0, the initial state x (0) = Xo can be determined from the time
history of the input u(t) and the output y(t) in the interval of [O; t1]. Otherwise, the system
is said to be unobservable.

The output of the system (1.1) is given by:

t
y(t) = CeAtx,y + j Ce*t=DBy(1)dt + Du(7) (1.5)
0

Theorem 1.3: [2]

The n dimensional linear time invariant dynamical equation in (1.1) is observable if and

only if any of the following equivalent conditions are satisfied:

a. All columns of Ce“ are linearly independent on [0, ] over the field of complex
numbers.

b. w(0,t;) = fotl eA"tCTCeAtdt is nonsingular for any ¢; > 0.
The np X p observability matrix ®, = [ C CA CA?,....,CA™ T has rank n.

Proof: [2]
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1.6 MIMO Canonical Forms

A reachable (observable) system can be transformed to canonical representations
pointing out this property. These representations will be useful in illustrating some

control properties, as will be seen later in control design on chapter 5.

For MIMO systems there is possibility of defining some canonical forms. The most well-

known are the following: [3]
1.6.1 Block Controller Form

Definition 1.5: The system is block controllable of index [ if the matrix
w, = [B AB A?B,....,A""1B] has full rank.

where / is the ratio of %, n is the number of columns of the matrix 4 and m is the number

of columns of the matrix B.

The system (1.1) can be transformed into block controller form if the following

conditions are satisfied:

n . .
a. The number —= [ is an integer.

b. The system is controllable of index [.

Letw, = [B AB A?B,....,A""1B]; the system is controllable if rank (w,) = n.

Then we make a change of coordinates

x. = Tyx (1.6)

where
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Tcl
T, A
T, = ) (1.7)
T61Al—2
[T, A1
and
Teg = [0 Opy ... Iy][ BAB ....A""1B] ™1 (1.8)

Then, (1.1) becomes

{xc(t) = Acxc(t) + Bcu(t)

y(t) = C.x.(t) + Du(t) (1.9)

where A, =T.AT. ', B, =T.B and C, = CT,”*
or
0 I . 0 (%
A= ' " LBe=| |andC.=[C C,....C]
0, O A .
‘_Al _Al—l PR _AI- L Im_

0,, the null and I,,, the identity matrices are both m X m, A; and C;(i = 1,2, ..., 1) are

block elements.
1.6.2 Block Observer Form

Definition 1.6: The system is block observable of index q if the matrix

w, =[C CACA?%,....,CAT 1T has full rank.
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where ¢ is the ratio of g, n is the number of columns of the matrix A and p is the number

rows of the matrix C.

The system (1.1) can be transformed into block observer form if the following conditions

are satisfied:

n . .
a. The number; = @ is an integer.

b. The system is observable of index q.

C
CA

Letw, = " |; the system is observable if rank (w,) = n.

-CA.q‘l-

Then we make a change of coordinates

x, =T;x (1.10)
where
TO = [Tol ATOl ....Aq_zTol Aq_lTol] (111)
and
C 7 0p]
CA 0,
T, = . ' (1.12)
LCAT~1] | I, |

Then (1.1) becomes

{xo (t) = Apx,(t) + Bou(t) (1.13)

y(t) = Coxo(t) + Du(t)

9
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where A, =T, *AT,,B, =T, *Band C, = CT,
or
0, Op 0p —A4q By 7
0, I 0, —Ag1 B,
A, = | ' I " [ Bo=| {andC,=1[0,0,....I,].
0, 0, 0, — A,

1.6.3 General Controller form

To convert a MIMO system into general controller form, we must find another similarity
transformation using the reachability matrix R(4, B) = (B AB ... A" ™), where m is the
rank of B. If R(A, B) is full rank, the system is said to be fully reachable.

Now B = [by b, ... b,,] then

R(A, B) = (bl b2 .. 'bm'Abl Abz Abm, . .,An_m bl An_mbz An_mbm) (114)

In the reachability matrix R(A4,B) we look for linearly independent vectors
corresponding to b;, we then record the number of these linearly independent vectors and

are referred to as reachability indices K; or Kronecker indices.
K; is the number of linearly independent vectors corresponding to b;. i = 1,2,...,m.

If the sum of the reachability indices equals to the n, the reachability base matrix P (4, B)

can be constructed. where

P(A,B)
= [by, Aby, A?by, ..., A¥171D, by, Aby, A%b,, ..., A2 "1by, ... ... by, Abyy, A2, ..., A¥m=1D, ]

now a similarity transformation T, can be constructed, such that

x. =T.x (1.16)

T, = [p1, 14, p14%, ..., P AL by, Apy, 0o A%, P2 A% D, DA, D A%, D Alm= 1T (1.17)
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where p; = /" row of P(4,B)™Y,i = 1,2,...,mand 0; = §-=1Kj
Then (1.1) becomes (1.9)
where A, =T.AT.”', B, =T,B and C, = CT,™*

Except matrices are in the forms:

0 1 0 0 0 0
N : (0) (0) : : i

K 00 .. 1|7 x x x x|x x x x X ..
! X X X 0 0 0
A =TeAT " = : B:=1g 4 X

01 .. 0 F L
(0) (0) P 00 . 0]
K x x x X x x x x 0 0 .. 1 S :
" - X X X _0 0 1
Ky Kn-1 Kom

A, has m blocks in controller form on the diagonal of dimensions K; X K; each.
C. is in trivial form.

Remark: as long as m is greater than 1, there would be m! possible permutations of the
columns of the matrix B, and thus there would be a reachability base matrix for each
permutation and consequently a state feedback gain. So, for m inputs there would be m!

state feedback gains.

11



Chapter 2 Elements of Matrix Polynomial Theory

2.1 Introduction

In linear time-invariant single-input single-output systems, the transfer function is a ratio
of two scalar polynomials. The system modelling of physical, linear, time-invariant
multi-input multi-output control systems, results in high degree coupled differential
equations, or an n-th degree m-th order differential equation in the form: [7]

U =XM) + 4, XV + .o+ 4,0, X)) + 4,X(0) @.1)
where Aj € R™™ X O € R™1 represents the i-th derivate of the vector X (t) , and
U (t) € R™ being the input vector.

The output y(t) € RP*!is generally given by a linear equation in the form:

Y(6) = CXO V@) + XM D)+ .. + Cpo XV + C X () (22)

where C; € RP™™,

The Laplace transformation of (2.1) and (2.1) with zero initial conditions results in:

S"X(s) + A SMVIX(s) + ... + 4,X(s) = U(s) (2.3)

and

Y(s) = C;S™1X(s) + C,8™2X(s) + ... + C,X(s) (2.4)

which yields,

Y(s) =[C S 1+ C8™" 2+ 4+ C ][I, ST A ST+ L+ A4,]7U(Gs)  (25)
where Iy, stands for the m x m identity matrix.

12
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Equation (2.5) can be written as:

Y(s) = Ng(s)Dr*(s)U(s) (2.6)

which yields the p x m transfer function matrix,

H(s) = Nk(S)Dz*(S) 2.7)

where Dr (s) and Nr (s) are m x m and p x m matrix polynomials also called A-matrices,
(the complex variable A is often used instead of s for continuous time systems and z for

discrete time systems), defined by:

Dr(S) = L,S™+A;S™ 1+ ..+ A, (2.8)
Ng(S) = C;S™ 1+ C,8" 2+ ..+ C, (2.9)

The equation (2.7) is the right matrix fraction description (RMFD), or the polynomial
matrix description of MIMO system shown in (2.1 & 2.2). The matrix polynomial Dgr (s)

in (2.7) is a right denominator matrix.
An alternative presentation of H (s) is the left matrix fraction description (LMFD) defined

by:

H(s) = D' (S)N,(S) (2.10)

where Di(s) is a p x p left denominator matrix polynomial and Ni(s) is p x m left

numerator matrix polynomial.

In this section, we attempt to emphasize on the latent structure of the matrix polynomials,

which consists mainly of the latent roots and latent vectors as well as solvents.
Definition 2.1

The following mxm matrix:

[ a;1(A) a2 (D) .. agm(A) 7
az (1) azA) ... azy(A)
A(A) = ’ ' ' (2.11)

|01 (D) s @) . (D)

13
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is called a A-matrix of order m, where a;;(1) are scalar polynomials over the field of

complex numbers [8].

Definition 2.2 The matrix polynomial A(}) is called:

2.2

Monic if Ay s the identity matrix.

Comonic if An is the identity matrix.

Regular if det(A(A)) # 0.

Nonsingular if det(A(A)) is not identically zero.
Unimodular if det(A(A)) is a nonzero constant.

Latent Structure of Matrix Polynomials

Definition 2.3 [9]

23

2.3.1

The complex number Ag is called a latent root of the A() if it is a solution of the
scalar polynomial equation det(A(L)) = 0.

The vector X; € R™ is called a right latent vector associated with /; if it satisfies
A(L)Xi= .

The row vector Y; € R™ is called a left latent vector associated with Z; if it satisfies
Yi A(Ni) =6.

Construction of solvents

Construction of Right Solvents

Suppose that the set {11, A2, ..., im} of m latent roots of A(S) has a linear
independent set of corresponding right latent vectors{X1, X», ..., Xm}. Let M =
(X1 X2 ... Xm) be the m x m matrix whose columns are the linearly independent

right latent vectors and M1z [Yi1Y2... Ym]T be its inverse. The m x m matrix
R =MAM L, where 4 =diag (A1, A2, ..., Am), is a right solvent of A(s). [10]

2.3.2

Construction of left solvents

In a similar manner, we will establish that a left solvent L € Rmxm can be
constructed from a set {41, 12, ..., Am} of m latent roots and a corresponding set of
m linearly independent left latent (row) vectors {Y1,Y>,...,Ym}. The m x m matrix L
=P AP, where P=[Y1Y> Ym]", A=diag(ls, 12, ..., Am)

14
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and P71 = (X1 X2... Xm) is a left solvent of A(s). [10]

2.4  Solvents of Matrix Polynomials

Definition 2.4
Let X be mxm complex matrix, the two matrix polynomials, defined by:

Ap(X) = ApX' + A XV + o+ AL X+ A (2.12)

and

AL X) =X'A0 + X514 + o+ XA+ 4 (2.13)

are referred to as the right and the left matrix polynomials associated with the A-matrix

A(A) respectively.
Definition 2.5

A right solvent R of A(A) is defined by

A(R) = AgR* + A;R" Y + ..+ AR+ A, =0y, (2.14)

and the left Solvent L of A(7A) is defined by
AL) =LAy + LA+ o4+ LA, + A, =0,, (2.15)

where Om is an mxm null matrix, and R, L are m x m complex matrices.

2.5 Block Companion Form

In analogy with scalar polynomials a useful tool for the analysis of matrix polynomials

is the block companion form matrix. [3]

Given a A — matrix

A = I+ A2+ L+ 4 (2.16)

15
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where Aj € C™™ and A € C, the associated lower block companion form is:

0, O, Ly, . O,

4, =\ . . . U (2.17)
O O 0:, L
-4 —A, A —4;

Om Om Om _Al
Im Om Om _Al—l
g =0 I Om A o18)
Om Om Om _AZ
Om Om Im _Al

Remarks

- Avis the block transpose of Ar.
- If Zis a latent root of A(L) and pi and q; are the corresponding right and left latent
vectors respectively, then 4 is an eigenvalue of A_ and of Ar defined in (2.17) and

(2.18) respectively.

2.6 Block Vandermonde Matrix

The block Vandermonde matrix has a fundamental importance in the theory of matrix
polynomials.

Given a set of m x m matrices {R1, Rz ,..., R« }which are a complete set of right solvents
of a matrix polynomial A(X) , the following km x km matrix

A S
R R, .. R

V(Ry, Ry, R =] 1 G (2.19)
Rk-1 Rk-1 . RK1

is called the right block Vandermonde matrix of order k, and the block transpose of left

block Vander monde matrix of order k is a kmx km matrix defined by

16
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[Im Ly .. L’{—ll
k-1

V(Ll,LZ,...,Lk)zllT:n by o 2 | (2.20)
L, L, .. 1

where {L1, L2,., Lk } represents a set of m x m left solvents of a matrix polynomial A(%).

Remark: Vander monde matrices are non-singular [11]

2.7 Complete Set of Solvents

Definition 2.6 [10]

Given A(A), the set of m x m matrices {R1, Rz ,..., Ri}is called a complete set of solvents

if the following conditions are met:

i- oc(R)No(Rj)=Bfori#]
i- U0 (R) =0 (AQ))
iii-  detV(Ry, Ry, ...,R,) #0

where o (Ri) is the spectrum of Ri and ¢ (A(A)) is the spectrum of A(L).

2.8 Matrix polynomial construction from a complete set of solvents

[12]

We want to construct the matrix polynomial defined by D(/) from a set of solvents or a
set of desired poles which will determine the behavior of the system that we want.
Suppose we have a desired complete set of solvents. The problem is to find the desired

polynomial matrix or the characteristic equation of the block controller form defined by:

D(A) = DoA' + DyAY 4+ .+ D1 A + Dy (221)

we want to find the coefficients Difori =1, ..., /

17
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2.8.1 Matrix polynomial Construction from a complete set of right solvents

Consider a complete set of right solvents {R1, Rz ,..., Ri}for the matrix polynomial D(4), If Ri
is a right solvent of D(4) so:

R} +DR"*+ ..+ D,_,R+D,=0,, = D;R"*+ ..+ D,_,R+ D, = —R}
Replacing i from 1 to | we obtain the following:

[Dat, Da-1)s -+ Da1] = =[Ri, Ry, .., RIVR ™ (2.22)

where Vr is the right block Vander monde matrix.

2.8.2 Matrix polynomial Construction from a complete set of left solvents

Consider a complete set of left solvents {Li, Lz ,..., Li}for the matrix polynomial D(%),
If Lj is a left solvent of D(7) so:
L+1'Dy+ ..+ LD,y +D,=0,, = LI"'D; + ..+ LD,_, + D, = —Lt

Replacing i from 1 to | we obtain the following:

Ddl Lll
D l
[ d(sl 1)] — _VL—l[L:Z]

D L~l (2.23)
dl i

l

where V; is the left block Vander monde matrix.

18



Chapter 3 State Feedback Design and Criteria

3.1 Introduction

One of the most popular and well-known techniques used to assign the eigenvalues of
the closed-loop system to desired locations is the state feedback. In the case of
multivariable systems, the feedback gain matrix permitting the assignment of the desired

set of poles is not unique.

In this part of the thesis, the specifics of two multivariable control methodologies are
detailed. The first is the general controller canonical form transformation design, the
second is block controller canonical form transformation design. The second section

deals with the design criteria used to evaluate the methodologies.

3.2 State Feedback Design Methodologies

Consider the n-dimensional linear time—invariant, multivariable dynamical system
described by equation (1.1)

A linear state-feedback control signal can be applied to the system as:

u(t) = —Kx(t) (3.1)

where K is a p x n real constant matrix, called the feedback gain matrix, and equation

(1.1) becomes:

#(6) = (A — BK)x(t)
{y(t) = (C = DK)x(b) (3.2)
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In the following, we will illustrate that if the dynamical (1.1) is reachable, then the
eigenvalues of (A - BK) can be arbitrarily assigned by a proper choice of K. This will be

established by using two different methods.
3.2.1 Method 1: General controller canonical form transformation

Design procedure:

After obtaining the matrix [A, — B¢K] in the desired form, we construct a desired
matrix Aqwhich has its eigenvalues as the desired ones. The matrix Aq can have different
blocks in companion form on the diagonal, which means that it will have in the rows
[K1, k1 + ko, ..., X% K;] elements resulting from the choice of the number of blocks
and their sizes. Meaning that, we can choose different blocks in the desired matrix to
assign the desired eigenvalues (from 1 to m blocks) each describing a part of the set of
the desired eigenvalues. Then, we equate the two matrices Aq and [A, — B¢K.] and

computing K. by identification.

1) Transform the given system (1.1) into general controller canonical form (see
section 1.6.3 of chapter 1).

2) Construct the desired matrix Aqg with the desired number of blocks and the desired
eigenvalues.

3) Compute Kc by identification from A; = [A, — B¢Kc].

4) Compute K from Kc, such that K=KcTc.

3.2.2 Method 2: Block controller canonical form transformation

Design Procedure:

1) Transform the given system (1.1) to block controller form (see section 1.6.1
chapter 1).
2) Apply the control signal u(t) = —K.x.(t)

where K = KT, = [Ke, Keq-1y, - Kea|T. and K,y € R™ ™ fori =1, ... ,1

The resulting closed loop system is shown below:
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Xe = (AC - BCKC)xc

3.2
Ye = Cexc (32)
where
O I O
[ O O O ]
0,, 0,, I,
-4 +K)  —(Aioy + Keon) o —(Ag + Ko
The characteristic matrix polynomial of this closed loop system is then:
D) =LA+ (A + K DA + o4+ (A4 + Ky)
(3.4)

3) Construct the block poles (solvents) using the desired eigenvalues (See section
2.3 chapter 2).
4) Using the constructed solvents, construct the matrix coefficients of the desired

characteristic matrix polynomial D4(4) (see section 2.8 chapter 2).
Dd(l) = Imll + Ddl){l_l + ... + Ddl

5) Compute K¢ by equating the characteristic matrix polynomial of this closed loop
system and the desired characteristic matrix polynomial Dg(4).

D,4(A) = D(A). we obtain the coefficients K¢ as follows:

Kci = Ddi - Ai fOT' i = 1, ,l (35)

where is Dg; is obtained while Constructing the complete set of solvents (see
section 2.8 chapter 2).
6) Compute the gain matrix K from K¢, such that K = Ks7%

3.3 Evaluation Criteria

The design techniques will be compared based on an evaluation of how well each
method handles the specific requirements of lateral handling qualities of the fighter

aircraft control design, based on the following list of evaluation criteria:

21



Chapter 3 State Feedback Design and Criteria

i. The gain magnitude
ii. Time domain response
iii. Robust performance

iv. Robust stability
3.3.1 Feedback Gain magnitude

The norm of a matrix can provide a scalar measure to the magnitude of the matrix.

3.3.2 Norm of a matrix

[6]
Definition 3.1
The norm is a real number, denoted as ||e||, which satisfies the following properties:

1. Non-negative: |le|| > 0.

2. Positive: |le|]| =0 iff e=0.

3. Homogenous: |ja.e|[= |al.||e]|.
4

Triangle inequality: |le1+ ex2|| < |le1 ]|+ |lez2]]-
where: e is a vector, and o is a scalar.

In this thesis we will consider only matrix norms(2-Norm).
Definition 3.2

A norm ||A|| of a matrix A is a matrix norm which, in addition to the four
norm properties given earlier in definition 3.1, satisfies the multiplicative

property (also called the consistency condition): ||A.B|| < ||A]| - ||B]|-
3.3.2.1 Most Common Matrix Norm Types

i. The Matrix 1-norm

It is the maximum absolute column sum.
m
Il = max (Y fag) (3:6)
1<jsn i=1
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ii. The Matrix co-norm

It is the maximum absolute row sum.

m
|| = max (Z 1Iau,-l) (3.6)
i i=

iii. The Matrix Euclidian norm (also called the 2-norm)

It is the square root of the largest eigen value of AT.A or the largest singular
value of A

|A]l, = max {eigenvalue(\/ATA)} (3.7)

iv. The Matrix Frobenius-norm

|A|lr = VtraceAT A (3.8)

3.3.3 Condition number

Definition 3.3
The condition number of an invertible matrix A is defined as y(4) = |A||A™Y|

This quantity enables to know how close is the matrix A to singularity. This affects the
accuracy of computations based on the matrix A. It can also be seen as a function to a

perturbed input argument.

Note that the condition number of a matrix is always greater or equal to 1.
3.3.3.1 Condition Number and Conditioning

o If y(A)is large, A is called ill-conditioned (with respect to inversion).

e If y(A) )is small, A is called well-conditioned (with respect to inversion).

3.3.4 Time Domain Performance

Time domain criteria are often used to describe the performance of control
systems. Although developed for second order systems, they can be valuable
for higher order systems.
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Step Response
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Figure 3-1 typical second-order system step response
3.34.1 Maximum Overshoot

The maximum overshoot is related to the maximum peak value of the response with

respect to the final value.

Mp = y(tp) — y(o0) (3.9)

maximum oveshoot
y(0)

Percent maximum oveshoot = X 100% (3.10)

3.34.2 Peak Time Tr

It is the time needed for the response to reach the first break of overshoot (i.e.: the peak

value).
3.343 Settling Time T's

It is the time required for the response curve to reach and stay within a range about the
final value of a size specified by an absolute percentage of the final value (usually 2%
or 5%).

24



Chapter 3 State Feedback Design and Criteria

3.34.4 Rise Time Tr

It is defined as the time required for the step response to reach- 10 to 90 percent of the

final value.

3.3.5 Robustness and Sensitivity Analysis

3.3.5.1 The sensitivity of eigenvalues (Robust Performance)

Robust performance is defined as the low sensitivity of system performance with respect to
system model uncertainty and terminal disturbance. It is well known that the eigenvalues of the
dynamic matrix determine the performance of the system then from that the sensitivities of these

eigenvalues determine the robustness of the system. [13]
3.3.5.1.1  Types of Robustness

1) Eigen Value Sensitivity

It is used to measure how much the system’s eigenvalues are sensitive to the model

uncertainties, it includes:
i Individual Eigen Value Sensitivity:

The sensitivity of the i*" eigen value of a matrix A to perturbations in some or all of

its elements is given by the following expression:

_ HLill2- 1R

s(A;) = T R,] (3.11)

where Li and Ri are the left and right eigenvectors corresponding to eigen value A4;,

respectively.
ii. Overall Eigen Value Sensitivity:

The overall eigen value sensitivity of the matrix A, which is the condition number

of the modal matrix, is defined as:

SW) = IRl IR, (3.12)
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where R is the right eigenvector matrix of the matrix A.
2) Relative change:
It measures the relative change in eigen value A; following a perturbation of the

system matrix A.

|4 — 4]
r(A) =——— (3.13)
l |4:]

where:
A;is the original eigen value.

A;'1s the new eigen value following the perturbation.

3.35.2 Stability Robustness

Stability is the most important property in control design; the sensitivity to such a
property is called stability robustness. Basically, stability means that if every dynamic
matrix eigen value has a negative real part; hence the sensitivity of these eigenvalues
with respect to model uncertainties is a direct way to measure the sensitivity of the whole

system stability.

Some stability robustness measures have been developed in the control literature; among

these, we have the so-called M> and M3 measures. [4]
3.3.5.21 The Robust Stability Measure M:
It is defined as

M, = s(v)"|Re{1,}| (3.14)
where (|JRe{1,,}| < -+ < |Re{A{}])
|Re{A,,}|is the shortest distance between the unstable region and the eigenvalue A;

M equals this distance divided (or weighted) by the sensitivity of all the eigenvalues of

the matrix. As the sensitivity goes up, M> goes down.
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3.3.5.2.2  The Robust Stability Measure M3

It is defined as:
Ms = min {s(4;)""|Re{A:}1} (3.15)

M> measures the likelihood margin for every eigenvalue to become unstable. Itis

equal to |Re(4;)]| divided by its corresponding sensitivity s(4;),i = 1, ..., n.
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Chapter 4 Aircraft Aerodynamics

4.1 Introduction

Airplanes, also known as aircrafts come in various shapes and sizes each with their
own characteristics. There are number of ways to identify aircrafts by type. The primary
distinction is between those that are lighter than air such as hot air balloons, airships or
dirigibles and those that are heavier than air such as helicopters, gliders and airbuses.

Kites also fall in the latter category

In this thesis the aircraft used to conduct the study is a fighter-aircraft which is of the

type heavier than air.

4.2 Airplane Definition

Airplane, also called Aeroplan or plane, is any of a class of fixed-wing aircraft that is
heavier than air, propelled by a screw propeller or a high-velocity jet, and supported by

the dynamic reaction of the air against its wings. [14]

An airplane is composed of four essential parts: a wing system, an Empennage (also

known as tail), a power plant and a fuselage.

e Wing system: In order to fly, one must lift the weight of the airplane itself, the
fuel, the passengers, and the cargo. The wings generate most of the lift to hold
the plane in the air.

e Tail: Small wings are located in the tail which serves to control and manoeuvre
the aircraft. The tail usually has a fixed horizontal piece, called the horizontal
stabilizer, and a fixed vertical piece, called the vertical stabilizer. The stabilizers
job is to provide stability for the aircraft, to keep it flying straight.

e Power plant: the power plant provides the thrust necessary to push the vehicle
through the air.
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e Fuselage: The fuselage or body of the airplane, holds all the pieces together. The
pilots sit in the cockpit at the front of the fuselage. Passengers and cargo are
carried in the rear of the fuselage. Some aircraft carry fuel in the fuselage; others
carry the fuel in the wings.

e

Emmnnagux\‘ /‘]
L
—~

Landing Gear

Figure 4-1 Major components of an aircraft

4.3 Axes of an Aircraft

An airplane in flight is controlled around one or more of three axes of rotation. These
axes of rotation are the longitudinal, lateral, and vertical. On the airplane, all three axes
intersect at the center of gravity (CG). As the airplane pivots on one of these axes, it is in
essence pivoting around the center of gravity (CG). The center of gravity is also referred

to as the center of rotation.

On the brightly colored airplane shown in the figure 4.1, the three axes are shown in
the colors red (vertical axis), blue (longitudinal axis), and orange (lateral axis). The flight

control that makes the airplane move around the axis is shown in a matching color.

The rudder, in red, causes the airplane to move around the vertical axis and this
movement is described as being a yaw. The elevator, in orange, causes the airplane to
move around the lateral axis and this movement is described as being a pitch. The
ailerons, in blue, cause the airplane to move around the longitudinal axis and this

movement is described as being a roll. [15]
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k

v
Longitudinal .
Auis Vertical ;’;ii“'l
Aaiis T
The 3 axes intersect at the airplane’s center of gravity.
The flight control that produces motion around the
indicated axis is a matching color.

Figure 4-2 Axes of an aircraft

4.4 Aircraft Primary Flight Controls

The primary controls are the ailerons, elevator, and the rudder, which provide the
aerodynamic force to make the aircraft follow a desired flightpath. In the figure 4-3 the
flight control surfaces are hinged or movable airfoils designed to change the attitude of
the aircraft by changing the airflow over the aircraft’s surface during flight. These

surfaces are used for moving the aircraft about its three axes.

Typically, the ailerons and elevators are operated from the flight deck by means of a
control stick, a wheel, and yoke assembly and on some of the newer design aircraft, a
joystick. The rudder is normally operated by foot pedals on most aircraft. Lateral control
is the banking movement or roll of an aircraft that is controlled by the ailerons.
Longitudinal control is the climb and dive movement or pitch of an aircraft that is
controlled by the elevator. Directional control is the left and right movement or yaw of

an aircraft that is controlled by the rudder. [16]
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Longitudinal axis ]
8] ciimb and dive (pitch) control affected by elevator (& Directional (yaw) control affected by rudder movement
movement

Normal altitude

i Lateral axis "

—eeee /
| Vertical axis

4.5

Figure 4-3 Primary flight control of an aircraft

The Forces Acting on an Aircraft

There are four forces acting on an aircraft in flight:

Weight: Weight is a force that is always directed toward the center of the earth.
The magnitude of the weight depends on the mass of all the airplane parts, plus
the amount of fuel, plus any payload on board (people, baggage, freight, etc.).
The weight is distributed throughout the airplane. But we can often think of it as
collected and acting through a single point called the center of gravity. In flight,
the airplane rotates about the center of gravity.
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e Lift: To overcome the weight force, airplanes generate an opposing force
called lift. Lift is generated by the motion of the airplane through the air and is
an aerodynamic force. Lift is directed perpendicular to the flight direction. The
magnitude of the lift depends on several factors including the shape, size, and
velocity of the aircraft. As with weight, each part of the aircraft contributes to the
aircraft lift force. Most of the lift is generated by the wings. Aircraft lift acts
through a single point called the center of pressure. The center of pressure is
defined just like the center of gravity, but using the pressure distribution around
the body instead of the weight distribution.

e Drag: As the airplane moves through the air, there is another aerodynamic force
present. The air resists the motion of the aircraft and the resistance force is
called drag. Drag is directed along and opposed to the flight direction. Like lift,
there are many factors that affect the magnitude of the drag force including
the shape of the aircraft, the "stickiness" of the air, and the velocity of the aircraft.
Like lift, we collect all of the individual components' drags and combine them
into a single aircraft drag magnitude. And like lift, drag acts through the aircraft
center of pressure.

e Thrust: To overcome drag, airplanes use a propulsion system to generate a force
called thrust. The direction of the thrust force depends on how the engines are
attached to the aircraft. The magnitude of the thrust depends on many factors
associated with the propulsion system including the type of engine, the number
of engines, and the throttle setting.

un

Figure 4-4 The four forces acting on an aircraft.
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The motion of the airplane through the air depends on the relative strength and direction
of the forces shown above. If the forces are balanced, the aircraft cruises at constant
velocity. If the forces are unbalanced, the aircraft accelerates in the direction of the

largest force. [17]

4.6 Stability and Control of an Aircraft

When an airplane is in straight-and-level flight at a constant velocity, all the forces
acting on the airplane are in equilibrium. If that straight-and-level flight is disrupted by
a disturbance in the air, such as wake turbulence, the airplane might pitch up or down,
yaw left or right, or go into a roll. If the airplane has what is characterized as stability,
once the disturbance goes away, the airplane will return to a state of equilibrium. Also,
to achieve the best performance, the aircraft must have the proper response to the
movement of the controls. Control is the pilot action of moving the flight controls,
providing the aerodynamic force that induces the aircraft to follow a desired flightpath.
When an aircraft is said to be controllable, it means that the aircraft responds easily and
promptly to movement of the controls. Different control surfaces are used to control the
aircraft about each of the three axes. Moving the control surfaces on an aircraft changes
the airflow over the aircraft’s surface. This, in turn, creates changes in the balance of

forces acting to keep the aircraft flying straight and level. [18]
Static Stability

An aircraft is in a state of equilibrium when the sum of all the forces acting on the
aircraft and all the moments is equal to zero. An aircraft in equilibrium experiences no
accelerations, and the aircraft continues in a steady condition of flight. A gust of wind or
a deflection of the controls disturbs the equilibrium, and the aircraft experiences

acceleration due to the unbalance of moment or force.
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The three types of static stability are defined by the character of movement following
some disturbance from equilibrium. Positive static stability exists when the disturbed
object tends to return to equilibrium. Negative static stability, or static instability, exists
when the disturbed object tends to continue in the direction of disturbance. Neutral static

stability exists when the disturbed object has neither tendency, but remains in equilibrium

in the direction of disturbance. These three types of stability are illustrated in Figure 4.5.

Applie
force

Figure 4-5 The Three types of stability of an aircraft

Dynamic Stability

While static stability deals with the tendency of a displaced body to return to
equilibrium, dynamic stability deals with the resulting motion with time. If an object is
disturbed from equilibrium, the time history of the resulting motion defines the dynamic
stability of the object. In general, an object demonstrates positive dynamic stability if the
amplitude of motion decreases with time. If the amplitude of motion increases with time,

the object is said to possess dynamic instability.

Any aircraft must demonstrate the required degrees of static and dynamic stability. If
an aircraft were designed with static instability and a rapid rate of dynamic instability,
the aircraft would be very difficult, if not impossible, to fly. Usually, positive dynamic
stability is required in an aircraft design to prevent objectionable continued oscillations

of the aircraft.
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Longitudinal Stability

When an aircraft has a tendency to keep a constant AOA (Angle of Attack) with
reference to the relative wind (i.e., it does not tend to put its nose down and dive or lift
its nose and stall); it is said to have longitudinal stability. Longitudinal stability refers to
motion in pitch. The horizontal stabilizer is the primary surface which controls
longitudinal stability. The action of the stabilizer depends upon the speed and AOA of

the aircraft.

4.7 Motion of an Aircraft

The aircraft is assumed to be a rigid-body; the distance between any points on the
aircraft do not change in flight. Thus, its motion can be considered to have six degrees of

freedom. By applying Newton’s Second Law to that rigid body the equations of motion

Lift (positive upwards)

Drag

(positive rearwards) All directions shown are positive

U, V, R are the forward, side and vawing velocities
L, M, N are roll, pitch and yaw moments
P, O, R are the angular velocities,
roll, pitch and yaw
®, ®, ¥ are roll, pitch and yaw angles

Ys , LPO®
Vr Thrust
{positive forwards)
Figure 4-6 Body axis system.

can be established in terms of the translational and angular accelerations which occur as

a consequence of some forces and moments being applied to the aircraft.

From Newton’s Second Law:
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d
F=— (mVy) (4.1)

and
M= % (H) (4.2)

Where F represents the sum of all externally applied forces, M represents the sum of all

applied torques, V7 the total velocity vector, and H is the angular momentum.
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5.1 Introduction

The nonlinear equations of motion of a typical fighter aircraft are used to generate
linear perturbation models at various flight conditions [19]. Flight condition 1 represents
the nominal cruise condition [Mach number, 0.67; altitude, 9096 m (20 000 ft); angle of
attack, 3.45°].

The system chosen for the investigation of the state feedback multivariable control design
based on similarity transformation in terms of feedback gain and robustness is obtained
from the fighter aircraft state space model at flight condition 1 [19]. (NASA Technical
Paper 1234)

The state space representation, referenced to the stability axes, takes the form of equation

(1.1) as follows:

—3.79¢ + 00 4.06e — 01 —5.20e+01 O.

—1.34e — 01 —3.59e¢ —01 4.24e — 01 0.
6.02e — 01 —-997e—-01 -2.72¢—-01 4.62e¢—02

1.00e + 00 6.03e — 01 0. 0.

A=

2.50e + 01 9.83e + 00

1.42e + 00 —4.20e + 00
5.01e — 03 5.03e — 02
0. 0.

C=[-125e—-02 —-6.12e—02 —-3.41e+00 —1.50e — 03]

D =[1.03e+ 00 —2.66—01]
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P
Y
B

acceleration(m/sec?); &,: Aileron angular deflection (deg)t ; 8, : Rudder angular
deflection; 1): Yaw rate (deg/sec); B: sideslip angle (deg) and @ : Bank angle (deg).

and where x(t) = ;u(t) = (ga) ;y(©) = ay ; p:Roll rate (deg); a,: lateral
T

System eigenvalues are: A; = —3.70,1, = —0.03 and 43, = —0.34 + j2.66 .
The desired eigenvalues are: 4; = —6.00, 4, = —0.01 and A3, = —1.5+j0.75.

For more information about linearized equations of motion of an aircraft and the

equations of motion in stability axis system, the reader may see [20].

5.2 State Feedback design using General Controller

Canonical Form

The matrix B in the previous system has two columns. Thus, there are two possible
permutations of the columns of B. Referring to the resulting matrices after permutation,
B; and B>, with B; = (b; b2) and B> = (b2 b1), where by is the first column of B and b is
the second column. From these two matrices and using the matrix A, there would be two

reachability matrices R;(A4, B;) and R2(4, B>).
R; = (by by, Ab; Ab,) with reachability indices K; =2 and Ko = 2.

R, = (b, by, Ab, Ab;) with reachability indices Kj =2 and K, =2.
5.2.1 State Feedback design using the reachability matrix R;

First, the reachability base matrix obtained from 4 and B is P; = (b; Ab, b, Ab,).

0.0001 -0.0008 —0.0803 0.0403

0.0353 0.0828 0.0151 —-0.0037
—0.0002 0.0021 0.2104 -0.0010

0.0120 —-0.2106 —0.0397 0.0097

and its inverse are computed. After that, 4., B. and C. are also computed, and are:

Then, the similarity transformation T, =
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0 1 0 0
A = |701872 —3.7608 —7.1298 —1.3432
¢ 0 0 0 1

—0.0808 -—0.0878 —7.3003 —0.6602
0 O

et |

0 1

C.=[-0.4775 -3.2290 —-16.3761 —1.1432]

Ac 1s as expected in general controller form composed of two blocks in companion form
of dimension 2 x 2 in the diagonal. Thus, there would be three ways of assigning the
eigenvalues in the closed-loop system’s matrix [A, — B;.K.] where:

kix kiz ki3 k14]

K. =
¢ k21 k22 k23 k24—

The three ways of assigning the eigenvalues are:

1. Putting the matrix [A. — B;.K,] in block diagonal form with the complex pair
A3 4 1n the upper block and the two other eigenvalues in the lower block.

2. Putting the matrix [A, — B1.K.] in block diagonal form with the complex pair
A3 4 in the lower block and the two other eigenvalues in the upper block.

3. Putting the matrix [A. — B1.K.] in one companion form.

Now the eigenvalue A, is the closest to the jw-axis. It’s being pushed closer to and away

from the imaginary axis to investigate the effect of this pole’s placement.

The following tables summarizes the obtained state feedback gains from each of the
previous stated ways and each with their resulting gains for each placement of the

eigenvalue A4,.
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Case A2 =-0.01:

Table 5-1 State feedback gains obtained from case A» =-0.01 using R;

State feedback gain K, State feedback gain K = KT,

1. K. = 2.6253 —0.7608 —7.1298 —1.3432 K = —-0.0416 0.2024 -1.6711 0.1039
€17 1-0.0808 —0.0878 —7.2403 5.3498 17100621 -1.1491 -1.7300 0.0565

2. K. = [—0.1272 2.2492 —-7.1298 —1.3432] K, = 0.0645 0.4539 —1.4023 -0.0192
27 1-0.0808 —0.0878 —4.4878 2.3398 27 10.0256 —0.5095 —1.0317 0.0244
3. Koo = [—0.1872 —3.7608 —8.1298 —1.3432] K. = [—0.1475 —0.0457 -1.6988 0.0017
= 0.08795 16.9953 13.6022 8.3498 3 0.6976 —0.3221 2.7804 0.0076

Case A2 =-0.001:

Table 5-2 State feedback gains obtained from case A> =-0.001 using R;

1. K. = [ 2.6253 —0.7608 —7.1298 —1.34—32] _ [—0.0416 0.2024 -1.6711 0.1039
a —0.0808 —0.0878 —7.2943 5.3408 : 0.0620 —1.1473 -1.7410 0.0565
2. K. = [—0.1812 2.2402 —7.1298 —1.34-32] K. = 0.0641 0.4532 —1.3981 —0.0213]
2 —0.0808 —0.0878 —4.4878 2.3398 2 0.0256 —0.5095 -—1.0317 0.0244
3. K= [—0.1872 —3.7608 —8.1298 —1.3432] K. = [—0.14—75 —0.0457 -—1.6988 0.0017]
= —-0.0639 16.8080 13.5212 8.3408 3 0.6908 —0.3358 2.7731 0.0022
Case h2=-0.1
Table 5-3 State feedback gains obtained from case A> =-0.1 using R;
alc 1€CaDa 0d dlC 1CCADd 24d
1. K. = [ 2.6230 —0.7608 —7.1298 —1.3432] K = [—0.0416 0.2024 -1.6711 0.1039
¢~ 1-0.0808 —0.0878 —6.7030 5.4398 17100631 -1.1669 -1.6206 0.0568
2. K. = [ 0.4128 2.3392  —-7.1298 —1.3432] _[0.0677 0.4509 —1.4443 0.0022
ez —0.0808 -—0.0878 —4.4878 2.3398 27 10.0256 —0.5095 -1.0317 0.0244
3. Ko = [—0.1872 —3.7608 —8.1298 —1.3432] K. = [—0.1475 —0.0457 -1.6988 0.0017]
3 1.6067 18.8682 14.4122 8.4398 3 0.7647 —0.1855 2.8536 0.0619
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5.2.2 State Feedback design using the reachability matrix R;

The previous process is repeated using the reachability matrix R

Case A2 =-0.01

Table 5-4 State feedback gains obtained from case A> =-0.01 using R;

dlc 1€CADa O dlC I1CCADd O
1. K. = [—4—.4878 2.3389 —0.0808 —0.0878] K = [0.0256 —0.5093 -1.0316 0.0244
e —7.1298 —1.3422 -—-0.1272 2.2492 B 0.0645 0.4537 —1.4023 -0.0192
2. K. = —7.2403 5.3498 —0.0808 —0.0878] K, = [ 0.0621 -1.1491 -1.7300 0.0565]
2 —7.1298 -—-1.3422 2.6253 —0.7608 2 —0.0416 0.2023 -—-1.6689 0.1028
3. K= [—7.3003 —0.6602 —1.0808 —0.0878] K = [—0.0099 0.1170 —1.4240 -0.0421
3 —6.9610 15.7399 20.715 5.2492 3 03761 —0.9114 -3.6725 0.9746

Case .2 =-0.001

Table 5-5 State feedback gains obtained from case A, =-0.001 using R>

State feedback gain K, State feedback gain K = KT,
1. K. —[~44878 23389 —0.0808 —0.0878] K :[0.0256 —0.5093 —1.0316 0.0244]
47171298 —1.3422 —0.1812 2.2402 17 10.0645 04530 —1.3981 —0.0213
2. K. —[~72943 53408 —0.0808 —0.0878] _[0.0620 —1.1473 —1.7410 0.0565
€27 1-71298 —1.3422 26253 —0.7608 27 1-0.0416 0.2023 —1.6689 0.1028
3. K. = [~7:3003 —0.6602 —1.0808 —0.0878] K =[—0.0099 0.1170 —1.4240 —0.0421]
7 1-7.1129 155526 20.6343  5.2407 3 0.3735 —2.8729 —3.6907 0.9697
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Case A2 =-0.1

Table 5-6 State feedback gains obtained from case A» =-0.1 using R

State feedback gain K, State feedback gain K = KT,

1. K. = [~+4878 23389 —0.0808 -—0.0878 k. = [00256 —0.5093 —1.0316 0.0244
47 1-7.1298 —1.3422 —0.4128 2.3392 17 10.0677 0.4607 —1.4443 —0.0022

2. K =[—6.7003 5.4398 —0.0808 —0.0878] _[0.0631 —1.1669 —1.6200 0.0568]
27171298 -1.3422 2.6253 —0.7608 27 [-0.0416 0.2023 -1.6689 0.1028
3. —0.0099 0.1170 —1.4240 —0.0421

—7.3003 —0.6602 —1.0808 —0.0878]

KESZ[—5.4423 17.6128 21.5253  5.3397 K3:[0.4015 —3.2957 -3.4910 1.0235

5.2.3 Robustness and sensitivity analysis

After finding all the gain matrices, the individual and overall eigenvalue sensitivities,

robust performances and stability measures M> and M; (for A2) are computed.

S(\i) refers to the sensitivity of the eigenvalue Ai, while S(V) refers to the overall EV

sensitivity.

RP refers to the robust performance and EV refers to eigenvalue.
M> and M; refer to stability measures 2 and 3 respectively.
Robust Stability

Using the reachability matrix R; and the state feedback gain K.;, the resulting closed-

~3.3606  6..2755 6.7835 —3.1532

— | 01859 —54728  —0.6531 0.0898

loop matrix is [A = B1iKi] = | 7he73  _ 09402 —0.1766  0.0428
1.000 0.0603 0 0

The right eigenvector associated to this closed-loop matrix is
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0.9097 0.8592 0.8592 0.0017

—0.3817 0.0282 — 0.0105;  0.0282 + 0.0105i —0.0426
—0.0695 -0.0018 —0.0010i —0.0018 + 0.0010¢ 0.4481

—0.1478 —0.4548 — 0.2325i —0.4548 + 0.2325i 0.8930

V =

e The norm of this eigenvector is ||V|| = 1.7071, while the norm of the left

eigenvector is
[IT]| = ||V"1|| = 7.4762. Then the overall sensitivity is equal to:
SWV)=|IVI|- IV} = 12.7625

e The norms of the component vectors of the right eigenvector are all equal to
1, and the component vectors of the left eigenvector have norms as follows:

||t1]] = 2.3197, [It,]| = 2.2170, [|ts]| = 5.2496, [|t4]| = 5.2496
e The sensitivities of the individual eigenvalue are:
s(A) = |lvall - l1tall = 2.3197, s(A2) = [|v2|| - |It.|| = 2.2170,

s(Aaya) = vaall - lts4ll = 5.2496

e The stability measures are:

M, = (S(V))"t|RefA,}| = 7.83e — 04

My = minggice {(S()) " IRe{A;}} = 4.51e — 03

Robust Performance

0.0042 0.0066 0.0068 0.0066

0.0092 0.0004 0.0076 0.0017
0.0079 0.0085 0.0074 0.0071

0.0096 0.0093 0.0039 0.0003

The following perturbation matrix is A =

generated randomly using MATLAB

The new closed-loop matrix, after perturbation, is:

—3.3554  6..2646 6.8984 —3.1463

0.1947 -—-5.4649 —0.6917 0.0914
0.0652 —0.9318 —0.1687 0.0499

1.0096 0.0696 0.0039 0.0003

[A - BlKl + A’] ==

its eigenvalues are: A; = —6.0173, 4, = 0.0179 and A3, = —1.4946 %+ j0.7859
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The relative change of the eigenvalues of the closed-loop matrix due to the perturbation

y
A

ist1; = | | were A; is the eigenvalue of the closed-loop matrix and A;" the

eigenvalue of the perturbated closed-loop matrix. This lead

r, = 0.0029, 7, = 0.0031 and 5, = 0.031

The previous computations are repeated for each case input matrix B; and B, state
feedback gains, K;, K> and K3 and the three different values of A,. The results are

summarized in the following tables.

Case A2 =-0.01
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Table 5-7 General controller form from R; results summary
Used input matrix Bl
Gain K1 K2 K3
IK]| 25190 | 1.7436 3.3370
S(V) 12.7625 12.7996 42.9231
-6.0 2.3197 2.3189 12.7814
fry -0.01 2.2170 2.2225 2.9699
;; -1.5+j0.75 5.2496 5.2434 15.2784
a s(1) | -150.75 | 52496 | 52434 | 152784
.§ M2 7.8354e- | 7.812e-04 | 2.3297e-04
o 04
M3 0.00451 0.00449 0.003367
3 -6.0 0.0029 0.0039 0.0064
% é -0.01 0.0031 0.0021 0.0035
g é -1.5+0.751 | 0.0031 0.0025 0.0068
g | ri(A) | -1.5-0.75i 0.0031 0.0025 0.0068
Table 5-8 General controller form from R, results summary
Used input matrix B2
Gain K1 K2 Ks
[IK]| 1.7436 2.5177 4.9110
S(V) 12.7781 12.9779 88.9438
-6.0 2.3176 2.3211 28.3074
= -0.01 22244 | 2.7170 3.0646
g -1.5+j0.75 5.2349 5.3362 30.4233
% s(A) -1.5-j0.75 5.2349 5.3362 30.4233
S M 7.8258-04 | 7.705e-04 | 1.1243e-04
- M3 0.004495 0.0036 0.00326
@ -6.0 0.0039 0.0029 0.0365
g é -0.01 0.0021 0.0031 0.0002
g E -1.5+0.75i 0.0025 0.0032 0.0278
8| () | -1.5-0.75i 0.0025 0.0032 0.0278
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Case 12 =-0.001

Table 5-9 General controller form from R; results summary

Used input matrix Bl
Gain K1 K> Ks
IK]| 2.5268 1.7401 3.3306
S(V) 12.7424 12.7786 42.7129
-6.0 2.3201 2.3189 12.7518
= -0.001 2.2140 2.2217 2.9368
3 1.5+j0.75 | 52496 | 52434 | 152173
% s(A) | -1.5-j0.75 5.2496 5.2434 15.2173
;8: M 7.8478e-05 | 7.8255e-05 | 2.3412e-05
M3 4.5167e-04 | 4.5010e-04 | 3.4050e-04
% -6.0 0.0029 0.0039 0.0063
% é -0.001 0.0031 0.0021 0.0036
© _E -1.5+0.75i | 0.0031 0.0025 0.0067
g | ri(A) [ -1.5-0.75i 0.0031 0.0025 0.0067
Table 5-10 General controller form from R, results summary
Used input matrix B2
Gain K1 K> Ks

K| 1.7401 2.5256 4.9026
S(V) 12.7571 12.9574 88.1914
-6.0 2.3176 2.3215 28.1276
= -0.001 2.2209 2.2140 3.0305
E -1.5+j0.75 | 5.2349 5.3362 30.1930
g s(A) | -1.5-j0.75 5.2349 5.3362 30.1930
§ M2 7.8387e-05 | 7.7175e-05 | 1.1338e-05
Ms 4.5026e-04 | 4.5167e-04 | 3.2997e-04
g -6.0 0.0039 0.0029 0.0363
% § -0.001 0.0021 0.0031 0.0002
S g -1.5+0.75i | 0.0025 0.0032 0.0276
g | ri(A) | -1.5-0.75i 0.0025 0.0032 0.0276
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Case A2 =-0.1
Table 5-11 General controller form from R; results summary
Used input matrix Bl
Gain K1 Ko Ks
IK]| 2.4416 1.7784 3.4045
S(V) 12.9784 13.0239 45.1850
-6.0 2.3254 2.3290 13.0940
E -0.1 2.2573 2.2702 3.3552
}3 -1.5+j0.75 5.2496 5.2434 15.9371
g s(A) | -15-j0.75 | 5.2496 5.2434 15,9371
g M2 7.7051e-03 | 7.6781e-03 | 2.2131e-03
o M3 0.04430 0.04404 0.02980
S -6.0 0.0028 0.0039 0.0073
g é -0.1 0.0031 0.0021 0.0032
2 E -1.5+0.75i 0.0031 0.0025 0.0077
8 | ri(:) | -1.5-0.75i 0.0031 0.0025 0.0077
Table 5-12 General controller form from R, results summary
Used input matrix B2
Gain K1 K> Ks
|IK|| 1.7784 2.4399 5.0149
S(V) 13.0017 13.1985 96.9013
-6.0 2.3276 2.3269 30.1647
2 -0.1 2.2693 2.2578 3.5143
g -1.5+j0.75 5.2347 5.3367 32.8359
% s(A) | -1.5-j0.75 5.2347 5.3367 32.8359
§ M2 7.6913e-03 | 7.5766e-03 | 1.0319e-03
M3 0.04406 0.04429 0.02845
g -6.0 0.0039 0.0028 0.0382
% § -0.1 0.0021 0.0031 0.0005
S g -1.5+0.75i 0.0025 0.0032 0.0295
g | ri(d) | -15-0.75i 0.0025 0.0032 0.0295
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5.2.4 Time Response

The step response to both inputs of the system are shown in the next figures for all

three cases of A2 and the information are show in the tables.
Remarks about the figures and tables:

e The response due to the first input (b1) is shown on the left while the response
due to the second input (b2) is shown on the right.

e For each case of A, there are six resulting state feedback gains. Thus, there are
six closed loop systems. These systems are labeled as follows:

GBI1Kdl: Closed loop system obtained using the input matrix B1 and the
state feedback gain K;

GB2Kd2: Closed loop system obtained using the input matrix Bl and the
state feedback gain K>

GBI1Kc: Closed loop system obtained using the input matrix B1 and the
state feedback gain K3

GB2Kd]: Closed loop system obtained using the input matrix B2 and the
state feedback gain K;

GB2Kd2: Closed loop system obtained using the input matrix B2 and the
state feedback gain K>

GB2Kc: Closed loop system obtained using the input matrix B2 and the
state feedback gain K3

e The response for the original system is also shown with its information and is
referred to as G.

e RiseTime — Time it takes for the response to rise from 10% to 90% of the
steady-state response.

e SettlingTime — Time it takes for the error |y(t) - yrinal| between the response y(t)
and the steady-state response ysinal to fall to within 2% of ysinal.

e SettlingMin — Minimum value of y(t) once the response has risen.
e SettlingMax — Maximum value of y(t) once the response has risen.
e Overshoot — Percentage overshoot, relative to Yfinal).

e Undershoot — Percentage undershoot.

e Peak — Peak absolute value of y(t)
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e PeakTime — Time at which the peak value occurs.

Case 12 = -0.01
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Figure 5-1 response due to both inputs Case 4, = -0.01
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Figure 5-2 response due to both inputs (zoomed in) Case 4, = -0.01

49



Chapter 5

Simulation and results

Table 5-13 time response specifications Case A2 = -0.01

System Step info for S (1,1) Step info for S (1,2)
G RizeTime: 65.3146 Riselime: 73.8253
SettlingTime: 115.4525 SettlingTime: 116.5274
SettlingMin: -1.7035 SettlingMin: 0.1153
SettlingMax: -1.4317 SettlingMax: 0.1604
Cvershoot: O Gvershoot: O
Ondershoot: 60.4020 Undershoot: 1.69%43e+403
Peak: 1.7035 Feak: 2.7468
PeakTime: 235.2944 Peaklime: 1.0448
GB1Kd1 RiseTime: 3.£182 BizeTime: 219.7776
SettlingTime: 33.83&3 SettlingTime: 391.4370
SettlingMin: 0.85623 SettlingMin: -273.2887
SettlingMax: 0.3664 SettlingMax: -247.1573
Cvershoot: 18.8766 Cwvershoot: O
Undershoot: 0O Undershoot: 0O
Peak: 1.0300 Peak: 273.2897
PeakTime: O PeakTime: 1.054%=+03
GB1Kd2 EiseTime: 2Z19.6353% RizeTime: 1.6963
SettlingTime: 384.2402 SettlingTime: 2.6923
SettlingMin: -&.59185 SettlingMin: -6€.0996
SettlingMax: -6€.12c0 SectlingMax: -5.5304
Cvershoot: O Owvershoot: 0.1788
Undershoot: 14.8828 Undershoot: O
Peak: 6£.918% Feak: ©6.0%9%g
PeakTime: 828.8830 FeakTims: 4.1140

50




Chapter 5

Simulation and results

GB1Kc RiseTime: 215.1488 RiseTime: 224.0568
SettlingTime: 393.6142 SettlingTime: 354.7843
SettlingMin: -41.605%9 SettlingMin: -3.0893
SettlingMax: -37.3552 SettlingMax: -2.807¢
Overshoot: O Overshoot: 0O
Undershoot: 25.2464 Undershoot: 0O
Peak: 41.6059 Peak: 3.08953
PeakTime: 544.5479 PeakTime: 244.8479
GB2Kd1 RiseTime: 219.653% RizeTime: 1.6957
SettlingTime: 334.2402 SettlingTime: 2.6908
SettlingMin: -6.5185 SettlingMin: -6€.0997
SettlingMax: -6.1260 SectlingMax: -5.5317
Cvershoot: 0O Owvershoot: 0.1801
Undershoot: l&.EBEb Undershoot: 0O
Peak: 6.918%5 Peak: 6.0997
PeakTime: E825.7460 PeakTime: 4.1153
GB2Kd2 RiseTime: 3.6118 RizeTime: 215.7776&
SettlingTime: 33.3469 SettlingTime: 391.4370
SettlingMin: 0.3606 SettlingMin: -273.2897
SettlingMax: 0.2&48 SettlingMax: -247.1573
Overshoot: 19.0980 Cvershoot: O
Undershoot: 0O Undexrshoot: 0
Peak: 1.0300 Peak: 273.2897
PeakTime: 0O PeakTime: 1.054%9e+03
GB2Kc RiseTime: 220.3227 RiseTime: 220.3172
SettlingTime: 393.4654 SettlingTime: 393.050%9
SettlingMin: -9&6.2824 SettlingMin: -2.0340e403
SettlingMax: -86.3828 SettlingMax: -1.8383e+03
Cvershoot: O Cvershoot: O
Undershoot: 1.0&897 Undershoot: O
Peak: 96.2824 Peak: 2.0340e+03
PeakTime: 1.0575e+03 PeakTime: 1.0575e+03
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Case 12 = -0.001

Amplitude

Amplitude

0.5

2r

-20

-40

do
=

L
=
=

-120

-140

-160

-180

-200

Step Response
«10% From: In(1) From: In(2)
o]
GB1Kd1
M GB1Kd2
BB1Ke
GB2Kd1
BB2Kd2
GB2Ke
0 2000 4000 6000 8000 10000 2000 4000 6000 8000 10000
Time (seconds)
Figure 5-3 response due to both inputs case A2 = -0.001
Step Response
From: In(1) From: In(2)
""""""" mw__________-_‘—m s — —
- G - - -
——GB1Kd1
I AN T N GBKd2|...| | |
——GBiKe
L GB2Kd1| | | i
——— GB2Kd2
- ——0GBKe | | .
0 2 4 6 8 100 2 4 6 8 10

Time (seconds)

Figure 5-4 response due to both inputs (zoomed in) case A2 = -0.001
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Table 5-14 time response specifications Case A2 = -0.001

System Step info for S (1,1) Step info for S (1,2)
GB1Kdl RiseTime: 27.2481 RiseTime: 2.2047e403
SettlingTime: 2.9382e+03 SettlingTime: 3.925%e+03
SettlingMin: 0.3635 SettlingHib: -2.7392e+03
SettlingMax: 0.9076 SettlingMax: -2.4777e+403
Cvershoot: 13.486%8 Cvershoot: O
Undershoot: 0O Undexrshoot: 0
Peak: 1.0300 Peak: 2.73%2e+03
PeakTime: 0O PeakTime: 1.0583e+04
GBI1Kd2 RiseTime: 2.1902e+03 RiseTime: 1.7073
SettlingTime: 3.8930e+03 SettlingTime: 2.7012
SettlingMin: -78.2311 SettlingMin: -&.0%55
SettlingMax: -70.3213 SettlingMax: -5.5346
Overshoot: O Cwvershoot: O0.1650
Undershoot: 1.3163 Undershoot: O
Peak: 78.2311 Feak: ©.0833
PeakTime: 8.35462+03 PeakTime: 4.0337
GBI1Kc RiseTime: 2.14072+03 RizeTime: 2.1406=2+403
SettlingTime: 3.8337e+03 SettlingTime: 3.8058e+03
SecttlingMin: -556.5080 SectlingMin: -27.8304
SettlingMax: -502.3746 SettlingMax: -25.1058
Cwvershoot: O Cvershoot: O
Undershoot: 0.1850 Undershoot: O
Peak: 556.5080 Peak: 27.8304
PeakTime: 7.1335e+03 PeakTime: 7.1335e+03
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GB2Kd1l RiseTime: 2.19022+03 FiseTime: 1.T0&7
SettlingTime: 3.5930e+03 SettlingTime: 2.6997
SettlingMin: -T78.2311 SettlingMin: -6.09%¢&
SettlingMax: -T70.3213 SettlingMax: -5.5853
Cvershoot: O Overshoot: 0.l664
Undershoot: 1.3163 Undershoot: 0O
Peak: T78.2311 Peak: ©.09%¢&
PeakTime: 2.3546e+03 PeakTime: 4.0357
GB2Kd2 RizeTime: 27.24E81 RizeTime: 2.2047e+03
SettlingTime: 2.9382e+03 SettlingTime: 3.925%e+03
SettlingMin: 0.8623 SettlingMin: -2.73582e+403
SettlingMax: 0.50&4 SettlingMax: -2.4777e403
Cvershoot: 13.6377 Cvershoot: O
Undershoot: O Undershoot: O
Peak: 1.0300 Peak: 2.73%92e+03
PeakTime: 0O PeakTime: 1.0583e+04
GB2Kc RiseTime: 2.2598e+03 RiseTime: 2.2598e+03
SettlingTime: 4.0250e+03 SettlingTime: 4.0246e+03
SettlingMin: -997.1370 SettlingMin: -2.0784e404
SettlingMax: -901.728¢ SecttlingMax: -1.8752=+04
Cvershoot: O Cvershoot: 0O
Undershoot: 0.1033 Undershoot: O
Peak: 997.1370 Peak: 2.0784e=+404
PeakTime: 1.0847e404 PeakTime: 1.0847e=+404
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Cased2=-0.1
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Table 5-15 time response specifications case A2 = -0.1

System Step info for S (1,1) Step info for S (1,2)
GB1Kdl RiseTime: 0.0453 RiseTime: 22.0740
SettlingTime: 3.4087 SettlingTime: 39,3992
SettlingMin: 0.2172 SettlingMin: -27.6832
SettlingMax: 0.3634 SettlingMax: -24.5531
Cwvershoot: 19.441& Cvershoot: O
Undershoot: 0O Undershoot: 0O
Peak: 1.0300 Peak: 27.8832
PeakTime: O PeakTime: 1l0&.7765
GBI1Kd2 EiseTime: 11.2374%2 RiseTime: 1.6957
SettlingTime: 27.9958 SectlingTime: 2.6918
SettlingMin: 0.2351 SettlingMin: -6&.05956
SettlingMax: 0.3141 SettlingMax: -5.5304
Cvershoot: 338.8631 Overshoot: O.1800
Undershoot: O Undershoot: O
Peak: 1.0300 Peak: &.099&
FeakTime: 0O PeakTime: 4.1140
GB1Kc RizeTime: 1.0015 RiseTime: 0.1629
SettlingTime: 30.5550 SettlingTime: 33.89&5
SettlingMin: 10.3933 SettlingMin: -0.9083
SettlingMax: 14.3456 SettlingMax: -0.403¢
Cwvershoot: 27.403% Cvershoot: 65.4233
Undershoot: O Undershoot: O
Peak: 14.3456 Peak: 0.5083
PeakTime: 3.3772 PeakTime: 0.7982
GB2Kdl RiseTime: 11.87482 RizeTime: 1.6950
SettlingTime: 27.5958 SettlingTime: 2.6502
SettlingMin: 0.2351 SettlingMin: -6.098%7
SettlingMax: 0.3141 SettlingMax: -5.5317
Owvershoot: 338.8631 Cwvershoot: 0.1816
Undershoot: 0O Undershoot: O
Peak: 1.0300 Peak: &©.09%7
PeakTime: 0O PeakTime: 4.1153
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GB2Kd2 RiseTime: 0.0458 RiseTime: 21.9729
SettlingTime: 3.4527 SettlingTime: 39.2154
SettlingMin: 0.2155 SettlingMin: -27.5076
SettlingMax: 0.8&lée SettlingMax: -24.8375
Cwvershoot: 19.6710 Cvershoot: O
Undershoot: O Undershoot: O
Peak: 1.0300 Peak: 27.507&
PeakTime: O PeakTime: &2.5&679
GB2Kc RiseTime: 21.9807 RiseTime: 21.9520
SettlingTime: 40.3163 SettlingTime: 39.9054
SettlingMin: -3.6586 SettlingMin: -210.1752
SettlingMax: -7T.7103 SettlingMax: -189.5572
COvershoot: 0 Overshoot: O
Undershoot: 11.3703 Undershoot: O
Feak: £5.6€52¢ Peak: 210.1792
PeakTime: &3.35077 PeakTime: £3.82077

5.2.5 Discussion

The discussion is based on the following criteria:

e Feedback gain magnitude.
e EV sensitivity (individual and overall).
e Stability measure M; and M>.

e Relative change.

The case where the matrix [A. — B;.K.] is put in block diagonal form with the complex
pair A3 4 in the upper block and the two other eigenvalues in the lower block is referred
to as the upper block case from the two block form.

The case where the matrix [A. — B;.K.] is put in block diagonal form with the complex
pair A3 4 in the lower block and the two other eigenvalues in the upper block is referred
to as the lower block case from the two block from.

The case where matrix [A, — B1.K,] is put in one companion form is referred to as the
one block form or one main block.
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Case 12 =-0.01
Feedback magnitude gain

The gain magnitude is found to be smaller when choosing the two blocks form (two
blocks in the diagonal) rather than only one main block, since the gain ended being bigger

in both permutations B1 and B2.

In the first permutation (B1), the smallest gain was K> = 1.7436; when the complex pair
was chosen to be in the lower block of the two-block form feedback gain matrix. This
smallest gain happens to be the same in the second permutation (B2), but in this case, it
was K; = 1.7436; when the complex pair was chosen to be in the upper block of the two-

block form feedback gain matrix.
Individual and Overall eigenvalue sensitivity

Here also the individual and overall EV sensitivities ended being smaller when choosing

the two blocks form for feedback gain matrix.

Apart for from the EV A,, the smallest individual sensitivities were with upper block case
in the second permutation (B2) ) with S(4;) = 2.3176 and S(A34) = 5.2349, while the
smallest overall and the individual sensitivity of A, were with the upper block case of the

first permutation (B1) with S(1) = 12.7625 and S(4,) =2.2170.
Robust stability measures M> and M3

The robust stability measures M and M; were found to be bigger in the two blocks form
too in both permutation B1 and B2. Also, in these measures, they were both big with
upper block case. But between the two permutations, B1 happens to be the greatest with

M, = 7.8354e — 04 for A, and M3=0.00451.
Relative change

The smallest values of the relative change of the eigenvalues are mostly in the lower

block case of the two blocks form, form the input matrix B1 with r; = 0.0039 being the

exception, r, = 0.0021 and 73 , = 0.025 the smallest. Meanwhile the upper block case
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of the two blocks from, from the input matrix B2 had mostly the smallest values; r; =

0.0039 being the exception, r, = 0.0021 and 3 4, = 0.025 the smallest.
Time Response
a. for the first input of B

The rise time was the smallest in the two blocks from mainly in the lower block case of

the second permutation with RT = 3.6118s.

The settling time was the smallest in the upper block case of the first permutation with

ST =33.83.63s.

The smallest undershoot (1.0697) was obtained with the one block form in B2.

b. for the second input of B

The smallest rise time was with the upper block case in B2 with RT = 1.657s.

The settling time was the smallest with the upper block case in B2 with ST =2.6908s.
Here, mostly in all the cases there was no overshoot nor undershoot.

Case 12 =-0.001

Feedback magnitude gain

The gain magnitude is found to be smaller when choosing the two blocks form (two
blocks in the diagonal) rather than only one main block, since the gain ended being bigger

in both permutations B1 and B2.

In the first permutation (B1), the smallest gain was K> with a magnitude of 1.7401. This
smallest gain happens to be the same in the second permutation (B2), but in this case, it

was K; (the upper block case).

Individual and Overall eigenvalue sensitivity
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Apart for from the EV A4,, the smallest individual sensitivities were with upper block case
in the second permutation (B2) with S(4,) = 2.3176 and S(434) = 5.2349, while the
smallest overall and the individual sensitivity of A, were with upper block case of the

first permutation (B1) with S(V) = 12.7424 and S(4,) = 2.2140.
Robust stability measures M, and M3

The robust stability measures M2 was found to be the biggest with upper block case with
M, = 7.84781e — 05 for A, , and M3 =4,5167118e-04 for both B1 and B2.

Relative change

The values of the relative change aren’t that different from the previous case. Thus, the

same results and comment.
Time Response
a. for the first input of B

The rise time was the smallest in the two blocks from mainly in the upper block case of

B1 the lower block case of B2with RT =27.2481s.

The settling time was the smallest in the upper block case of B1 and the lower block case

of B2 with ST =2.9382e+03.

The smallest undershoot (0.1033) was obtained with the one block form of B2.

b. for the second input of B

The smallest rise time was with the upper block case in B2 with RT = 1.7067s.

The settling time was the smallest with the upper block case in B2 with ST =2.6997s.
Here too, in most of the cases there was no overshoot nor undershoot.

Case 12=-0.1

Feedback gain magnitude
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The gain magnitude is found to be smaller when choosing the two blocks form (two
blocks in the diagonal) rather than only one main block, since the gain ended being bigger

in both permutations B1 and B2.

In the first permutation (B1), the smallest gain was K> with a magnitude of 1.7784. This
smallest gain happens to be the same in the second permutation (B2), but in this case, it

was K (the upper block case).
Individual and Overall eigenvalue sensitivity

The smallest overall and the individual sensitivities of A; and A,were with upper block
case of the first permutation (B1) with S(V) = 12.9784, S(1;) = 2.3254 and S(4;) =
2.2573. For the complex pair, the smallest individual sensitivities were with upper block

case in the second permutation (B2) with S(43 4) = 5.2347.
Robust stability measures M2 and M3

The robust stability measures M> and M; were found to be the biggest with upper block
case of BI with M, = 7.70511e — 03 for 1, and M3 = 0.04430.

Relative change

Here too, the values of the relative change are approximately the same as in the previous

cases.
Time Response
a. for the first input of B

The rise time was the smallest in the two blocks form, mainly in the upper block case of

B1 with RT = 0.0453s.
The settling time was the smallest in the upper block case of ST = 3.4087.
The smallest undershoot (11.8703) was with the one block form in B2.

b. for the second input of B
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The smallest rise time was with the single block configuration with RT = 0.16257s for

the first permutation.
The settling time was the smallest with the upper block case in B2 with ST =2.6902s.

Apart from the one block form in B1 in which there was a big overshoot of 65.4233,

mostly in all the other cases there was no overshoot nor undershoot.

Comparison between the 3 cases of 4,

In terms of gain magnitude, the smallest gain was obtained when pushing the EV 4,

closer to the jw-axis, meaning that the best case was with 4, = 0.001.

The overall EV sensitivity was the smallest in the second case too (case 4, = —0.001).
Also, the same for all the individual eigenvalues sensitivity, apart from the complex

pair’s sensitivity which was smaller in the third case (case 4, = —0.001).

The robust stability measures were bigger in the third case, meaning when pushing the

EV 4, away from the jw-axis (away from the unstable region too).

For the time response, the settling and rise time are smaller when moving the EV 4,
away from the jw-axis (case A, = —0.1), but the overshoot/undershoot is smaller when

pushing it toward it (case 1, = —0.001).

5.2.6 Conclusion

Overall the two block forms are the best choice in terms of feedback gain magnitude,
individual and overall EV sensitivity, robust performance, stability measures M> and M;
and time response. Thus, going for a bigger number of blocks would be a better choice
for the previously stated design criteria. However, the movement of the closest
eigenvalue to the jw-axis away from that axis, improves only the time response
characteristics (in terms of rise and settling time), robust stability measures M> and M3,
and degrades the other characteristics. The reverse happens when moving it closer the
imaginary axis instead.
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5.3 State Feedback design using Block Controller Form

A controlled MIMO system has an infinite number of state feedback controllers that may
be found which will provide the required stability characteristics. Consequently, an
alternative and very powerful method for designing a state feedback controller for
stabilizing systems is the right blocks/ left blocks/ right and left blocks pole placement
method. The method is based on the manipulation of the equations of motion in block
state space form and makes full use of the appropriate computational tools in the
analytical process. The forms of block poles (Solvents) are not unique, but we restricted

our study to the case of the canonical forms (diagonal, controllable and observable).
The dimension of the matrix A of our system is 4x4 and the number of inputs is 2.

The rank of the reachability matrix w,, = [ B AB] is 4 (full rank)

n 4 . .
a. The number — = 5= 2 is an integer.
m

b. The system is reachable of index [ = 2.

Therefore, we can convert the system into block controller form by the following

transformation matrix T¢:

0.0002 -0.0013 -—0.4004 0.0416
0.0000 0.0003 0.1025 —0.0005
0.0171 0.4022 0.0957 —0.0185
0.0058 —0.1023 -0.0245 0.0047

t
where T, = [t 614] : W, =[BAB] ;t.y = [0 L]w/?t
cl

we obtain the following:

0 0 1 0

0 0 0 1
0.0665 79811 —3.6266 —11.8852
—0.0372 —-7.4150 -0.0429 —0.7944

A. =
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= [)-|

C.= [-0.4674 —35.0101 —3.2290 —12.2020]

oS = OO
- o O O

5.3.1 State Feedback Design Using Right Solvents in Diagonal Form

e Construction of the feedback gain matrix:

The desired right block poles in diagonal form are constructed as follows:

-1.5 0.75

) —6.00 0
-0.75 -1.5

= R1=( 0 —001

R2 = (

where the desired eigenvalues are 4, ;34 = {—6.00,—0.01, —1.5 %+ j0.75}

and Such that: R; consists of the eigenvalues: —1.5 &+ j0.75
and R; consists of the eigenvalues: —6.00,—0.01 .

Then we have to construct the matrix coefficients of the desired characteristic matrix
polynomial: D;(A) = IA?> + Dg;A + Dy

Such that: [D4,, Dg1] = —[R?, R3]V; t where the right block Vandermonde matrix

1 0 1 0
v [k 12]: o 1 0 1
R=|R, R, -15 075 —6.0 0

—-0.75 -1.5 0 —-0.01
12.2912 0.0254 8.0485 2.5412
== [Dy,Dy1] =

~ 1-2.0385 0.0095 -0.3398 0.9615
Then by applying equation (3.5) we obtain Kc:

_[12.2247 8.0065 44219 —9.3440

K. =
¢~ 1-2.0758 -7.4055 -0.3827 0.1671
K=K, = [00230 27216 34227 03794
¢¢” 1-0.0056 —0.1708 0.0318 —0.0752

The norm of the feedback gain matrix is ||K|| = 4.3915
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Robustness:

Robust stability: Robust stability is determined using the measures defined in the
previous section. First, we find the norms of the left and right eigenvectors associated to
each eigenvalue. The right eigenvector matrix associated to the closed-loop system (A-
BK) is:

—0.9852 0.0112  —0.8574 + 0j —0.8574 + 0j
y_ |0.0485 —0.0216 0.0431+0.0229j 0.0431 - 0.0229)
~—| 0005 —0.1033 0.0388 + 0.0331j 0.0388 — 0.0331;
0.1647 —0.9943 0.4563 + 0.2272j 0.4563 — 0.2272]
V]| = 1.7474

The left eigenvector matrix associated to the closed-loop system (A-BK) has norm equal
to:

[IT|| = |IV"Y| = 95.9165
Then the overall sensitivity is equal to:
SW) = |IVI||IV7Y| = 197.6044

e The norms of all the right eigenvectors are equal to 1, and the associated left
eigenvectors have norms as follows:

llt,]| = 27.9395,  ||t,|| = 19.7933,  ||t3|| = 64.1534,  ||t,4|| = 64.1534
e The sensitivity of each individual eigenvalue is:

s(A:) = {27.9395, 19.7933, 64.1534, 64.1534}
Now the stability measures are:

)M, = (S(V)"Y|Re{l,}| = 5.9664¢ — 05
2) My = minecies {(S()) ™ IRe{A;}1} = 5.0522e — 04

Robust Performance:

The following is a random small perturbation applied to state feedback matrix (A-BK)
using MATLAB software:
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0.2290 0.5383 0.1067 0.8173
0.9133 0.9961 0.9619 0.8687
0.1524 0.0782 0.0046 0.0844
0.8258 0.4427 0.7749 0.3998

A =

Then the eigenvalues of the matrix (A-BK+A4) are:

Mi2za = {—5.9991,-0.0102,—1.5002 + j0.7503}

The relative change of each eigenvalue is given below by the following:

r«(A:) = {0.0002; 00200; 2.14 x 10~4: 214x 104}

Remark:

With the same procedure of this section, the obtained results for right solvents in

controller form and observer forms are summarized in tables 5-17 & 5-18 respectively.

The right solvents in controller form are:

0 1 —6.01 -0.06

Rl1=(_5g125 —3) R2=0( 7 0 )

Such that: R; consists of the eigenvalues: —1.5 + j0.75

and R> consists of the eigenvalues: —6.00,—0.01 .

The right solvents in observer form are:

-6.01 1 0 -—2.8125

Rl=(_g06 o) R2=(4 -3

)

Such that: R; consists of the eigenvalues: —6.00, —0.01

and R> consists of the eigenvalues: —1.5 + j0.75.
5.3.2 State Feedback Design Using Left solvents in Controller Form

e Construction of the feedback gain matrix:

The desired left block poles in controller form are constructed as follows:

0 1 —6.01 -0.06

L1=(_5g125 —3) 12=C7 0 )
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where the desired eigenvalues are 4, ;3,4 = {—6.00,—-0.01, 1.5 £ j0.75}

and such that: L, consists of the eigenvalues: —6.00,—0.01
and L> consists of the eigenvalues: —1.5 + j0.75.

Then we have to construct the matrix coefficients of the desired characteristic matrix

polynomial: D;(1) = IA? + Dy A + Dy,

Dy, %
Such that: [D ] ==V, | ;| where
d1 L5

1.00 0.00 0 1.00
I, L — —
the left block Vandermonde matrix V;, = [12 Ll] = (1)88 (1)88 2.68(1)55 382
2 . . —0. —U.
0.00 1.00 1.00 0.00

2

= _[7.1998 1.2318  7.2418 0.2473
[Daz, Das] —1.2318 —0.1873 —4.3873 1.7682

Then by applying equation (3.5) we obtain Kc:

_[7.1333 9.2129 3.6152 —11.6379

Ke = —-1.2690 -7.6023 —4.4302 09738
K=KT. = [—0.0050 2.6385 —1.2814 0.1709
e —0.0701 -1.8823 -—-0.7187 0.0372

The norm of the feedback gain matrix is ||K|| = 3.3150
Robustness:

Robust stability: Robust stability is determined using the measures defined in the
previous section. First, we find the norms of the left and right eigenvectors associated to
each eigenvalue. The right eigenvector matrix associated to the closed-loop system (A-
BK) is:

—0.9833 —0.8576 + 0j —0.8576 + 0j 0.0112

—-0.0777 0.0443 + 0.0010j 0.0443 — 0.0010; —0.0206

—0.0220 0.0472 + 0.0207j 0.0472 — 0.0207; —0.1079
—0.1631 0.4560 + 0.2279j 0.4560 + 0.2279] —0.9939

V=
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V]| = 1.7495

The left eigenvector matrix associated to the closed-loop system (A-BK) has norm equal

to:
[IT]] = |IV~]| = 234.1382
Then the overall sensitivity is equal to:
S = 1IVIIIIV7Y| = 409.6260

e The norms of all the right eigenvectors are equal to 1, and the associated left
eigenvectors have norms as follows:

||t1]] = 48.6598, ||t2]] = 58.7224, [|ts3]| = 158.842, ||t4]| = 158.842
e The sensitivity of each individual eigenvalue is:

s(A:) = {48.6598, 58.7224, 158.842, 158.842}
Now the stability measures are:

)M, = (S(V)) |RefA,}| = 2.4413e — 04
2) My = minggics {(S()) ™ IRe{A;}1} = 1.7000e — 04

Robust Performance:
The previous small perturbation is applied to state feedback matrix (A-BK).

Then the eigenvalues of the matrix (A-BK+A4) are:

A234 = {—6.0022,—-0.0102, —1.4989 + j0.7498}
The relative change of each eigenvalue is given below by the following:

i) = {3.3333 x 104; 0.0200; 6.6667 x 10~4: 6.6667 x 10~4}

Remark:

With the same procedure of this section, the obtained results for left solvents in diagonal

form and observer forms are summarized in tables 5-16 & 5-18 respectively.

The left solvents in diagonal form are:
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—-1.5 0.75 —6 0

1=Co7s —15) 2=Co _gor
Such that: L; consists of the eigenvalues: —1.5 + j0.75
and L consists of the eigenvalues: —6.00, —0.01.
The left solvents in observer form are:
_ ,—6.01 1 _,0 —2.8125
L= (—0.06 0) L2= (1 -3 )

Such that: L; consists of the eigenvalues: —6.00, —0.01

and L> consists of the eigenvalues: —1.5 + j0.75.

5.3.3 State Feedback Design Using Right and Left solvents in

Observer Form

e Construction of the feedback gain matrix:

The desired right and left block poles in observer form are constructed as follows:

_,—6.01 1 _,0 —=2.8125
R=Coos o) =1 o1
where the desired eigenvalues are 4 , 3, = {—6.00,—0.01 — 1.5 £ j0.75}

and such that: R consists of the eigenvalues: —6.00, —0.01
and L consists of the eigenvalues: —1.5 & j0.75.

For the case of right and left solvents, equation (3.4) must equivalent to following

equation:
DA =@ —L)YAI—R) =122+ (—L—R)A+ LR
i A1+KC]_:_L_R
Such that.{ A, + K., = LR

Then we obtain Kc:
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_[0.1022 7.9811 2.3834  —10.0727

Ke= —5.8672 —6.4150 -0.9829 2.2056
K=KT. = [—0.0180 19914 1.2516 -—0.0912
e —0.0047 —-0.6156 1.5441 -0.2128

The norm of the feedback gain matrix is ||K|| = 2.3920
Robustness:

Robust stability: Robust stability is determined using the measures defined in the
previous section. First, we find the norms of the left and right eigenvectors associated to
each eigenvalue. The right eigenvector matrix associated to the closed-loop system (A-
BK) is:

09833  —0.8576+0j  —0.8576+0j  0.0112
v — [ 700777 0.0443 +0.0010j 00443 —0.0010j —0.0206
~[-0.0220 0.0472 +0.0207j 0.0472 —0.0207j —0.1079
—0.1631 0.4560 +0.2279j 0.4560 + 0.2279j —0.9939

V]| = 1.7476

The left eigenvector matrix associated to the closed-loop system (A-BK) has norm equal

to:
T = IV = 244.1199
Then the overall sensitivity is equal to:
S = IVIIIIV~Y| = 426.6152

o The norms of all the right eigenvectors are equal to 1, and the associated left
eigenvectors have norms as follows:

[|t1]] = 11.1127, [|t2]] = 77.4321, ||tz]] = 163.777, [1t4]| = 163.777
e The sensitivity of each individual eigenvalue is:

s(A) ={11.1127,77.4321, 163.777, 163.777}
Now the stability measures are:

1) M, = (S(V))|Re{A,}| = 2.3440e — 05
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2) My = ming<i<s {(S(/li))_llRe{/li}l} = 1.2901e — 04

Robust Performance:
The previous small perturbation is applied to state feedback matrix (A-BK).

Then the eigenvalues of the matrix (A-BK+A4") are:
A1234 = {—5.9993,-0.0088,—1.5008 * j0.7498}

The relative change of each eigenvalue is given below by the following:

ri(A) = {1.1667 x 10°4; 0.12; 4.91x104: 4.91x 104}

Remark:

With the same procedure of this section, the obtained results for right and left solvents in

diagonal form and controller forms are summarized in tables 5-16 & 5-17 respectively.

where the right and left solvents in diagonal form are:

-1.5 0.75 —6 0

R=Co7s —15) =0 _gor

Such that: L consists of the eigenvalues: —1.5 + j0.75

and R consists of the eigenvalues: —6.00, —0.01.

The right and left solvents in controller form are:

0 1 —6.01 -0.06

R=(_,8125 —3) L=C 7 0 )

Such that: R consists of the eigenvalues: —6.00, —0.01

and L consists of the eigenvalues: —1.5 4+ j0.75.
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Results summary:

Diagonal Form

Table 5-16 Diagonal Form Results Summary

Diagonal form

2 Rights 2 Lefts Right &
Solvents Solvents Left
Solvents
K1 K> Ks
K| 43915 43387 3.8683
S() 167.6044 482.9884 142.6934
-6.0 27.9395 29.1998 38.5332
-0.01 19.7933 76.0885 12.0739
>
E s(A) —-1.5 64.1534 186.9085 52.5446
2 +j0.75
b —-1.5 64.1534 186.9085 52.5446
é —j0.75
ch M> 5.9664e-05 | 2.0704e-05 | 7.0080e-05
Ms 5.0522e-04 | 1.3108e-04 | 8.2787e-04
§ -6.0 0.0002 1.16 e-04 2.33 e-04
©
§ -0.01 0.0200 0.03 0.05
é’_ ri( i) -1.5+0.75i 2.14e-04 3.77 e-04 2.98e-04
(7]
é -1.5-0.75i 2.14 e-04 3.77e-04 2.98e-04
04
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Controller Form

Table 5-17 Controller Form Results Summary

Controller form

2 Rights 2 Lefts Right & Left
Solvents Solvents Solvents
Ks Ks Kg
IKII 3.0557 3.3150 2.4059
S(V) 205.7081 409.6260 95.1026
-6.0 5.3578 48.6598 30.0311
-0.01 35.4676 58.7224 8.0311
>
=
5 s() —-1.5 79.9771 158.8421 34.2491
g + j0.75
47 —-1.5 79.9771 158.8421 34.2491
> .
2 —j0.75
M3 2.8195e-04 | 1.7000e-04 0.0012
§ -6.0 6.6667e-04 | 3.3333e-04 | 3.8333 e-04
]
£ 20.01 0.0500 0.02 0.01
o
[Vt
S
s ri(A:) -1.5+0.75i 1.78 e-04 6.6666 e-04 | 9.0000 e-04
.
(73]
é -1.5-0.75i 1.78 e-04 6.6666 e-04 | 9.0000 e-04
@
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Observer From

Table 5-18 Observer Form Results Summary

Observer form

2 Rights 2 Lefts Right & Left
Solvents Solvents Solvents
K7 Ks Ko
(K| 3.4658 3.4285 2.3920
S) 138.7501 201.9087 426.6152
-6.0 18.6887 45.4315 11.1127
-0.01 28.1662 21.2768 77.4321
>
5 | s() | -15 52.6906 | 76.5988 163.7778
g +j0.75
k%) —-1.5 52.6906 76.5988 163.7778
> .
2 —j0.75
Ms 3.5504e-04 | 4.6989e-04 | 1.2901e-04
3 -6.0 2e-04 3.3333e-04 | 1.1667e-04
C
©
S -0.01 0.06 0.05 0.12
(@]
£ | ;iA) | -L5t0751 | 1.3333e- | 4.8074e- | 491e-04
§ 04 04
g -1.5-0.75i 1.3333e- 4.8074e- 491e-04
o 04 04
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5.3.4 Time response results

The following part summarize the time specifications (Settling time Ts, Rise time Ty,

Overshoot/Undershoot) to the step response to both inputs of the system.

Remarks about the table and figures:

e The response due to the first input (b;) is shown first while the response due to
the second input (b,) is shown second.

e For each case of solvents there are nine resulting state feedback gains. Thus,
there are nine closed loop systems. These systems are labelled as follows:

Gki: 1s for the closed loop system obtained using the state feedback gain Ki for

i=1,...9.

e The response for the original system is also shown with its information and is
referred to as G.

Table 5-19 Time Response results

System Step info for S (1,1) Step info for S (1,2)
C} BiseTime: 65.3146 RiseTime: T73.3259
SectlingTime: 119.45925 SectlingTimse: 116.5274%
SettlingMin: -1.7035 SectlingMin: 0.1193
SettlingMax: -1.4317 Settlingtax: 0.1le0%
Cwvershoot: O Cwershoot: O
Undershoot: 60.4029 Undershoot: 1.69%43=+4+03
Peak: 1.7035 Feak: 2.7463
1= ETime: 1.0448
PeakTime: 235.2944 EEELLme
Gk REiseTime: 0.&6098 RiseTims: 0.363%9
SettlingTime: 2.6108 SettlingTime: 10.6617
SectlingMin: 0.27&5 SectlingMin: —-5.3642
SertlingMax: 0.6538 SerclingMax: -1.5108
Overshoot: 97.4603 Cwvershoot: &8.2580
Undershoot: O Undershoot: O
) ) ) Peak: 5.3842
Peak: 1.0300 ~
PeakTime: 1.1475
PeakTime: O
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RiseTime: O.00386
SettlingTime: 7.00&6%9

RiseTime: 0.7751

SecttlingTime: 5.8650

SettlingMin: 0.1387 SettlingMin: -5.0823
SettlingMax: 1.08a0 SettlingMax: -3.9627
Overshoot: 8.5753 Overshoot: 2.3452
Undershoot: o Undershoot: O
Feak: 1.0%5e0 Peak: 5.0823
PeakTime: 2Z.4451 DeakTime: 4.0277
Gis RissTime: 0.0079 RiseTime: 0.4381
SettlingTime: 8.83903 SettlingTime: 7.4176
SectlingMin: 0.7525 SettlingMin: —7.1861
SectlingMax: 1.2830 SettlingMax: —3.5689
Cwershoot: 28.1312 Overshoot: 55.4968
Undershoot: O Undershoot: O
Peak: 1.2830 Peak: 7.1861
PeakTime: 1.1575 PeakTime: 1.2991
GKA RiseTime: O.54449 RiseTime: 0.2&668
SectlingTimse: S.9079 SectlingTime: 10.1253
SettlingMin: —0.376E SettlingMin: -3.4592
SettlingMax: 0.3261 SettlingMax: -0.9531S
Owershoot: 1.0782e+03 Cwvershoot: 55.5680
Undershoot: 430.7843 Undershoot: 0O
Peak: 1.0300 Peak: 3.45%5%2
PeakTim=: O PeakTime: O0.9717
Gs RiseTime: 0.1932 RiseTime: 0.8437
SettlingTime: 7.0555 SertlingTime: 7.39500
SettlingMin: -0.4448 SettlingMin: -3.3381
SettlingMax: 0.6261 SecclingMax: -2.2514
Overshoot: 122.25883 Cwvershoot: O
Undershoot: 95.%887 Undershoot: 0
Peak: 1.0300 Peak: 3.3381
PeakTims: O PeakTime: 11.85714
Gs RiseTime: 33.2665 RiseTime: ©.1347
~ ~ SettlingTime: 43.5421
SettlingTime: 43.2508 SettlingMin: —6.9652
SectlingMin: -0.4604 SettlingMax: —1.0335
SettlingMax: -0.3137 Cvershoot: 540.18970
Cwvershoot: 0 Undershoot: 0O
Undershoot: S518.3220 Peak: 6.9652
Peak: 2.39350 PeakTime: 1.6064
PeakTime: 1l.&655&
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Gk7

RiseTime:

13

L5001

RiseTime: 3.93951
SettlingTime: 8.5128 SecclingTime: 7.7338
SettlingMin: 2.4641 SecclingMin: —-9.8086
SectlingMax: 2.6213 SettlingMax: —-8.8&604
Overshoot: O Cwershoot: O
Undershoot: 0 Undershoot: 0O
Peak: 2.6213 Feak: 9.5026
~ PeakTime: 15.24&4
PeakTime: 15.2464
Grs RiseTimes: 0.0058 RiseTime: 0.4019
SertlingTime: 10.3681 SettlingTime: 10.2685
SerElingtin: ©.&783 SettlingMin: —8.0714
SecclingMax: 1.8510
Cvershoot: T7.7232 SecclingMax: -3.27&9
Undershoot: O Cvershoot: T73.0877
Peak: 1.2510 Tndershoot: 0O
PeakTime: 1.1&647 Peak: 2.0714
PeakTime: 1.36494
GKQ RiseTime: 0.6714 RigseTime: 0.0020
SettlingTime: 9.5657 SettlingTime: 10.3762
SecclingMin: —-1.1323 SettlingMin: —-0.9174
SecclingMax: —-0.0309 SettlingMax: ©.9254

Cwvershoot
Tndershoot
Feak
FeakTime

: leg.5211
: 244 .2667
t 1.1323
: 1.5011

Cwvershoot :
Tndershoot:
Peak:
PeakTime:

T34.8625
359 .83&65
Z2.1541
0.711%
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Step Response

From: In(1)

Amplitude

0 50 100 150 200 2501
Time (seconds)

Figure 5-7 the response due to the first input -b1
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Step Response

From: In(2)

—G
- ——GK1 | -

GK2
——GK3
—— GK4
| . GK5
(1 e N e GKE [
— GK7
— GK8

GKY

100 150 200 250
Time (seconds)

Figure 5-8 the response due to the second input -b2

5.3.5 Discussion

The discussion will be based on the following criteria:

e For feedback gains, small gains are desirable because they minimize noise

amplification.
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e For time specifications, the smaller the settling time, smaller rise time, smaller
overshoot/undershoot the better in time response.

e For the sensitivities of the eigenvalues, we choose the one that has the lowest
sensitivity.

e For the robust stability the greater the value of its measure the more robustly
stable the system.

e For robust performance, the smaller the value of relative change the better the

performance.

In order to do a comparison study between left/ right/ left and right solvents placement
we gather the preceding results in tables as shown below. To make the analysis easier
and be clear, tables 5-16, 5.-17 ,5-18, 5.-19 can be summarized into table: 5-20 & 5-21

Table 5-20 Comparative study between solvents in terms of gain, sensitivity and robustness

Diagonal form | Controller form | Observer form
K| 1 Left 1 Right 1 Left 1 Right 1 Left 1 Right
Solvent Solvent Solvent
S(V) 1 Left 1 Right 1 Left 1 Right Right Solvents
Solvent Solvent
Robust s(A) 1 Left 1 Right 1 Left 1 Right Right Solvents
stability Solvent Solvent
M2 1 Left 1 Right 1 Left 1 Right Right Solvents
Solvent Solvent
Ms 1 Left 1 Right 1 Left 1 Right Left Solvents
Solvent Solvent
Robust ri(A) Right Solvents Right Solvents Right Solvents
performance
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Table 5-21 Comparative study between solvents in terms of time specifications

. Controller Observer
Diagonal form
form form
Ts Right Solvents | 1 | ot 1 Right Right Solvents
Solvents
Tr 1 Left 1 Right | Right Solvents | | ot solvents
Time Solvents
specifications Overshoot/ | Left Solvents | Left Solvents Right Solvents
undershoot

From table 5-20 we conclude that the best control design in terms of feedback gain,

sensitivity and robustness:

e For the diagonal form the design using 1 right and 1 left solvent is recommended

and more suitable.

e For the controller form the design using 1 right and 1 left solvent is recommended

and more suitable.

e For the observer form the design using rights solvents is recommended and

suitable.
From table 5-21 we conclude that the best design in terms of time response:

e For a best settling time, using right solvents is suitable.
e For abest rise time, using either right or left is recommended.

e For a small overshoot/ undershoot, using left solvents is suitable.

5.3.6 Conclusion

The choice of feedback gain matrix is done by the comparison between the three
forms of the block poles in terms of best response characteristics and system
robustness. In our case we can say that the choice between left/ right/ left & right
solvents is made according to the form of these solvents. We can conclude that the
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choice of the feedback gain matrix is made according to the application itself from a
desirable system’s response hence we are providing the designer a flexibility to

choose the best depending on the specified need.
5.3.7 Effect of moving the dominant pole from/to the jw-axis

When a pole (or pole pair) is further to the left into the negative s-plane, the real
component will be a large negative number and so the decay will be rapid. Conversely if
a pole or pole pair is close to the imaginary axis, sigma is negative but not very large so
the response decays much less rapidly. Hence the response of the system is dominated
by poles or pole pairs close to the imaginary axis. Now the eigenvalue 4, is the closest
to the jw-axis. It’s being pushed closer to and away from the imaginary axis to investigate
the effect of this pole’s placement on the previous sited criteria.

The following tables summarizes the obtained results in terms of state feedback gain,
sensitivity and robustness for the new placement of the eigenvalue 1, = —0.01 (the same

previous design procedure).
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5.3.7.1

Diagonal Form

Casel: 4,_ —

0.1

Table 5-22 Diagonal Form Results Summary case 4, — 0.1

Diagonal form

2 Rights 2 Lefts Right &
Solvents Solvents Left
Solvents
K1y Kz Ks
K| 44254 4.4041 3.8689
S(V) 172.5939 535.8998 144.0884
-6.0 28.2343 33.6084 38.5332
-01 21.2986 87.0032 12.6699
>
= s) | —15 65.0177 203.6481 52.3102
IS +j0.75
1 —-1.5 65.0177 203.6481 52.3102
> .
2 —Jj0.75
Ms 0.0047 0.0011 0.0079
8 -6.0 1.4516e-04 1.3874e- 2.2945e-04
C
< 04
g 01 0.0021 0.0032 0.0052
<3 ri(A:) -1.5+0.75i 2.3400e-04 | 4.1437e-04 | 3.1432e-04
k)
§ -1.5-0.75i 2.3400e-04 | 4.1437e-04 | 3.1432e-04
04
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e Controller Form

Table 5-23 Controller Form Results Summary case A, = -0.1

Controller form

2 Rights 2 Lefts Right & Left
Solvents Solvents Solvents
K4 Ks Kg
K| 3.2513 3.6186 2.3077
S(V) 227.2524 | 496.1741 112.5588
-6.0 5.7381 58.2382 30.7830
-0.1 40.5504 73.2688 12.3308
>
E s() —-1.5 86.6896 188.9880 42.0090
IS +j0.75
o —-1.5 86.6896 188.9880 42.0090
> .
2 —Jj0.75
o M> 4.4004e-04 | 2.0154e-04 | 8.8842e-04
Ms 0.0025 0.0014 0.0081
§ -6.0 6.5738e-05 | 4.0859e-04 | 3.3940e-04
©
g -0.1 0.0051 0.0016 6.9126e-04
=
s ri( i) -1.5+0.75i 2.2111e-04 | 7.4984e-04 | 5.3799e-04
v
é -1.5-0.75i 2.2111e-04 | 7.4984e-04 | 5.3799e-04
04

84




Chapter 5

Simulation and results

e Observer Form

Table 5-24 Observer Form Results Summary case A> =-0.1

Observer form
2 Rights 2 Lefts Right & Left
Solvents Solvents Solvents
K7 Ks Ko
|IK]| 3.8815 3.7867 2.1302
S(V) 139.3179 206.1877 327.2328
-6.0 28.7905 53.5639 12.2558
-0.1 30.8743 19.1941 60.8189
>
= s(A) -1.5 51.5823 75.4486 123.5061
3 +j0.75
e -1.5 51.5823 75.4486 123.5061
E —j0.75
Dc:~ M2 7.1778e-04 | 4.8499e-04 3.0559¢e-04
M3 0.0032 0.0052 0.0016
§ -6.0 2.9302e-04 | 3.6359e-04 1.4343e-04
@
g -0.1 0.0069 0.0069 0.0088
s ri( ) -1.5+0.75i 2.7383e-04 | 4.8452e-04 4.8305e-04
1)
§ -1.5-0.75i 2.7383e-04 | 4.8452e-04 4.8305e-04
04
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e Time specifications

Table 5-25 Time Response results case A, = -0.1

Syste Step info for S (1,1) Step info for S (1,2)
m
Gka RiseTime: 0.595&

SettlingTime: 9.4844 RiseTime: 0.3674
SettlingMin: 0.3107 5Ettll?ng?E: 10.4849
SectlingMax: 0.6611 Settlingllin: —-3.3218

Overshoot: 90.5164 SettlingMax: -1.9883
. Cvershoot: €6.1920
Undershoot: 0O i
Tndershoot: 0

Peak: 1.0300 Pealk 5.3218

H - =18

PeakTime: 0 PeakTime: 1.1473

G2 RiseTime: 0.0337 RiseTime: 0.7257

SecclingTime: &.9668 SettlingTims: 5.8014
SectlingMin: 0.0917 SettlingMin: -4.7781
SettlingMa=x: 1.027%5 SettlingMax: -3.7055

Cvershoot: 13.0334 Overshoot: %.2605

Undershoot: 0 Undershoot: O
Peak: 1.0300 Peak: 4.7781
PeakTime: O PeakTime: 1.2720
Gks Riselime: 0.0033 RiseTime: 0.4436
SectlingTime: &.6565 SettlingTime: 7.2589
SettlingMin: 0.9013 SettlingMin: -7.0503
Settlinglax: 1.2926 SettlingMax: -3.6942
Gwvershoot: 25.8327 Owvershoot: S52.2190

Undershoot: 0 Undershoot: O
Peak: 1.2%935¢6 Peak: 7.0503
PeakTime: 1.1915 PeakTime: 1.3050

Gk Riselime: 0.3302 RiseTime: 0.2738

Serrlinglime: £.9066 SettlingTime: 10.0461
SettlingMin: -0.3512 SettlingMin: -3.4664
SettlingMax: 0.3613 SettlingMax: -0.9948

Owvershoot: 735.3872 Overshoot: 81.2611
Ondershoot: 301.9%102 Undershoot: O

Peak: 1.0300 Peak: 3.4664

PeakTime: O FPeakTime: 0.9693
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Grs RiseTime: 0.2168 RiseTime: 0.7010
SettlingTime: 6.9178 SettlingTime: 7.7594
SettlingMin: -0.4953 SettlingMin: -3.0528
SettlingMax: 0.6062 SettlingMax: -2.0864
Overshoot: 161.0835 Cwvershoot: 0.0044
Undershoot: 125.5464 Undershoot: 0
Peak: 1.0300 Peak: 3.0528
PeakTime: 0O PeakTime: 11.6256
GK6 RiseTime: 0.0588 RiseTime: O.3703
SettlingTime: 8.2T7T82 SettlingTime: B.5491
SectlingMin: 0.6580 SettlingMin: —&.9592
SettlingMax: 2.22895 SectlingMax: -3.3077
Cvershoot: 1e2.5117 Cwvershoot: 85.9140
Undershoot: 0O Tndershoot: 0O
Peak: 2.22%55 FPeak: &£.9552
PeakTimes: 1.425% FeakTimes: 1.35097
Gk7 RiseTime: 4.T7658 RiseTime: 4.3501
SectlingTime: 8.9462 SettlingTime: 8.4175
SettlingMin: 3.3709 SectlingMin: —-12.55&64
SettlingMax: 3.6288 SettlingMax: -11.3315
COvershoot: O Cwvershoot: O
Undershoot: 0 Undsrshoot: O
Peak: 3.6228 Peak: 12.35562
PeakTime: 20.573&
PeakTime: 20.5736
Gks RiseTime: 0.2176 RiseTime: 0.5008
SectlingTime: 9.63531 SettlingTime: 9.4767
SettlingMin: 1.3442 SettlingMin: -10.0521
SettlingMax: 2.&6918 SettlingMax: -5.21&6%
Cvershoot: S53.57589 Owvershoot: S55.4214
Tndershoot: 0O Undershoot: O
Peak: 2.6%918 Peak: 10.0521
PeakTime: 1.4345 PeakTime: 1.57820
Gko RiseTime: 0.TE82Z6 RiseTime: 0.1077
SettlingTime: 2.5450 SettlingTime: 9.3711
SectlingMin: -—-0.8153 SettlingMin: -2.6580
SettlingMax: 0.015%8 SettlingMax: 0.2164
Cwershoon: 211.03513 Overshoot: 277.1355
Tndershoot: 392 .9517 Undershoot: 59,0858
Peak: 1.0300
PeakTime: O Peak: 2.6580
PeakTime: 0.3087
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Amplitude

Step Response

From: In(1)

T

1 1
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Figure 5-9 The response due to the first input b-1 case A,=-0.1
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Step Response
From: In(2)

— GK1

GK2
— GK3
- ——GK4 | T

GK5
—— GK6
—— GK7
\ ——— GK8
- LSS GK8 | -

1 ] 1 !

b 50 100 150 200 250
Time (seconds)

Figure 5-10 The response due to the second input b-2 case A,=-0.1

5.3.7.2 Case2: 1, = —0.001

e Diagonal form
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Table 5-26 Diagonal Form results case A, = -0.001
Diagonal form
2 Rights 2 Lefts Right &
Solvents Solvents Left
Solvents
K1 K2 Ks
K| 4.3884 43328 3.8682
S) 167.1422 478.2137 142.5549
-6.0 27.9122 28.7963 38.5332
-0.001 19.6623 75.1458 12.0215
>
=
‘5 s(Ai) —-1.5 64.0742 185.3810 52.5660
g + j0.75
2 —-1.5 64.0742 185.3810 52.5660
> .
e —j0.75
Ms 5.0859e- | 1.2960e-05 8.2808e-05
05
8 -6.0 1.4594e- | 1.1845e-04 | 2.2945e-04
T 04
g -0.001 0.2180 03124 0.5473
Y
S
8 |7ri(1) | -15+0.75i | 2.2849e-04 | 3.7025e-04 | 3.0683e-04
o
[%2]
% -1.5-0.75i 2.2849e-04 | 3.7025e-04 3.0683e-04
o
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Controller Form

Table 5-27 Controller Form results case A, = -0.001

Controller form
2 Rights 2 Lefts Right & Left
Solvents Solvents Solvents
Ka Ks Ke
K| 3.0386 3.2892 2.4206
S(V) 203.8608 | 402.5157 94.0467
-6.0 5.3239 47.8571 30.2996
-0.001 35.0448 57.5645 7.6608
>
= s(L) -1.5 79.4014 156.3518 33.6818
3 +0.75
2 —-1.5 79.4014 156.3518 33.6818
wn .
2 —Jj0.75
DC:" M> 4.9053e-06 | 2.4844e-06 1.0633e-05
Ms 2.8535e-05 | 1.7071e-05 | 1 3945404
§ -6.0 6.4760e-05 3.5e-04 3.4644e-04
@
g -0.001 0.4680 0.2 0.0608
[Pt
S
& | i) | -1.5+0.75i 2.0717e- | 6.6667e-04 | 5.5345e-04
k) 04
§ -1.5-0.75i 2.0717e- | 6.6667e-04 5.5345e-04
x 04
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Observer Form

Table 5-28 Observer Form results case A, = -0.001

Observer form

2 Rights 2 Lefts Right & Left
Solvents Solvents Solvents
K7 Ks Ko
K| 3.4309 3.3979 2.4355
S) 138.8385 201.8651 437.0383
-6.0 17.8224 44,7262 10.9721
-0.001 27.9449 21.5160 79.1015
>
5 | s(a) | -15 52.8491 | 768252 | 168.0810
£ +j0.75
k) —-1.5 52.8491 76.8252 168.0810
> .
2 —j0.75
n'd Mo 7.2026e-06 | 4.9538e-06 2.2881e-06
§ -6.0 1.9275e-04 | 3.3430e-04 1.1667e-04
©
g -0.001 0.5465 0.4793 0.8
Y
|-
& | 7ri1) | -15+0.75i | 1.3870e-04 | 4.5492e-04 | 3.0683e-04
.
wn
§ -1.5-0.75i 1.3870e-04 | 4.5492e-04 3.0683e-04
@
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e Time Specifications

Table 5-29 Time response results case A, = -0.001

System Step info for S (1,1) Step info for S (1,2)
Gk1 REizeTime: 0.6l08 RiseTime: 0.3636
SecctlingTime: 9.6215 SettlingTime: 10.&6752
SectlingMin: 0.2730 SettlingMin: -5.3686
SettlingMax: 0.6531 SettlingMax: -1.9027
Cvershoot: 98.1855 Cvershoot: 685.4700
Undershoot: O Undershoot: O
Peak: 1.0300 Peak: 5.3686
PeakTims: O PeakTime: 1.1475
Gk2 RiseTime: 0.00&63 RiseTime: O0.T7305
SettlingTime: 7.0114 SettlingTime: 5.8715
SettlingMin: 0.1431 SettlingMinm: -5.1147
SettlingMax: 1.05%15% SettlingMax: -3.5851
Overshoot: S5.6167 COvershoot: 2.2T715
Undershoot: 0 Undershoot: 0
Peak: 1.081% Peak: 5.1147
PeakTime: 2.4513 PeakTime: 4.0375
Gks RiseTime: 0.0088 RiseTime: O.4375
SettlingTime: §.5033 SettlingTime: 7.4310
SectlingMin: 0.7529 SettlingMin: —-7.19%98
SettlingMax: 1.2814 SettlingMax: -3.5557
Overshoot: 28.3925 Cvershoot: 55.8297
Undershoot: 0 Undershoot: 0O
Peak: 1.2814 Peak: 7T7.15%98
PeakTime: 1.1574 PeakTime: 1.2585
Gka RigeTime: 0.5465 BiseTime: 0.2660
SectlingTime: 5.3053 SettlingTime: 10.1311
SettlingMin: -0.3796 SettlingMin: -3.4584
SettlingMax: 0.3224 SettlingMax: -0.924%9
Cvershoot: 1.1231e+03 Owershoot: 56,0564
Undershoot: 450.7490 Undershoot: 0
Peak: 1.0300 Peak: 3.4584
PeakTime: O PeakTime: 0.5730
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Gks

RiseTime: 0.15%07 RiseTime: 0.8&85
SectlingTime: 7.070% SettlingTime: 7.89727
SettlingMin: -—-0.4401 SettlingMin: —-3.3682
SettlingMax: 0.6280 SecclingMax: —-2.2683
Cvershoot: 119.0418 Cvershoot: O
TUndershoot: 93.5522 Undershoot: 0
Peak: 1.0300 Peak: 3.3682
PeakTime: 0O PeakTime: 11.3%56%9
Gks RiseTime: 90.2064 RiseTime: 50.2064
SettlingTime: 163.3662 SettlingTime: 163.7050
SettlingMin: -4.412& SettlingMin: &.2020
SectlingMax: -3.8752 SecttlingMax: &.9047
Overshoot: 0 Cwvershoot: O
Undershoot: 54.8352 Undershoot: 100.&6842
Feak: 4.4126 Peak: 6.96872
PeakTime: 283.1093 PeakTime: 1.6180
Gk7 RiseTime: 4.4527 Riselime: 3.9779
SettlingTime: £.5057 SettlingTime: 7.7570
SettlingMin: 2.4028 SettlingMin: -5.62635
SettlingMax: 2.5527 SettlingMax: -8.7022
Cvershoot: O Cwershoot: O
UTndershoot: 0 Undershoot: 0
Peak: 2.5527 Feak: 9.8285
PeakTime: 14.9596 FeakTime: 14.353¢
Gks RiseTime: O.0104 RiseTime: 0.3943
SectlingTimse: 10.2973 SecclingTime: 10.3051
SectlingMin: 0.6288 SectlingMin: -7.959232
SectclingMax: 1.7875 SettlingMax: -3.1309
Overshoot: 759.943% Cvershoot: T4.8578
Undershoot: O Tndershoot: 0
Peak: 1.7875 Peak: 7.9232
PeakTime: 1.15&67 PeakTime: 1.3550
Gk RiseTime: 0.6632 RiseTime: 0.0113
SettlingTime: 9.5510 SettlingTime: 10.3473
SettlingMin: -1.1558 SettlingMin: —0.8882
SertlingMax: -0.0328 SettlingMax: 0.96%9&
Cvershoot: le6.8c64d Cvershoot: 853.7874
Tndershoot: 237.00%5%9 Undershoot: 437.8686
Peak: 1.1598 Feak: 2.1121
PeakTime: 1.4913 PeakTims: O.7000
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Chapter 5
Step Response
From: In(1)
6 i
4 - -

Amplitude

20 40 60 80 100
Time (seconds)

Figure 5-11 The response due to the first input b-1 case ,= -0.001
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Step Response

From: In(2)

—— G _
— GK1

GK2
— GK3
—— GK4
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— GKé
- GK7
— GK8

GK8

0 50 100 150 200 250
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Figure 5-12 The response due to the second input b-2 case A,=-0.001

e Discussion

Based on the data collected in tables (5-16, 5-17, 5-18, 5-19, 5-22, 5-23, 5-24, 5-25, 5-
26, 5-27, 5-28, 5-29) and figures (5-7, 5-8, 5-9, 5-10, 5-11, 5-12) we can conclude that:
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e For the state feedback gains, moving away from jw-axis would increase the state
feedback gains which will maximize to noise amplification.

e For time specifications, moving away from jw-axis would reduce the rising time
and settling time but increases the overshoot/ undershoot. The reverse happens
when moving it closer instead.

e For the sensitivities, since the sensitivity has proportional relationship with the
state feedback gain, we can see clearly that moving away from jw-axis would
increase the sensitivities (overall sensitivity and individual sensitivity) which
would maximize modelling inaccuracies and parameter variations.

e For the robustness, moving away from jw-axis means moving to stable region,
we can see clearly an increasing in the values of stability measures M2 and M3z as
well as the robust performance measures (relative changes 7:(A:)), meaning that

having a more robust system.
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General conclusion

State feedback design, in multivariable control systems, may be achieved using block
pole assignment. Not only, given a set of desired eigenvalues, the state feedback gain in
a MIMO system is not unique but the construction of the block poles isn’t either. Thus,
different resulting state feedback gains means different design characteristics and

performances.

In this thesis the two different canonical forms that have been used to investigate state
feedback multivariable control design based on similarity transformation gave clear
results on how one MIMO system may perform differently in terms of feedback gain
magnitude, robust stability, robust performance, EV sensitivity, time response and the

placement of the dominant pole from the way the state feedback gain have designed.

In the nine different forms obtained using solvent assignments and the six different
forms obtained from the general controller form, the latter lead mostly to the best results
in terms of gain magnitude and robust stability, with the smallest gain magnitudes,
individual and overall eigenvalue sensitivities, and biggest stability measures M> and M;.
However, the fact that there is infinity of ways of assigning the solvents in the block
companion form, doesn’t mean that the general controller form will always be the one
leading to the best results. The best robust performance was obtained from the solvent

assignments with the smallest relative change values.
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