République Algérienne Démocratique et Populaire Ministère de l'Enseignement Supérieur et de la Recherche Scientifique Université M'Hamed Bougara de Boumerdes Faculté des Sciences de L'ingénieur Département de Génie des Procédés

MEMOIRE DE FIN D'ETUDES

En vue de l'obtention du diplôme de Master Filière: Génie des procédés Spécialité: Génie chimique

Thème:

EXTRACTION ET ÉTUDE DES PROPRIÉTÉS PHYSICOCHIMIQUES DES HUILES ÉSSENTIELLES DE ROSMARINUS OFFICINALIS DE LA RÉGION DE BOUMERDES- ÉVALUATION DE L'ACTIVITE ANTIOXYDANTE.

Réalisé par:

- Mlle LAMOURI Atika
- Mme HAMMADI Nour EL Houda

Soutenu le 22 Juillet 2019 devant le jury composé de:

Mr AKSAS Hamouche	(MCA)	Président du jury	FSI-UMBB
Mme ABDELLAOUI Radia	(MAA)	Membre du jury	FSI-UMBB
Mme GHEMATI Djamila	(MCA)	Promotrice	FSI-UMBB

ANNEE UNIVERSITAIRE: 2018/2019

REMERCIEMENTS

Nous tenons à remercier avant tout le bon Dieu notre créateur qui nous a donné la force pour accomplir ce travail.

Au moment où s'achève ce travail, permettez-nous de remercier du fond du cœur, tous ceux et toutes celles qui, pendant cette période de mémoire de fin d'études, nous ont dirigé, soutenue, aidé et encouragé.

Tout d'abord, nous tenons particulièrement à remercier notre promotrice M^{me} GHEMATI. Dj, Maitre de conférences (classe A) à la FSI-UMBB pour les précieuses aides et les judicieux conseils qu'il nous a prodigué.

Egalement notre Co-promotrice, M^{me} TAKHROUBTE, Ingénieur au niveau de CRD SAIDAL, pour son aide.

Nous remercions également le président et les membres du jury d'avoir consacré leur temps à la lecture de ce manuscrit, et d'accepter de juger et d'évaluer ce travail.

Nous remercions aussi l'ensemble des enseignants de département de génie des procèdes-FSI-UMBB, ainsi que tous nos enseignants depuis l'école primaire.

Nous exprimons toute reconnaissance à nous amies et nous collègues de la promotion 2019, et nous les souhaitons la réussite et la bonne continuation.

Enfin, que tous ceux qui ont contribué de près ou de loin à la réalisation de ce mémoire, puissent trouver ici, toutes nos reconnaissances.

Atika et Nour El Houda

Dédicace

A la femme la plus courageuse, sensible, généreuse, à celle qui a sue me donner amour et joie de vivre, à celle qui a toujours montrée affection et compréhension à mon égard, ma mère que j'aime.

A l'homme de courage et de force, à celui qui a toujours été présent, qui m'a appris les vraies valeurs de la vie à celui qui m'a soutenu en toutes circonstances, mon père que j'aime.

A ceux qui m'ont aidé et m'ont donné la joie et le bonheur:

Ma très chère nièce que j'adore beaucoup: MARAME.

Ma sœur: NOUR EL HOUDA.

Mes très chères Frères: MOHAMAD etMAROIN.

A mes tantes: GHANIA, NADIA, WAHIBA.

Mes cousines: LYDIA, MOHAMAD, SALMA, RAZAN, SILIA, MANAR.

A mes amis les plus fidèles en particulier: HOUDA, IMANE,

IDRIS, HAMIDOU.

A toute la famille LAMOURI.

A ceux que j'ai eu la chance de les connaître, dans les meilleurs et pires moments de ma vie.

A tous ceux que j'aime, à tous ceux qui m'aiment, je dédie ce modeste travail.

Merci

ATIKA.

Dédicace

A l'homme de ma vie, mon exemple éternel, mon soutien moral et source de joie et de bonheur, celui qui s'est toujours sacrifié pour me voir réussir, que dieu te garde dans son vaste paradis, à toi mon père.

A la lumière de mes jours, la source de mes efforts, la flamme de mon cœur, ma vie et mon bonheur, maman que j'adore.

A ma première joie et un morceau de mon âme, mon fils, qui attendait sa venue.

A mon marie IMADqui m'a toujours aidé et encouragé sans oublier sa mère,

A mes frères: YACINE, MORAD, ISLEM, ISMAIL, MOHAMED, et mes sœurs: SALSABIL, SONDOUS et ZEHOUR,

A mes grands-parents et ceux qui m'ont chaleureusement supporté et encouragé tout au long de mon parcours.

A toutela famille HAMMADIet ABDESSLAM, et mes proches

A mon amie RITADJ ATIKA qui m'a donné l'amour et la vivacité.

A tous ceux que j'aime.

Merci

NOUR EL HOUDA

Sommaire

Remerciements
Dédicace
Liste des abréviations
Liste des figures
Liste des tableaux
Présentation de CRD SAIDAL - ALGER

Résumé Introduction générale

CHAPITRE I : ETUDE BIBLIOGRAPHIQUE

I.1. Plantes médicinales et phytothérapie	03
I.1.1. Historique	03
I.1.2. Généralités	03
I.1.2.1. Les plantes aromatiques	03
I.1.2.2. Les plantes médicinales	03
I.1.2.3. Classification des plantes médicinales	03
1.1.2.4. Phytothérapie	04
I.1.2.5. La pharmacognosie	05
I.1.2.6. Les substances actives des plantes médicinales	05
I.1.3. Mode de préparation des médicaments	05
I.1.4. Domaine d'application des plantes médicinales	05
I.2. Huiles essentielles	06
I.2.1. Définition	06
I.2.2. Répartition et localisation	07
I.2.3. Propriétés physico-chimiques des huiles essentielles	07
I.2.4. Composition chimique et biosynthèse des huiles essentielles	07
I.2.5. Facteurs affectant la variabilité de la composition des huiles essentielles	07
I.2.6. Toxicité des huiles essentielles	08
I.2.7. Procèdes d'extraction des huiles essentielles	09
I.2.7.1. Distillation: Hydro distillation	09
I 2 7 2 I 'entrainement à la vaneur sèche	10

I.2.7.3. L'extraction aux solvants volatils	10
I.2.7.4. L'extraction au CO ₂ supercritique	10
I.2.7.5. Hydrodistillation par micro- ondes sous vide	10
I.2.7.6. L'enfleurage et macération	11
I.2.7.7. Expression	11
I.2.8. Contrôle des huiles essentielles	11
I.2.8.1. Chromatographie en phase gazeuse	13
I.2.8.2. Chromatographie liquide haute pression	13
I.2.9. Activité antioxydante	14
I.3.9.1. Radicaux libres et stress oxydatif	14
I.2.9.2. Antioxydants	14
I.2.9.3. Mode d'action d'un antioxydant	14
I.2.9.4. Types d'antioxydants	15
I.3. La famille des Lamiacées	16
I.3.1. Rosmarinus officinalis	16
I.3.1.1. Origine du nom	16
I.3.1.2. Historique	16
I.3.1.3. Distribution géographique	16
I.3.1.4. Description botanique	17
I.3.1.5. Classification botanique	19
I.3.1.6. Utilisation traditionnelle	20
I.3.1.7. Composition chimique de l'huile essentielle	21
CHAPITRE II : MATERIELS ET METHODES	
II.1. Introduction	23
II.2. Matière végétale	24
II.2.1. Récolte des plantes	24
II.2.2. Séchage	24
II.3. Procédé d'extraction de l'huile essentielle de romarin	24
II.3.1. Procédé d'hydrodistillation	24
II.3.2. Extraction par entraînement à la vapeur d'eau	
II.4. Méthodes de caractérisation physico-chimiques et organoleptiques	
II.4.1. Caractéristiques chimiques	

II.4.1.1. Indice d'acide	28
II.4.1.2. Indice de saponification.	29
II.4.1.3. Indice d'ester	32
II.4.1.4. Indice d'iode	32
II.4.2. Caractéristiques physiques	34
II.4.2.1. Indice de réfraction	34
II.4.2.2. Pouvoir rotatoire	35
II.5. Evaluation in-vitro de l'activité antioxydante	36
II.5.1. Effet scavenger du radical DPPH	36
III.6. Analyse de la composition chimique d'huile essentielle extraite de ron	narin par
CG /MS	39
II.6.1. Conditions opératoires.	39
CHAPITRE III: RESULTATS ET DISCUSSION	
III.1. Introduction	41
III.2. Rendement en huile essentielle	41
III.3. Caractéristiques physico-chimiques et organoleptiques	42
III.3.1. Caractéristiques organoleptiques	42
III.3.2. Caractéristiques chimiques	43
III.3.2.1. Indice d'acide	43
III.3.2.2. Indice de saponification.	43
III.3.2.3. Indice d'ester	44
III.3.2.4. Indice d'iode	44
III.3.3. Propriétés physiques	44
III.3.3.1. Indice de réfraction.	44
III.3.3.2. Pouvoir rotatoire	45
III.4. Evaluation de l'activité antioxydante	46
III.5. Analyse de la composition chimique d'huile essentielle extraite de ror	narin par
CG/MS	47
Conclusion générale	71
Références bibliographiques	1 2

Liste des figures

CHAPITRE I

Figure I.1	: Photo de Ro	smarinus offici	inalis			17
Figure I.2	: Feuille de Ro	osmarinus offi	cinalis			18
Figure I.3	: La fleur de F	Rosmarinus off	icinalis			18
Figure I.4	: Racine de Ro	osmarinus offi	cinalis			19
Figure I.5	: Aspects mor	phologiques di	ı Romarin			20
Figure I.6	: Les structu	res chimiques	des princi	paux composa	nts antioxydants	présents
dans les fe	uilles du roma	ırin				21
Figure I.7	: Les structure	es chimiques de	es composai	nts de l'HE du	romarin	22
		C	HAPITRI	E II		
Figure II.1	1: Feuilles de	la plante après	séchage de	R.officinalis		24
Figure II.2	2: Dispositif d	l'hydrodistillat	ion utilisé à	l'échelle du la	boratoire	25
Figure II.3	3: Schéma du	montage d'hyo	drodistillatio	onutilisé pour l	'extraction d'HE	25
Figure II.	4: Dispositif	d'extraction pa	ar entrainen	nent à la vapeu	ır d'eau utilisé à l	l'échelle
pilote				•••••		26
Figure II.	5: Schéma d'u	ın montage de	distillation _l	par entraineme	nt à la vapeur	27
Figure	II.6 :	Extrait	de	l'huile	essentielle	de
Romarin			28			
Figure II.	.7: Image rep	présentant le	processus e	expérimental d	le détermination	d'indice
acide		•••••				28
Figure II.8	8: Réaction de	saponification	d'une huil	e		30
Figure II.	9: Image rep	résentant le p	rocessus ex	périmental de	détermination d'in	ndice de
saponificati	on					31
Figure II.1	10: Test témoi	in pour la déter	rmination d'	indice de sapo	nification	31
Figure II.	11: Images rep	présentatifs du	processus e	xpérimental de	e détermination de	l'indice
d'iode				• • • • • • • • • • • • • • • • • • • •		34
Figure II.1	12: Détermina	ition du pouvoi	r rotatoire			36

Figure II.13: Réaction entre le radical DPPH (violet) et un antioxydant donnant la
molécule de DPPH neutralisée (jaune)
Figure II.14: Processus de préparation de la solution DPPH
Figure II.16: Images représentatifs des étapes expérimentales de détermination de
l'activité antioxydante39
CHAPITRE III
Figure III.1: Rendement en huile essentielle de R.officinalis
Figure III.2: Courbes graphiques montrant les taux d'inhibition de la racine DPPH à
différentes concentrations des huiles essentielles et de l'acide ascorbique46
Figure III.3. Chromatogramme GC de l'échantillon Romarin
Figure III.4. Spectre de masse à tr=9.645 min
Figure III.5. Spectre de masse à tr=10.285 min
Figure III.6. Spectre de masse à tr= 11.195 min
Figure III.7. Spectre de masse à tr= 13.431 min53
Figure III.8. Spectre de masse à tr= 17.918 min
Figure III.9. Spectre de masse à tr= 18.423 min
Figure III.10. Spectre de masse à tr= 20.639 min
Figure III.11. Spectre de masse à tr= 20.864 min
Figure III.13. Spectre de masse à tr= 22.635 min
Figure III.12. Spectre de masse à tr=22.080 min
Figure III.14. Spectre de masse à tr= 22.690 min
Figure III.15. Spectre de masse à tr= 22.855min
Figure III.16. Spectre de masse à tr= 23.445min
Figure III.17. Spectre de masse à tr= 23.825min
Figure III.18. Spectre de masse à tr= 24.806min
Figure III.19. Spectre de masse à tr= 25.231min65
Figure III.20. Spectre de masse à tr= 27.122min66
Figure III.21. Spectre de masse à tr= 28.407min
Figure III.22. Spectre de masse à tr= 29.238min
Figure III.23. Spectre de masse à tr =31.634min 69

Liste des tableaux

CHAPITRE I

Tableau I .1. Composants principaux de l'huile essentielle du Rosmarinus officinalis
CHAPITRE III
Tableau III.1. Les caractères organoleptiques de l'huile essentielle de romarin
Tableau III.2. Tableau récapitulatif des caractéristiques de l'huile essentielle de Romarin
45
Tableau III.3. IC50 du standard et d'HE de R.officinalis 47
Tableau III.4. Principaux constituants de l'huile essentielle de Romarin identifiés par
chromatographie CG/ MS
Tableau III.5. Résultat donné par CG/MS à tr=9.645min
Tableau III.6. Résultat donné par CG/MS à tr=10.285min
Tableau III.7. Résultat donné par CG/MS à tr=11.195
Tableau III.8. Résultat donné par CG/MS à tr=13.431 min 53
Tableau III.9. Résultat donné par CG/MS à tr= 17.918 min
Tableau III.10. Résultat donné par CG/MS à tr= 18.423 min
Tableau III.11. Résultat donné par CG/MS à tr= 20.639 min
Tableau III.12. Résultat donné par CG/MS à tr= 20.864 min
Tableau III.13. Résultat donné par CG/MS à tr= 22.080 min
Tableau III.14. Résultat donné par CG/MS à tr= 22.635 min
Tableau III.15. Résultat donné par CG/MS à tr= 22.690.min 60
Tableau III.16. Résultat donné par CG/MS à tr= 22.855 min
Tableau III.17. Résultat donné par CG/MS à tr= 23.445 min
Tableau III.18. Résultat donné par CG/MS à tr= 23.825 min

Tableau III.19. Résultat donné par CG/MS à tr= 24.806 min	64
Tableau III.20. Résultat donné par CG/MS à tr= 25.231min	65
Tableau III.21. Résultat donné par CG/MS à tr= 27.122 min	66
Tableau III.22. Résultat donné par CG/MS à tr= 28.407 min	67
Tableau III.23. Résultat donné par CG/MS à tr= 29.238 min	68
Tableau III.24. Résultat donné par CG/MS à tr=31.634 min	69

Liste des abréviations

AFNOR : Association Française de Normalisation.

AO: Antioxydant.

DPPH: 2,2-diphényle-1-picrylhydrazyl.

EP: Extrait de Plante.

EtOH: éthanol.

EV: Entrainement à la Vapeur.

GC/MS: Chromatographique en phase gazeuse couplée aux spectroscopies de masse.

HD: Hydrodistillation.

HE: Huile essentielle.

IC50: Inhibitory concentration 50.

ISO: International Organization of Standardization.

IA: Indice d'acide.

IE: Indice d'ester.

I_s: Indice de saponification.

PAM: Plantes aromatiques médicinales.

Rdt: Rendement.

μl: Microlitre.

الهدف من هذ هو استخراج الزيوت الأساسية ل إكليل الجبل، و دراسة خصائصها الفيزيوكيميائية و الحسية، ثم تقييم نشاطها المضاد للأكسدة، و أخيرا تحليل كروماتوغرافي للزيت وذلك ل استخراج المستخلصات الأساسية لتحديد مكوناته المختلفة. تشير النتائج عليها إلى أن العائد الأساسي من الزيت يصل 0.65% و هو مقبول جدا اقتصاديا و صناعيا. نتائج التحاليل الفيزيوكيميائية للزيوت الأساسية تتوافق مع معيار العالمي، والنشاط المضاد للأكسدة مقبول للغاية مقارنة بالمراجع. يوضح التحليل الكروماتوغرافي أن الزيت الأساسي يتكون من 20 مركبا رئيسيا.

: النباتات الطبية، إكليل الجبل، زيوت أساسية، استخلاص، التقطير.

Abstract:

The objective of this work is the extraction of the essential oils of **Rosmarinus officinalis**, and the Study of their physico-chimical and organoleptic properties, then the evaluation of its antioxidant activity, finally the analysis by CG/MS of oil essential extracted xas made to identify its different composents. The esults obtained indicate that the essential oil yield is of the order of 0.65 % which is very acceptable economically and industially. The results of the physico-chemical analyzes of the essential oils are in accordance with the AFNOR standard, and the anti-oxydant compared to the refrences. CG/MS analysis show that the oil is composed of 20 mains compounds.

Keywords: medicinal plants, rosemary, essential oils, extraction, hydrodistillation.

Résume:

L'objectif de ce travail est l'extraction des huiles essentielles de **Rosmarinus officinalis**, et l'étude de leurs propriétés physicochimique, organoleptiques, puis l'évaluation de son activité antioxydante, enfin l'analyse par CG/MS d'huile essentielle extraite a été réalise pour identifier ses différents composants. Les résultats obtenus indiquent que le rendement en huile essentielle est de l'ordre de 0 ,65% qui est très acceptable sur le plan économique et industriel. Les résultats des analyses physicochimiques des huiles essentielles sont conformes à la norme (AFNOR), et l'activité de pouvoir antioxydant est très acceptable par comparaison avec les références. L'analyse par GC/MS montre que l'huile est composé de 20 composées principaux.

Mot clés: plantes médicinales, romarin, les huiles essentielles, extraction, hydrodistillation.

1. Présentation de SAIDAL

SAIDAL est une société par actions, Avec un capital de 2.500.000.000 dinar Algérien. 80% du ce capital sont détenus par l'Etat, et les 20% du capital restants ont été cédés en 1999 par le biais de la Bourse à des investisseurs institutionnels et à des personnes physiques.

Le Groupe SAIDAL a pour objectif stratégique de consolider sa position de leader dans la production de médicaments génériques et de contribuer, ce faisant, à la concrétisation de la politique national du médicament mise en œuvre par les pouvoirs publics.

Sa gamme de production comprend quelques deux cent (200) produits, présents sous la forme suivante:

- Comprimés
- Gélules
- > Sirops
- Pommades
- > Injectables
- Suppositoires
- > Ampoules

Le groupe SAIDAL s'est imposé sur le marché:

- ➤ En produisant des médicaments de meilleure qualité.
- En pratiquant des prix raisonnables et compétitifs.

2. Présentation de CRD "Centre De Recherche et de Développement

Le CRD : c'est le seul centre de recherche et de développement en Algérie, il se situe à "EL MOHAMMEDIA –EL HARRACH". Avec l'effectif 192 personnes. On peut le considérer comme les poumons de groupe SAIDAL, il est constitué de 4 laboratoires plus une structure de substance naturelle.

Ces laboratoires sont:

- Laboratoire d'extraction des huiles naturelles,
- Laboratoire de chimie analytique,
- Laboratoire de pharmacie galénique,
- Laboratoire de microbiologie,
- Laboratoire de pharmacotoxicologie.
- Au total près de 150 produits ont été enregistres auprès des autorités sanitaires.

Introduction

Les plantes médicinales sont toutes les plantes qui possèdent une activité pharmacologique pouvant conduire à des utilisations thérapeutiques, grâce à la présence d'un certain nombre de substances actives dont la plupart agissent sur l'organisme humain. Elles ont été utilisées par l'homme depuis la haute antiquité; les Egyptiens utilisaient des feuilles de saule pour traiter les états inflammatoires.

Les progrès de phythochimie, la biologie et la pharmacologie ont contribué au développement de la médicine. Nous constatons de nos jours, qu'il a un retour au naturel car le médicament naturel en connaissant sa composition est mieux toléré et présente moins d'effets secondaires que le médicament chimique.

Les huiles essentielles ont un intérêt reconnu depuis longtemps, elles sont utilisées dans plusieurs domaines: en industrie alimentaire, en pharmacie, en cosmétique grâce à leurs propriétés aromatiques ou en raison de leurs vertus curatives. Bien que la **Rosmarinus officinalis** est l'une des plantes médicinales les plus utilisées à travers le monde, les extraits des huiles essentielles de cette plante sont largement utilisés, dans la médecine traditionnelle, depuis des siècles contre une multitude de maux. Aujourd'hui, le Romarin est rentré dans la médecine moderne.

Ce travail de fin d'études s'inscrit dans le cadre d'obtention d'un diplôme de Master en génie chimique, et réalisé dans le laboratoire d'extraction des huiles naturelles au niveau de CRD- SAIDAL d'Alger.

L'objectif de ce travail est l'extraction de huile essentielle de Rosmarinus officinalis de la région de Boumerdess en utilisant la méthode d'extraction nommé hydrodistillation au niveau de laboratoire, et l'extraction par entrainement à la vapeur à l'échelle pilote, puis ses caractéristiques organoleptique et physicochimique ont été déterminés en calculant les paramètres: indice d'acide, de saponification, d'estérification, l'indice de réfraction.. Son pouvoir antioxydant a été aussi évalué, et enfin des analyses par chromatographie GC/MS ont été effectuées pour montrer la composition chimique et identifier ses principaux constituants, afin de clarifier la qualité de cette huile et son importance.

Ce mémoire est composé de trois chapitres:

• Le premier chapitre concerne une approche bibliographique composée de trois principaux titres d'abord les plantes médicinales et phytothérapie, puis les huiles

INTRODUCTION GENERALE

essentielles et l'activité antioxydante, et enfin la famille des Lamiacées (Rosmarinus officinalis).

- Le deuxième chapitre est consacré pour une description de matériels, des méthodes d'extraction et de caractérisation.
- Le dernier chapitre comporte les résultats et discussion.

Enfin le mémoire se termine par une conclusion générale.

:

I.1.Plantes médicinales et phytothérapie

I.1.1. Historique

D'après (Volak et Stodola.1987) bien avant les Sumériens, au moins 6000 ans avant notre ère, l'homme utilise les plantes pour se soigner. L'utilisation des plantes n'avait pas été danger pour lui ; car non seulement il n'avait pas la notion des dosages efficaces pour traiter telle affection, mais il ne distinguait pas encore les plantes toxiques des plantes thérapeutiques. L'utilisation des plantes était souvent liée à des croyances religieuses ou à la magie et de ce fait on leur attribuait des pouvoirs surnatures.

Dans le monde arabe, à partir des ouvrages traduits, grec, perses et indiens, les savants musulmans ont synthétisé et assimilé la somme des traditions thérapeutiques gréco-romaines. Ils étaient encouragés en cela par les princes et califes arabes dont Haroun Erras Hid. Ils ont alors développé leurs propres recherches, observations cliniques et expérimentations, dans les domaines de la médecine et de la pharmacie. Il faut par ailleurs rappeler que les recettes de « grand-mère » telles celles à base d'huile d'olive, cumin, cannelle, ont toujours leur place dans certaines traditions familiales partout dans le monde, transmises de génération, notamment à la compagne, pour traiter certaines affections.

I.1.2. Généralités

I.1.2.1. Les plantes aromatiques :

Les plantes aromatiques sont constituées par des organes apportant une odeur et une saveur destinées à améliorer un bien-être lors de la dégustation. Il peut s'agir soit d'une plante entière ou d'un organe particulier (feuilles, fleurs, fruits, bourgeons, grains, rhizomes ou bulbes.

I.1.2.2. Les plantes médicinales :

Selon (**Koch.2001**), les plantes médicinales sont toutes les plantes qui possèdent une activité pharmacologique pouvant conduire à des utilisations thérapeutiques, grâce à la présence d'un certain nombre de substances actives dont la plupart agissent sur l'organisme humain.

I.1.2.3. Classification des plantes médicinales :

La classification des plantes peut se faire en fonction de nombreux intérêts :

• Classification botanique (systématique).

- Classification thérapeutique (action physiologique).
- Classification chimique (nature du principe actif).
- Classification commerciale (intérêt commercial).

I.1.2.4. Phytothérapie

Selon (**Charpentier. 2004**), du mot grec « phuton » qui signifie « plantes » et « therapeia » qui signifie « traitement ».

D'après (**Debuigneg.1984**), la phytothérapie est au sens étymologique, « traitement par les plantes » ; on doit la considérer aujourd'hui comme la thérapeutique utilisant les plantes ou les formes immédiatement dérivées des plantes excluant les principes d'extraction puis isolés des plantes.

La phytothérapie traite les différentes pathologies à l'aide de tisanes, d'extrais, de poudre, ect. Il existe au sein de cette discipline deux formes galéniques qui ont donné naissance à deux autres modes de traitements, c'est :

- Les huiles essentielles qui ont donné « l'aromathérapie », définie comme « l'utilisation en thérapeutique des huiles essentielles des plantes ». Certains prescripteurs les emploient en substitution d'antibiotique, dans les traitements anti-infectieux.
- « Les macérats glycérienes » constituées de produits végétaux en pleine croissance, sont prescrits en « gemmothérapie » définie comme « l'utilisation en thérapeutique d'extraits alcooliques et glycérinés de tissus jeunes de végétaux ». (Ghestemet al. 2001).

Mais selon (Valnet.1983), la phytothérapie a des limites qu'il faut bien connaitre : elle doit être cantonnée au traitement de troubles bénins, ou la vie du malade n'est pas en danger. Et d'après (Morinet Gillot.2000), il est d'usage d'exclure la phytothérapie des traitements de l'hypertension, du diabète, des cancers, du sida.

I.1.2.5. La pharmacognosie

Selon (**Bruneton. 1999**), étymologiquement, la pharmacognosie est la connaissance (gnosie) des poisons (pharmaco). Remarquons tout de suite que pharmaco est le poison, mais aussi le médicament.

La pharmacognosie, est l'étude de matières premières, et des principes actifs des substances naturelles à visée thérapeutique d'origine biologique, c'est-à-dire obtenues à partir des végétaux, des animaux ou par fermentation à partir des microorganismes.

Selon (Leclereq.2001), le but de la pharmacognosie est :

- ➤ Recherche de nouvelles substances présentant un intérêt thérapeutique à partir des plantes médicinales, animaux et micro-organismes.
- L'étude approfondie des substances naturelles déjà introduites en thérapeutique.

I.1.2.6. Les substances actives des plantes médicinales

Se sont, les enzymes, les polysaccharides, les alcaloïdes, les hétérosides, les terpènes, les alcools, les aldéhydes, les tanins, l'eau, les oligo-éléments, les saponines, les résines, les mucilages, les amères...ect. Toutes ces substances donnent aux plantes ses propriétés médicinales.

Elles sont classées en deux catégories, les produits du métabolisme primaire, essentiellement les saccharides, et les produits de métabolisme secondaire.

I.1.3. Mode de préparation des médicaments naturels

Le but principal de la préparation des médicaments naturels à la base de plantes médicinales, est d'extraire le maximum des principes actifs. L'infusion, la macération et la décoction, constituent les modes de préparation les plus connus et les plus utilisés.

L'extraction est un processus, complexe compose par des processus déférents : dialyse, désorption, dissolution, diffusion. Commence par la pénétration de solvant à l'intérieur de la matière végétale par la membrane cellulaire, le contenu de la cellule passe à la solution (dissolution puis désorption), la concentration de liquide cellulaire devient plus grand que celle intracellulaire et les corps dissous passent à l'extragent qui se trouve à l'extérieure de la cellule ; donc il se produire le phénomène de dialyse, les corps dissous passent à l'extérieure de la cellule.

I.1.4. Domaine d'application des plantes médicinales

Les substances naturelles issues des végétaux ont des intérêts multiples dans l'industrie, en alimentation, en cosmétologie, et en pharmacie. La pharmacie utilise encore une forte proportion de médicaments d'origine végétale et la recherche trouve chez les plantes des molécules actives nouvelles, ou des matières premières pour la semi synthèse.

Il y a eu donc un réveil vers un intérêt progressif dans l'utilisation des plantes médicinales dans les pays développés comme les pays en voie de développement, parce que les herbes fines guérissent sans effet secondaire défavorables.

• Utilisation en médecines

Selon les estimations de l'Organisation Mondiale de la Santé (OMS), plus de 80% de la population mondiale surtout dans les pays en voie développement, ont recours aux traitements traditionnels pour satisfaire leurs besoins en matière de santé et de soins primaires.

• Utilisation en agriculture

Exemple : l'arbre Azadirachta indica, qui se développe dans tout le subcontinent indien, est l'une des plantes médicinales les plus importantes au Bangladesh, de 12 à 18 mètres de hauteur avec un périmètre atteignant jusqu'à 1.8 à 2.4 mètres. Les huiles de cet arbre ont des utilisations dans l'agriculture dans le contrôle de divers insectes et nématode (vers parasites).

• Utilisation en alimentation

Assaisonnement des boissons, des colorants et des composés aromatiques, les épices et les herbes aromatiques utilisés dans l'alimentation sont pour une bonne part responsable des plaisirs de la table.

• Utilisation en cosmétique

Les plantes sont utilisées dans les produits de beauté, parfums et articles de toilette, produits d'hygiène, des suppléments diététiques.

I.2. Huiles essentielles

I.2.1. Définition

Selon AFNOR (Association Française de Normalisation) : « ce sont des produits obtenus à partir de matières premières d'origine végétale, soit par entraînement à la vapeur, soit par des procédés mécaniques à partir de l'épicarpe frais de certains agrumes, soit par distillation et qui sont ensuite séparée de la phase aqueuse par des procédés physiques » (Brunetonetal.1999).

Pour certains auteurs, il est important de distinguer l'huile essentielle et l'essence (Carette.2000) :

- **Essence** : sécrétion naturelle élaborée par l'organisme végétal, contenue dans divers types d'organes producteurs, variables selon la partie de la plante considérée.
- **Huile essentielle** : est un extrait naturel de matières premières d'origine végétale, obtenu par distillation à la vapeur d'eau ; c'est-à-dire que l'huile essentielle est l'essence distillée.

I.2.2. Répartition et localisation

Les huiles essentielles n'existent quasiment que chez les végétaux supérieurs (**Khia** et al.2014). Leur composition chimique est d'une grande complexité, ce qui les rend spécifiques car chaque huile essentielle regroupe en réalité plusieurs substances aromatiques très élaborées et très différentes. Les huiles essentielles peuvent être stockées dans toutes les parties de la plante (fleurs, feuilles, fruits, graines, écorces, tiges, ect) avec une quantité plus importante au niveau des parties supérieures (fleurs et feuilles) (AbougheAngone et al.2015).

Les huiles essentielles sont produites dans le cytoplasme des cellules sécrétrices et s'accumulent en général dans des cellules glandulaires spécialisées, situées en surface de la cellule et recouvertes d'une cuticule.

L'accumulation de ces métabolites secondaires, se fait généralement au niveau des structures histologiques spécialisées, souvent localisées sur la surface de la plante telle que les poils sécréteurs, les poches sécrétrices et les canaux sécréteurs pour les Astéracées (Teucher et al. 2003).

I.2.3. Propriétés physico-chimiques des huiles essentielles :

Les huiles essentielles sont constituées de molécules aromatiques de très faible masse moléculaire (**Degryse et al.2008**). Elles sont liquides à température ambiante mais aussi volatiles, ce qui les différencie des huiles dites fixes. Elles sont liposolubles et solubles dans les solvants organiques usuels ainsi que dans l'alcool, entraînables à la vapeur d'eau mais très peu solubles dans l'eau (**Couic-Marinier et al. 2013**).

Elles présentent une densité en général inférieure à celle de l'eau et un indice de réfraction élevé (**Desmares et al. 2008**). Elles sont pour la plupart colorées : ex : rougeâtre pour les huiles de cannelle et une variété de thym, jaune pâle pour les huiles de sauge sclarée et de romarin. Elles sont altérables et sensibles à l'oxydation ; par conséquent, leur conservation nécessite de l'obscurité et de l'humidité (**Couic-Marinier et al. 2013**).

I.2.4. Composition chimique et biosynthèse des huiles essentielles :

L'étude de la composition chimique des huiles essentielles révèle qu'il s'agit de mélanges complexes et éminemment variables de constituants appartenant exclusivement à deux groupes caractérisés par des origines biogénétiques distinctes : les composés terpéniques tels que les monoterpènes et terpènes sesquiterpéniques, et les composés aromatiques dérivés du phénylpropane, beaucoup moins fréquents comme l'alcool

cinnamique. Elles peuvent également renfermer divers produits issus de processus dégradatifs mettant en jeu des constituants non volatils comme les acides, alcools, aldéhydes, esters, etc.) (Bakkali et al. 2008 ; Couic-Marinier et al. 2013).

La biosynthèse des constituants de ces huiles essentielles emprunte deux voies utilisant comme intermédiaires soit l'acide mévalonique, soit l'acide shikimique respectivement pour les terpenoides et les phénylpropanoides.

I.2.5. Facteurs affectant la variabilité de la composition des huiles essentielles :

Les activités biologiques à large spectre des huiles essentielles pourraient être attribuées à la complexité et à la variabilité de leur composition chimique qui est influencée par de nombreux facteurs.

Divers travaux ont démontré que le contenu de l'huile essentielle peut être changé en fonction des différences de culture, d'origine, de stade végétatif mais également de facteurs environnementaux comme la température, la pression atmosphérique, la vitesse du vent, l'augmentation des précipitations et l'altitude (**Djerrad et al. 2015**). Ces facteurs influent sur la croissance de la plante (**Korner. 2007**), la physiologie et la morphologie des plantes, l'écologie des gènes et les tendances des organes qui dans le sens chimique, conduisent à la différenciation entre les espèces (**Reisch et al. 2005**).

En outre, d'autres études ont révélé une grande variabilité dans la composition chimique des huiles essentielles, qui était principalement corrélée à la variation géographique, conditions environnementales et agronomiques (Moghtader et al. 2009), temps de récolte et méthodes d'extractions (Djouahri et al. 2013).

I.2.6. Toxicité des huiles essentielles :

Comme pour un médicament, il existe pour chaque huile essentielle un équilibre entre le bénéfice et le risque qui doit aussi être envisagé en fonction du sujet. L'application cutanée, des HEs contenant des furocoumarines et pyrocoumarines (huile de Citrus) ou même leur prise par voie orale, peut provoquer sous l'effet prolongé du soleil, des réactions érythémateuses susceptibles de favoriser la carcinogénèse (Bakkali et al. 2008). Aussi, l'absorption orale des HEs riches en monoterpènes sur de longues périodes peut enflammer et détériorer à terme, les néphrons (les unités fonctionnelles du rein). C'est ce que l'on nomme une néphrotoxicité (Cuic Marinier et al. 2013).

De plus l'usage des HEs en application locale, en parfumerie ou en cosmétique, peut générer des irritations, allergies voire photosensibilisation ; c'est le cas de l'huile essentielle de Thym, d'Origan, de la Sarriette (huiles riches en thymol ou en carvacrol) qui sont connues par leur pouvoir irritant et agressif (**Bakkali et al. 2008**).

I.2.7. Procède d'extraction des huiles essentielles :

I.2.7.1. Distillation ou hydro distillation

La distillation est la méthode la plus employée pour extraire les huiles essentielles. Le principe de ce mode consiste à immerger la matière végétale dans l'eau bouillante, les vapeurs passant du bas vers le haut font que les poches à essence, soumises à l'action de l'humidité et de la chaleur, éclatent et libèrent les huiles essentielles devenues volatiles.

Ces composés volatils sont entrainés par la vapeur d'eau produite par le bain aqueux, d'où l'obtention de l'huile essentielle recueillie après décantation, l'hydrodistillation est généralement conduite à pression atmosphérique, cependant, pour améliorer le rapport d'entrainement (masse du corps entrainé / masse d'eau évaporée), l'opération peut se faire sous pression.

L'avantage de cette méthode réside dans le contact direct entre la plante et l'eau bouillante ; cette technique est réservée habituellement aux dosages des huiles essentielles au laboratoire.

Les inconvénients de ce mode d'extraction sont :

- Certaines substances sont altérées à température élevée en présence d'eau.
- Certains constituants des essences, solubles dans l'eau, ne se trouveront pas dans l'essence ou tous au moins n'y seront que partiellement représentés.
- Des phénomènes physiques et chimiques se produisent et modifient sensiblement le contenu de la matière végétale et par conséquent l'huile essentielle.

Pour limiter ces artefacts il faut maintenir le pH proche de la neutralité et de minimiser la durée du traitement ; or la dégradation de la matière végétale lors de l'hydrodistillation induit à la formation d'acides organiques qui portent le pH à une valeur proche de 4.

I.2.7.2. L'entrainement à la vapeur sèche

Pour éviter certains phénomènes d'hydrolyse des composants d'huile essentielle ou des réactions chimiques pouvant altérer les résultats, le procédé de l'entrainement à la vapeur sèche est pulsé. Les cellules se distendent et les particules d'huile se libèrent. Ces derniers sont alors vaporisés et condensées dans un serpentin réfrigéré. La récupération d'huile essentielle est la même que dans le cas de l'hydrodistillation.

I.2.7.3. L'extraction aux solvants volatils :

Cette technique est elle aussi utilisée avec des fleurs ne supportant pas la chaleur, la distillation ne convient que pour les végétaux dont le rendement en huile essentielle est suffisamment important, l'hexane qui s'évapore rapidement est employé. Le solvant lave la matière première qui subira après décantation et concentration, une distillation partielle. Ce solvant volatil est alors séparé de concrète par filtrage, puis glaçage de -12° à -15°C. La précieuse substance ainsi obtenue est à nouveau filtrée et concentrée à faible pression.

I.2.7.4. L'extraction au CO₂ supercritique :

L'originalité de cette technique d'extraction réside dans le type de solvant employé : le CO₂ supercritique.

Au-delà du point critique (P = 73,8 bars et T = 31,1 °C), le CO₂ possède des propriétés intermédiaires entre celles des liquides et celles des gaz ; ce qui lui confère un bon pouvoir d'extraction, qui plus est, facilement modulable en jouant sur les conditions de température et de pression. Cette technique présente énormément d'avantages. Tout d'abord, le CO₂ supercritique est un solvant idéal puisqu'il est naturel, inerte chimiquement, inflammable, non toxique, sélectif, aisément disponible et peu coûteux. De plus, il s'élimine facilement de l'extrait sans laisser de résidus. Outre ces avantages, le principal point fort est la qualité irréprochable de l'extrait puisqu'aucun réarrangement ne s'opère lors du processus. Son unique point faible est le coût très élevé de son installation (**Pellerin** .2001).

En jouant sur les conditions de température et de pression, il est possible de rendre l'extraction plus sélective aux composés odorants et ainsi obtenir des extraits de composition tout à fait semblable aux huiles essentielles, non chargés ou molécules non volatiles. La température et la pression à ne pas dépasser pour extraire uniquement les principes volatils est 60 °C et 60 bars (**Richard. 1992**).

Cette technique est aujourd'hui considérée comme la plus prometteuse ; car elle fournit de l'extrait volatil de très haute qualité et qui respecterait intégralement l'essence originelle de la plante.

I.2.7.5. Hydrodistillation par micro- ondes sous vide :

L'extraction sans solvant assistée par micro-ondes (Solvent Free Microwave Extraction ou SFME) a été conçue pour des applications en laboratoire pour l'extraction d'huiles essentielles de plantes aromatiques (**Chemat et al. 2004**). Cette technologie est une combinaison de chauffage micro-ondes et d'une distillation à la pression atmosphérique.

Basée sur un principe relativement simple, cette méthode consiste à placer le matériel végétal dans un réacteur micro-ondes, sans ajout de solvant organique ou d'eau. Le chauffage de l'eau contenue dans la plante, permet la rupture des glandes renfermant l'huile essentielle. Cette étape libère l'huile essentielle qui est ensuite entrainée par la vapeur d'eau produite par le végétal. Un système de refroidissement à l'extérieur du four micro-ondes permet la condensation du distillat, compose d'eau et d'huile essentielle, par la suite facilement séparable par simple décantation. D'un point de vue qualitatif et quantitatif, le procédé SFME semble être plus compétitif et économique que les méthodes classiques telles que l'hydrodistillation ou l'entrainement à la vapeur (Lucchesi et al. 2004). La composition de l'huile essentielle obtenue par ce procédé est bien souvent semblable à celle obtenue avec un procédé d'entraînement à la vapeur traditionnel.

Toutefois, une plus grande proportion de composés oxygénés est généralement observée dans les huiles essentielles extraites par microondes ; ceci est dû à la faible quantité d'eau présente dans le système et à la rapidité du processus de chauffage. Ainsi, les dégradations thermiques et hydrolytiques des composés oxygénés sont limitées (**Luque de castro et al. 2007**).

Cette technique présente donc beaucoup d'avantages : technologie verte, économie d'énergie et de temps, investissement initial réduit et dégradations thermiques et hydrolytiques minimisées (**Lucchesi et al. 2004**).

I.2.7.6. L'enfleurage et macération :

Cette technique, la plus ancienne, très couteuse et peu employée aujourd'hui. L'emploie pour des fleurs sensibles, ne supportant pas un chauffage trop élevé, comme par exemple le jasmin, la violette et la rose. Les fleurs sont mises à macérer dans des graisses en plusieurs jours. Une fois gorgés de parfum, les corps gras sont filtrés et évaporée.

I.2.7.7. Expression:

C'est une technique simple où les écorces des agrumes sont pressées à froid pour extraire leurs huiles essentielles.

I.2.8. Contrôle des huiles essentielles :

Selon (**Jean. 2003**), les pharmacopées prévoient différents essais : évaluation de la miscibilité à l'éthanol, mesures physique (indice de réfraction, angle de rotation optique, densité relative, parfois point de solidification), et mesures physiques (détermination des indices d'acide, d'ester, de carbonyle, éventuellement recherche des huiles grasses est des

huiles essentielles résinifiées, détermination de résidu d'évaporation, ect). Elles demandent aussi une analyse de l'huile essentielle, par une technique chromatographique. Bien que beaucoup moins performante que la CPG, la CCM peut être utilisée pour contrôle de qualité des huiles essentielles.

I.2.8.1. Chromatographie en phase gazeuse

La chromatographie en phase gazeuse (CPG) est, comme toutes les techniques de chromatographie, une technique qui permet de séparer des molécules d'un mélange éventuellement très complexe de nature très diverse. Elle s'applique principalement aux composés gazeux ou susceptibles d'être vaporisés par chauffage sans décomposition.

La CPG possède les avantages suivants : la facilité de mise en œuvre, temps d'analyse assez court, fiabilité d'automatisation du processus en font une méthode particulièrement bien adaptée aussi bien à l'analyse qualitative qu'à l'analyse quantitative. Initialement réalisée sur des colonnes garnies, l'analyse des huiles essentielles fait maintenant uniquement appel aux colonnes capillaires plus efficaces dans un temps plus court et donnant des temps de rétention avec une plus grande précision.

Le principe de la méthode consiste à introduire l'échantillon (un liquide volatil) en tête de colonne par l'intermédiaire d'une micro seringue qui va traverser une pastille en caoutchouc, appelée septum, pour se retrouver dans une petite chambre en amont de la colonne appelée injecteur. L'injecteur est traversé par le gaz porteur et porté à une température appropriée à la volatilité de l'échantillon. Les quantités injectées peuvent varier de 0.2 à 0.5 µl.

Ensuite, une fois rendue volatils, les différents composés de l'échantillon vont être emportés par le gaz porteur (ou gaz vecteur) à travers la colonne et se détacher les uns des autres en fonction de leur affinité avec la phase stationnaire. La phase stationnaire peut être un liquide non (ou peu) volatil (chromatographie gaz-liquide) ou un solide adsorbant (chromatographie gaz-solide). Dans les deux cas, la phase stationnaire va provoquer un phénomène de réaction chromatographie avec les différents composés (appelés solutés). Plus le composé a d'affinité avec la phase stationnaire, plus il mettra de temps à sortir de la colonne. La grandeur expérimentale brute est appelée temps de rétention ; c'est le temps qui s'écoule entre l'injection de l'échantillon et l'apparition du signal maximum du soluté au détecteur. Pour favoriser le transport de tous les composés à travers la colonne (élution), il faut déterminer la colonne température du four, en général, la température doit être supérieure à la température d'ébullition des composés, on peut travailler en isotherme ;

c'est-à-dire avec une température fixe durant toute l'analyse ou avec un programme de température qui varie.

A la sortie de la colonne, les composés rencontrent un organe essentiel qui est appelé détecteur. Cet appareil évalue en continu la quantité de chacun des constituants séparés au sein du gaz porteur grâce à la mesure de différentes propriétés physiques du mélange gazeux. Le détecteur envoie un signal électronique vers un enregistreur (sorte d'imprimante) qui dessinera les courbes de chaque pic en fonction de leur intensité (courbe de type Gaussienne). L'ensemble des pics est appelé chromatogramme. Actuellement et de plus, les logiciels remplacent avantageusement les enregistreurs papiers pour l'interprétation des signaux envoyés par les détecteurs.

La possibilité de coupler les chromatographes à divers spectromètres (infrarouge à transformée de fourrier, spectromètre de masse) augmente la qualité des informations obtenues. En chromatographie en phase gazeuse couplé avec spectromètre de masse (CG-MS), la comparaison informatique de spectre d'un pic inconnu avec une ou plusieurs références permet son identification (à condition que le niveau de similitude des spectres, inconnus et de référence soit suffisant et que les indices de rétention soient identiques dans des conditions opératoires comparables).

Le spectromètre de masse est donc considéré dans le couplage avec un système chromatographie comme un détecteur dont le but est d'analyser en continu la composition de l'éluant chromatographique.

Les qualités d'une bonne installation de transfert entre un chromatographe et un spectromètre de masse sont nombreux parmi celles-ci :

- Le maximum de soluté et le minimum de gaz vecteur sont transmis,
- Les qualités de la séparation chromatographie sont conservées ; c'est-à-dire que les composés élués successivement ne se mélangent pas entre eux ; le temps de transfert doit être négligeable.

Pour une étude plus fine des huiles essentielles, il peut être utile de procéder à un préfractionnement, que celui-ci soit chimique ou chromatographie, sur colonne ou par CCM préparative en n'oubliant pas que des réarrangements sont toujours possibles, même sur des supports désactivés.

I.2.8.2. Chromatographie liquide haute pression :

Peu intéressante pour les fractions volatiles, cette technique est efficace pour s'assurer de l'authenticité des huiles essentielles de citrus par l'analyse des constituants non volatils ou pour doser l'herniaire (une coumarine) dans les huiles essentielles de

lavandes ou d'estragon. C'est une très bonne méthode pour étudier les constituants non volatils des concrètes et des absolues ou pour opérer des préfractionnements. Comme précédemment, on peut la coupler, notamment à un analyseur de masses (CLHP-SM).

I.2.9. Activité antioxydante

I.2.9.1. Radicaux libres et stress oxydatif

Plusieurs réactions biologiques, requises pour le fonctionnement normal de l'organisme, se déroulent dans les cellules et les tissus du corps. Ces réactions provoquent souvent la génération d'espèces avec des électrons non appariés appelés radicaux libres. Ces radicaux libres comprennent les espèces réactives oxygénées (ERO), les espèces réactives d'azote (ERN) et les espèces réactives de soufre (ERS) (Taofiq et al. 2016).

Le corps a généralement des mécanismes pour équilibrer la production des ROS et la neutralisation au moyen de son pool antioxydant intrinsèque, mais la plupart du temps, elle peut s'affaiblir en raison de la production excessive des ROS, induisant le stress oxydatif (Morenoet al. 2006).

Dans les systèmes biologiques, le stress oxydatif est la conséquence d'un déséquilibre entre la production de radicaux libres et leur destruction par des systèmes de défenses antioxydante (**Taofiq et al. 2016**). Autrement dit, si la capacité de l'organisme à neutraliser les radicaux libres s'excède, ils peuvent conduire à l'apparition de plusieurs maladies, dont les maladies cardiovasculaires, certains types de cancers et d'autres maladies associées au vieillissement.

I.2.9.2. Antioxydants:

Les antioxydants (AO) sont des composés qui peuvent inhiber ou retarder l'oxydation des lipides et d'autres biomolécules, en bloquant l'initiation ou la propagation des réactions en chaîne oxydante (Wollinger et al. 2016). Ces réactions peuvent causer des dommages fonctionnels au corps humain, comme le cancer ou les maladies cardiovasculaires. Les antioxydants peuvent empêcher ce processus en raison de leurs propriétés redox comme le comportement réducteur, le don d'hydrogène (Moreno et al. 2006). Ils peuvent être classés en deux groupes selon le niveau de leur action : les antioxydants primaires et les antioxydants secondaires (Cillard et al. 2006).

I.2.9.3. Mode d'action d'un antioxydant

D'une manière générale, un antioxydant peut empêcher l'oxydation d'un autre substrat en s'oxydant lui-même plus rapidement que celui-ci ; un tel effet résulte d'une

structure de donneurs d'atome d'hydrogène ou d'électrons souvent aromatiques cas de dérives de phénols (**Zieli ski et al. 2012**). En plus, leurs radicaux intermédiaires sont relativement stables du fait de la délocalisation par résonnance et par manque de position appropriées pour être attaqué par l'oxygène moléculaire.

Les antioxydants sont en fait des agents de prévention, ils bloquent l'initiation en complexant les catalyseurs, en réagissant avec l'oxygène, ou des agents de terminaison capables de dévier ou de piéger les radicaux libres, ils agissent en formant des produits finis non radicalaires. D'autres en interrompant la réaction en chaine de peroxydation, en réagissant rapidement avec un radical d'acide gras avant que celui-ci ne puisse réagir avec un nouvel acide gras. Tandis que d'autres antioxydants absorbent l'énergie excédentaire de l'oxygène singlet pour la transformer en chaleur (Cillard et al. 2006).

I.2.9.4. Types d'antioxydants :

Les tissus végétaux contiennent un réseau de composés qui contrôlent le niveau d'espèces réactives d'oxygène (**Moreno et al. 2006**). L'effet oxydatif de ces dernières peut être minimisé par l'utilisation d'antioxydants. Il existe deux sources d'antioxydants :

- Sources synthétiques : ils constituent une source importante d'antioxydants comme l'hydroxytoluène butyle (BHT) et l'hydroxyanisole butyle (BHA) (Mechergui et al. 2010).
- Sources enzymatiques : les antioxydants d'origine alimentaire sont nombreux, certains sont liposolubles comme le tocophérol ; carotène ; lycopène, d'autres sont hydrosolubles comme l'acide ascorbique ; et d'autre sont plus hydrosolubles que liposolubles comme les polyphénols (Moreno et al. 2006).

Les antioxydants synthétiques sont nocifs et cancérogènes ; pour cette raison, l'application d'extraits de plantes naturelles comme antioxydants enzymatiques dans l'industrie alimentaire devient de plus en plus importante (Wollinger et al.2016).

En outre, il a été rapporté que l'utilisation d'antioxydants naturels peut protéger les effets nocifs des radicaux libres induits chez le corps humain (Niki. 2012). Dans ce contexte, les huiles essentielles et leurs composants ont été intensément criblés pour leurs activités antioxydants dans les industries alimentaires, en raison de leur état de sécurité relative et de leur large acceptation par les consommateurs (Mothana et al. 2012).

I.3. La famille des Lamiacées

La famille des lamiacées comporte 2700 espèces réparties en 31 genres. Les plantes de cette famille sont des herbacées (ou plus au moins ligneuses), à feuilles opposées sans stipule, à tige quadrangulaire et à fleurs irrégulières et gamopétales disposées en grappes (parfois d'apparence verticillée, en épis ou en capitule). La plante est couverte de poils glanduleux renfermant une huile essentielle.

Les différents caractères de la famille des lamiacées, présentent des variations en fonction des différents genres. Ces genres sont classés en 9 groupes suivant des détails anatomiques communs. Ainsi les genres Rosmarinus et Salvia forment un groupe et possèdent le caractère commun de n'avoir que « 2 étamines ».

I.3.1. Rosmarinus officinalis

I.3.1.1. Origine du nom:

Le mot romarin (Rosmarinus) dérive du latin « Ros » : rosée, «Marinus»: marin.

- Nom commun: Romarin.
- **Autre nom :** herbes aux couronnes, herbes aux troubadours, encensier, arbre de marine, rose de marine, roumaniou, roumarine.
- Nom scientifique: Rosmarinus officinalis L.

I.3.1.2. Historique:

Le romarin, chargé de symboles chez les anciens qui en faisait des couronnes, a servi à l'élaboration d'un remède longtemps réputé, « l'Eau de la reine de Hongrie » qui en fait est un alcoolat. Les médecins arabes utilisaient beaucoup le romarin et ce sont eux qui réussirent les premiers à en extraire l'huile essentielle.

I.3.1.3. Distribution géographique :

Le romarin spontané qui pousse sur les côtes méditerranéennes, et le sud-ouest de l'Asie, est souvent cultivé dans les jardins comme clôture. On le trouve essentiellement dans les garrigues maquis non loin de la mer.

En Algérie, le romarin est l'une des sept espèces végétales excédant 50.000 hectares sur le territoire national. C'est une plante pérenne de type arbrisseau qui peut vivre plus de 20 ans. Mais en culture, il faut compter une douzaine d'années de vie.

L'aire géographique du romarin est spécifiquement méditerranéenne, il est répandu dans les pays européens, en France, en Espagne, en Portugal. De l'autre côté de Gibraltar on le retrouve au Maroc, en Tunisie et en Libye; mais qu'il est abondant, il devient rare et ne se manifeste que dans quelques stations isolées en Egypte, en Palestine, au Liban, à Chypre, il réapparait en Turquie, en Grèce et en Italie.

I.3.1.4. Description botanique:

Le romarin est un arbrisseau de la famille des labiées, peut atteindre jusqu'à 1,5 mètre de hauteur, il est facilement reconnaissable en toute saison à ses feuilles persistantes sans pétiole, coriaces beaucoup plus longues que larges, aux bords légèrement enroulés, vert sombre luisant sur le dessus, blanchâtres en dessous (Figure I.1). La floraison commence dès le mois de février (ou janvier parfois) et se poursuit jusqu'au avril – mai. La couleur des fleurs varie du bleu pâle au violet (on trouve plus rarement la variété à fleurs blanches **Rosmarinus officinalis albiflorus**). Le calice velu à dents bordées de blanc, elles portent deux étamines ayant une petite dent vers leur base. Comme pour la plupart des Lamiacées, le fruit est un tetrakène (de couleur brune).

Figure I.01: Photo de Rosmarinus officinalis (Gonzalez et al. 2007).

• Feuille:

Les feuilles sont étroitement lancéolées linéaires, faibles et coriaces, les fleurs d'un bleue pale, maculées intérieurement de violet sont disposées en courtes grappes denses s'épanouissent presque tout au long de l'année (Gonzalez et al. 2007; Bekkaraet al. 2007).

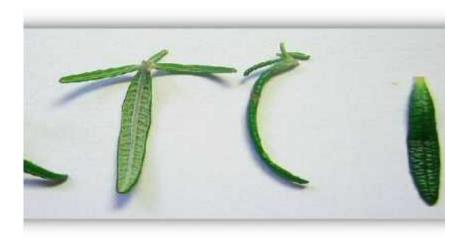


Figure I.02: Feuille de Rosmarinus officinalis (Bekkara et al. 2007).

• Fleure

Les fleurs sont des pentamères, en général Hermaphrodites. Le calice est plus ou moins bilabié persistant et la corolle bilabiée, longuement tubuleuse, parfois à 4-5 lobes subégaux ou à une seule lèvre inférieure trilobée, la supérieure est bilobée. (**Madadori.** 1982).

Figure I.03: La fleur de Rosmarinus officinalis (Bekkara et al. 2007).

• Racine:

C'est la partie souterraine de la plante, spécialisée dans l'absorption de l'eau et des sels minéraux et dans la fixation au sol, la racine du **Rosmarinus officinalis** est profonde et pivotante.

• Tige:

Arbuste ou sous arbrisseau, rameau de 0.5 à 2 mètres cette tige est tortueuse, anguleuse et fragile. L'écorce est linéaire à cyme axillaire plus ou moins simulant des épis (Sanon.1992).

Figure I.04: Racine de Rosmarinus officinalis (Bekkara et al. 2007).

I.3.1.5. Classification botanique

La classification des lamiacées selon (Quezel et Santa.1963).

Règne: Plante

Embranchement : Spermaphytes

Sous embranchement : Angiospermes

Classe: Dicotylédones

Ordre: Lamiales (labiales)

Sous ordre : Lamiales

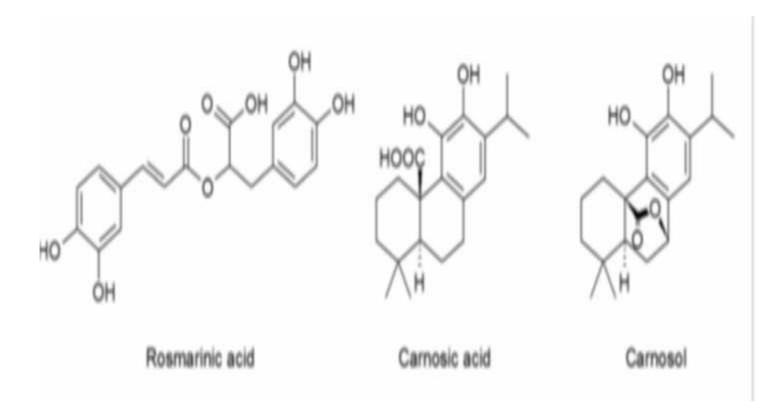
Familles: Lamiaceae

Genre: Rosmarinus

Espèce : Rosmarinus officinalis

Figure I.05: Aspects morphologiques du Romarin (Quezel et Santa. 1963).

I.3.1.6. Utilisation traditionnelle


Selon (**Ribeiro-Santos et al. 2015**), le romarin (Rosmarinus officinalis) est une source très riche de phénols bioactifs qui sont principalement responsables de la bio activité de la plante ; la raison de son utilisation dans la médecine traditionnelle pendant des siècles. Les extraits du romarin sont utilisés dans un large éventail d'applications, y compris la conservation des alimentes les produits cosmétiques (**Lee et al. 2011**).

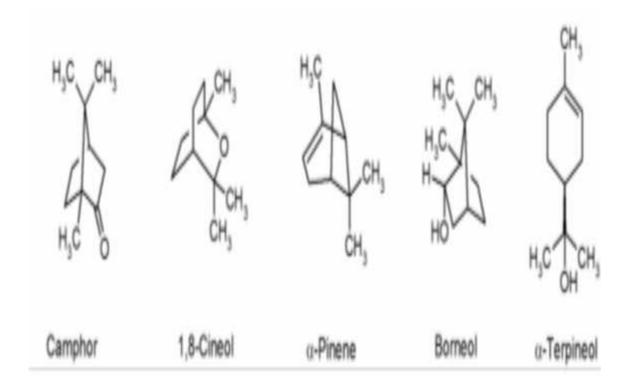
R. officinalis, largement trouvé dans les pays de la Méditerranée occidentale, est bien connu pour ses nombreuses utilisations dans la cuisine et ses propriétés pharmacologiques. L'huile essentielle obtenue à partir des feuilles de la plante est également utilisées pour préparer des extraits phénoliques qui sont des remèdes naturels pour un certain nombre de maladies courantes (**Bellumori et al. 2016**).

Les constituants antioxydants les plus importants de cette espèce végétale sont l'acide carnosique, l'acide caféique et ses dérivés tels que l'acide rosmarinique, qui ont une activité antioxydant puissante (Moreno et al. 2006).

Plusieurs activités biologiques ont été décrites pour l'acide rosmarinique comme antioxydant, antiviral, antibactérien et antimutagène (**Osakabe et al. 2004**). Récemment, il a été signalé que ce composé pourrait être un agent thérapeutique dans le traitement de la maladie d'Alzheimer (**Ono et al. 2004**).

Des études sur l'acide carnosique et son dérivé hydroxylé oxydatif carnosol, ont montré qu'ils avaient des effets anti-inflammatoires et anti-tumoraux.

Figure I.06: Les structures chimiques des principaux composants antioxydants présents dans les feuilles du romarin (**Wollinger et al. 2016**).

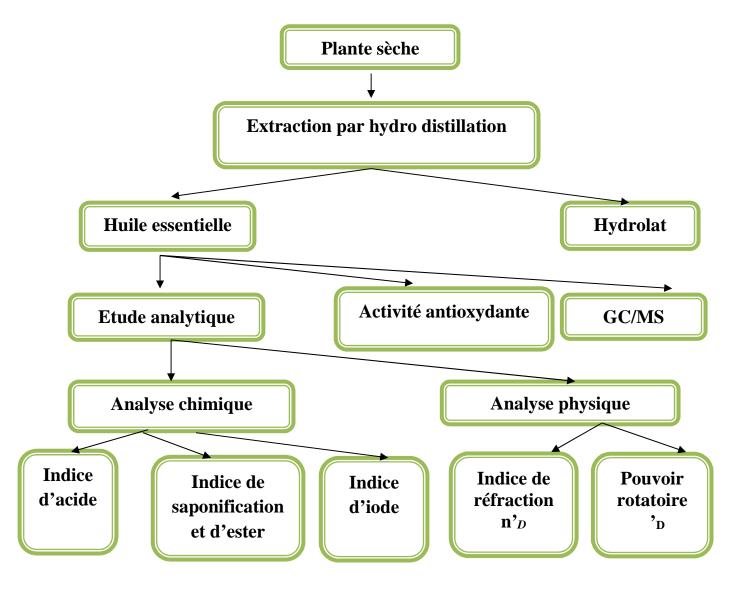

I.3.1.7. Composition chimique de l'huile essentielle de Rosmarinus officinalis

L'huile essentielle du Rosmarinus officinalis est généralement obtenue par hydro distillation, elle est incolore ou légèrement jaune. Les composants majoritaires sont représentés dans le (Tableau I.1) (Wollinger et al. 2016).

Tableau I .01: Composants principaux de l'huile essentielle du Rosmarinus officinalis (Wollinger et al. 2016)

Composé	Pourcentage (%) dans les feuilles de la
	plante.
1.8-cinéole	(15-30) %
Camphre	(10-25) %
a -pinène	(10-25) %
Borneol	(3-20) %
Camphène	(5-10) %
Acétate de bornyle	(1-5) %

Les structures chimiques de ces composants sont présentées dans la (Figure I.07) :


Figure I.07: Les structures chimiques des composants de l'HE du romarin (Wollinger et al.2016).

II.1. Introduction

Notre travail a été effectué au sein du laboratoire de centre de recherche et développement (CRD) de SAIDAL. Le laboratoire s'occupe de l'extraction, la caractérisation et l'analyse des huiles essentielles et extraits végétaux des plantes aromatiques ainsi que la détermination de leur activité antioxydante.

L'objectif de ce travail est l'extraction de l'huile essentielle de romarin (Rosmarinus officinalis) par la méthode d'hydro distillation et entrainement à la vapeur d'eau, puis la détermination de ses caractéristiques physico-chimiques et organoleptiques, et ses constituants principaux en utilisant la méthode couplée GC/MS, dans le but de contrôler la qualité et l'évaluation de l'activité antioxydante.

Le schéma général adopté pour la réalisation de ce travail est représenté ci-dessous :

II.2. Matière végétale

II.2.1. Récolte des plantes

La présente étude est portée sur une plante de la famille des labiées qui est le romarin (**Rosmarinus officinalis**).

La récolte de notre plante a été effectuée au moins de février 2019, au niveau de la région de caroubier de la wilaya de Boumerdess.

II.2.2. Séchage

Les feuilles de la plante fraichement récoltée sont lavées à l'eau courante afin de les débarrasser de la poussière et d'autres particules, ensuite séchées à température ambiante et à l'abri de la lumière pendent 20 jours pour empêcher la photo oxydation (Figure II.1).

Figure II.01 : Feuilles de la plante après séchage de R.officinalis.

II.3. Procédé d'extraction de l'huile essentielle de romarin

Deux méthodes de distillation sont principalement utilisées : l'entraînement à la vapeur d'eau à l'échelle pilote et l'hydrodistillation à l'échelle de laboratoire.

II.3.1. Procédé d'hydrodistillation

L'extraction de l'huile essentielle a été effectuée par hydrodistillation dans un appareil de type Clevenger (**Khia et al. 2014**), au niveau de laboratoire de CRD (SAIDAL).

Figure II.02: Dispositif d'hydrodistillation utilisé à l'échelle du laboratoire.

Mode opératoire

100 g de plante séché et introduite dans un ballon, imprégné d'eau distillée, l'ensemble et porté à ébullition pendant 2 à 2heures et demi. La vapeur chargée d'huile ; en traversant un réfrigérant se condense et chute dans une ampoule à décanter, l'eau et l'huile se séparent par différence de densité. L'expérience est refaite 5 fois pour avoir une quantité suffisante.

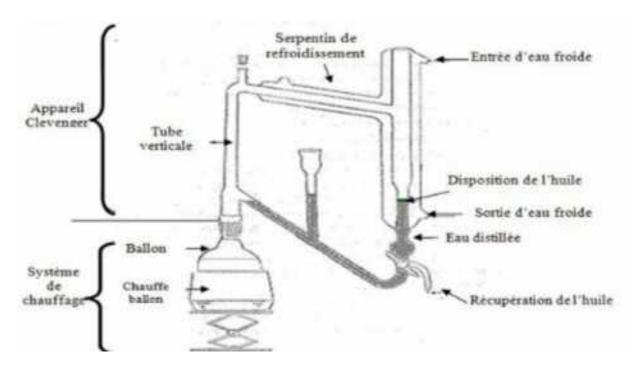


Figure II.03: Schéma du montage d'hydrodistillation utilisé pour l'extraction d'HE

• Calcul du rendement

Il est exprimé en pourcentage (%) et calculé d'après la relation suivante (Ndoye et al. 2016):

$$R (\%) = (m_{HE}/m_S) \times 100$$
 (II.1)

Où:

R : rendement en huile essentielle (%).

mHE: poids de l'huile essentielle extraite en g.

ms : poids de la plante en g.

II.3.2. Extraction par entraînement à la vapeur d'eau

L'entrainement à la vapeur d'eau est l'une des méthodes officielles pour l'obtention des huiles essentielles. À la différence de l'hydrodistillation, cette technique ne met pas en contact direct l'eau et la matière végétale à traiter.

Le but de cette méthode est d'emporter avec la vapeur d'eau les constituants volatils des produits bruts. La vapeur détruit la structure des cellules végétales, libère les molécules contenues et entraîne les plus volatiles en les séparant du substrat cellulosique. La vapeur, chargée de l'essence de la matière première distillée, se condense dans le serpentin de l'alambic avant d'être récupérée dans un essencier (vase de décantation pour les huiles essentielles). Les parties insolubles dans l'eau de condensation sont décantées pour donner l'huile essentielle. La partie contenant les composés hydrosolubles est appelée eau de distillation (ou hydrolat ou eau florale). On recueille alors un mélange de composition défini de ces deux produits (**Dastmalchiet al.2008**)

• Mode opératoire :

L'extraction de l'huile essentielle a été effectuée en utilisant un appareil spécifique pour l'extraction (figure II.4):

Figure II.04: Dispositif d'extraction par entrainement à la vapeur d'eau utilisé à l'échelle pilote.

Les parties de plantes utilisées sont déposées sur une grille perforée au-dessus de la base de L'alambic, sans contact entre le matériel végétal et l'eau (Belaiche. 1979 ; Lucchesi. 2005 ; Ferhat et al.2010).

Les particules de vapeur d'eau, se dirigeant vers le haut, font éclater les cellules contenant l'essence et entraînent avec elles les molécules odorantes.

La vapeur passe ensuite à travers un récipient réfrigérant où la température diminue, provoquant le déclanchement des molécules huileuses des particules de vapeur, qui se condense en eau. L'huile et l'eau se séparent du fait de leurs poids spécifiques différents (Padrini et Lucheroni. 1996).

Pendant l'entrainement à la vapeur d'eau, la matière végétale est exposée à une température élevée et à l'action chimique de l'eau, et dans ces conditions, la fragilité thermique des constituants de l'huile ou l'hydrolyse de certains d'entre eux conduisent à la formation d'artéfacts (Lucchesi. 2005 ; Ferhat et al.2010).

Procédé de distillation par entraînement à la vapeur Alambic Vapeur d'eau (+ hui es essent elles) Plante promatiques Vapeur c'eau Chaudière Source de chaleur Source ce chaleur

Figure II.05: Schéma d'un montage de distillation par entrainement à la vapeur.

II.4. Méthodes de caractérisations physico-chimiques et organoleptiques :

Les huiles essentielles, doivent répondre à des caractéristiques analytiques qui sont établies par des commissions nationales et internationales d'experts.

Pour connaître la qualité de l'huile essentielle de **Rosmarinus officinalis**, on a procédé à des essais organoleptiques et à des recherches d'indices physico-chimiques.

Figure II.06: Extrait de l'huile essentielle de Romarin.

Nous avons déterminé les caractéristiques physiques et chimiques suivantes :

- Indice de réfraction *n*'_D
- Pouvoir rotatoire 'D
- Les indices d'acide et d'ester, de saponification et d'iode.

II.4.1. Caractéristiques chimiques :

II.4.1.1. Indice d'acide

Les corps gras s'hydrolysent naturellement au cours de stockage en donnant comme résultat des acides gras libres et du glycérol (ce dernier est rapidement détruit).

L'indice d'acide (**IA**) est le nombre de milligrammes d'hydroxyde de potassium nécessaires pour la neutralisation des acides libres contenus dans un gramme de corps gras (**Lion.1995**).

Mode opératoire :

- 1- Peser 1 g d'huile dans une fiole conique de 100 ml, soit p ce poids.
- 2- Verser dans la fiole 15 ml d'alcool éthylique plus quelques gouttes de phénolphtaléine, dissoudre l'huile en agitant énergiquement.

3- Titrer par une solution de KOH à 0.1 N jusqu'à coloration rose persistante une dizaine de secondes, soit V le volume de NaOH utilisé (figure II.7).

Méthode de calcul:

L'indice d'acide est donné par la formule suivante (Wolff. 1968) :

$$IA = (5.61 * V) / M$$
 (II.2)

V : Volume de NaOH 0.1 utilisé.

m: La masse de la prise d'essai (g).

5.61: Coefficient d'équivalence.

Figure II.07: Image représentant le processus expérimental de détermination d'indice acide.

II.4.1.2. Indice de saponification

L'indice de saponification est un des paramètres qui permettent d'apprécier la qualité d'une huile végétale, il s'exprime par le nombre de mg de KOH nécessaire pour neutraliser les acides gras libres et saponifier les acides gras estérifiés contenu dans 1 g de lipides ou de matière grasse.

Principe:

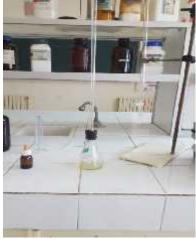
La prise d'essai de lipide est traitée à chaud par un excès de KOH pendant 30 min à 45 min. excès de KOH est dosé en retour, par une solution titrée d'HCl.

Un autre dosage est réalisé comme un témoin (dans les mêmes conditions mais sans lipide (huile)).

Dans l'application à l'étude d'un triglycéride, l'équation de la saponification s'écrit :

Figure II.08: Réaction de saponification d'une huile.

En plus, il y a neutralisation des acides gras libre :


$$3R - COOH + 3 KOH3 \longrightarrow R - COO^{-}, K^{+} + 3 H_{2}O$$

$$CH_2-(OOC-R)-CH(OOC-R)-CH_2-(OO-R)+3KOH\longrightarrow CH_2OH-CHOH-CH_2OH+3R-CO_2-K-CH_2OH-CH_2OH+3R-CO_2-K-CH_2OH-CH_2OH-CH_2OH+3R-CO_2-K-CH_2OH$$

• Mode opératoire :

- 1- Peser 1.5 à 2 g d'huile ou graisse dans une fiole.
- 2- Introduire dans cette fiole 25 ml de KOH à 0.5 N (alcoolique).
- 3- Chauffer le mélange dans un bain marie bouillant pendant 45 min (agiter de temps en temps).
- 4- Titrer le mélange avec HCl à 0.5 N plus quelques gouttes de phénolphtaléine jusqu'à la coloration stable pendant 30 s.
- 5- Soit V_s la chute de volume indiquée sur la burette.

Figure II.09: Image représentant le processus expérimental de détermination d'indice de saponification.

• Test témoin :

Dans les mêmes conditions que l'essai, on prend 25 ml de KOH à 0.5 N plus phénolphtaléine qu'on titre avec HCl à 0.5 N.

Soit V la chute de volume indiquée sur la burette.

Figure II.10: Test témoin pour la détermination d'indice de saponification.

• Méthode de calcul:

L'indice de saponification est donné par la formule suivante :

$$I.S = \frac{(v-v_0)*2}{p}$$
 (II. 3)

Avec:

V: volume de HCL = 14.6 ml

 V_0 : volume de HCL = 16.5 ml

P = 1.5

II.4.1.3. Indice d'ester

C'est la masse de KOH (mg), nécessaire pour saponifier les esters contenus dans 1 g de substance.

L'indice d'ester est calculé suivant cette relation :

$$I.E = I.S - I.A \tag{II.4}$$

Pour un acide gras pur : I.E = 0 et I.S = I.A

Pour des ester purs : I.A = 0 et I.E = I.S

Ces indices permettent d'évaluer une éventuelle hydrolyse des glycérides.

On exprimera le pourcentage d'impureté en moles d'acide gras libre pour 100 moles d'acides gras totaux (libres et combinés).

Pourcentage d'impureté =
$$\frac{I \cdot A}{I \cdot S}$$
 . 100 (II.5)

En contrôle d'industrie alimentaire une huile, pour être comestible, ne doit pas contenir plus de 1% d'acide gras libre.

II.4.1.4. Indice d'iode

L'indice d'iode est le nombre de g d'iode fixé par 100 g de corps gras.

• Mode opératoire :

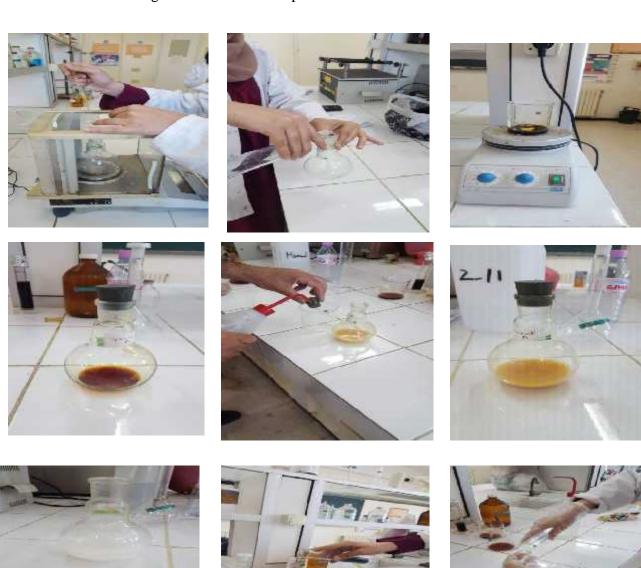
- 1- Peser 0.2 g (corps gras) dans un ballon à fond plat.
- 2- Ajouter 10 ml d'alcool éthylique, agiter jusqu'à dissolution de l'huile.
- 3- Ajouter 10 ml d'iode à 0.2 N alcoolique, mélanger la solution.
- 4- Ajouter 30 ml d'eau distillée, fermer étanchement le ballon, agiter énergiquement la solution pendant 5 min.
- 5- Titrer la solution par thiosulfate de sodium à 0.1 N (Na₂ S₂ O₃) jusqu'à apparition d'une coloration jaune.
- 6- Ajouter à la solution 1 ml de solution d'amidon à 1% (coloration bleu foncé).
- 7- Continuer à titrer la solution par la solution de thiosulfate de sodium à 0.1 N jusqu'à la disparition de coloration bleu foncé.

Soit V' le volume de (Na₂ S₂ O₃) à 0.1 N nécessaire pour neutraliser la quantité d'iode qui reste (en excès).

• Témoin:

On fait un essai à blanc dans les mêmes conditions que l'essai mais sans huile, on titre par $(Na_2\,S_2\,O_3)$ à 0.1 N. Soit V' le volume de $(Na_2\,S_2\,O_3)$ à 0.1 N nécessaire à neutraliser la totalité (d'iode à 0.2 N = 10 ml).

• Méthode de calcul :


L'indice d'iode est donné par la formule suivante :

$$\frac{(v-v). \ 0.0}{p}$$
 . 100 (II.6)

(V – V') : Différence des résultats du titrage de l'essai à blanc et de l'essai avec corps gras.

P: Poids de prise d'essai (corps gras en g).

0.0217 : Nombre de gramme d'iode correspondant à 1 ml de thiosulfate à 0.1 N.

Figure II.11: Images représentatifs du processus expérimental de détermination de l'indice d'iode.

II.4.2. Caractéristiques physiques

II.4.2.1. Indice de réfraction

L'indice de réfraction est le rapport entre le sinus de l'angle d'incidence et le sinus de l'angle de réfraction d'un rayon lumineux de longueur d'onde déterminée passant de l'air dans l'huile maintenue à température constante (**Lion .1955**).

• Principe:

Il est soit pour mesurer directement l'angle de réfraction, soit pour observer la limite de réflexion totale, l'huile étant maintenue dans les conditions d'iso-tropisme et de transparence.

• Mode opératoire :

Régler le réfractomètre en mesurant les indices de réfraction des produits étalon tels que : l'eau distillée, benzoate de benzyle, éthanol.

L'appareil a été étalonné par éthanol ayant un indice de réfraction connu égale à 1.3611 à 20°C.

Méthode de calcul:

L'indice de réfraction n'_D , à la température de réfraction T, est donné par l'équation suivante :

$$n'_{D} = (n'_{D})' + 0.0004 (T - T')$$
 (II.7)

Ou (n'_D) est la valeur de la lecture, obtenu à la température T', à laquelle a été effectuée la lecture.

T:20 °C

II.4.2.2. Pouvoir rotatoire

La capacité que possèdent les molécules chirales de dévier le plan de polarisation de la lumière d'un angle.

• Mode opératoire :

Allumer la source lumineuse et attendre jusqu'à l'obtention de la pleine luminosité. S'il y a lieu, amener au préalable l'échantillon pour essai à $(20^{\circ}\text{C} \pm 1^{\circ}\text{C})$ ou à une autre température spécifiée et l'introduire dans le tube d'observation approprié qui doit être à une température voisine. Mettre en marche la circulation d'eau thermostatée de façon à maintenir l'ensemble de la température spécifiée $(\pm 0.2^{\circ}\text{C})$ pendant le mesurage. Remplir le tube avec l'échantillon pour essai, en assurant qu'il ne reste aucune bulle d'air interposée. Placer le tube dans le polarimètre, et lire l'angle de rotation dextrogyre (+) ou (-) de l'échantillon pour essai sur l'échelle de l'appareil.

• Méthode de calcul :

Le pouvoir rotatoire, exprimes-en milliradians et / ou degrés d'angle est donné par l'équation suivante :

$$'_{D} = /L.C$$
 (II.8)

: Valeur d'angle de rotation.

L: Longueur du tube utilisé, en décimètre.

C: Poids de substance active par unité de volume (g/cm³).

Figure II.12: Détermination du pouvoir rotatoire.

II.5. Evaluation in-vitro de l'activité antioxydante

II.5.1. Effet Scavenger du radical DPPH

Principe

En présence des piégeurs de radicaux libres, le DPPH (2,2- diphényl-1-picrylhydrazyl) de couleur violette se réduit en 2,2-diphényl-1-picryl-hydrazine de couleur jaune (Figure II.13), dont l'intensité de la couleur est inversement proportionnelle à la capacité réductrice des antioxydants présents dans le milieu (Wollingeret al. 2016). Autrement dit, il a une forte absorption à une longueur d'onde d'environ 517 nm en raison de la présence d'un électron non apparié ; au fur et à mesure que cet électron devient apparié en présence d'un antioxydant (donneur d'hydrogène), la force d'absorption diminue (Mecherguiet al. 2016).

Figure II.13: Réaction entre le radical DPPH (violet) et un antioxydant donnant la molécule de DPPH neutralisée (jaune).

• Mode opératoire :

Le pouvoir réducteur des radicaux libres DPPH des huiles essentielles de la plante étudiée est déterminé selon la méthode rapportée par (Wu et Ng. 2008), avec une légère modification.

Préparation de la solution DPPH :

La solution de DPPH 0.1 mM a été préparée par solubilisation de 4 mg de DPPH dans 100 ml de méthanol, puis conservée à l'abri de la lumière dans un flacon opaque pour empêcher sa dégradation.

Figure II.14: Processus de préparation de la solution DPPH.

Test:

Une solution méthanoïque de DPPH à 0.1 mM est mélangée avec différentes concentrations croissante de l'HE de Rosmarinus officinalis. Le mélange est laissé à l'obscurité pendant 30 min à température ambiante, puis l'absorbance est mesurée à 517 nm à l'aide d'un appareillage UV/Visible.

L'acide ascorbique a été utilisé comme contrôle positif ; et le méthanol comme contrôle négatif pour la préparation des différentes dilutions des HEs.

3 ml DPPH (0.1mM)

150 µl d'HE ou du standard

Incubation 30 min à l'obscurité et à Température ambiante

Lecture d'absorbance à 517nm

Figure II.15: Protocole de réduction de radical DPPH

Figure II.16: Images représentatifs des étapes expérimentales de détermination de l'activité antioxydante.

• Méthode de calcul:

Le pourcentage d'inhibition du radical DPPH est calculé comme suit :

Le pourcentage d'inhibition
$$\% = \frac{A \quad C - A \quad T}{a \quad C}$$
. 100 (II.9)

Où:

Abs C : Absorbance de control

Abs T: Absorbance de test

III.6. Analyse de la composition chimique d'huile essentielle extraite de romarin par CG /MS :

Dans le but de caractériser et d'identifier les différents constituants essentiels de l'huile extraite par l'hydrodistillation, on a réalisé une analyse chromatographique en phase gazeuse couplée d'une spectroscopie de masse (CG/MS).

Ces expériences ont été réalisées au laboratoire d'analyse de la police scientifique de château neuf Alger.

II.6.1. Conditions opératoires

L'analyse a été réalisée à l'aide d'un chromatographe GCMS modèle CLARUS 500 de marque Perkin-Elmer avec :

Méthode GC:

Volume injecte: 1ul.

Température injectrice : 250 °C.

Colonne : Elite série 5-MS, 30 m, 0.25 mm ID, 0.25 µm épaisseur de phase stationnaire.

Température initiale : 70 °C pendant 4 min.

Rampe: 4deg/min jusqu'à 220 °C pendant 15 min.

Temps d'analyse 56.5 min.

Méthode MS:

Mode d'ionisation : Impact électronique.

Energie: 70 Ev.

Température : source : 250 °C.

Température ligne de transfert : 250°C.

Analyseur : Quadripôle.

Mode: Balayage entre 20 - 550 daltons.

Delia de solvent : 5.9 min.

III.1. Introduction

Notre huile essentielle est obtenue par la méthode d'extraction nommé hydrodistillation. Cette huile essentielle, doit répondre à des caractéristiques analytiques qui sont établies par des commissions nationales et internationales d'experts.

Les huiles essentielles sont généralement liquides à la température ambiante, d'odeurs aromatiques rarement colorées quand elles sont fraîches. Leur densité est plus souvent inférieure à celle de l'eau. Elles ont un indice de réfraction élevé et, le plus souvent, sont doués d'un pouvoir rotatoire. Elles sont volatiles et entraînables par la vapeur d'eau, elles lui communiquent leur odeur. Elles sont solubles dans l'alcool, l'éther, et la plupart de solvants organiques.

III.2. Rendement en huile essentielle

Le rendement en HE de la plante étudiée(R.officinalis), est exprimé en pourcentage massique (g/100) par rapport à la matière sèche.

$$R = (m_{HE}/m_S) \times 100$$
 (III.1)

$$M_S = 100 g$$

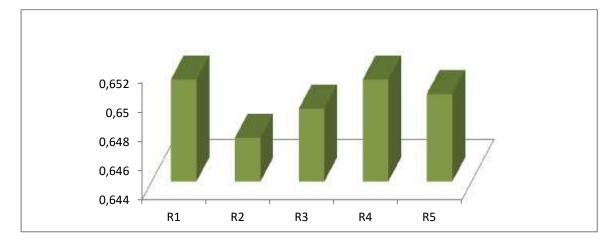


Figure III.01: Rendement en huile essentielle de R.officinalis.

Le rendement en HE, extraite par la méthode d'hydrodistillation, est illustré dans la (**Figure 1II.1**). D'après cette figure on constate, que le rendement en HE de R.officinalis est de (0.65 ± 0.03) %.

En comparant les rendements en HEs obtenus au cours de cette étude, avec ceux rapportés dans la littérature ; les constats suivants ont été révélés :

- Le rendement en HE pour de R.officinalis est inférieur à celui trouvé au Maroc (Berkine) qui est de 1,11% mais qui est supérieur au rendement trouvé en Tunisie qui est de 0,52 % (Khia et al.2014).
- Les résultats obtenus sont du même ordre de grandeur que les études rapportées par (**Fechtal et al. 2001**) et **Ayadi et al. 2011**); ces auteurs ont montré que la teneur en HE de officinalis pour 100 g de plante varie entre 0.5 à 1,5 %.

Le rendement de l'huile extraite dépend de plusieurs facteurs et selon les études précédentes, l'origine de récolte de l'espèce, la période de récolte, l'organe de la plante, la durée de séchage et la méthode d'extraction sont des facteurs parmi d'autres qui peuvent aussi avoir un impact direct sur les rendements en huiles essentielles (**Mechergui et al. 2016**).

De plus la composition en HE, extraite par hydrodistillation, peut être influencé par la quantité en eau, mise dans le ballon de distillation, car certains composés tels que : le terpinèn-4-ol, l' - terpinéol et le cinéol sont peu solubles dans l'eau (Williams et Lusunzi. 1994).

III.3. Caractéristiques physico-chimiques et organoleptiques

III.3.1. Caractéristiques organoleptiques :

Suivant les résultats obtenus et représentés dans le tableau III.1, nous avons remarqué que les paramètres organoleptiques d'huile essentielle extraite sont en accord avec ceux répertoriés dans les normes AFNOR. (AFNOR .2000).

Caractères			
organoleptiques	Couleur	Aspect	Odeur
HE. Romarin	Jaune claire	Liquide	Camphrée
		mobile	
			Caractéristique
D'après la norme	Presque	Liquide	fraîche, plus ou
A.F.N.O. R	incolore à	mobile,	moins camphrée
	Jaune pâle	limpide	Selon l'origine

Tableau III.01. Les caractères organoleptiques de l'huile essentielle de romarin.

III.3.2. Caractéristiques chimiques

III.3.2.1. Indice d'acide

L'indice d'acide est calculé suivant la relation suivante :

$$IA = (5.61 * V)/M$$
 (III.2)

V NaOH = 0.2 ml

 $M_{HE} = 1g$

$$IA = \frac{5.6 *0.2}{1}$$

$$IA = 1.122$$

La valeur trouvée de l'indice d'acide d'huile essentielle est conforme à ceux rapportée par (AFNOR. 2002 5).

En plus cet indice d'acide est inférieur à 2 (IA = 1.122); ce qui preuve la bonne conservation de l'huile. En effet, une huile fraiche ne contient que très peu d'acides libres; c'est pendant la période de stockage que l'huile peut subir des dégradations telle l'hydrolyse des esters qui ont constaté des variations des indices d'acide et d'ester au cours du temps de stockage et en fonction de la température.

III.3.2.2. Indice de saponification

L'indice de saponification est calculé suivant la relation suivante :

$$I.S = \frac{(V - V_0) \cdot 2}{p}$$
 (III.3)

V = 14.6 ml

 $V_0 = 16.5 \text{ ml}$

I.S =
$$\frac{(1.5-1.6)*2}{1.5}$$

$$I.S = 35.46$$

L'indice de saponification de l'huile essentielle du romarin est de 35.46; cela implique que cette huile contienne une forte quantité d'acides gras à un important poids moléculaire. L'indice de saponification rend compte de la longueur des chaines hydrocarbonées des acides gras, plus le poids moléculaire est élevé plus l'indice de saponification est faible (**Bruni et al.1994**).

III.3.2.3. Indice d'ester

L'indice d'ester est calculé suivant cette relation :

$$I.E = I.S - I.A \tag{III.4}$$

I.S = 35.46

I.A = 1.122

$$I.E = 35.46 - 1.122$$

$$I.E = 34.33$$

L'indice d'ester de l'huile essentielle du romarin est de l'ordre de 34.33, préconise que plus la qualité d'une huile est bonne, et plus la quantité d'ester est élevée. Cependant, l'indice d'ester peut aussi être influencé par d'autres facteurs, tels que les conditions dans lesquelles s'effectuent l'hydrolyse (c'est-à-dire dans quel type d'alambic, les constituants de l'eau utilisés pour le chauffage,). De manière générale, les huiles de très bonnes qualités ont un indice ester très élevé.

III.3.2.4. Indice d'iode

Pour l'indice d'iode, nous n'avons pas obtenu les résultats souhaités à la fin de l'expérience car nous n'avons pas pu montrer la couleur bleu foncé ; cela peut être dû aux réactifs utilisés.

III.3.3. Propriétés physiques

III.3.3.1. Indice de réfraction

$$n'_D = (n'_D)' + 0.0004 (T' - T)$$
 (III.5)

 $(n'_D)': 1.468$

T:20 °C

T': 25 °C

$$n'_D = 1.468 + 0.0004 (25 - 20)$$

 $n'_D = 1.47$

L'indice de réfraction de l'huile essentielle du romarin à 20°C est conforme aux normes données par (AFNOR .1999) (de 1.464 à 1.486). Ceci montre la richesse de nos huiles essentielles en composants qui dévient la lumière polarisée et que la teneur en monoterpènes dans ces huiles est forte.

L'indice de réfraction des huiles essentielles est généralement élevé. Il est supérieur à celui de l'eau à 20°C qui est de 1,335. L'indice de réfraction est inversement lié au degré d'instauration de l'huile ; plus l'indice de réfraction est faible plus l'huile essentielle est de bonne qualité (Gacem et al.1995).

III.3.3.2. Pouvoir rotatoire

$$'_{D} = /L *C$$
 (III.6)

: 10.11

L:1 dm

 $C: 38.49 \text{ g} / \text{cm}^3$

$$'_{D}$$
= 10.11 / 1* 38.49

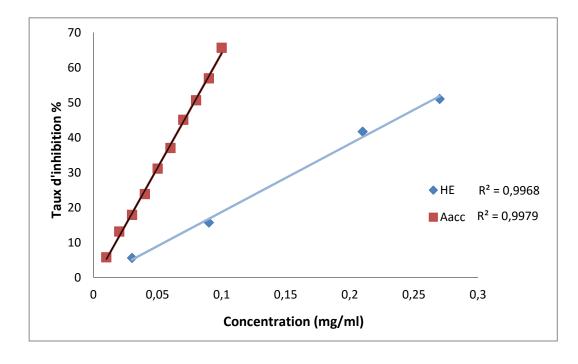
$$'_{D} = 0.26$$

Le résultat obtenu indique que le pouvoir rotatoire de l'huile essentielle du romarin à 20°C est conforme aux normes données par (**AFNOR .1999**) (de-2° à 10°).

Les résultats des caractérisations physiques et chimiques de l'huile essentielle de Romarin obtenus sont représentés dans le tableau III.3.

Tableau III.02: Tableau récapitulatif des caractéristiques de l'huile essentielle de Romarin.

Propriétés	Valeur pratique	Référence
Rendement (%)	$0.65 \pm 0.03\%$	0.5 à 2 %
Indice d'acide	1.122	< 5
Indice de saponification	35.46	Plus élevé


Indice d'ester	34.33	Plus élevé
Indice de réfraction	1.47	1.464 à 1.486
Pouvoir rotatoire	0.26	-2° à 10°

III.4. Evaluation de l'activité antioxydante

Les absorbances mesurées servent à calculer le pourcentage d'inhibition du radical DPPH. En effet, pour mieux comprendre le pouvoir antioxydant des extraits étudiés ; les valeurs IC50 (mg /ml) ont été déterminées. Ces concentrations inhibitrices à 50% ont permet de calculer les concentrations des échantillons étudiés nécessaires pour réduire 50% des radicaux DPPH. Elles sont calculées graphiquement par la régression linéaire des graphes tracés (**Figure III.02**), pourcentages d'inhibition en fonction de différentes concentrations des fractions testées (**Kechar et al. 2016**).

Les résultats figurant sur la figure ci-après, illustrent les pourcentages de l'activité antiradicalaire des huiles essentielles analysées.

Le pourcentage d'inhibition
$$\% = \frac{A \quad C - A \quad T}{a \quad C} \times 100$$
 (III.7)

Figure III.02: Courbes graphiques montrant les taux d'inhibition de la racine DPPH à différentes concentrations des huiles essentielles et de l'acide ascorbique.

L'ensemble des résultats de l'activité antioxydante d'huile essentielle ainsi que le standard utilisé est exprimée en IC50.

Echantillon	IC50 (mg/ml)
HE	0.26
Aacc	0.07

Tableau III.03 : IC50 du standard et d'HE de R.officinalis.

L'HE de notre plante Rosmarinus officinalis, a un effet scavenger du radical DPPH très faible, par rapport au standard utilisé, qui est l'acide ascorbique dont l'IC50 est de $0.07\pm$ (mg/ml).

Le résultat d'IC50 retrouvé pour l'HE du R.officinalis est un peu élevé par rapport à ceux retrouvés par (**Erkan et al.2008**) et (**Dorman et al.2003**), qui sont de $54 \pm 1,4$ (µg/ml) et $236 \pm 0,1$ (µg/ml).

(**Kecharet al.2016**), ont rapporté que les interactions synergiques entre les antioxydants dans un mélange font que l'activité antioxydante dépend non seulement de la concentration, mais également de la structure et de la nature des antioxydants.

Le romarin est particulièrement riche en acide rosmarinique; ce dernier est très répandu dans les plantes de la famille des labiées. Il montre un fort pouvoir de réduction du radical DPPH (**Bellumoriet al. 2016**). Ceci peut être expliqué par la présence de 4 groupements hydroxyle dans sa structure (**Capeckaet al. 2005**).

En plus de l'acide rosmarinique, d'autres acides phénoliques tels que : l'acide caféique, l'acide carnosique participent à la réduction du radical DPPH (Wollingeret al.2016).

III.5. Analyse de la composition chimique d'huile essentielle extraite de romarin par CG/MS :

Dans le but de caractériser et d'identifier les différents constituants essentiels de l'huile extrais par entrainement à la vapeur d'eau, on a réalisé une analyse chromatographique en phase gazeuse couplée d'une spectroscopie de masse (CG/MS).

Après analyse de l'huile essentielle de Romarin par chromatographie GC/MS, nous avons identifié ses principaux constituants en interprétant les chromatogrammes obtenus, et les résultats sont représentés dans le tableau III.04.

Tableau III.04: Principaux constituants de l'huile essentielle de Romarin identifiés par chromatographie CG/ MS

	Temps de		
Pics	rétention en min	Nom du constituant	Formule
		1.8-cineole 22 2-oxabicyclo(222) octane, 1, 3, 3,-	
1	9.645	trimethyl-(CAS) 22 Terpan 22 Zi	$C_{10}H_{18}O$
		Gamma-Terpinene 22 1, 4-Cyclohexadiene, 1-	
2	10.285	methyl-4-(1-methylethyl)-(CAS) $\frac{2}{3}$	$C_{10}H_{16}$
		ALPHA-TERPINOLENE ₴₴ Cyclohexane, 1-	
3	11.195	methyl-4-(1-methylethylidene)-(CAS)	$C_{10}H_{16}$
		Linalool ₹₹ 1,6- Octadien-3-ol, 3, 7-dimethyl-(CAS)	
4	13.431	€€ Linalol €€ bata-LINALOOL	$C_{10}H_{18}O$
		Carveol, dihydro- cis- 22 cyclohexanol, 2-methyl-5-	
5	17.918	(1-methylethenyl)- (1 alpha)	$C_{10}H_{18}O$
6	18.423	Cis-obtusan ₹₹ obtusan (name form MOL file)	C ₁₅ H ₃₀ O
7	20.639	EUGENOL	C ₁₀ H ₁₂ O ₂
8	20.864	E-beta – terpinylacetate	$C_{12}H_{20}O_2$
9	22.080	METHYLEUGENOL	$C_{11}H_{14}O_2$
10	22.635	CARYOPHYLLENE	C ₁₅ H ₂₄
		Valencene 2 22 NAPHTHALENE ? 1, 2, 3, 5, 6, 7,	
11	22.690	8, 8A-OCTAHYDRO-1 ?8A-DIMETHYL	$C_{15}H_{24}$
		(+)- Aromadendrene 22 Aromadendrene (+)- 22	
12	22.855	AROMADENDREN (+)- 22 (+)-A	$C_{15}H_{24}$
		Alpha –Humulene (CAS) ₹₹ 1, 4, 8-	
13	23.445	cycloundecatriene, 2, 6, 9-tetramethyl-(E, E, E)	$C_{15}H_{24}$
14	23.825	GAMMA-MUUROLENE	C ₁₅ H ₂₄
15	24.806	,beta-Bisabolene (CAS) 22 cyclohexene, 1-methyl-4-	C ₁₅ H ₂₄
		(5-methyl-1-methylene-4-h)	
16	25.231	ACORA-6,8-DIENE 22 4,6-Dimethyl-1-isopropyl-	C ₁₅ H ₂₄

		spiropyl-spirobicyclo(5.6) de ca-6,8(9)-dien	
17	27.122	(-)-Caryophylene oxide 운운 (-)-5-	C ₁₅ H ₂₄ O
		oxatricyclo(8.2.0(4,6)) dodecane, 12-trimethyl-9-	
18	28.407	(29, 5R, 9R)- Caryophylla-1(12),8(15)-dien-9-ol	C ₁₅ H ₂₄ O
19	29.238	(+)-(4S, 8S)-beta- bisabolol 22 (+)-1S)-1.5-	C ₁₅ H ₂₆ O
		dimethylhex-4-enyl)-4-methylcy	
20	31.634	LANCEOL, CIS	C ₁₅ H ₂₄ O

L'analyse par chromatographie en phase gazeuse nous a donné un chromatogramme de l'huile de romarin représenté dans la figure III.3, ce chromatogramme montre 20 pics, avec différents temps de rétention, et chaque tr indique un constituant contenu dans l'huile analysée.

Ensuite, la spectroscopie de masse MS, nous a donné des chromatogrammes représentants les différentes fragmentations de chaque constituant caractérisé par un temps de rétention spécifique, l'analyse des pics nous a permet d'identifier ce constituant en comparant les résultats avec des données de référence bibliographique représentés dans les tableaux III.5 à III.24. Les chromatogrammes SM sont représentés sur les figures III.4 a III.23.

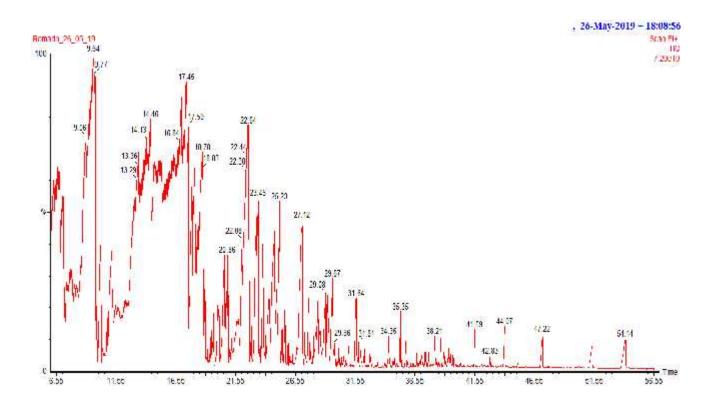


Figure III.03. Chromatogramme GC de l'échantillon Romarin

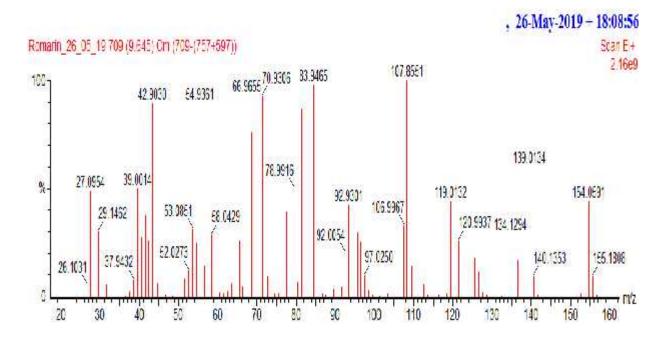


Figure III.04. Spectre de masse à **tr=9.645 min Tableau III.05.** Résultat donné par CG/MS à **tr=9.645min**

H	REV	iy	Compound Name	M.W	Formula	CAS
1	97	697	1,5-Cinecie 3\$ 2-Okab cyclo[2,2,2] cctane, 1,5-3-tr methyl- (C46) \$\$ Terpan \$\$ 20	惧	C10H180	F(424
2	64.	442	1,8-Cinecie \$\$ 2-Oxabioydo[2,22]octane, 1,3,3-trimethyl- (CAS) \$\$ Teman \$\$ Zi	184	C10H18C	470-82-6
3	935	830	ELCALYPTOL	154	C1(H180	470-82-6
4	923	430	1,8-Cinacle \$8,2-Okab bydo(2,2,2)cdzne, 1,3,3-b mahył- (CAS) \$\$ Teman \$\$,20	154	C1(H180	470-82-6
5	914	853	1,8-Cinecie \$6,2-Okab bydol(2,2,2)odzne, 1,3,3-b methyl- (CAS) \$6 Teman \$6,20	154	C1(H180	470-82-6
6	913	427	methyl 2-ethyl-3-methyl-4-fedranycho-3-4-d mycrosy-5-[[3-;2-hydroxy-1-methylprop	386	C20H24O7	36717-64-5
7	912	400	sopulegol \$5,24soproperly-5-methyloydohetanol \$5 (+-)4scoulegol \$5,2-50P	154	C10H180	59905-53-2
8	911	836	EJCALYPTOL	154	C1CH180	470-82-6
Ç	908	828	1,8-Cinecie \$8,2-Oxabioydo[2,2,2]ottane, 1,3,3-trimethyl- (CAS) \$\$ Teman \$\$,21	154	C16H180	470-82-6
16	997	838	1,8-Cinecie \$\$ 2-Oxab cyclo[2,2,2]oxlane, 1,3,3-bi methyl- (CAS) \$\$ Terpan \$\$ Zi	154	C10H180	470-82-6
11	936	83E	EUCHLYPTOL	154	C1(H180	470-82-6
12	906	424		154	C1(H180	399058-94-4
13	906	832	1,8-Cinacie \$\$ 2-Okab bydo(2,2.2] odzne, 1,3.3-bi mathył- (CAS) \$\$ Teman \$\$.25	*54	C1(H180	470-82-6

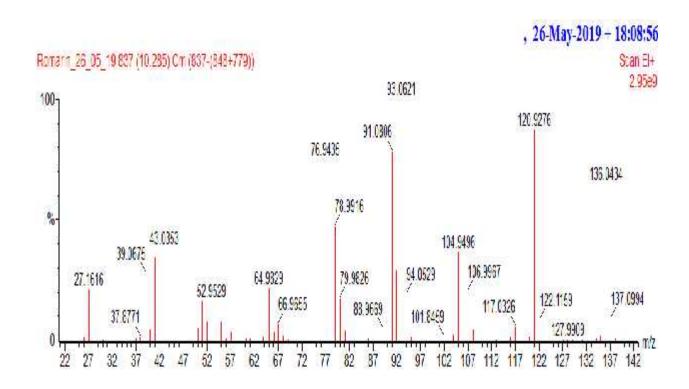


Figure III.05. Spectre de masse à tr=10.285 min

Tableau III.06. Résultat donné par CG/MS à tr=10.285min

Ht.	REV	for	Compound Name	V , V ,	Formula	CAS
1	980	970	gemma-Terpinene 55 1.4-Cydonexadiene; -methyl-4(1-methyl-thyl)-(CAS) \$	136	C10H16	22-35-4
2	975	989	alpha-Humulene (CAS) \$51,48-Cydoundatairiene, 2,6,5,94strametryl-, (EE,E	204	015H24	6753-98-6
3	971	954	alpha-Teronene \$\$ 1.3-Oydohead analit-mattyl-4-(1-meltyl-style-iCxS) \$\$1	136	C10H16	22-88-5
4	988	953	alpha-Terdinene \$\$ 1.3-Optiohexadians, 1-math/4-4 (1-malhy ath/b-)C83 (\$\$1	136	C10H16	22-36-5
j	988	SEE	CANNA-TERPINENE	136	C10H16	99-85-4
3 4 5 5 7	966	957	gamma-Terpinene 3\$ 1.4-Oydonaxadlene, 1-methyl-4-1-metrylethyll-(CAS) \$	138	C10H16	33-85-4
7	964	874	alpha-Humulene (CAS) \$\$ 1,48-Oydoundecalriene, 2,6,5 9-terrametryl-, (EEE	204	C15H24	E753-98-6
8	964	874	alpha-Terdinene \$\$ 1.3-Oydohexadisha 1-mathyl-4-(1-melhylisthyli-10.53) \$\$.1	136	C10H16	32-86-6
3	964	900	sipha-Teromene \$\$ 1.3-Oxdohexadishs 1-msth/4-(1-mellin/sth/h-ICRS) \$\$1	136	C10H16	22-86-5
1	964	952	aigha-Terdinene \$\$ 1.3-Okdohexadiana 1-math/4-4(1-melh/lath/h-ICRS) \$\$ 1	136	C10H16	33-86-5
8 9 10 11 12	963	953	GAVING-TERFINENE	136	C10H16	33-85-4
12	962	679	gemma-Terpinene 3\$ 1.4-Cydonaxadiene, 1-methyl-4-11-metrylethyll-(CAS) \$	136	C10H16	22-85-4
13	SES	951	ALPHA-TERPINOLEKE SSICyclotexere, 1-methyl-441-metry/ethylcene) (CAS	136	C10H16	585-52-9

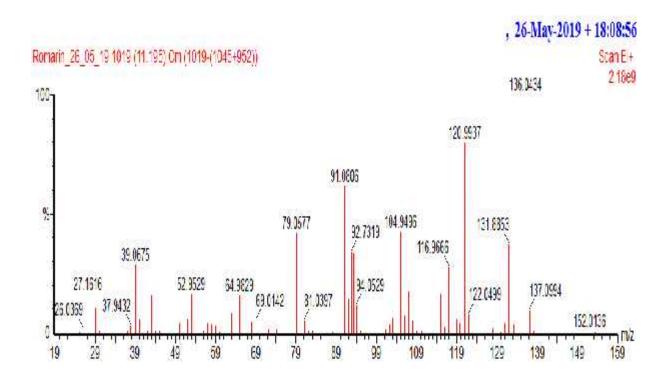


Figure III.06. Spectre de masse à **tr= 11.195 min**Tableau III.07. Résultat donné par CG/MS à **tr=11.195**

Ht	REV	T	Compound Name	WW.	Formula	CAS
1	947	585	ALPHA-TERPINCLENESS Ox present it-matrill4-(1-metry any identi-) CAS	135	010H16	586-52-9
2	923	702	m-Mentha-2(3),6-diane \$5 Ispsylvatery notione \$5.1-Wethy-5-(1)-methylethylicen	133	C10H16	999034-27-7
3	927	665	2.6.6-TRIMETHYL-1-WETHYLEN-CYCLOHEV-2-ENEI\$\$ Cyclohexene, 1,5,5-trime	135	C10H16	514-95-4
4	923	524	5.9 9-Trimerhyl-1-okasiproj3.5[nch-5-ene \$5.5.9.9-Trimethyl-1-okasiping]3.5[nch-	155	C11H180	142745-97-2
5	924	565	alpha. Humulene iCAS) \$5 1 48-Cycloundecatriene, 2,6,6,9-tetramethyl-, E,E E	204	C15H24	5753-98-5
i	924	749	ALFHA-TERPINOLENESS Oydonexere 1-matryl-4-(1-matry ethylicane)- (CAS)	136	C10H16	536-52-9
7	922	748	Alloptimene (CAS) SS 2 4 8-Octatriene, 2 8-dimelhi/EriCAS) SS airc-Octmene \$\$	136	010H16	573-34-7
3	920	733	CYCLOHEXENE 1-WETHYL-4(1-METHYLETHYLDENE)	136	C1CH16	586-52-9
3	913	502	2-(Eromometry) +1.3.3-firmetry toyoloh exene \$\$.2-(BROMOMETHYL)+1,3,3-TRIM	136	C10H16	0-00-0
10	914	702	CYCLOHEXENE 3-WETHYL-3-(1-METHYLETHYLDENE)-	133	C10H16	536-53-)
11	914	E42	bela-dis-admene	135	C10H16	3338-55-4
12	914	732	alpha-Terpinene \$\$ 1,3-0yd phesadlene, 1-methyl-4-(1-methylethyll- (CAS) SS 1	136	C10H16	39-86-5
13	914	831	a pha-Terpinene 3\$ 1,3-0yd phesadiene, 1-methyl-4-(1-methylefnyl)- (048) SS 1	136	C10H16	3-63-6

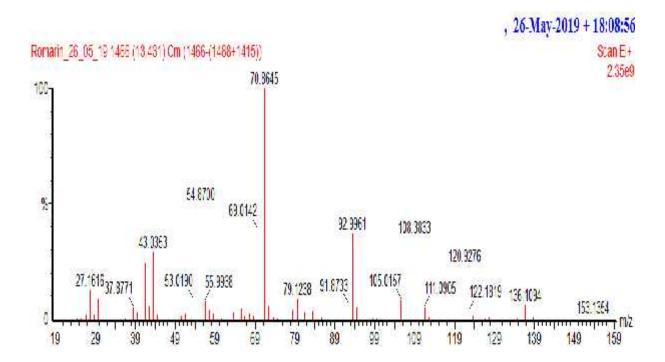


Figure III.07. Spectre de masse à **tr= 13.431 min Tableau III.08.** Résultat donné par CG/MS à **tr= 13.431 min**

11	REV	'n	Compound Name	K.W	Formula	CAS
1	900	700	Linatool \$51,5-Octavien 3-of 3.7-dimethyl- iCAS; \$5 Linato 65, ceta-una co	154	S10H180	78-70-€
2	905	553	In airl formate S\$ 1.5-Octadian-3-bit 3,7-d melbyl-, formate (CAS) \$\$ Linaloot, for	182	011H1302	115-99-1
3	891	795	LINATOOF	154	010H180	78-70-6
4	890	791	LYVLD	154	010H180	78-70-6
5	890	791	Linalool 33 1 5-Octadien-S-of 3 7-dimethyl- (CAS) 33 Linalo SS Jeta - Linaloo	154	010H130	78-70-6
£ 7	890	203	1,6-00TAD EN-3-0L 3,7-0METHYL-58-3-7-0METHYL0CTA-1,6-0-EN-3-0L-88	154	C10H130	78-70-€
7	888	175	Linalool 33 1 S-Cetadian-3-of 3 7-dimethyl- (CAS) 33 Linaloi SS, beta-Linaloo	154	010H130	78-70-€
8	887	791	Linalool 33 1 5-Octadian-3-of 3 7-dimethyl- (CAS) 33 Linalo SS .betaUnaloo	154	010H130	78-70-6
ę	884	733	LLINALCOUSS 16-00TAGEN 3-01, 3,7-0 NETHYL- \$\$ 3,7-0 METHYLOCTA-1	1E4	C10H130	78-70-6
9	883	778	JCOJ4PIJ	154	C10H130	78-70-€
11	883	321	Linalool 33 1 5-Octadien-2-of 3.7-dimethyl- (CAS) 33 Linalo SS .betaLinaloo	154	C10H180	78-70-€
12	883	785	Linatool 33 1 6-Octadian 3-of 3 7-dimethyl- (CAS) 33 Linato SS, beta, Linatob.	154	010H130	78-70-6
·2	882	756	In all formate 5\$ 1 5-Cctadien-2-bt 2,7-d methyl-, formate (CAS) \$\$ Linaloot, for	182	011H1892	115-99-1

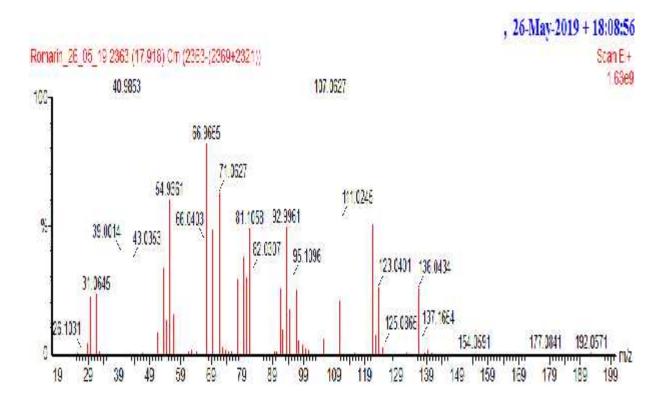


Figure III.08. Spectre de masse à **tr= 17.918 min Tableau III.09.** Résultat donné par CG/MS à **tr= 17.918 min**

H	RE/	for	Compound Name	43/	Formula	CAS
1	332	386	Carveo dityora-, cs- \$\$ Cyclonexano 2-methyl-5-(1-meny/ethenyl)- (1 alona).	154	3104160	38049-26-2
2	352	744	ETHANOL, 243 3-DINETHYLCYCLOHEXYLICENEH, (Z)-	154	C10H180	26532-23-0
3	362	705	Neocifydrocarvect \$5 Cyclohexanol, 2-metry-5-(1-methyletherry)-, (1.alpha, 2.al	F4	C10H180	18575-33-7
4	361	553	14SOPROFENYL-S-PROPENYLOYOLOPENTANE	EC	011418	900192-31-2
5	351	335	C15 temane	206	C15H26	(-)(-)
6	351	553	1-Isoproperyl-3-properylogic pentane \$\$.1-SOFROPENYL-3-FROPENYL-CYC	150	011418	999051-38-0
7	350	440	2-cyclocotenyl methyl ketone 3\$ (cyclo-od-2-enyl jelhanone 3\$ Emanone 1-(2-cy	152	0104160	31367-54-1
8	346	595	NEODIHYDROCAR/EOL	154	C10H180	18575-34-8
é	346	595	Neoditydrocarved \$5 (1R,25,4R)-p-menth-8-ene-2-d \$\$ 5-spordcenyl-2-metryl	154	C10H180	18575-34-8
10	345	713	CYCLOHEXANDL, 24/ETHYL-5-(14/JETHYLETHEVYL)-	F4	C10H180	E13-C1-2
11	344	733	TRANS-SHIBOOL	154	0104'80	22451-48-5
12	343	556	Cyclothexane, 1-methyl-2 4-bis/1-methylithenyll- (CAS) 85 2 4-Diisopropenyl-1-	178	013H22	61142-53-3
12	343	336	CYCLOHEXANE 1-METHYL-2,4-8 S/1-METHYLETHENYL-)- (1,4LPHA,2,8ETA,4	178	C13H22	€2337-45-5

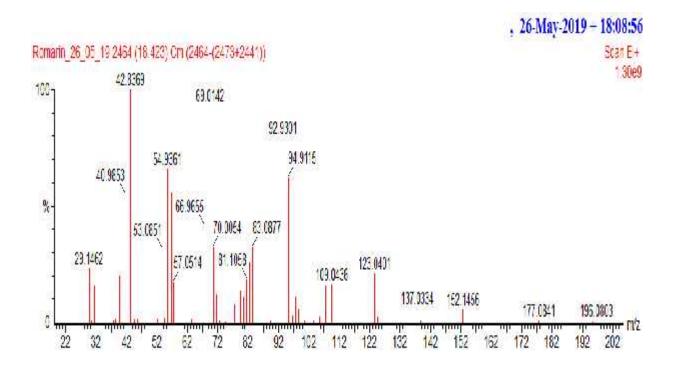


Figure III.09. Spectre de masse à **tr= 18.423 min Tableau III.10.** Résultat donné par CG/MS à **tr= 18.423 min**

H	RE/	for	Compound Name	V.W	Formula	CAS
1	316	536	dis-Obbusan (\$ Obbusan (name from MOL file)	226	015H300	99204-457
2	907	540	10 13-D methyl+9/Z/Hetradepen-4-b	240	016H320	999237-52-3
1	9)4	432	(Z)-1,1,1-Triflucro-13-hexadecen-2-one	202	016H270F3	993358-41-0
4	903	538	10 13-D meth/45/EH-tetradecan-1-cl	240	016H320	993237-52-2
5	330	519	1-Chicro-3-codecene	202	012-1230	99146-77-2
6	377	436	Allobatu one	440	03044802	999582-08-9
1	373	437	(El-2-decenal	154	0104180	3913-81-3
8	358	428	(Z)-1-lodo-11-heradecene	350	C16H31I	899471-20-3
9	362	454	BETULONE	440	33044802	(4)(4)
10	359	734	Leta-Cifrone (c) \$6.6-Octan-1-of 3.7-dimetry - (CAS) SS Othere (c) \$6.7-dimetry	156	010 H200	103-22-9
11	358	472	Ellyl 5-hydroy-3-isopropertypentanoete	186	C10H18O3	99113-63-4
12.	357	500	2-Bramo-(ds)-6-sopropyl-3-methylcylchept-2-enol	246	011H190Er	999248-69-6
12	356	542	Cyclopentane, (2-metry propyl)- (CAS) 66 is could by clopentane 68 Cyclopentane,	26	C9H18	3788-32-7

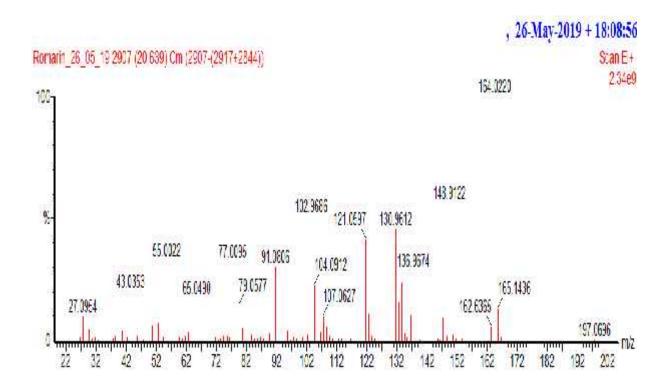


Figure III.10. Spectre de masse à **tr= 20.639 min Tableau III.11.** Résultat donné par CG/MS à **tr= 20.639 min**

ł	RE!	tr	Ocmpound Name	WH,	Formula	CAS
1	333	345	3-4LLYL-6-HETHOXYPHENOL	164	C1CH12C2	501-19-9
2	333	345	3-4lly-6-methoxyonenol 33 Phanol, 2-methoxy-6-(2-properyl)- (CAS) 38 5-4lly-2-	164	C1041202	501-19-9
1	929	825	EÚGENOL	164	010+1202	97-55-1
4	929	341	Financii 2-methog-4-(2-properyt)- (CAS) \$\$ Eugenol 6\$ 1-(2-PROPENYL)-4-HY	164	C10H1202	97-53-0
5	929	34)	Phanol 2-melhog-4-(2-properyl)- (CAS) \$8 Eugenol 68 1-(2-PROPENYL) +4-HY	164	C1C41202	97-83-0
6	327	323	PHENOL, 2-VETHOXN-3-(2-PROFEM/L)	164	C1CH12C2	1941-12-4
1	327	823	Financii 2-melhoq-3-(2-properyl)- (CAS) \$\$ 3-4\(\)4-2-methogohend \$\$ 3-4LLYL	164	C10H1202	1941-12-4
8	323	319	BUSENCL	164	C1CH12C2	97-63-0
9	323	3'3	Franci 2-methoc-4-(2-properyl)- (CAS) \$5 Eugenol S\$ 1-(2-PROPENYL) 4-HY	164	C1CH:202	97-83-0
1)	322	313	Francii 2-melhog-4-(2-properyl)- (CAS) \$5 Eugenol 6\$ 1-(2-PROPENYL) 4-HY	164	C1CH12C2	97-63-0
1	921	333	EUGENOL	164	C1CH1202	97-53-0
12	321	730	CIS-ISCELISENOL \$\$ CIS-1-HYDROXY-2-METHOXY-4-PROPENYL-BENZENES	164	C10H1202	5932-58-3
13	920	353	EUGENOL	164	C1C41202	97-83-0

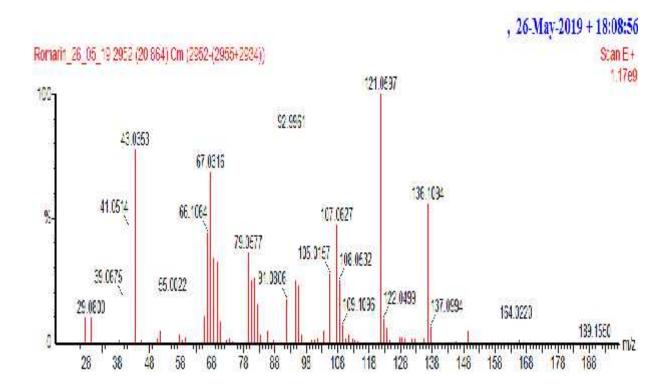


Figure III.11. Spectre de masse à **tr= 20.864 min Tableau III.12.** Résultat donné par CG/MS à **tr= 20.864 min**

1	REV	7	Compound Name	¥,W	Fomula	CAS
1	972	572	El bela-lempryl acesax	悟	012H2002	999134-62-0
2	953	493	GANNA-TERFINEOUSS gamma-terpined \$\$ Cyconexand, 1-metry-441-metr	154	010H130	586-81-2
3	949	542	Z. beral reminy acetate	10:	012H2002	999134-61-9
4	921	434	(1R 3R,4R,8S)-39-p-menthaned ylidiacetate	250	C14H24O4	999273-62-6
£	927	502	5-metryl-2-11 methylatry dank-4-heser-1-c; \$5.4-Hasen-1-ol, 2-isoproby dene-	154	C10H180	3304-27-5
E	923	396	CYCLOPENTANE, 1-40ETOXYNETHYL-34SCFROPENYL-24IETHYL-	103	012H2002	900149-91-7
7	921	389	CYCLOPENTANE, 14CETOXYNETHYL-34SCFROPENYL-24METHYL-	16:	012H2002	999134-47-1
8	905	862	(+8-P-WENTHEN-2-YL, AGETATE TRANS	193	012H2002	57237-43-5
ę	903	31	1 Cycloprocy -5-methyl-4-hazanyl acetate	193	012H2002	999134-93-7
9 10	805	628	2,5,5-TR MET-PYL-14/ETHYLE14CYCLOHEX-2-ENE \$8 Cyclohexene, 1,5,5-frime	135	C10H15	514-95-4
"	891	493	(fr 3a;7ar)-1,3,3a,4,5,7a-nexally dro-3,3,6-tr metry-1-((E)-f1-metry-11-tropery)-	22.	015H240	107602-63-1
12	887	808	1.P-MENTHEN-3-VLACETATE SS 3-Oydonevene-1-methanoli alpha, jalona, 44f	193	012H2002	80-26-2
12	885	797	Diffyorocary/ acetate 53 Oydchexanol 2-methyl-5-r1-methylethenyli- acetate, /1.	10:	012H2002	20777-49-5

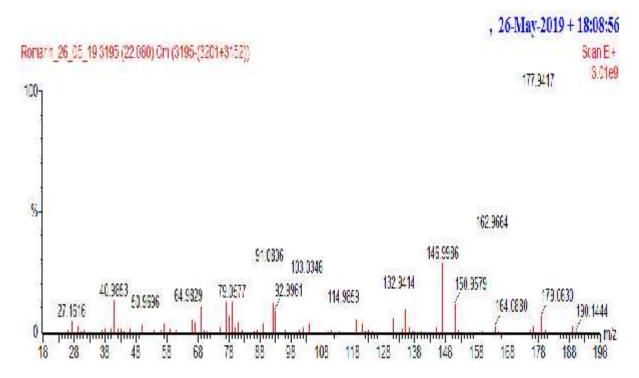


Figure III.12. Spectre de masse à tr=22.080 min

Tableau III.13. Résultat donné par CG/MS à tr= 22.080 min

di	RE!	fr	Compound Name	11.11	Formula	CAS
9	374	579	1-cycloproxy-3,4-dimetyloryeugenci	178	C114/402)-((-)
2	950	793	Benzene, 12-dimelhon-4-2-properyl-, ICAS (\$\$ Methylaugene) \$\$ Methyl auge	178	C11H1402	93-15-2
1	939	397	VETHALELGENG).	-78	01111402	93-15-2
4	339	332	Banzana, 12-dimelhor-4-(2-dropenyl)- (CAS) \$\$ Methylaugenol \$\$ Methyl auge	178	C11H14C2	93-15-2
5	335	373	METHYLEUGENOL	178	C11H1402	93-15-2
6	333	350	Berzene, 12-dimelhou-4-(2-propery)- (CAS) \$\$ Methylaugenol \$\$ Nothyl auge	178	C11H14C2	93-15-2
1	333	365	Berzene, 12-dimelhor,-4-(2-properyl)- (CAS) \$\$ Methyleugenol \$\$ Nethyleuge	178	C11H1402	93-15-2
8	333	337	Bertzene, 1.2-dimelhog-4-(2-dropery) - (CAS) \$\$ Methyleugenol \$\$ Methyl euge	178	C11H14C2	93-15-2
9	322	323	Banzana, 1.2-dimelhoo-4-12-properyl - ICAS (\$\$ Methylaugenol \$\$ Methyl auge	178	C11H14C2	93-15-2
1)	322	365	Berzene, 12-dimelhon-4-2-properyl-, IDAS (\$\$ Methylaugenol \$\$ Nethyl euge	178	C11H1402	93-15-2
1	921	326	Berzene, 12-dimelhog-4-(2-droperyl)- (CAS) \$\$ Methyleugenol \$\$ Methyl euge	178	C11H14C2	93-15-2
'2	320	825	METHYLEUGENGL	178	C11H14C2	93-15-2
13	920	325	Benzane, 12-dimelhor;-4-(2-dropenyl-; CAS) \$\$ Methyleugenol \$\$ Methyl euge	178	C11H14C2	93-15-2

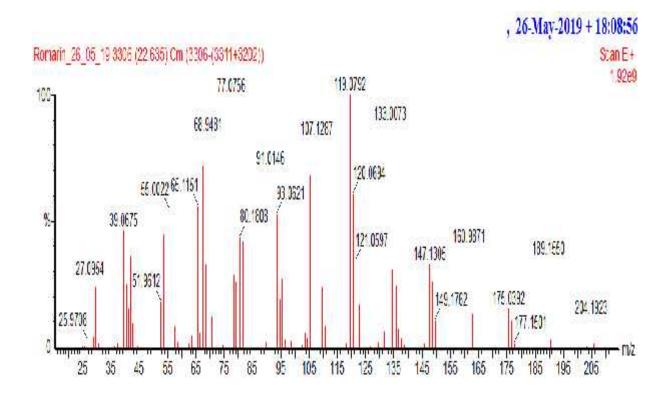


Figure III.13. Spectre de masse à **tr= 22.635 min Tableau III.14.** Résultat donné par CG/MS à **tr= 22.635 min**

-lil	REV	'n	Compound Name	¥,W	Fomula	CAS
1	924	455	Presilohiperci-9;15)-ene	204	01EH24	999152-72-8
2	860	775	BOYCLO7 2.0JUNDEC-4-EVE 4,11,11-TRIVETHYL-8-METHYLENE-["R-41R"4	204	015H24	118-65-7
Î	860	796	CARYOPHYLLENE	204	015H24	87-448
4	8EE	770	CARYOPHYLLENE	204	015H24	87-44-5
£	853	536	la mal-Longpinana (CAS) SS Troyco(E 4.0.0/28/Jundec-9-ane, 2.5 6 Skatramat	204	015H24	5989408-2
6	846	773	4/1/11-TRIMETHYL-BRIETHYLENES CYCLO[7,2,0]UNDED 3-ENE	204	015H24	889350-49-0
7	84E	795	trans-Carybonyllane S& Bicyclo[7,2,0]undec-4-ane, 4 11 11-Himetryl-3-matrylene	204	01EH24	87-44-5
8	844	703	NAPHTHALENE, 123,5,6,7,8,84-0STAHYDRO+1,84-DIMETHYL-7-(14KETHYLET	204	015H24	4630-07-3
ç	840	333	3 CYCLOHEKERE 4 ETHANCLI ALPHA ETHENYL-ALPHA, 3-D NETHYL-5-11-	221	015H240	EE780-83-3
10	832	744	EETA-LONG PINENE	204	015H24	41432-70-5
"	826	717	alpha-Gurjunene (CAS) \$\$ (H-alpha-Gurjunene 55 alpha-Gurjunene, (-)- \$\$ A	204	O15H24	489-40-7
12	821	722	trans-Caryboryllane 38 Eicycloj7 2.0) undec-4-ene, 4 11 11-Himetryl-8-matrylene	204	015H24	87-44-5
13	814	742	NAPHTHALENE, 123,5,6,7,3,84-0CTAHYDRO-1,8A-DIMETHYL-7-11-WETHYLES	204	015H24	4630-07-3

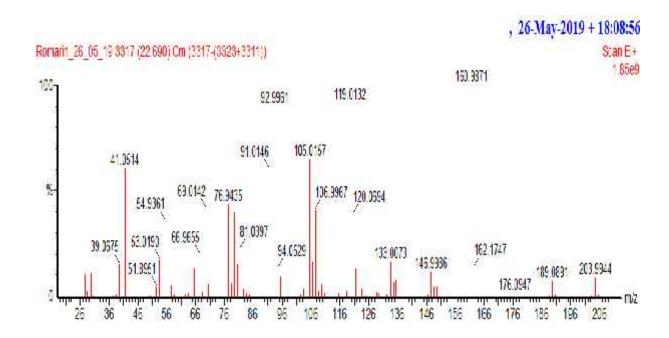


Figure III.14. Spectre de masse à tr= 22.690 min

Tableau III.15. Résultat donné par CG/MS à tr= 22.690.min

-lil	REV	'n	Compound Name	¥.W	Formula	CAS
1	94[)	535	valencene 2.55 NAPHTHALENE 1,23,5,5,7,8,34-0,07A-YDRO-1,34-0METHYL-	24	S18H24	4633-07-3
2	929	293	NAPHTHALENE, 123,444,56,8A-OCTAHYDRO-7-METHYL-4N-ETHYLENE-1-11	204	015H24	30021-74-0
3	927	808	TRANS-ALPHA-BERGANOTENE	204	O15H24	13474-59-4
4	918	392	JANNA-NUUROLENE	204	Q15H24	30021-74-0
£	916	503	.betaCuitebene \$8. betaCuivebene \$8.4-iscoropyl-7-methyl-3-methylenebotah	204	C15H24	13744-15-5
E	916	:35	,TRAKS-ALFHA-BERGANOTENE SS Bergamotene S\$ trans-alpha-Bergamote	204	015H24	12474-59-4
7	912	795	gamma, 1-cadinene	204	015H24	999152-48-1
8	911	879	Zingiberene (CAS) SS 1 3-Oyoch exadiene, 5-(1 5-dimetryl-4-hesenyl)-2-metryl-,	204	015H24	495-60-3
ę	907	857	COPAENE	204	015H24	3853-25-5
9 10	907	377	(\$,12,6Z)-34SOPROPYL-14/ETHYL-5-VETHYLENECYCLODECA-16-DIEVE	204	015H24	317319-80-0
"	906	351	a ma-Coasene \$5 Trigdo(4.4.0.0)(2,7))deb 3-ene ir (,3-dmethy-8-(1-methy-eny	204	C15H24	2853-25-5
12	903	874	la bha-Longipinana (CAS) SS Theybo(5 4.0.0(2.8)) undec-9-ane, 2.5 6 9 est amat	204	015H24	5989-08-2
12	902	340	(+-endo-2,6-d methyl-6-(4-methyl-8-pentenyticic)doj3,1 1(hept-2-ene	204	015H24	17829-53-7

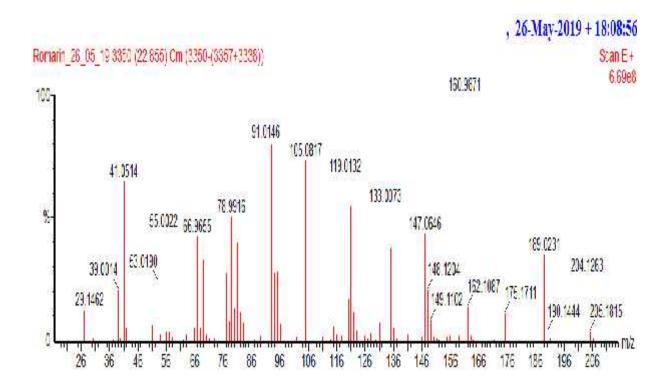


Figure III.15. Spectre de masse à **tr= 22.855min Tableau III.16.** Résultat donné par CG/MS à **tr= 22.855 min**

H	RE/	for	Compound Name	VLV	Formula	CAS
1	330	738	(+)-Aromadendrene 3\$ Aromadendrene, (+)-3\$ AF ONADENEREN (+)-3\$ (+)-A	264	315-124	489-39-4
2	374	502	aromader there 2	204	015H24	999152-51-2
3	371	344	(+)-Aromacendrene \$\$ Aromacendrene; (+)- \$\$ AROMADENDREN (+)- \$\$ (+)-A	204	015H24	489-39-4
4	969	342	ALLOARON/OENDRENE	204	015H24	25246-27-9
£	966	739	(+):Aromacendrene \$\$ Aromacendrene, (+): \$\$ AROMADENDREN (+): \$\$ (+):A	204	015-124	489-29-4
6	961	944	ARCMANDENDRENE	204	015-124	489-39-4
7	951	944	Aromadendrene SS 1.1.7-TRIMETHYL-4METHYLENEDEGAHYDRO-1H-CYCLO	204	015H24	489-39-4
8	960	932	ARCMANDENDRENE	204	015H24	489-29-4
é	960	938	NAPHTHALENE, 12358788A-CCTAHYDRO-18A-DINETHYL-7+1-NETHYLET	204	C15H24	10219-75-7
10	960	932	(+)-Arc madendrene \$\$ Aromadendrene, (+)- \$\$ AROMADENDREN (+)- \$\$ (+)-A	204	015H24	483-39-4
1	959	943	1-CYCLOPROPIEJAZULENE, DECAHYDRO-1,1,7-TRIMETHYL-4-METHYLENE-	204	015H24	72747-25-2
12	957	935	NAPHTHALENE, 12356788A-CCTAHYDRO-18A-DINETHYL-741-NETHYLET	204	015H24	10219-75-7
12 23	957	935	NAPHTHALENE, 12356788A-CCTAHYORO-18A-DINETHYL-741-NETHYLET	204	015H24	4630-07-3

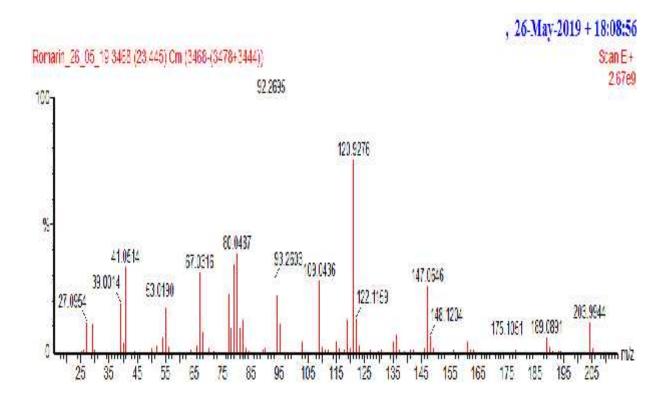


Figure III.16. Spectre de masse à tr= 23.445min

Tableau III.17. Résultat donné par CG/MS à tr= 23.445 min

H	RE!	TY	Compound Name	W.W	Formula	CAS
1	379	(4)	alpha-Humulane (C46) \$\$ 1,4,8-0,c condecatione, 2,6,6,9-tetramethyli (E,E,E	H	C15H24	£753-43-6
2	365	829	beta: Selinene (CAS) SS Eutesma-4(14),11-diene (CAS) \$\$, beta: Eudesmana	204	C15H24	17066-57-0
3	348	737	CYCLOHEXENE, 4/(1E)41,5-DIMETHYL-1,4-HEXADIEN-1-VL-1-HIETHYL-	204	C15H24	25532-79-0
4	347	809	alpha -Humulane (C4S) \$81,4,8-Cycloundecatriane, 2,6,6,3-tetramethyl- (E,E.E.	204	C15424	6753-93-6
£	344	823	alpha -Humulane (C4S) \$\$ 1,4,8-0,0 cundecatriane, 2,6,6,9 tetramethyl- (E,EE	204	C15H24	6753-63-6
6	344	811	alpha -Humulane (C4S) \$\$ 1 A.8-Oydoundecatriane, 2,6,6,9 tetramethyl- (E,E E	204	C15H24	6753-98-6
7	343	706	alpha Humulane (CAS) \$51,4,8-Cycloundecatriane, 2,6,6,9-tetramethyl- (E,EE	204	C15H24	6753-68-6
8	341	828	HUVULENE	204	C15H24	€753-93-€
é	341	620	alpha -Humulane (C4S) \$\$ 1,4,8-0; d condecatriane, 2,6,6,3-tetramethyl- (E,E.E.	204	C15H24	€753-98-€
10	340	819	alpha -Humulane (CAS) \$51,4,8-Oyd condecatione, 2,6,6,3-tetramethyl- (E,EE	204	C15H24	6753-93-6
1	339	729	alpha-Humulane (C4S) \$51,48-Oydoundecatriane, 2,6,6,9-tetramethyl- (E,EE	204	C15H24	6753-93-6
12	337	813	alpha -Humulane (C4S) \$81,48-Cycloindecatione, 2,6,6,9-letramethyl- (E,EE	204	C15H24	6753-93-6
12	336	593	alpha -Humulane iC4S) \$\$ 1,4,8-0 ocundecatriane, 2,6,6,9 tetramethyl- (E,EE	204	C15H24	6753-93-6

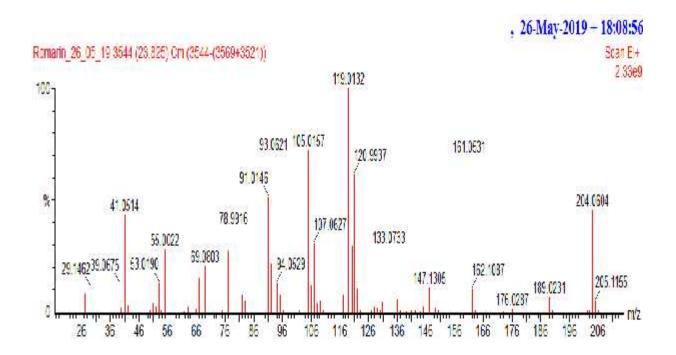


Figure III.17. Spectre de masse à **tr= 23.825min Tableau III.18.** Résultat donné par CG/MS à **tr= 23.825 min**

Ht	RE	ży	Compound Name	W.W.	Formula	CAS
1	943	555	alpha-Cubebene \$8 (-) alpha-Cubebene \$8 alpha-cububene \$8 ALEHA-CUB	204	015H24	17699-14-8
1	954	912	GAMMA-KULROLENE	204	01EH24	33021-74-0
3	930	907	GAVINA-AVUURCLENE	204	015H24	30021-74-0
4	929	920	(1R 3AS 4AS 8AS) 14.4 6-TETRANETHYL-1,2,3,3A,4,4A 7.8-CCTAHYDROCYCL	204	C16H24	94535-52-1
5	925	993	TRICYCL0(5.4.0.0)2,8)(JINDEC-9-ENE, 2,6,8,9-TETRAMETHYL-, (1R 28 TR,8R)-	204	C16H24	5989-08-2
i	925	908	(18.3AR,4AR,8AR)+1.4.4.6-TETRAVETHYL-1.2,3,84,4,44,7,8-OCTAHYOROCYOL	204	015H24	34482-89-0
7	925	731	(+)-Aromadendrene SS Aromadendrene, (+)- \$\$ AROMADEN OREM (+)-S\$ (+)-A	204	015H24	439-39-4
3	924	893	NAPHTHALENE 1,2,3,4,44,5,6,84-OCTAHYDRO-7-METHYL-4-METHYLENE-1-(1	204	015H24	39029-41-9
3	924	632	CAD N4-1 4-D ENE	2)4	015H24	29837-12-5
10	919	890	GAVNA-AUULPOLENE	204	C16H24	30021-74-0
11	913	63)	camma.h machalene	204	C15H24	999152-43-9
12	917	879	1H-SENZOCYCLOHEPTENE, 2,44,5,6,7,8-HEXAHYDRO-3,5,5,9-TETRAMETHYL	204	C16H24	1461-03-5
13	915	879	1H-SENZOCYCLOHEPTENE, 2,44,5,6,7,8-HEXAHYDRO-3,5,5,9-TETRAMETHYL	204	C1EH24	1461-02-3

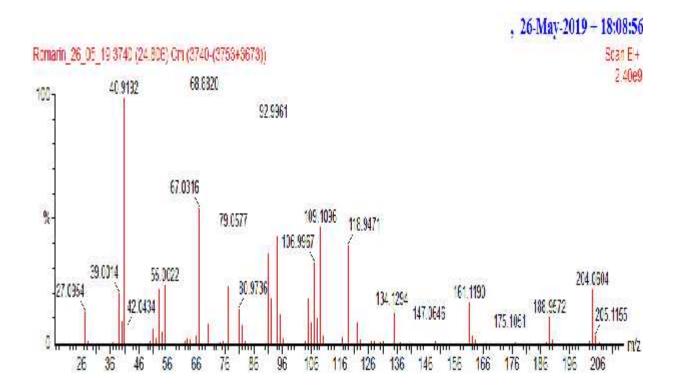


Figure III.18. Spectre de masse à **tr= 24.806min Tableau III.19.** Résultat donné par CG/MS à **tr= 24.806 min**

HI	REV	for	Compound Name	N3V	Formula	CAS
1	373	i)lj	berz-Bisabolene (CAS) &S Cydofexene, 1-methyl-4-5-methyl-1-metry ene-4-h	204	315-124	4554
2	969	.955	,BETA-BIS4EOLENE	204	015H24	495-81-4
1	962	337	,BETA-BIS4BOLENE	204	015H24	495-61-4
4	962	936	.betz: Elisabolene (CAS) & Cyclohevane, 1-mathyl-4-(5-methyl-1-mathylane-4-h	204	015H24	495-61-4
E	950	335	.betz-Bisabolene (CAS) \$5 Cyclohexane, 1-mathyl-4-(5-methyl-1-mathylane-4-h	204	015-124	495-61-4
6	955	330	Leta-Bisabolane (CAS) \$5 Cyclohexane, 1-mathyl-4/5-methyl-1-mathylane-4-h	264	015H24	495-61-4
7	952	926	.BETA-BIS4BOLENE	204	015H24	495-61-4
9	952	927	.beta-Bisabolene (CAS) \$5 Cyclohexene, 1-metryl-4/5-metryl-1-metryl ene-4-h	204	015H24	495-61-4
ę	335	922	berz -Bisabolane (CAS) &S Cyclohexane, 1-mathyl-4-(5-methyl-1-mathylane-4-h	204	015H24	495-61-4
10	934	921	betal bisapolene \$\$ BETA-BISABOLENE \$\$:alpha -Eisapolene \$\$ 44(12)-1,5-0	204	C15H24	25532-79-0
11	933	372	betal bisabolene \$\$ BETA-BISABOLENE \$\$.alpha -Eisabolene \$\$ 44(12)-1,5-0	204	015H24	25532-79-0
12	933	919	.beta bisabolene \$\$ BETA-BISABOLENE \$\$.alpha -Eisabolene \$\$ 4([12]-1,5-0	204	015H24	25532-79-0
12	931	397	1HBENZOCYOLCHEFTENE, 244,5,6,7,8,9,94-00T/HYDRO-3,5,5-TRINETHYL-	204	015H24	80923-88-2

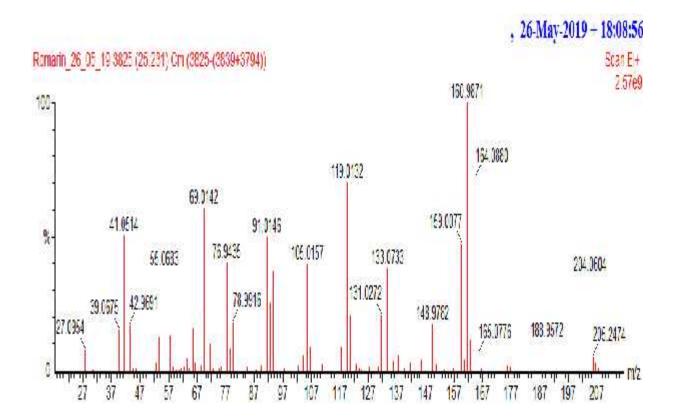


Figure III.19. Spectre de masse à tr= 25.231min

Tableau III.20. Résultat donné par CG/MS à tr= 25.231min

HI	REV	for	Compound Name	N.W	Formula	CAS
1	362	356	ACCR4-6 8-DIENE 3\$ 4,6-3 methyl-1-isograpyl-spiroblogdoj5 6jdeca-6,8/9 viden	214	315-124	(-10-)
2	950	396	Naphthalene 12344a568a-odahydro-7-metry-4-metrylane-141-metrylahy	204	C15H24	30021-740
3	956	364	ACCR46 8/15/-DIENE \$8 4,6/-Dimetry-1-isopropyl-sprobicyclo[5,6]deca-5 8/15	204	015.424	(-)0-)
4	352	392	1/5(6-Gualadiane \$\$ (1R)+1,2,4,5-tetranydro-1,4-dimethyl-7-(1-matrylethyl)-3H 8	264	C15H24	111900-51-7
5	948	407	alpha-Cuibebere SS (-)-labha-Cuibebere \$\$, alpha-cuibubere SS ALPHA-CUB	204	015-124	17599-14-8
6	946	473	fa 447a-Terahyoro-fa 3a 45 577a,7b-cdahyorp-f-H-gdojajn aonthalene	264	015-124	(-00-)
7	943	465	.beta-Gedrene (GAS) \$5 Cedr-8(15)-ene (GAS) \$\$ (Hilbeta-Gedrene \$5 BETA-	204	015H24	545-28-1
8	940	337	1(5) 6-Gualadiene \$\$ (18+1,2,4,5-Telranytho-1,4-dimetryl-7-(1-methylethyl)-3H	264	015H24	111900-50-6
é	932	519	(65)-2-Methyl-5-(4-methylden epydohev-2-enyl heart-2-ene	204	C15H24	999152-75-3
10	922	329	EPIZCN4REN & Epizonarene SS 4-Isopropyl-1 6-dimetry-1,2,3,7,8 8a-hexabyor	204	C15H24	41702-53-0
11	911	456	.beta-Outebene \$5.beta-Ouvebene \$6.4-sporcby-7-melhyl-3-metry eneocian	204	015H24	13744-15-5
12	3.0	329	(HSOLEDERE \$\$ Isolegene \$\$ ISOLEDEN \$\$ 1147-Telramethyl-1a23456	264	015H24	95910-35-4
12	908	397	(4a.beta,8a.alpha.)+~-}-1,2,3,4,4a,5,8,8a-Octahydro-4a-methyl-7+(1-methyleny)+	204	015H24	(-00-)

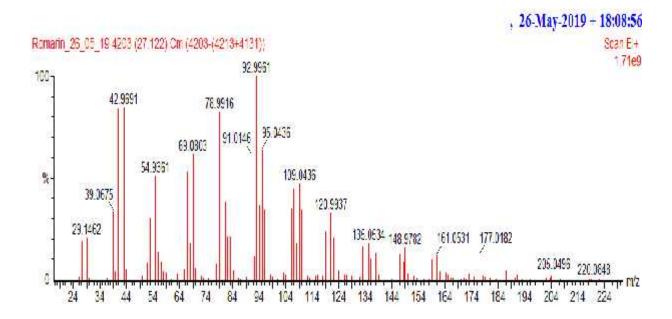


Figure III.20. Spectre de masse à tr= 27.122min

Tableau III.21. Résultat donné par CG/MS à tr= 27.122 min

H	RE/	fyr	Compound Name	N3 V	Formula	CAS
1)]4	478	(+Carporty lene code 5) +) 5-Oxstroydo(8,20,0(4,5)) dode cone, 12-himetry 4-9-	220	C15H240	1134374
2	973	940	(-)-Caryophyllene crice 53 (-)-5-Oratroydo(8,2,0,0(4,3))docesane, 12-himetryl-9-	220	C15H24O	1133-30-6
3	936	334	(-)-Caryophyllene crice 63 (-)-E-Okatroydo[8,2,0,0(4,5)]docestane, 12-Irimethyl-9-	220	015-1240	1139-30-6
4	966	341	CARYOPHILLENE OXIDE	220	015H240	1139-30-8
£	950	897	(+Capophyllene circle 53 (+) E-Oratroydo(8.2.0.0(4,5)) docerane, 12-Inimetry I-9-	220	015-1240	1133-30-6
6	949	396	CARYOPHYLLENE OXIDE	220	C15H24O	1139-30-6
7	935	902	(-)-Caryophyllene cade 53 (-)-E-Okatroydo(8,2,0,0(4,3))doderane, 12-himetryl-8-	220	C15H24O	1139-30-8
8	933	731	(-)-Carroch; lene circle 63 (-)-E-Oratro; do[8:20.0(4,5)]docerane, 124rimetryl-9-	220	C15H24O	1139-30-6
é	920	450	(-+Chrusane	398	C15H23CBr2	999538-94-8
10	906	473	14/ETHYLENE-28-HYDROXYNETHYL-3,3-DIMETHYL-48-(3-METHYL-8UT-2-EN	222	C15H260	900144-10-6
11	902	470	3.7.11.15-TETRAVETHYL-13-PHENYL-SULFONYL-2,6,10,14-HEA/DECATETRA	436	026438035	£7428-43-7
10	398	750	CARYOPHYLLENE OXIDE	220	015H240	1139-30-8
157 23	338	558	(N,18,48 f/8.48+14-(1-)2-(7,7-Dimeny-2'-exobio;de)2.2.(Thept-1-(Imeny-auto	712	040H4406W2S2	(-30-)

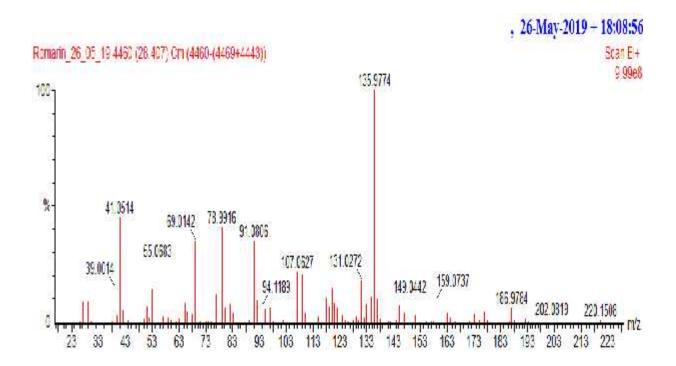


Figure III.21. Spectre de masse à tr= 28.407min

Tableau III.22. Résultat donné par CG/MS à tr= 28.407 min

HI	REV	for	Compound Name	N3N	Formula	CAS
1	385	379	(28 SR 9R)-Carvophy a-1(12),0(15)-dien-6-ol	220	C15H24O	9918-714
2	342	322	11 11-D METHYL-48-DINETHYLENEB CYCLO(7.2 0)UNDBCAN-3-01	220	C15H24O	79580-01-1
3	937	317	10 10-DIMETHYL-2,6-DIMETHYLENES CYCLO(7:20)UNDECAN-5.5ETA-OL	220	015H240	19431-80-2
4	315	375	Tetracyclo[8,3,2,0]2,5),0(1,8)[tridecan-3-ol, 4,4-cimetry-38 TETRACYCLO]6,3,2,	220	015H240	999189-06-4
5	915	742	caryophylla-4(12) 8(13)-cien-5 bela-ci	220	015H240	999188-91-2
6	913	386	beta-Seinen S\$Jatamol A \$\$ 8a-Methyl-4-methylene-1-41-methylethenyl0-deca	220	C15H24O	9-81-281699
7	904	355	TETRACYCLO(6.3.2.0/2,5) 0(1,3))TRIDECAN-9-OL, 4,4-D METHYL-	220	015H240	900157-75-1
8	904	372	CARYOPHYLLA-4(12) 8(13)-DIEN-5,ALPHA-OL	220	C15H24O	19431-79-9
ě	398	728	10 10-D METHYL-2,6-DINETHYLENEBICYCLO(7.20)UNDECAN-5,9ETA-OL	220	C15H24O	19431-30-2
10	395	445	5.5-Dimetryl-4-methylidene decary droazulen-1-one	182	013H200	99912E-09-1
11	339	359	2 alpha, 3 altha-epoxy-10 10-dimetry-7 alpha H-4rkydol/7.4.1.0(2 ?))undecan-4-	208	013H1802	999156-23-7
12	380	353	1-WETHYLENE-28-HYDROXYMETHYL-3,3-DIWETHYL-48-(3-METHYL-9UT-2-EN	222	015H260	900144-10-6
12 73	375	659	5-talohaHydroxytaryophylla-4/12) 8/13-ciena	220	C15H24O	663,88-31-3

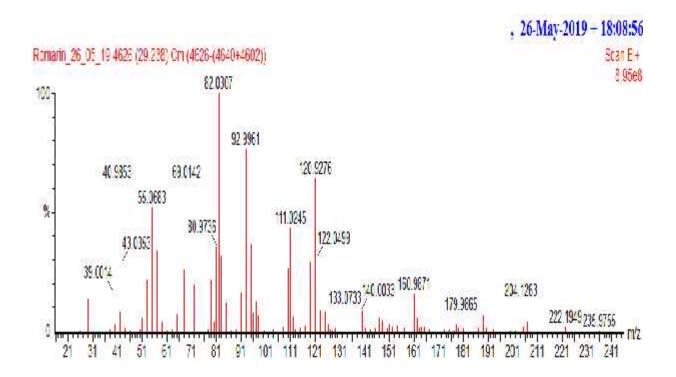


Figure III.22. Spectre de masse à tr= 29.238min

Tableau III.23. Résultat donné par CG/MS à tr= 29.238 min

Ht	REV	'n	Compound Name	WW.	Formula	CAS
1	963	40	(+,45,85)- beta-biseocicliss (+,18)-14(15)-15-timesy nex-4-eny (-4-methyla,	222	015H260	106035-78-1
2	967	480	(+)-(45,8R)-3api-beta-bisabolo SS (+)-(18)-(1R)-1,5-dimetry/nax-4-eryl)-4-me	222	015H260	106035-75-0
}	953	665	3-Cyclohexen-1-cl, 2-(1,5-cimethyl-4-hexenyl)-4-methyl- (CAS) 55 2-(1,5-Cimethyl	222	C15H26C	74810-24-5
1	947	471	(+)-(45,8R)-3-api-betz-bisakolo SS (+)-(18)-(1R)-1,5-dimetry/hax-4-enyl)-4-me	222	C16H26C	106035-75-0
5	929	503	1-Cyclopropyl-5-metryl-4-nexery formate SS 1-Cyclopropyl-5-methyl-4-hexery for	132	C11H1802	999103-41-3
i	922	837	3-CYCLOHEXEN-4-OL, 1-(1,5-OMETHYL-4-HEXENVL)-4-METHYL-	222	C15H26C	15352-77-9
1	907	497	1-Cyclopropyl-5-metryl-4-hexeny abstate	136	012H2002	099134-93-7
3	906	516	2-(-hydroxymetry) -2-5 9-trimetry by obundeds-4,8-dien-1-cl	233	015H2602	999232-14-2
}	891	471	10-ep-Globulol	222	01EH260	999194-35-2
10	887	480	[all-E]-2,5,10,14-Tetrametry-16-(phenyth bihakadeca-2,5,10,14-etraen-1-bi	393	C26H38CE	132274-02-3
11	885	442	alpha-Cedrane \$5 Cedrane \$5 ALFH4-CEDRAN \$5 alpha - cedrane	203	C15H26	13567-54-9
12	(88	455	1-0X48FR0[4.E]DEC-3-ENE, 6 S-DIMETHYL-10-VETHYLENE-	173	C12H18C	54345-69-6
13	(38)	610	ISO-bela-EISABCLOL \$\$ 1415-Dimeny hex-5-eny \-4-methyloydchex-3-en-1-c	222	C15H26C	999194-73-9

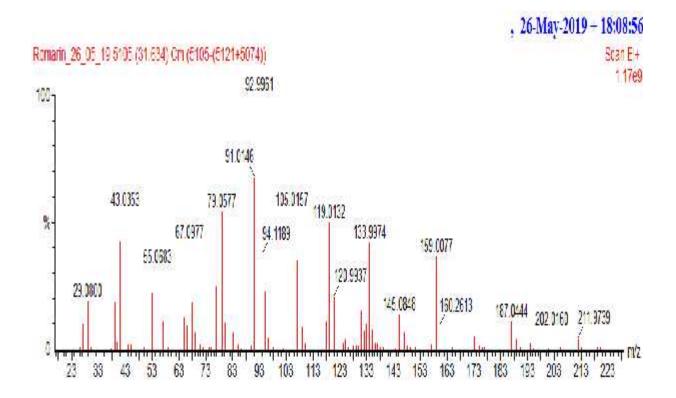


Figure III.23. Spectre de masse à tr =31.634min

Tableau III.24. Résultat donné par CG/MS à tr= 31.634 min

H	REV	for	Compound Name	WW.	Formula	CAS
1	962	343	LPICEOL, OS	220	315-1240	10067-28-4
2	339	915	LANCEOL, OB	220	015H240	10067-28-4
3	339	316	Lanceoticis S\$ (2E)-2-(4,7-D methyl-3 4 4a 5 5 8a-hexanydro-1(2H)-naphrhaleny	220	015H240	10067-29-5
4	923	577	CORALLOIDNAB \$\$ Bloyd : garma-1 4-clen-12-y Acetate	262	017H2602	(-70-)
£	395	459	PERILLA ACETATE \$\$ 1-0; conexene-1-methanol, 4-(1-methylethen)(), acetate	194	01241802	15111-96-8
6	336	470	2-(E-4-Melhyloydohex-3-an-1-yl danejpropyl acetate	194	0124/802	99130-29-7
7	375	436	16-Epopeudesm-4(15)-ene	220	015H240	(-00-)
8	369	458	-impren-10-p	152	C10H160	999054-68-5
9	365	459	2-[/2]-4-Methylcyclohex-3-en-1-ylidenejoropyl acetate	194	01241802	999130-29-8
10	358	456	1(7):28-e-Menihatrene	24	C10H14	999031-52-6
1	353	591	8-Chicro-1 3-ip-menhaciene)	17(0104150	(-00-)
12	352	463	1(7) 4 8-o-Menihatrena	34	C1CH14	999031-52-5
12	345	434	12-enco-frimetry ene-8 9 10-frincopmane-3-exc-y acetale	194	012H1802	97231-02-2

Conclusion Générale

Les plantes médicinales restent toujours la source fiable des principes actifs connus par leurs propriétés thérapeutiques.

L'objectif de notre travail est l'extraction par hydrodistillation de l'huile essentielle Rosmarinus officinalis de la région de BOUMERDES, puis sa caractérisation physicochimique et l'étude de son activité antioxydant. L'analyse par CG/ MS a été faite pour identifier les différents constituants de cette huile.

La méthode d'extraction par hydrodistillation a été utilisée pour déterminer le rendement de l'huile essentielle avec précision, et l'étude de ses propriétés physicochimiques ; car cette méthode est plus précise et plus pratique utilisée généralement au niveau de laboratoire de CRD pour l'extraction des huiles.

Puis, et pour avoir une quantité suffisante d'huile, la méthode d'extraction par entrainement à la vapeur d'eau a été utilisée à l'échelle pilote.

Les résultats de caractérisation obtenus montrent que les huiles essentielles de Rosmarinus officinalis obtenues par hydrodistillation ont des propriétés organoleptiques et physicochimiques conformes aux normes AFNOR tels que L'indice d'acide, l'indice de saponification, l'indice d'ester, le pouvoir rotatoire, l'indice de réfraction.

Notre huile essentielle présente aussi un pouvoir antioxydant acceptable comparativement à la référence qui est l'acide ascorbique; cela est dû à la présence de l'acide rosmarinique et d'autres acides phénoliques.

L'analyse par chromatographie GC/MS indique que l'huile Rosmarinus officinalis est composée de plus de 20 composants chimiques.

Enfin, le rendement en huile essentielle obtenue est très intéressant sur le plan économique pour d'éventuelle utilisation commerciale, a noté que 100 ml de l'huile essentielle Rosmarinus officinalis est commercialisé à 50 dollars. Cette opportunité ouvert la voie vers la mise en valeur de la plante et ces dérivés dans le développement économique durable et dans la création de la richesse renouvelable dans notre paye.

Références bibliographiques

A

AbougheAngone S, AworetSamseny R, EyeleMveMba C.2015: Quelques propriétés des huiles essentielles des plantes médicinales du Gabon. Phytothérapie, 13: 283–287.

AFNOR.2000: Huiles essentielles ». Association Française de Normalisation, Paris, p465. **AFNOR. 1999:** Recueil des normes françaises ; huiles essentielles.

Ayadi S, Jerribi C, and Abderrebba M.2011: Extraction et étude des huiles essentielles de RosmarinusOfficinalis cueillie dans trois régions différentes de la Tunisie. J Soc Alger Chim, 21(1): 25–33.

B

Bakkali F, Averbeck S, Averbeck D, and Idaomar M.2008: Biological effects of essential oils. Rev. Food Chem. Toxicol, 46: 446–475.

BekkaraAet al.2007: Composition chimique de L'huile essentielle de Romarins offcinalisL poussant à l'état spontané et cultivé de la région de Tlemcen. Biologie & santé .7:6-11.

Belaiche P.1979: Traité de phytothérapie et d'aromathérapie. L'aromatogramme Tome I, Edition Maloine.

Bellumori M, Innocenti M, Binello A, Boffa L, Mulinacci N, and Cravotto G. 2016: Selective recovery of rosmarinic and carnosic acids from rosemary leaves under ultrasound- and microwave-assisted extraction procedures. Comptes Rendus Chim, 19: 699–706.

BrunetonJ.1999: Pharmacognosie (Phythochimie, plantes médicinales), 3^{eme} Ed. TEC et DOC, Paris, p911.

Bruni U, Cortesi N, Fiorino P. 1994: Influence des techniques culturales, des cultivars et des zones d'origine sur les caractères de l'huile d'olive vierge et les niveaux de certains de ces composants (mineurs).Rev.Olivae,53: 28-34.

C

Capecka E, Mareczek A, and Leja M. 2005: Antioxydant activity of fresch and dry herbs of some Lamiaceae spices. Food chemistry, 93: 223-226.

Carette D.2000 : La lavande et son huile essentielle. In Besombes C.2008. Contribution à l'étude des phénomènes d'extraction hydro thermomécanique d'herbes aromatiques. Applications généralisées. Thèse de doctorat. Université de La Rochelle, p289.

Charpentier B, Hamon F, Lorléac H, Harly A, Ridoux L, et Chanselle S. 2004: Guide de préparateur en pharmacie, 2^{eme} Ed. Masson, Paris, p1472.

Chemat S, Lagha A, Ait Amar H, Bartels P.V, et Chemat F.2004:Comparison of conventional and ultrasound-assisted extraction of carvone and limonene from caraway seeds. Flavour and Fragrance Journal, Vol. 19, pp: 188–195.

Cillard J,Cillard P.2006: Mécanismes de la peroxydation lipidique et des antioxydations.OCL 2006; 13:24-29.

Couic-Marinier F, Lobstein A.2013: Composition chimique des huiles essentielles. Actual. Pharm, 52: 22–25.

D

Dastmalchi K, Damien Dorman HJ, Oinonen PP, Darwis Y. 2008: Chemical composition and in vitro antioxidative activity of a lemonbalm (Melissa officinalis L.) extract. Food.Sci. tech LWT. 41 (3), 391-400.

Debuigneg A. 1984: Dictionnaire Larousse, Paris, p255.

Degryse A.C, Delpla I, et Voinier M.A.2008 : Risques et bénéfices possibles des huiles essentielles. Atelier santé environnement -IGS- EHESP, p87.

Desmares C, Laurent A, Delerme C.2008 : Recommandations relatives aux critères de qualité des huiles essentielles. AFSSAPS. Anatole, France, p18.

Djerrad Z, Kadik L, and Djouahri A.2015:Chemical variability and antioxidantactivities among Pinushalepensis Mill. Essential oils provenances, depending ongeographic variation and environmental conditions. Ind. Crops Prod, 74: 440–449.

Djouahri A, Boudarene L, and Meklati B.Y.2013: Effect of extraction method onchemical composition, antioxidant and anti-inflammatory activities of essential oil from the leaves of Algerian. Ind. Crops Prod, 44: 32–36.

Dorman HJD, Peltoketo A, Hiltunen R, and Tikkanen MJ. 2003. Characterisation of the antioxidant properties of de-odourised aqueous extracts from selected Lamiaceaeherbs. Food Chemistry, 83:255–262.

 \mathbf{E}

Erkan N, Ayranci G, and Ayranci E.2008: Antioxidant activities of rosemary(Rosmarinus officinalis L.) extract, blackseed (Nigella sativa L.) essential oil, carnosic

acid, rosmarinic acid and sesamol. Food Chemistry, 110:76–82.

F

Fechtal M, Ismaili R and Zine el Abidine A.2001: Effet de la transplantationsur la qualité et le rendement en huiles essentielles du romarin (Rosmarinusofficinalis L). Annales de la recherche forestière au Maroc, 34: 94-102.

Frouhat Zoulikha, LahciniBasma 2013 : theselute biologique par l'huile essentielle du RosmarinusOfficinalis, université de Ouargla.

G

Gacem D, Cherif D, Mekhtoui K. 1995: Evaluation de la qualité de l'huile d'olive à travers la wilaya de Tizi-Ouzou. Thèse de Magistère en biochimie appliquée et biotechnologie de Tizi-Ouzou.

Ghestem A, Seguin E, Paris M, et Orecchioni A.M. 2001: Le préparateur en pharmacie (botanique, pharmacognosie, phythochimie, plantes médicinales, Ed tec et Doc, Médicales international, paris, pages : 488-510.

Gonzalez-Trujano M.E, Pena E.I, Martinez A.L, Moreno J, Guevara-Fefer P.2007: Evaluation of the antinociceptive effect ofRosmarinus officinalis L. using three different experimental models in rodents. J Ethnopharmacol. 111: 476-482.

J

Jean Branten. 2003: Pharmacognosie, phytochimie, plantes médicinales, Ed tec et Doc, Médicales international, Paris, page : 488-510.

K

Khia A, Ghanmi M, Satrani B.2014 : Effet de la provenance sur la qualité chimiqueet microbiologique des huiles essentielles de Rosmarinus officinalis L. du Maroc.Phytothérapie, 12: 341–347.

Kechar K, et Hellal B.2016: Évaluation de l'activité antioxydante des extraits de Ballota hirsutaBenth du Tessala (Algérie occidentale). Phytothérapie, 13: 225–279.

Koch E. 2001: Extracts frome fruits of saw pelmetto and roots of stinging nettle (the medical treatment of benign prostatic hyperplasia), Ed. Planta Med, German, p650.

Korner C.2007: The use of altitude in ecological research. Trends Ecol. Evol, 22: 11.

L

Leclereq Q. 2001:Le voyage insolite de la plante au médicament, 4^{éme} Ed. J. HarmBelg, Paris, P258.

Lee L.G, Chen T.L, Chang W.M, Kea Y.F, Loc C.C. 2011: The correlation between skin-care effects and photochemical contents in Lamiaceae plants. Food Chemistry, 124: 833.

Lucchesi M. E, Chemat F, Smadja J. 2004: Solvent-free microwave extraction of essential oil from aromatic herbs: comparison with conventional hydro-distillation. J.Chromato A Vol. 1043, pp : 323-327.

Lucchesi M-E. 2005: Extraction sans solvant assistée par micro-ondes conception etapplication à l'extraction des huiles essentielles. Thèse de Doctorat, Université de la Réunion.

Luque de castro M.D,Friego-Capote F. 2007: Ultrasound assistance to liquidliquid extraction: A debatable analytical tool. AnalyticaChimica Acta, Vol. 583, pp. 2 – 9.

Lion, 1995: Travaux pratiques de chimie organique. Ed. Dunod, Paris.

M

Madadori M.K 1982: Les plantes médicinales .Guides vert .Salar.p624.

Mechergui K, Coelho J.A, Serra M.C, Ben Lamine S, Boukhchina S and Khouja M.L. 2016: Essential oils of Origanum vulgare L. subsp. glandulosum (Desf.)Ietswaart from Tunisia: chemical composition and antioxidant activity. J. Sci. Food Agric,90: 1745–1749.

MoghtaderM, Afzali D.2009: Study of the antimicrobial proprieties of the oil ofRosemary. Am. Eurasian J. Agric. Environ. Sci, 5 (3): 393–397.

Moreno S, Scheyer T, Romano C.S, and Vojnov A.A. 2006: Antioxidant and antimicrobial activities of rosemary extracts linked to their polyphenol composition. FreeRadic Res, 40: 223–231.

Morin Y, Gillot C. 2000: Larousse medical, Ed. Larousse, Paris, p1203.

Mothana R.A,Alsaid M.S, Hasoon S.S, Al –Mosaiyb N.M, Al -Rehaily A.J, andAl-Yahya M.A. 2012: Antimicrobial and antioxidant activities and gas chromatography mass spectrometry (GC/MS) analysis of the essential oils of AjugabracteosaWall.Benth. andLavanduladentata L. growing wild in Yemen. J. Med. Plants Res, 6: 3066-3071.

N

Niki E. (2012). Do antioxidants impair signaling by reactive oxygen species and lipid Oxidation products. FEBS Lett. 586: 3767–3770.

O

Ono K, Hasegawa K, Naiki H, and Yamada M. 2004. Curcumin has potent antiamyloidogenic effects for Alzheimers b-amyloid fibrils in vitro. J Neurosci Res, 75:742-750.

Osakabe N, Yasuda A, Natsume M, and Yoshikawa T.2004: Rosmarinic acidinhibits epidermal inflammatory responses: Anticarcinogenic effect of perillafrutescens extract in the murine two-stage skin model. Carcinogenesis, 25: 549–557.

p

Pellerin P. 2001: Extraction par le CO2 à l'état supercritique. Ann. Fals. Exp. Chim. V. 94, N°954 – pp : 51-62.

Q

Quezel et Santa 1963 : Nouvelle flore d'Algérie et des régions désertiques méridionales Tome II. C.N.R.Sc.Paris.page :781-783-793.

R

Reisch C, Anke A, and RohlM. 2005: Molecular variation within and between ten provenances of Primula farinosa (Primulaceae) along an altitudinal gradient in the northern Alps. Basic Appl. Ecol, 6: 35–45.

Ribeiro-Santos R, Carvalho-Costa D, Cavaleiro C, Costa H. .2015: A novel insight on an ancient aromatic plant: The rosmary (Rosmarinus officinalis L). Trends Food Sci. Technol, 45: 355.

Richard H. Epices et aromates, techniques et documentations Lavoisier 1992. Teucher, E. Anton, R. and Lobstein, A. 2003 : Plantes aromatiques : épices, aromates, condiments et huiles essentielles. Ed : Lavoisier.

S

Sanon E. 1992: Arbre et arbrisseaux en Algérie O.P.U. Ben Aknoun.Algerie N°686 .Alger. p121.

T

Taofiq O, Martins A, Barreiro M.F, and Ferreira I.C. 2016: Antiinflammatorypotential of mushroom extracts and isolated metabolites. Trend.Food Sci.Technol, 50: 193 -210.

\mathbf{V}

Valnet J.1983: Phytothérapie, 5^{eme} Ed. Maloine, Paris, p544.

Volak J, et Stodola J.1987: Plantes médicinales, Ed. Gründ, Paris, p312.

W

Wang et al 2008: Antioxidative activity of Rosmarinus officinalis L.essential oil comared to its main components. Food Chem. 108:1019-1022.

Williams LR, and Lusunzi I.1994 : Essential oil from Melaleuca dissitiflora: a potential source of high quality tea tree oil. Industrial Crops and Products, 2: 211–217.

Wollinger A, Perrin É, Chahboun J, Jeannot V, Touraud D, and Kunz W. 2016: Antioxidant activity of hydro distillation water residues from Rosmarinus officinalis L. leaves determined by DPPH assays. ComptesRendusChim, 19: 754–765.

Zieli ski H, Zieli ska D, and Kostyra H. 2012: Antioxidant capacity of a new crispy type food products determined by up dated analytical strategies. Food Chem, 130:1098-1104.